Mesoscopic Modeling and Rapid Simulation of Incremental Changes in Epidemic Scenarios on GPUs: Fast What–If Analyses of Localized and Dynamic Effects

Abstract

In simulation-based studies and analyses of epidemics, a major challenge lies in resolving the conflict between fidelity of models and the speed of their simulation. Another related challenge arises in dealing with the large number of what–if scenarios that need to be explored. Here, we describe new computational methods that together provide an approach to dealing with both challenges. A mesoscopic modeling approach is described that strikes a middle ground between macroscopic models based on coupled differential equations and microscopic models built on fine-grained behaviors at the individual entity level. The mesoscopic approach offers the ability to incorporate complex compositions of multiple layers of dynamics even while retaining the potential for aggregate behaviors at varying levels. It also is an excellent match to the accelerator-based architectures of modern computing platforms in which graphical processing units (GPUs) can be exploited for fast simulation via the parallel execution mode of single instruction multiple thread (SIMT). The challenge of simulating a large number of scenarios is addressed via a method of sharing model state and computation across a tree of what–if scenarios that are localized, incremental changes to a large base simulation. A combination of the mesoscopic modeling approach and the incremental what–if scenario tree evaluation has been implemented in the software on modern GPUs. Synthetic simulation scenarios are presented to demonstrate the computational characteristics of our approach. Results from the experiments with large population data, including USA, UK, and India, illustrate the modeling methodology and computational performance on thousands of synthetically generated what–if scenarios. Execution of our implementation scaled to 8192 GPUs of supercomputing platforms demonstrates the ability to rapidly evaluate what–if scenarios several orders of magnitude faster than the conventional methods.

https://link.springer.com/article/10.1007/s41745-021-00253-1

Kalyan Perumalla
Kalyan Perumalla
R&D Manager

Kalyan Perumalla is an R&D Manager with 25 years of experience. As a Federal Program Manager in Advanced Scientific Computing Research at the U.S. Dept. of Energy, Office of Science, Kalyan Perumalla manages a $100-million R&D portfolio covering AI, HPC, Quantum, SciDAC, and Basic Computer Science. He previously led advanced R&D as Distinguished Research Staff Member at the Oak Ridge National Laboratory (ORNL) developing scalable software and applications on the world’s largest supercomputers for 17 years, including as a line manager and a founding group leader. He has held senior faculty and adjunct appointments at UTK, GT, and UNL, and was an IAS Fellow at Durham University.

Next
Previous

Related