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Radio signal strength estimation is essential in many applications, including the design of
military radio communications and industrial wireless installations. For scenarios with large or
richly-featured geographical volumes, parallel processing is required to meet the memory and
computation time demands. Here, we present a scalable and efficient parallel execution of the
sequential model for radio signal propagation recently developed by Nutaro et al. Starting with
that model, we (a) provide a vector-based reformulation that has significantly lower computational
overhead for event handling, (b) develop a parallel decomposition approach that is amenable to
reversibility with minimal computational overheads, (c) present a framework for transparently
mapping the conservative time-stepped model into an optimistic parallel discrete event execution,
(d) present a new reversible method, along with its analysis and implementation, for inverting the
vector-based event model to be executed in an optimistic parallel style of execution, and (e) present
performance results from implementation on Cray XT platforms. We demonstrate scalability,
with the largest runs tested on up to 127,500 cores of a Cray XT5, enabling simulation of larger
scenarios and with faster execution than reported before on the radio propagation model. This
also represents the first successful demonstration of the ability to efficiently map a conservative
time-stepped model to an optimistic discrete-event execution.

Categories and Subject Descriptors: I.6.8 [Simulation and Modeling]: Parallel Discrete Event
Simulation

General Terms: Rollback, Reverse Computing, Transmission Line Matrix
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1. INTRODUCTION

Estimation of radio signal path loss is very important in the design and deployment
of wireless communication networks [Chen and Hall 2002]. In military scenarios,
typical geographical terrains of interest are large and often include physical features
that range from buildings and mountains to natural reliefs and foliage. For scenarios
with even a single source and a few receivers, traditional techniques exhibit large
run times [Nutaro et al. 2008]. Faster simulation methods become necessary to
handle large numbers of transmitters or receivers, or when the radios are mobile.
Efficient real time estimation of radio signal strength for such scenarios remains an
area of on-going research [Cavin et al. 2002; Gruber and Li 2004].

Finite-difference time-domain (FDTD) [Taflove and Hagness 2000] or ray-tracing
models [Levy 2000] of radio wave propagation in such terrains are computationally
very intensive, more so as the number of transmitters and receivers is increased. In
FDTD methods, Maxwell’s equations are discretized subject to specific boundary
conditions and the resulting set of discrete equations is numerically solved. Ray
tracing methods are based on geometrical optics and are often more useful in sce-
narios where the feature sizes of the scatterers are large compared to the wavelength
of the radio signals. Computing radio signal path loss predictions for deployment
of large wireless networks using FDTD or ray-tracing require very fine spatial reso-
lution (hence very large grid sizes) and commensurately accurate initial conditions
to ensure numerical accuracies of the final solutions. This makes the underlying
computational problem very large. On the other hand, the input data and the ini-
tial conditions that describe the physical geometry of such cluttered study sites are
very often of low precision and prone to large errors. As a result, despite their large
computational effort, such high-precision techniques are unable to make accurate
predictions. For additional details, see [Nutaro 2006; Nutaro et al. 2008].

To bridge the gap between low precision input data and accuracy considerations,
an alternative event driven approach that is based on a transmission line matrix
(TLM) method [Sadiku 2000] was proposed in [Nutaro et al. 2008]. A TLM method
uses equivalent electrical networks that are based on the link between field theory
and circuit theory to solve simplified partial differential equations stemming in
electromagnetic field problems. Nutaro et al have shown empirical runtime perfor-
mance comparison with earlier traditional methods that clearly motivate alternative
models such as their new, event-based TLM model [Nutaro et al. 2008].

Parallel execution of the TLM approach becomes necessary when larger sim-
ulations of radio signal propagation are required to include a greater number of
receivers with extended geographical reach. For example, while serial execution is
sufficient to deal with room-sized volumes, parallel execution enables signal strength
estimation from city block-sized urban scenarios to even larger volumes encoun-
tered in wider, mountainous terrains. In addition, the need for parallel execution
becomes obvious when real-time signal strength estimation is sought. For example,
when transmitters and receivers are mounted on moving vehicles, the turnaround
times for simulation of such loss computations must match the time scales that are
associated with mobile platforms.
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1.1 Parallel Execution Challenge

Several challenges are encountered when designing a parallel implementation of the
above model to scale to hundreds of thousands of processors.

Of paramount importance to the scalability of parallel simulations is the nature of
inter-processor coupling across simulation time. Processors in conventional time-
stepped simulations are tightly-coupled and typified by data exchange between
inter-dependent processors at every time-step. The sequential TLM model (to be
described in more detail shortly) is grid-based, inherently time-stepped and affords
selective updates of the state variables, that is, state variable are updated only if
they differ from their previous values by a pre-defined threshold. Since the updates
to state variables in the TLM model are threshold-based, one of the first parallel
execution challenges is how best to exploit such selective updates of distributed
data to relax inter-processor couplings resulting from delayed interactions of logical
processes (LP).

Mapping the time-stepped TLM model to a discrete event based execution ex-
poses the issue of computational granularity that results from the mapping [Bailey
et al. 1994; Choi and Chung 1995; McBrayer and Wilsey 1995]. LPs and events
need to be defined such that the overhead of computation local to an LP offsets
the processing overhead of events defined on them. In a straightforward conversion
to a discrete-event execution, each grid cell of the TLM model can be mapped to
an LP. This is the approach adopted in [Bauer and Page 2007; Bauer et al. 2009].
As will be demonstrated later in this paper, such a mapping is highly sub-optimal
in terms of scalability and yields unacceptably large execution times for signal
strength estimation. Thus, a judicious definition of LP (which sets the granularity
of subsequent computations) is key to achieving high efficiency of any large scale
parallel implementation of the TLM model.

Optimistic execution is one of the state-of-the-art methods to relax inter-processor
coupling in large scale parallel discrete event simulations (PDES). In particular,
the advantages of reverse-computing based approaches over other optimistic PDES
methodologies are well-known [Carothers et al. 1999; Perumalla 2006]. For this,
however, one is posed with the challenge of developing a new reversible model from
a forward-only model – a task that is often highly non-trivial as will be shown in
the context of the TLM model shortly. Ill-designed reverse-computing approaches
result in poor scalability as the overhead of reverse-computing can quickly offset
its benefits. Formulating a reversible parallel approach is a formidable challenge
to ensure that the asymptotic runtime does not exceed that of the forward TLM
execution while requiring minimal extra memory.

