Reversible Parallel Discrete Event Formulation of a TLM-based Radio Signal Propagation Model

Abstract

Radio signal strength estimation is essential in many applications, including the design of military radio communications and industrial wireless installations. For scenarios with large or richly-featured geographical volumes, parallel processing is required to meet the memory and computation time demands. Here, we present a scalable and efficient parallel execution of the sequential model for radio signal propagation recently developed by Nutaro et al. Starting with that model, we (a) provide a vector-based reformulation that has significantly lower computational overhead for event handling, (b) develop a parallel decomposition approach that is amenable to reversibility with minimal computational overheads, (c) present a framework for transparently mapping the conservative time-stepped model into an optimistic parallel discrete event execution, (d) present a new reversible method, along with its analysis and implementation, for inverting the vector-based event model to be executed in an optimistic parallel style of execution, and (e) present performance results from implementation on Cray XT platforms. We demonstrate scalability, with the largest runs tested on up to 127,500 cores of a Cray XT5, enabling simulation of larger scenarios and with faster execution than reported before on the radio propagation model. This also represents the first successful demonstration of the ability to efficiently map a conservative time-stepped model to an optimistic discrete-event execution.

[Pub 110]

http://dl.acm.org/citation.cfm?id=2043639

Kalyan Perumalla
Kalyan Perumalla
R&D Manager

Kalyan Perumalla is an R&D Manager with 25 years of experience. As a Federal Program Manager in Advanced Scientific Computing Research at the U.S. Dept. of Energy, Office of Science, Kalyan Perumalla manages a $100-million R&D portfolio covering AI, HPC, Quantum, SciDAC, and Basic Computer Science. He previously led advanced R&D as Distinguished Research Staff Member at the Oak Ridge National Laboratory (ORNL) developing scalable software and applications on the world’s largest supercomputers for 17 years, including as a line manager and a founding group leader. He has held senior faculty and adjunct appointments at UTK, GT, and UNL, and was an IAS Fellow at Durham University.

Next
Previous