
1 3J. Indian Inst. Sci. | VOL xxx:x | xxx–xxx 2021 | journal.iisc.ernet.in

Mesoscopic Modeling and Rapid Simulation 
of Incremental Changes in Epidemic Scenarios 
on GPUs

Fast What–If Analyses of Localized and Dynamic Effects

Kalyan S. Perumalla*  and Maksudul Alam 

J. Indian Inst. Sci.

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

Abstract | In simulation-based studies and analyses of epidemics, a 
major challenge lies in resolving the conflict between fidelity of mod-
els and the speed of their simulation. Another related challenge arises 
in dealing with the large number of what–if scenarios that need to be 
explored. Here, we describe new computational methods that together 
provide an approach to dealing with both challenges. A mesoscopic 
modeling approach is described that strikes a middle ground between 
macroscopic models based on coupled differential equations and micro-
scopic models built on fine-grained behaviors at the individual entity 
level. The mesoscopic approach offers the ability to incorporate com-
plex compositions of multiple layers of dynamics even while retaining the 
potential for aggregate behaviors at varying levels. It also is an excel-
lent match to the accelerator-based architectures of modern computing 
platforms in which graphical processing units (GPUs) can be exploited 
for fast simulation via the parallel execution mode of single instruction 
multiple thread (SIMT). The challenge of simulating a large number of 
scenarios is addressed via a method of sharing model state and compu-
tation across a tree of what–if scenarios that are localized, incremental 
changes to a large base simulation. A combination of the mesoscopic 
modeling approach and the incremental what–if scenario tree evalua-
tion has been implemented in the software on modern GPUs. Synthetic 
simulation scenarios are presented to demonstrate the computational 
characteristics of our approach. Results from the experiments with large 
population data, including USA, UK, and India, illustrate the modeling 
methodology and computational performance on thousands of syn-
thetically generated what–if scenarios. Execution of our implementation 
scaled to 8192 GPUs of supercomputing platforms demonstrates the 
ability to rapidly evaluate what–if scenarios several orders of magnitude 
faster than the conventional methods.
Keywords: What–if analyses, Decision trees, Complex systems, Incremental simulation, Graphical 
processing unit, Simulation cloning, Epidemic models
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1 Introduction
The tremendous significance of analyzing and 
understanding the dynamics of epidemics is now 
abundantly clear in light of not only many major 
disease outbreaks of the past, but also with the 
most pronounced and consequential effects of 
COVID-19 worldwide2,25,26. Computer-based 
simulations are used for many purposes to deal 
with this problem, including prediction, con-
firmation, validation, exploration, enhancing 
our understanding, establishing limits, and so 
on. This brings greater emphasis to the need for 
creating the next generation of computational 
approaches to modeling and simulating epidemic 
dynamics12,13,19,23. This includes the need for 
advances in computer-based modeling capabili-
ties by which the most important elements and 
behaviors are accurately composed and captured. 
It is now public knowledge that the epidemic-
influenced world is one of the most complex 
systems humans have encountered so far, pos-
ing difficulties to the researchers in balancing 
the mutually opposing factors of model fidelity, 
simulation speed, and real-time evaluation. On 
a positive note, the challenge is also an excel-
lent opportunity for the scientific community to 
explore, uncover, and offer newer concepts, tech-
nologies, and solutions to this class of problems 
and also consequently carry the advances to other 
domains as well for similar advancements.

1.1  Motivation
One of the advancements that the domain 
can use is in new modeling and simulation 
approaches that preserve the primary benefits of 
both the extremities, namely, macroscopic and 
microscopic modeling, while largely overcoming 
their shortcomings. The next advancement relates 
to the thorny problem faced by every modeling 
and simulation effort for complex systems: how 
can we effectively explore the vast parameter 
space of what–if analyses in which a large num-
ber of possibilities on the near-term time hori-
zon are explored quickly as small, incremental 
variations of scenarios over the current, large 
state of the complex system6. The scenarios to be 
explored become numerous due to the multitude 
of factors at play, which include location-specific 
effects, behavioral effects, intervention measures, 
and so on2,9,28. On one hand, massive simulations 
of microscopic models cannot typically be run in 
large numbers of scenarios. On the other hand, 
macroscopic models are easily run, but the num-
ber of parameters is typically not as high as with 
higher resolution models1,3,8.