Another important parallelization issue is the treatment of three dimensional
(3D) geography, which imposes complex inter-processor dependencies, more so in
this case since the dynamics are coupled with both the event-based behavior and
the distribution of data across processing elements (parallel domain decomposition).
Our interest is in supporting full 3D scenarios with multiple domain decomposition
schemes that scale across hundreds of thousands of processors.
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1.2 Contributions in this Paper

In this paper, we present a reversible vector-update reformulation of the event-based
TLM model such that it can be executed optimistically in parallel. Our reformula-
tion significantly lowers the computational overhead for event handling. We imple-
ment a parallel domain decomposition approach that allows for reverse computing
with minimal computational and memory overhead. In conjunction, the resulting
parallel execution is rendered coarse-grained with a computation-to-communication
ratio that is kept well under control even up to hundreds of thousands of cores. Al-
though, our implementation allows for any number of partial voltages to be mapped
to the same LP, we adopt a coarse-grained mapping that allows multiple partial
voltages to be updated as a block. This makes the parallel execution more compet-
itive with an optimized, sequential execution. On the other hand, reverse execution
becomes more challenging since expensive state-copying primitives save entire state
for restoration upon rollback. To resolve this, we develop a fully reversible model of
the original forward-only sequential method that can be executed in an optimistic
parallel manner. Tight-coupling of processors in traditional time-stepped parallel
simulations is also avoided, as a natural consequence. We present a transparent
mapping of the original conservative time-stepped model to an optimistic parallel
discrete event execution. Comparisons of our approach with other recently reported
parallelization efforts are also presented to highlight the differences in parallel per-
formance that can result from varying definitions of logical processes and, in turn,
the granularity of computation. The performance comparison also underscores the
inadequacy of event rate as a measure of parallel performance for this problem,
despite its common usage in PDES. In addition, the comparisons highlight the sig-
nificant advantage that our approach delivers over those reported until the time of
this writing. We present exhaustive performance results of our implementation on
both Cray XT4 and Cray XT5 platforms. Finally, to the best of our knowledge, the
work presented in this paper embodies the first successful PDES of a non-trivial
application that scales to over 100,000 processor cores.

1.3 Organization of this Paper

The rest of the paper is organized as follows. Section 2 describes the vector-update
formulation that is at the core of both sequential and parallel reformulations of
the radio wave propagation problem. It covers time-stepped as well as discrete
event execution styles of the model, and presents the reverse formulation of the
forward model. Section 3 provides a detailed description of the forward and reverse
computational steps taken by our parallel discrete event scheme. Our experimental
setup and results from performance study are discussed in Section 4, along with
a comparison of the results in this paper with those in related work. Finally, we
conclude in Section 5 with a discussion of the future scope of our approach.

2. VECTOR-BASED FORMULATION

In this section, a vector update formulation of the TLM-based wave propagation
problem is presented, with the goal of controlling the LP granularity, thereby re-
ducing event overhead.
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Fig. 1. (a) Variables of the TLM model in a 2D example. (b) Sample voltage profile along
the z = 15 plane at t = 75 s during a simulation with one voltage source at the center of
a 30 × 30 × 30 domain.

2.1 Model Description

The computational (simulation) domain is modeled by a three-dimensional (3D)
grid. Each grid point i is a node that computes the time-varying electrical potential
Vi of the wave that is traveling through the grid. Partial voltages vij and vji are
defined across each link in the grid that connects two neighboring nodes i and j
in the directions i → j and j → i, respectively. Fig. 1(a) shows a 2D example.
Partial voltages on the links capture information related to the permittivity and
permeability constants of the medium, which in turn define the rate at which the
wave travels between those two nodes. In this paper, the term voltage will always be
used to refer to the total time-varying voltage defined at a node (grid point) while
the term partial voltage will always be defined on links between two neighboring
nodes. Note that an n×n×n grid contains n3 grid points (voltages) and N = 6n3

directional links (partial voltages). When the power at any point in the simulation
domain falls below a cut-off voltage, a radio antenna cannot detect it. This effect
is captured in terms of a threshold voltage below which a node is not required to
transmit. The TLM equations, as defined in [Nutaro et al. 2008], that model the
propagation of radio signals in terms of the total and partial voltages defined above
are:

vij(t + 1) = Rij

(

Vi(t)

3
− vij(t)

)

+ Tji

(

Vj(t)

3
− vji(t)

)

(1)

Vi(t + 1) =

5
∑

k=0

vijk
(t + 1) (2)

where jk corresponds to the indices of the six neighbors of the grid point indexed by
i, and t and t+1 are consecutive units of discretized time. The constants Rij and Tji

are the reflection and transmission coefficients that correspond to the links ij and
ji, respectively. These constants encapsulate properties such as the permittivity
and permeability of the medium that is modeled by the grid. We will use the term
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components of Vi to refer to the partial voltages that add up to yield Vi through
Eqn (4). A computation of the voltage profile (set of total voltages across all the
n3 nodes in the grid [see Fig. 1(b)]) at a time step t requires the availability of all
the partial voltages at the previous time step.

2.2 Event-driven Execution

Temporal updates of the voltage profile can be either time-driven or event-driven.
Time-driven approaches regularly update the set of partial and total voltages after
the passage of each pre-defined time interval. The internal is determined by conver-
gence requirements such as the aspect ratio of finite-difference schemes. In event-
driven approaches, the state of a physical system changes at irregularly-spaced
instants of time through instantaneous transitions. An event is associated with
each such transition. For example, an event can be triggered every time the change
in a node’s voltage exceeds a specified amount of voltage differential. Discrete event
formulation, therefore, delinks the necessity for a synchronous (time-stepped) exe-
cution from the evolution of the physical system. Instead, it views the same simu-
lation as a set of time-stamped events (containing temporal information about the
physical state variables) processed without violating global causality. When such
event-based simulations are distributed across multiple processors, preservation of
global causality becomes very challenging since state updates across processors are
no longer guaranteed to be concurrent. Parallelization of such discrete event al-
gorithms has been known to require causality control mechanisms that are highly
challenging to scale well across a large number of processors [Fujimoto 1989; Peru-
malla 2006].

2.3 Vector Formulation: Sequential Forward Execution

Let the 3D Cartesian grid coordinates be mapped to a 1D array using the mapping
function f(a, b, c) = a + nb + n2c where (a, b, c) are the 3D node coordinates. In
this section, unless otherwise specified, the partial voltage on a link i → j will be
denoted by vα

ij where α ∈ [0, 5] corresponds to the direction specified by i→ j. Eqn
(1) and Eqn (2) can now be rewritten as:

vα
ij(t + 1) = Rα

ij

(

Vi(t)

3
− vα

ij(t)

)

+ T−α
ji

(

Vj(t)

3
− v−α

ji (t)

)

(3)

Vi(t + 1) =

5
∑

α=0

vα
ij(t + 1) (4)

where we also use the notation −α to denote the direction opposite to α.
The TLM-based simulation proceeds as shown in Algorithm 1. Note that the total

voltage in the TLM equations is an intermediate variable that can be eliminated
by substituting Eqn (4) in Eqn (3). The resulting set of equations can be cast into
the form of a matrix-vector update:

X(t + 1) = A ·X(t)

where the matrix A, called the connectivity matrix, has a linear number of non-
zero elements (reflection and transmission coefficients). A simulation of the signal
propagation proceeds by updating the vector X of partial voltages at each time
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Algorithm 1 A Time-stepped TLM Simulation

1: xα
ij(0)← User-defined initial values ∀ i, j ∈ [0, · · · , n−1] and ∀ α ∈ [0, 1, · · · , 5]

2: Vi(0)← User-defined initial values ∀ i ∈ [0, · · · , n− 1]
3: for t = 0 to T − 1 do
4: Compute xα

ij(t + 1) ∀ i, j ∈ [0, · · · , n− 1] and ∀ α ∈ [0, 1, · · · , 5] {Eqn (3)}
5: Compute Vi(t + 1) ∀ i ∈ [0, · · · , n− 1] {Eqn (4)}
6: end for

step through an O (N) matrix-vector multiplication. Note that the structure of the
connectivity matrix A depends on the structure of the vector X .

2.4 Vector Execution Reversal Challenge

In principle, a forward simulation defined by the preceding matrix-vector product
can be reversed by computing the inverse matrix-vector multiplication:

X(t) = A−1 ·X(t + 1)

But, care needs to be exercised because a naive construction of the connectivity
matrix could result in: (a) cubic work for the matrix inversion (though computed
only once) and (b) quadratic work for each reversal since the inverse of a sparse
matrix need not necessarily be sparse. In fact, when X is constructed by concate-
nating six smaller vectors, X0, X1, X2, X3, X4 and X5, each of length n3 and
containing all the partial voltages along the directions indicated by the subscript,
the inverse of the resulting connectivity matrix can be shown to be dense, thus
requiring quadratic work for each reversal, even though the forward matrix-vector
multiplication is linear. Each application of such an inverse matrix-vector multipli-
cation would require O

(

n2
)

work, in turn degrading the performance of optimistic
execution based on reverse computing. In addition, the cost of computing the
inverse matrix, though carried out only once, would be O

(

n3
)

.
In summary, using a vector update representation, the TLM based simulation can

be shown to be reversible, although the complexity of each reverse computation can
potentially become greater than that of the forward computation by one or even
two orders of magnitude.

2.5 Vector Formulation: Sequential Reverse Execution

A naive approach such as the one outlined previously results in a connectivity
matrix whose inverse is dense, making the reverse computation cost proportional
to the cube of the problem size, which is unacceptably high. Here we develop an
alternative matrix-vector representation whose inverse computation is linear.

Let us define the variable:

yα
ij(t) =

[

Vi(t)

3
− xα

ij(t)

]

Eqn (3) can then be rewritten as:

xα
ij(t + 1) = Rα

ijy
α
ij(t) + T−α

ji y−α
ji (t)

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, 20YY.
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Fig. 2. Structure of the connectivity matrix M .

For ease of presentation, we adopt the following notation:

xα
ij = x−α

ij , yα
ij = y−α

ij

Y0(t) =
[

y0
0,j0

(t) y0
1,j1

(t) · · · y0
m−2,jm−2

(t) y0
m−1,jm−1

(t)
]

Y1(t) =
[

y1
0,j0

(t) y1
1,j1

(t) · · · y1
m−2,jm−2

(t) y1
m−1,jm−1

(t)
]

Y2(t) =
[

y2
0,j0

(t) y2
1,j1

(t) · · · y2
m−2,jm−2

(t) y2
m−1,jm−1

(t)
]

Y 0(t) =
[

y0
0,j0

(t) y0
1,j1

(t) · · · y0
m−2,jm−2

(t) y0
m−1,jm−1

(t)
]

Y 1(t) =
[

y1
0,j0

(t) y1
1,j1

(t) · · · y1
m−2,jm−2

(t) y1
m−1,jm−1

(t)
]

Y 2(t) =
[

y2
0,j0

(t) y2
1,j1

(t) · · · y2
m−2,jm−2

(t) y2
m−1,jm−1

(t)
]

Consider the vector Y (t) defined by:

Y (t) =
[

Y0(t) Y1(t) Y2(t) Y 0(t) Y 1(t) Y 2(t)
]T

which is obtained by stacking Yk(t) and Y k(t), k = 0, 1, 2. In terms of the preceding
definitions, Eqn (3) can be written as:

X(t + 1) = M · Y (t)

where the transformation matrix M has the structure shown in Fig. 2. Note that
the non-zero elements of M constitute 3n independent 2× 2 matrices, each of the
form:

Mi,j =

[

Rij Tji

Tij Rji

]

and defined for each nearest neighbor pair (i, j). Recall that a 2× 2 matrix A and
its inverse A−1 are related as follows:

A =

[

a00 a01

a10 a11

]

⇐⇒ A−1 =
1

(a00a11 − a01a10)

[

a11 −a01

−a10 a00

]
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Based on this, M−1 can be constructed by simply multiplying each off-diagonal
element of M by -1 and exchanging the elements Mi,i ↔ Mi,i+3n of M for all
0 ≤ i < 3n, in both cases multiplying each modified element by the corresponding
determinant 1/(mi,imi+3n,i+3n −mi,i+3nmi+3n,i). As such, the structure of M−1

is the same as that of M . It follows that M−1 can be computed in Θ(n) time. Each
product of the vector with the inverse matrix necessary to carry out a reversal can,
therefore, be accomplished in O (N) time.