Apart from the number of scenarios, there is 
an additional challenge that is commonly faced, 
namely the problem of meeting real-time consid-
erations. When simulation is used to explore the 
effects even as the situation is evolving, there is 
the additional pressure to evaluate as many sce-
narios as possible in a given amount of real time, 
so that well-informed decisions can be made 
quickly18–20.

These considerations present new questions 
with respect to modeling and simulation tech-
nology4,13. Can we have a flexible middle ground 
between the two extremes of macroscopic and 
microscopic models? Can the scalability of mac-
roscopic models be approached even while new 
models of dynamics are incorporated in arbitrary 
compositions? How can we modify a simulation 
scenario on the fly and create new what–if scenar-
ios, even while the state trajectories in the original 
scenario continue to be evaluated over time, con-
currently with the incremental what–if scenarios 
spawned from the original scenario? How can we 
let a scenario continue to run while sharing its 
state with the slightly changed what–if scenarios? 
Can we let the what–if scenarios reuse much of 
the original epidemic scenario, even as both con-
tinue to evolve in simulation time?

1.2  Contributions
In this paper, we focus on presenting new com-
putational concepts and possibilities for next 
generation of epidemic simulations, by providing 
advancements on both aspects: fast base simula-
tion and rapid exploration of what–if trees over 
the base simulation. As a middle ground, meso-
scopic models represent an appropriate class in 
which the resolution and number of parameters 
are sufficiently high to capture a fair amount of 
phenomenological complexity, and thus warrant 
a good sweep of scenario parameters to improve 
the accuracy and assurance from simulation-
based studies. Therefore, a mesoscopic simulation 
approach is described that offers the potential 
to serve as a continuum from macroscopic to 
microscopic levels, whose configurations can be 
customized based on data availability, desired 
modeling accuracy, targeted level of behavioral 
detail, and other such factors. Building over this 
mesoscopic framework, an incremental simula-
tion approach based on what–if tree evolution 
is presented that offers new scaling capabilities 
that were not possible before in rapidly simu-
lating thousands or millions of incrementally 
varied scenarios over a large domain of a base 
simulation2,25,26. The mesoscopic model can be 
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used in the incremental what–if tree evalua-
tion on state-of-the-art accelerated computing 
platforms including supercomputers that offer 
thousands of GPUs, and effectively exploit the 
single-instruction-multiple-data (SIMD) mode 
of high-performance parallel computing. The 
two approaches together form the basis for new 
computational ways of tackling the modeling and 
simulation problem in epidemic studies and deci-
sion systems.

Our focus here is on presenting novel compu-
tational approaches for fast simulation of large-
scale population sizes and for rapid exploration 
of massive numbers of what–if scenarios. As a 
result, the epidemic dynamics do not specifically 
represent any particular configurations from 
real-life situations, although the general trends 
are validated to conform to the expect evolution 
from standard propagation models. The goal is 
to present the new computational methodolo-
gies that are now available from this research for 
domain scientists to explore and exploit towards 
real-life studies. Therefore, the approach and fea-
sibility results presented here in scalable mod-
eling and fast scenario exploration are envisioned 
to provide a leap in the simulation capabilities for 
analyzing epidemics and other complex systems.

A major challenge is the number of param-
eters, scenarios, and conditions at play. It is nearly 
impossible to run a simulation for every combi-
nation of parameters for scenarios30. Traditional 
simulations11 serve well with experiment design 
techniques to address the problem of sampling 
the state space. For significant advances, how-
ever, new paradigms need to be developed to 
advance the epidemiological simulation technol-
ogy. Methods such as factorial experiment design 
and Latin square sampling are commonly used, 
along with recent methods for uncertainty quan-
tification, but there is little support for incremen-
tal changes to large scenarios, and insufficient 
methodology to deal with large what–if trees in 
conjunction with mesoscopic simulations in an 
efficient manner. Compounding the problem, the 
additional dimension of real-time simulation and 
decision-making places a higher expectation of 
rapid evaluation of dynamically created scenar-
ios. The what–if scenarios come in sequences and 
branches, forming a tree of evaluations. Also, the 
branches that need to be evaluated can be exoge-
nous, based on new external inputs to the simula-
tion based on evolving ground truth or influx of 
data. The updates may also appear in the form of 
internal simulation state-based conditions (e.g., 
a new event with a certain probability will arise 
only when the state satisfies certain conditions), 

which are difficult to schedule a priori in a con-
ventional experiment design.

1.3  Organization
The rest of the paper is organized as follows. 
Our mesoscopic approach to the large, complex 
systems of epidemics is presented in Sect. 2. The 
computational framework to enable rapid explo-
ration of massive trees of incremental what–if 
scenarios is described in Sect. 3. This is followed 
in Sect. 4 by a performance study using compu-
tational experiments on three basic country-scale 
models, with sequential (one node) performance 
as well as small-scale and large-scale parallel exe-
cution on up to 8192 GPUs. The paper is summa-
rized and future work identified in Sect. 5.

2  Mesoscopic Approach to Large, 
Complex Systems

2.1  Conceptual Framework
The modeling spectrum for any large, com-
plex system in general spans the space between 
two extremes with respect to the level of detail 
included per interacting entity in the system. In 
the epidemic case, the most numerous entities in 
the system are the individuals who are targets of 
the disease. Therefore, the two extremes for epi-
demic modeling span the two ends with respect 
to the level of detail captured in the model per 
individual. When the individuals are merely rep-
resented as counts of certain bins such as the 
total number of susceptible individuals and the 
number of infected individuals, such a model is 
a macroscopic model7. In a macroscopic model, 
there is little additional identity or distinguishing 
factor on an individual basis, but only aggregates 
are represented and tracked. In the other extreme, 
when each individual entity is demarcated and 
explicit state of its own that is tracked separately 
from that of other entities, such a model is a 
microscopic model10. Recently, mesoscale mod-
eling has been used at local level or regional level 
for modeling and validating COVID-19 at the 
county level15.

Mesoscopic modeling can provide a good 
trade-off between fidelity and speed of simu-
lation. At the right level of population density 
(number of individuals per grid cell), it can cap-
ture the dynamics of microscopic models with 
differential equations while providing the ease 
of composing many effects that can be varied at 
the level of each grid cell. At higher grid sizes, the 
population density can be reduced even further, 
potentially down to a few dozen people per grid 
cell. This can either be specified as a specialized, 
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individual-level model or an aggregate, difference 
equation-based approximation to the high-reso-
lution microscopic model.

2.2  Mapping the Model to SIMD Grid
For the highest resolution data partitioning of 
population to grid cells, it may be possible to 
change the mesoscopic model to a microscopic, 
individual-level model for more accurately cap-
turing the dynamics. For example, in the case of 
UK, it is seen that the average population size per 
grid cell indeed approaches a single individual 
when the grid size is 8192 × 8192. The trans-
formation of mesoscopic-to-microscopic model 
opens new research directions as future work.

Each cell in the grid represents an aggregate 
of population. Therefore, every grid cell executes 
the differential equations presented in the subse-
quent sections for the epidemic model, infection 
model, spatial model, and inter-entity interaction 
model. This makes the mesoscopic approach a 
strict superset of the macroscopic approach. Con-
sequently, it is possible to take any macroscopic 
model and incorporate it into the mesoscopic 
model.

The power of this grid-based mesoscopic 
approach comes from its excellent alignment with 
the fast SIMD processing capabilities of mod-
ern GPUs. This match of the model to the GPUs 
offers three important benefits: 

1. This model can be executed on any desk-
top machine of a researcher or practitioner, 
making fast, large-scale simulations acces-
sible to many important users without sig-
nificant additional investments for compu-
tational support.