Note that this is vastly superior to the straightforward method of simple spatial
decomposition of X and its corresponding M .

2.6 Vector Formulation Reversal Analysis

For the remainder of this paper, we will suppress the superscript notation for di-
rection to the extent possible with the understanding that (i, j) is a pair of nearest
neighbor implying that j is i’s nearest neighbor in some direction denoted by α and
i is j’s nearest neighbor in the opposite direction −α.

In the preceding TLM equations, the reflection and transmission coefficients for
any nearest neighbor pair (i, j) are related as follows:

Rij = −Rji and Rij + Tji = 1

implying that

|Mi,j | = RijRji − TjiTij = RijRji − [(1−Rij)(1−Rji)] = −1

Therefore:

M−1
i,j =

1

|Mi,j |

[

Rji −Tji

−Tij Rij

]

=

[

−Rji Tji

Tij −Rij

]

=

[

Rij Tji

Tij Rji

]

= Mi,j

for every nearest neighbor pair (i, j) which in turn implies that M is its own inverse.
A closer look at the forward computation reveals that it can be decomposed into

three stages denoted by the following three operations:

• operation ⊕ : compute Vi(t + 1) =
∑5

α=0 xα
ij(t + 1)

• operation ⊖ : compute yα
ij(t) =

[

Vi(t)
3 − xα

ij(t)
]

.

• operation M : compute X(t + 1) = M · Y (t)

Pictorially, this can be shown as:

X(0)
V (0)

}

⊖
−→ Y (0)

M
−→

{

X(1)
⊕
−→ V (1)

⊖
−→ Y (1)

}

M
−→

{

X(2)
⊕
−→ V (2)

⊖
−→ Y (2)

}

· · ·

The reverse code should therefore achieve the following:

· · ·
⊖

−1

←− Y (t− 2)
M−1

←−

{

X(t− 1)
⊕

−1

←− V (t− 1)
⊖

−1

←− Y (t− 1)

}

M−1

←− X(t)
⊕

−1

←− · · ·

The input to the reverse procedure is therefore X(t). Earlier, we showed that the
inverse operation M−1 can be performed in linear time. Consider a pair (i, j) of
neighboring points. The corresponding x and y variables are related in the following
manner:

[

xij(t)
xji(t)

]

=

[

Rij Tji

Tij Rji

] [

yij(t− 1)
yji(t− 1)

]

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, 20YY.



Reversible Parallel Radio Signal Propagation Model · 11

1. Vi(t − 1) ←

P5
j=0 [Rijxij(t) + Tjixji(t)]

2. Cij(t− 1) ← [RijVi(t − 1) + TjiVj(t − 1)] /3− xij(t)
3. Cji(t− 1) ← [RjiVj(t− 1) + TijVi(t − 1)] /3− xji(t)
4. xij(t − 1) ← RijCij(t − 1) + TjiCji(t − 1)
5. xji(t − 1) ← TijCij(t − 1) + RjiCji(t − 1)

Table I. Reversal steps in a nutshell.

Since M = M−1, we have:
[

yij(t− 1)
yji(t− 1)

]

=

[

Rij Tji

Tij Rji

] [

xij(t)
xji(t)

]

From Eqn (5), summing up over all the neighbors of point i, we get:

Vi(t− 1) =
∑

k

yik(t− 1) =
∑

k

[Rikxik(t) + Tkixki(t)]

which constitutes the operation ⊖−1. At this point, Vi(t− 1), Vj(t− 1), xij(t) and
xji(t) are known. The remaining unknowns, xij(t−1) and xji(t−1), are computed
by solving the following pair of simultaneous equations for xij(t) and xji(t).

xij(t) = Rij

[

Vi(t− 1)

3
− xij(t− 1)

]

+ Tji

[

Vj(t− 1)

3
− xji(t− 1)

]

xji(t) = Tij

[

Vi(t− 1)

3
− xij(t− 1)

]

+ Rji

[

Vj(t− 1)

3
− xji(t− 1)

]

This yields:

xij(t− 1) = RijCij(t− 1) + TjiCji(t− 1)

xji(t− 1) = TijCij(t− 1) + RjiCji(t− 1)

where

C(t− 1)ij =
1

3
(RijVi(t− 1) + TjiVj(t− 1))− xij(t)

C(t− 1)ji =
1

3
(RjiVj(t− 1) + iTijVi(t− 1))− xji(t)

The preceding computation represents the operation ⊕−1. Thus, using the inverse
operations M−1, ⊖−1 and ⊕−1 in that order, the state variables with time-stamp
t − 1 can be recomputed from those with time-stamp t. Further, this can be
accomplished in linear time. Table I summarizes the linear-time reversal of the
state variables in a sequential algorithm.

Note that the preceding analysis was entirely based on the fundamental assump-
tion of sequential computation. When data is distributed across multiple cores,
additional care is necessary. This will be discussed in Section 3.5.

3. PARALLEL DISCRETE EVENT EXECUTION

3.1 Domain Decomposition

It is clear from Eqn (3) and Eqn (4), which will be referred to as the forward
equations, that a good parallel domain decomposition for this problem is one in

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, 20YY.



12 · S. Seal and K. Perumalla

which: (a) for each xij that is local to a processor, xji is also local and (b) for each Vi

that is local to a processor, as many components of Vi are local as is possible. Guided
by this observation, we block partition the 3D grid across P processors arranged
in a Cartesian Pa × Pb × Pc topology where a, b and c refer to the three geometric
dimensions. Each processor is therefore responsible for n3/PaPbPc = n3/P voltages
(one for each local node). For each local node, a processor is responsible for the
six partial voltages defined on the links connecting it to its nearest neighbors along
the positive a, b and c directions only. Thus, each processor is responsible for
6n3/P = N/P number of partial voltages.

For ease of presentation, we use a 2D example in Fig. 3(a) to illustrate the
following notation that will be adopted in the remainder of this paper:

• XL : set of all partial voltages local to a processor [bold arrows in Fig. 3(a)].

• VL : set of all total voltages local to a processor [black circles in Fig. 3(a)].

• VR : set of all remote total voltages required for the computation of all xij ∈ XL

[gray circles in Fig. 3(a)].

• VU : VL ∪ VR.

• XR : set of all remote partial voltages required for the computation of all V ∈ VU

[dashed arrows in Fig. 3(a)].

The preceding parallel domain decomposition guarantees that (a) for each local
partial voltage xij ∈ XL, the reverse partial voltage is also local, i.e., xji ∈ XL

(b) for each total voltage Vi ∈ VL, its components along the positive directions are
guaranteed to belong to XL (c) the number of sending and receiving processors
are both constants (d) the partial voltages defined on links that cut a processor’s
domain boundaries along the positive directions are local and (e) the inter-processor
communication bandwidth is proportional to the surface area of each block partition

and, hence, O
(

N2/3

P 2/3

)

.

3.2 Logical Processes and Granularity

As previously mentioned, the traditional event rate performance measure of discrete
event simulations is not appropriate in the context of the TLM model. This is
because the number of events can differ depending on the granularity of an LP.
The earliest attempt [Bauer and Page 2007] to parallelize the TLM-based model
exhibited limited scalability, with self-relative parallel speed-up reported up to 25
processors. A subsequent attempt [Bauer et al. 2009] showed rapid performance
degradation beyond 5,000 cores. In both, an LP is defined to be a grid cell implying
that O (1) partial voltages are mapped to each LP. In our formulation, we use the
data partitioning strategy described above to map O (N/P ) partial voltages to an
LP which in turn is mapped to a processor. The performance advantage of defining
LPs with O (N/P ) granularity will be demonstrated and explained in Section 4.5.

3.3 Discrete Event Formulation

Each LP is evolved by processing two types of events defined on them, namely,
self-update events (sue) and threshold-cross events (tce). An example with two
processors is shown in Fig. 3(b). Self-update events are processed at integral time-
stamps t while threshold-cross events are processed at half-integer time-stamps
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(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

P0 tsim

tsim

sue tce sue tce sue tce sue

P1

(b)

Fig. 3. (a) A 2D illustration of the unique set VU (set of filled circles), the local set XL

(set of bold arrows) and remote set XR (set of dashed arrows) for the processor whose
computational domain is the solid square in the center. (b) Optimistic parallel discrete
event processing in an example with two processors. Green (bold) arrows indicate forward
execution, blue (dot-dashed) arrows reverse execution and red (dashed) arrows indicate
time-stamped inter-processor messages.

t + 1
2 . When a self-update event is processed, each xij ∈ XL is updated though

Eqn (3). Local updates that vary by more than a pre-defined threshold value are
sent to the appropriate destination processors in a message timestamped with t+ 1

2 .
This style of sending conditionally is referred to as selective sends. The receiving
processors process the arrival of the updates as threshold-cross events. Processing
a threshold cross event involves modifying the set XR according to the updates
received. Note that such selective sends result in an asynchronous communication
pattern. A numerically correct self-update of XL requires concurrent values of
Vi, Vj ∈ VU . However, Vi and Vj may depend on remote partial voltages xik ∈ XR.
Thus, correctness of self-updates depend upon the concurrency of the sets XL, XR

and VU .
In our approach, forward execution is carried out optimistically, that is, each

processor continues to execute forward in simulation time under the assumption
that the set XR that contains the remote data necessary for local forward compu-
tations (via self-update events) are locally-usable, correct values until a threshold
cross event with a more recent timetamp is processed. As part of processing such
a threshold-cross event, a rollback to the appropriate simulation time in the past
is initiated.

The state variables defined by the sets XL, XR and VU contain complete infor-
mation about the local portion of the domain for which a processor is responsible.
These sets are stored as arrays. Note that |VU | = Θ(N/P ) and |XL ∪ XR| =
Θ(N/P ). In addition, two pointers, labeled read and write pointers are maintained.
At any given simulation time t, each processor maintains the following state vari-
ables: V t−2

U , Xt−1
L and Xt−1

R that are pointed to by the read pointer and V t−1
U , Xt

L

and Xt
R that are pointed to by the write pointer (see Fig. 4 and Fig. 5). The pre-

ceding two pointers are maintained by each processor in order to facilitate reverse
computing for rollbacks, as will become clearer in the next section. Operations
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performed during a forward execution overwrite the arrays pointed to by the write
pointers. In Fig. 4 and Fig. 5, the arrays that are overwritten are indicated by the
gray boxes pointed to by the write pointers.

3.4 Discrete Event Formulation: Parallel Forward Execution

Forward execution of our discrete event formulation in terms of self-update and
threshold-cross events is shown in Fig. 4. The following operations execute the
forward code:

(1) SWAP (read,write) : The pointers to the read and write copies of the state
variables are swapped.

(2) UPDATE-V t−1
U : V t−1

U is computed using Xt−1
L and Xt−1

R through Eqn (4).

(3) COMPUTE-Xt
L : Xt

L is computed from the Xt−1
L and V t−1

U using Eqn (3).

(4) SELECTIVE-SEND : To each processor that needs xt
ij ∈ Xt

L, send xt
ij iff

| xt
ij − xt−1

ij |≥ δ, where δ is a pre-defined threshold. All such partial voltages
that are destined for a particular destination are collected and sent in a single
message.

(5) COPY-XR : Copy Xt−1
R to Xt

R.