2. The use of the GPU also makes it possible to 
offer interactive animations of the dynam-
ics even as the simulations are executed. 
Since the GPU is also a rendering device, the 
latency between computation and visualiza-
tion is minimized. Moreover, the visualiza-
tion software layer is extremely light due to 
the native support provided by most GPU 
vendors, including standardized interfaces 
such as OpenGL.

3. In the case of practitioners or researchers 
who have access to large parallel comput-
ing platforms, the GPU-based mesoscopic 
approach is perfectly suited to exploit the 
parallel system. Many large computational 
clusters, cloud computing platforms, or even 

supercomputers, offer GPU-based nodes. In 
fact, the top supercomputers of the world 
are currently ranked at the top exclusively 
because of their hardware design that is 
heavily GPU-based.

2.3  Epidemic Model
We illustrate our mesoscopic modeling approach 
using the parameters of an Ebola epidemic model, 
although the methodology is general and applica-
ble to many other epidemics. For experimenta-
tion purposes, we use a few parameters and fitted 
values for an epidemic (Ebloa 2014) model22. The 
parameter values are shown in Table 1. We solve 
the system of linear equations using initial condi-
tions with values corresponding to the countries. 
In particular, we assume that for the countries 
considered in this work, the initial exposed popu-
lations are both 10% of the aggregate ones.

Note that this configuration and settings are 
chosen only to exercise the computational frame-
work, and hence are not meant as actual validated 
studies. Because any scenario-specific values can 
be varied by the user, the system is general pur-
pose in nature and not limited to any specific 
model or components. Our focus here is limited 
to presenting the novel approach to modeling 
and simulation on current accelerated computing 
architectures.

2.4  Infection Model
We use a general metapopulation-based suscep-
tible-exposed-infectious-recovered (SEIR) epi-
demic model5. We assume that the environment 
under consideration is divided into L location 
patches, which are geographic regions. Each patch 
is considered to be homogeneous and divided 
into four compartments where individuals are 
classified as:

  – S: Susceptible individuals, who can be 
infected;

Table 1: Model parameters and fitted values 
for an Ebola epidemic model.

Parameter Region 1 Region 2

Contact rate β 0.128 0.16

Incubation period 1/δ 10 days 12 days

Infectious Period 1/γ 10.38 days 13.31 days
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 – E: Exposed individuals, who have been 
infected but not yet infectious;

 – I: Infectious cases in the community, who are 
capable of transmitting the disease;

 – R: Individuals removed from the chain of 
transmission (cured or dead and buried).

The number of people of each compartment in 
path i at some time t is denoted by Si(t) , Ei(t) , 
Ii(t) , and Ri(t) , respectively for i = 1, 2, . . . , L . 
The total number of people in patch i is denoted 
by Ni(t) = Si(t)+ Ei(t)+ Ii(t)+ Ri(t) . The 
population will be constant during the outbreak.

The model takes into consideration the num-
ber of people infected due to direct contact with 
an infected individual and the number of people 
infected due to direct contact with latent individ-
uals: β SI

N  . The individuals in the latent stage will 
eventually show the symptoms of the disease and 
enter into the infectious stage. This is denoted as 
δE , where δ is the per-capita infectious rate. In 
that case, 1

δ
 becomes the average time for a latent 

individual to become infectious. The recovery 
rate is denoted by γ I , where γ is the per-capita 
recovery rate.

2.5  Spatial Mobility Model
We also model the behavior that individuals 
travel between the patches. The rates of travel of 
individuals between any two patches can be made 
to depend on the disease state. The disease states 
of individuals do not change during travel. The 
simplest travel pattern per time step is move-
ment from any given grid cell to its immediate 
Moore neighborhood5,14,21. However, this can be 
customized with another mapping array for arbi-
trary connectivity, especially for modeling the 
non-local effects of air travel and long rail/high-
way-based interactions.

2.6  Consolidated Model
When the SEIR infection model is integrated with 
the spatial mobility model, each grid cell updates 
its counts based on the combined terms of com-
partments as described next.