(6) PROCESS-TCE : This operation is performed if and only if there is a pending
threshold-cross event. The operation SWAP (XR, XT ) is performed when the
pending threshold-cross event has a current time-stamp. In this operation,
partial voltages xt

ij ∈ Xt
T that are received from the sending processors are

swapped with the corresponding values in Xt
R (see Fig. 4). A threshold-cross

event with a future time-stamp is held in queue to be processed later. If the
pending threshold-cross event has a past time-stamp, then a rollback is carried
out to restore the state variables to their values at that time. We discuss
rollbacks in the next section.

3.5 Discrete Event Formulation: Parallel Reverse Execution

In our implementation, restoration of state upon rollback is realized through reverse
computing. Recall that when a rollback is initiated by a threshold-cross event that
is processed at time-stamp t + 1

2 , the physical system needs to be restored to that

corresponding to simulation time t which is defined by the arrays V t−2
U , Xt−1

L and
Xt−1

R pointed to by the read pointers and the arrays V t−1
U , Xt

L and Xt
R pointed to

by the write pointers. The following operations perform the reverse execution as
illustrated in Fig. 5:

(1) UNDO-PROCESS-TCE: Note that due to the most recent SWAP (read,write)
operation in the forward execution, the arrays V t−1

U and Xt
L currently pointed

to by the read pointer hold the same elements as the arrays V t−1
U and Xt

L when
it was pointed to by the write pointer in the preceding time-stamp (see Fig.
5). The array Xt

R, however, may need to be restored explicitly since the most
recent threshold-cross event, if there was one, could have swapped out some
of its elements with Xt

T . Thus, reversing the forward threshold-cross event
involves swapping back the values of Xt

R with those in Xt
T thereby restoring

Xt
R.
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Fig. 4. Forward execution. Numbers on the arrows indicate the order in which
the indicated steps are executed in a forward event or its reversal. The gray boxes
indicate the arrays pointed to by the write pointer before they are overwritten by
the arrays in the white boxes.
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Fig. 5. Reverse execution. Numbers on the arrows indicate the order in which the
indicated steps are executed in a forward event or its reversal. The gray boxes
indicate the arrays pointed to by the write pointer before they are overwritten by
the arrays in the white boxes.
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(2) RESTORE-XR : The Xt
R is copied to the array XR pointed to by the write

pointer. This reverses the operation in step 5 of Section 3.4 and restores Xt−1
R .

(3) RESTORE-Xt−1
L : Note that in the forward execution, the local partial voltages

Xt
L are computed from Xt−1

L and V t−1
U . Therefore, we need a function g such

that Xt−1
L = g(Xt

L, V t−1
U ). To find g, we treat xt−1

ij , xt−1
ji ∈ Xt−1

L as two

unknowns and solve the following forward equations for xt
ij , x

t
ji ∈ Xt

L:

xt
ij = Rij

[

V t−1
i

3
− xt−1

ij

]

+ Tji

[

V t−1
j

3
− xt−1

ji

]

xt
ji = Rji

[

V t−1
j

3
− xt−1

ji

]

+ Tij

[

V t−1
i

3
− xt−1

ij

]

which can be re-written as:

MXt−1 =
1

3
MV t−1 −Xt

where

M =

(

Rij Tji

Tij Rji

)

, Xt−1 =

(

xt−1
ij

xt−1
ji

)

V t =

(

V t−1
i

V t−1
j

)

, Xt =

(

xt
ij

xt
ji

)

The above equation can be solved to yield:

Xt−1 =
1

3
V t−1 −MXt

where we have used the result M−1 = M derived in Section 2.5. Thus, the
reversal equation to restore Xt−1

L using Xt
L and V t−1

U is:

xt−1
ij ←

[

V t−1
i

3
−Rijx

t
ij − Tjix

t
ji

]

(5)

At this point, the read pointers point to the correct values of V t−1
U , Xt

L and Xt
R

and write pointers point to the correct values of Xt−1
L and Xt−1

R . The correct
values of V t−2

U still need to be restored.

(4) RESTORE-V t−2
U : Consider the following equations for a pair (i, j) of nearest

neighbors:

xt−1
ij = Rijy

t−2
ij + Tjiy

t−2
ji

xt−1
ji = Tijy

t−2
ij + Rjiy

t−2
ji

where yt
ij =

(

V t
i

3 − xt
ij

)

. Solving the above equations for the two unknowns

yt−2
ij and yt−2

ji yields:

yt−2
ij = Rijx

t−1
ij + Tjix

t−1
ji
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Summing up over all the neighbors of point i, we get:
∑

k

yt−2
ik =

∑

k

[

Rikxt−1
ik + Tkix

t−1
ki

]

∑

k

(

V t−2
i

3
− xt−2

ik

)

=
∑

k

[

Rikxt−1
ik + Tkix

t−1
ki

]

V t−2
i =

∑

k

[

Rikxt−1
ik + Tkix

t−1
ki

]

Thus, we have:

V t−2
i =

∑

k

[

Rikxt−1
ik + Tkix

t−1
ki

]

(6)

Note that, in the above equation, the partial voltages xt−1
ik , xt−1

ki ∈ Xt−1
L ∪Xt−1

R .
At this point, the read pointer points to the correct arrays V t−1

U , Xt
L and Xt

R

and the write pointer points to the correct arrays V t−2
U , Xt−1

L and Xt−1
R .

(5) SWAP (read,write) : The read and write pointers are swapped to restore the
state to the previous time-stamp (see Fig. 5).

Since each partial voltage is updated exactly once, the runtime for each reversal
(steps 1 through 5 above) is O (N/P ), as it is for each forward execution phase.

4. PERFORMANCE STUDY

In this section, we study the performance of our implementation of the reversible
parallel discrete event model. The study investigates the performance effects along
four variables: (1) different threshold values for inter-LP updates, to vary inter-LP
concurrency, (2) increasing problem/domain size, to observe modeling capacity, (3)
different number of voltages mapped to each LP, to vary event computational gran-
ularity, and (4) increasing number of processors, to test scalability. The software
and hardware platforms are described first, followed by descriptions of the variables
and the values for each variable. The performance results are then presented and
discussed.

4.1 Software Platform

We implemented the discrete event execution using the µsik engine [Perumalla
2005]. µsik provides an application programming interface in the C++ language
that supports the concept of logical processes, events for exchanging timestamped
messages among logical processes, and virtual time-synchronized delivery of events
to logical processes. The API invokes a callback method into the logical processes
when an event is to be processed. Another callback method is invoked if and when
an event is to be undone, which could be either due to violation of timestamp order
as a result of optimistic processing or due to cancellation of an event by the sender
of that event. We use the event handler and undo handler to realize the forward and
reverse execution portions of the updates to partial and total voltages. The send
primitive is used to send threshold crossing events to remote processors, and also to
schedule a self update to advance the local partial voltages. Specific care is taken
to only pack data corresponding to the local data that have actually exceeded the
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threshold since the last update sent to neighboring processors. This ensures that the
number of updates across processors is minimized while keeping the performance
competitive with an optimized time-stepped execution. µsik internally handles
inter-processor communication to exchange timestamped events across processors
and to synchronize global virtual time. We configured µsik to use the vendor-
supplied Message Passing Interface (MPI) implementation native to the hardware
platform.

4.2 Hardware Platform

Our hardware platform is a Cray machine with two partitions, namely, XT4 and
XT5. In the XT4 partition, each compute node contains a quad-core 2.1 GHz
AMD Opteron processor with 8 GB of memory. The nodes are connected via a
high-bandwidth SeaStar interconnect. Internally, the MPI implementation is based
on Cray’s implementation of Portals 3.3 messaging interface. In the XT5 partition,
each compute node consists of two hex-core AMD Opteron processors with 16 GB
of memory and a SeaStar 2+ router.

4.3 Performance Metric

As indicated earlier, the traditional “event rate” performance metric of discrete
event simulators is not relevant for the purposes of measuring efficiency in this
application. Since events can be defined in many ways (consequently, with different
granularity), the number of events is misleading. This will be discussed in greater
detail in the next sections. Instead, we use the more appropriate measure, namely,
the speedup achieved by a parallel execution, relative to the execution time on the
smallest core count that can be used to execute the scenario. We use both strong
scaling speedup in which the problem size is kept fixed as the number of processors
is increased, as well as weak scaling speedup in which the problem size is increased
proportionately with the increase in the number of processors.

4.4 Parameters

The following set of parameters were chosen in the performance study.
Granularity: We study the effects of event granularity by varying the number of

rows mapped per LP. The two possible extremes are exercised, namely, one row per
LP (fine-grained), and N/P rows per LP (coarse-grained). The fine-grained model
is in fact the easiest to implement (and the most obvious parallelization scheme
for [Nutaro et al. 2008], and used by [Bauer et al. 2009]), in sharp contrast to our
vector formulation. The coarse-grained version is achieved as a generalization by
our vector formulation.

Threshold Values: The effect of the threshold is implemented as a threshold-cross
event is sent whenever |Vnew − Vold| ≥ threshold. The threshold values are chosen
from -1, 0, 0.001, and 0.01. These control when the value any partial voltage is sent
to the LP containing the peer of that partial voltage. A threshold of -1 sends the
value after every update irrespective of the newly computed value. A threshold of 0
sends the value if and only if the value changes by any amount at all. A threshold of
0.001 sends even for the smallest non-zero update up to 0.001, while 0.01 tolerates
changes up to ±0.01 before an update is sent.
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Problems Sizes and Number of Processors (Scalability): The number of processors
is varied from small to large, choosing the configurations that satisfy the relation
in Section 3 between the number of processors and its decomposition into the grid
topology of the 3D problem domain. In the largest case, a 127,500 core config-
uration fits a process grid for n = 324 exactly. Strong-scaling experiments were
performed with three grid sizes, corresponding to increasingly larger volumes that
are typically encountered in wireless applications. The first is a medium-sized grid
with n = 30 yielding 27,000 total voltages and 162,000 partial voltages correspond-
ing to the volume of a large room or a hall. The second is a larger-sized grid
with n = 80 that yields roughly half a million total voltages and 3 million partial
voltages corresponding to a typical courtyard sized geometry. The third scenario
with n = 130 yields roughly 2 million total voltages and 13 million partial volt-
ages and roughly corresponds to a city block-sized volume. These grid sizes were
tested with different threshold values, to exercise the performance effects of selec-
tive sends (asynchronous communications). Weak-scaling analysis was performed
on a scenario with n = 324 (about 34 million total voltages and 200 million partial
voltages corresponding to multiple city block-sized volumes) and 100 radio sources
per core.

4.5 Performance Results

4.5.1 Granularity. In our approach, an LP consisting of O (N/P ) number of
rows is mapped to a processor core (see Section 3.1). Each core is, therefore,
equivalent to an LP. When the core count is increased for a fixed problem size
(strong scaling), data locality per LP (core) suffers resulting in decreased concur-
rency which, in turn, generates more rollbacks. Consequently, the total number of
events increase as data locality decreases at larger core counts. This trend is shown
in Fig. 6(a) which plots the number of total events (sum of the numbers of com-
mitted and rollback events) against increasing core count for a small example with
n = 30, (N = 162, 000). On the other hand, when an LP is defined to be a grid cell
[Bauer et al. 2009], only O (1) rows are mapped to each LP. In such an approach,
the total number of rollback events increase dramatically because data locality per
LP is highly fragmented despite data availability per core. Consequently, the to-
tal number of events is virtually insensitive to the core count, as demonstrated in
Fig. 6(a). At large core counts (for the same problem size), granularity of LPs
in both approaches converge as evinced by the similar trend in the event statistics
at large core counts, as shown in Fig. 6(a). We believe that ultimately it is the
parallel runtime that is of practical relevance for this application. When parallel
runtime is used as the metric, the differing granularities of LPs have a profound
effect on the parallel performance. This is shown in Fig. 6(b) for both conservative
and optimistic executions. Since the granularities converge only as P → N , the
differences in the parallel runtime in the region of practical relevance (P << N)
is very pronounced. Note that for larger N(= 6n3) than in Fig. 6(b), the conver-
gence of the two approaches will be achieved at much higher core counts, thereby
proportionately increasing the region in which our parallel approach based on an
O (N/P ) granularity stands to deliver a significant advantage over one with O (1)
granularity.
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Fig. 6. (a) Comparison of the number of total (committed + rollback) events based on
two different definitions of logical processes. (b) Parallel runtimes based on two different
definitions of logical processes.
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4.5.2 Threshold and Problem Size. The results from varying the threshold val-
ues for different problem sizes are shown in Fig. 7. As described earlier, the
communication pattern of our parallel execution is intimately dependent on the
threshold voltage value. When threshold=-1, every state variable needs to be up-
dated. Consequently every self-update event triggers a threshold-cross event result-
ing in a very synchronous communication pattern akin to a time-driven algorithm.
As the threshold is increased, communication becomes increasingly asynchronous
due to selective sends while the computation becomes more concurrent. This, in
turn, improves the computation-to-communication ratio and better speedup gains
are observed. For example, this trend is observed by comparing the speedup gained
with increasing processors for threshold values of -1, 0, 0.001 and 0.01 in Fig. 7(a).

For relatively large problem sizes on small number of processors, computations
remain highly concurrent resulting in a large computation-to-communication ratio.
For such cases, the parallel runtimes remain largely unaffected by selective sends.
This is evident from the near insensitivity of the speedups for all the scenarios on
P = 64 in Fig. 7.

When threshold values become large, the wave propagates shorter grid cell dis-
tances. This can be understood by considering the asymptotic limit with threshold
= ∞ for which the simulation ends after the very first self-update event (since the
difference between the new and old values will always be less than ∞). This effect
is seen in Fig. 7(b) and (c) when the threshold value changes from 0.001 to 0.01
for both n = 80 and n = 130. For coarser grids, such as for n = 30, diminishing
speedups are expected to set in at larger threshold values, as will be discussed in
the next subsection.

Overall, parallel speedups of over 1000× for large scale scenarios are observed on
thousands of processors. Performance advantages of selective sends with increasing
number of processors can be seen in Fig. 7 for all four threshold scenarios.

4.5.3 Scalability. To test scalability, we performed experiments with a very large
problem size, configured the scenarios with a significant number of radio sources,
and executed on increasingly larger parallel configurations, up to 127,500 processor
cores. In order to exercise scenarios with sufficiently taxing radio activity, we
configured the scenarios with a number radio sources evenly spaced in the domain
mapped to each core. The performance metric of interest is the variation of the
elapsed time with the number of processors, which represents weak scaling results.

Efficiency (defined canonically as speedup/P ) of the algorithm is observed to be
excellent when problem sizes are increased for a fixed number of processors. For
example, efficiency of the parallel execution on p = 512 increases from 34% to 53%
when the scenario changes from a medium sized grid to a large one (n changes from
30 to 80) while it increases to 21% from 4% on p = 4096 for the same change in
the problem size. This trend continues across all tested threshold values.

Fig. 8(a) shows weak scaling on a Cray XT5 platform for a problem size with
n = 324 (N ∼ 200 million). Though the size of the computational grid was kept
constant, the number of radio sources was increased along with the core count
at a rate of 100 sources per core. The speedup is observed to be nearly 100,000
executing on 127,500 cores. Fig. 8(b) shows the number of committed events and
rolled back events. On smaller number of cores, the amount of computation per
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Fig. 7. Speedup (strong scaling) for problem sizes: (a) n = 30 (b) n = 80 and (c) n = 130
with varying threshold and number of processor cores on a Cray XT4.
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Fig. 8. Scaling results on Cray XT5 with n = 324 and 100 radios per core: (a) weak
scaling speedup (b) event statistics.
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core was sufficiently large to keep all the cores heavily loaded, and hence nearly in
synchrony, resulting in very few rollbacks. The number of rollbacks increased with
larger number of processors, yet, overall, the percentage of rollbacks did not rise to
alarming rates.

4.6 Implications

The demonstrated parallel speedup of the algorithm makes it possible for real time
prediction of radio signal strength. For example, a serial computation based pre-
diction for a scenario with n = 80 (roughly half a million total voltages) has a turn
around time of about 3.5 hours but only about 6 seconds on p = 8000 processors
using the above algorithm. This is well within the scope of real time predictions of
mobile wireless signal strength.

5. CONCLUSIONS AND FUTURE WORK

An efficient parallelization and implementation of a recently-developed discrete-
event based serial algorithm for the estimation of radio wave signal strength was
presented. A reverse computing based discrete event approach for this problem,
aimed at circumventing other PDES approaches that are known to suffer from
overheads that do not scale well to large processors counts has been used. The
reversal equations that were subsequently used for rollbacks to restore the state of
the system to a desired time in the past were explicitly derived.. The authors have
demonstrated that such reverse computing based rollbacks can deliver unprece-
dented speedup for this problem. To the best of their knowledge, the results are
also among the first to demonstrate 100,000 parallel speedup for any non-synthetic
PDES application that is based on reverse computation. Also, such speedups for
electromagnetic wave simulators have never been reported before. It has been shown
that the algorithm presented in this paper brings real time signal strength predic-
tions well within the turnaround time scales needed for mobile wireless deployment
simulations and design problems. Additionally, the effect of varying threshold val-
ues on the performance of the algorithm was studied systematically to understand
their effect on the performance. The algorithm supports full 3D scenarios with
support for rich heterogeneity of object geometries contained in the volumes. The
effect of granularity of logical processes on performance metrics such as event rates
and parallel runtime was demonstrated and discussed.

An important issue that remains a subject of our on-going investigation is an ex-
haustive performance comparison of conventional time-driven parallel approaches
with the event-driven parallel algorithm presented here. Note that unlike discrete
event based schemes, barrier-based time-driven algorithms are prone to synchro-
nization overheads. This point of comparison is particularly poignant in an era of
peta-scale computing whose synchronization overheads can drastically deteriorate
the performance of barrier-based time-driven codes.
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