Let mS
ij , m

E
ij , m

I
ij , and mR

ij denote the travel rate 
from patch i to patch j of susceptible, exposed, 
infective, and recovered individuals, respectively, 
where mS

ii = mE
ii = mI

ii = mR
ii = 0 . The travel 

rates among all the patches can be represented by 
matrices MS = [mS

ij] , M
E = [mE

ij ] , M
I = [mI

ij] , 
and MR = [mR

ij] where 1 ≤ i, j ≤ L

This set of equations is mapped to each grid ele-
ment. At every time step, the grid elements are 
updated concurrently in an SIMD fashion. Global 
statistics are computed periodically for visualiza-
tion and output generation purposes.

2.7  Data Sources
The geographical population data per country is 
collected from the WorldPop dataset27 using the 
methods described in17. The population datasets 
are available in GeoTIFF format in 100 m and 
1 km resolutions. We used the GDAL (Geospa-
tial Data Abstraction Library) package to parse 
the dataset and extract the population counts 
per location patch. The data are used to gener-
ate intermediate population files per country for 
various grid sizes. We used grid sizes of 256, 512, 
1024, 2048, 4096, and 8192 in the experiments. 
We used three different countries of varying area, 
density, and population counts: UK, USA, and 
India. A summary of the dataset is presented in 
Table 2.

Similar data sources can be used for pre-
processing and reformatted to fit the mesoscale 
model. For large data sets, the pre-processing 
itself can be parallelized to reduce the amount of 
data preparation time. However, this needs to be 
done only once for each set of initial conditions. 
Typically, these input data do not change too fre-
quently (typically, once or twice a year), which 
makes the pre-processing a small, fixed cost for 
the mesoscale approach.

2.8  Grid Size and Model Fidelity
Given a specific geographic domain and its popu-
lation distribution, they can be mapped to a grid 
of desired size. Thus, for any given population 
size, the greater the size of the grid to which the 
population is mapped, the smaller is the num-
ber of people per grid cell, and therefore, the 

(1)

dSi

dt
= −β

SiIi

Ni
+

L
∑

j=1

(

mS
ijSj −mS

ijSi

)

dEi

dt
= β

SiIi

Ni
− δEi +

L
∑

j=1

(

mE
ijEj −mE

ijEi

)

dIi

dt
= δEi − δIi +

L
∑

j=1

(

mI
ijIj −mI

ijIi

)

dRi

dt
= δIi +

L
∑

j=1

(

mR
ijRj −mR

ijRi

)

.



6

K. S. Perumalla, M. Alam

1 3 J. Indian Inst. Sci.| VOL xxx:x | xxx–xxx 2021 | journal.iisc.ernet.in

higher the resolution of representation. However, 
because the mesoscopic model is essentially a 
composition of multiple macroscopic compart-
ments, the resolution must be such that macro-
scopic approach should remain valid within each 
grid cell. When the number of people per grid 
cell drops to a low value (unity or fraction), the 
macroscopic view of the grid cell no longer holds, 
and the mesoscopic model fails to provide correct 
results. Therefore, there is a trade-off between 
the amount of resolution and the validity of the 
model.

We have implemented this and empirically 
tested the phenomenon on varying grid sizes 
on representative large domain sets. Specifically, 
three countries, namely UK, USA, and India, were 
chosen to represent small, medium, and large 
population sizes, respectively. A summary of the 
dataset is presented in Table 3. We seek to answer 
the question: how do key epidemic observables 
vary as the size of the total grid is increased (that 
is, the resolution is increased from low to high)? 
Note that this is performed for the base simula-
tion. The grid size is varied from 256 to 8192 by 
powers of two.

A verification of the mesoscopic SEIR infec-
tion measures reflects the expected trends from 
macroscopic differential equation-based curves. 
The results for different compartments as the grid 
size is varied are shown in Figs. 1, 2, and 3.

Because the values assigned to the infection 
parameters are fixed across all resolutions, the 
effective parameter values vary across the resolu-
tions. The figures show that the model needs to 
be calibrated for any given grid size to match the 
desired behavior. Also, at a grid size of 4096 or 
higher, the population per cell for UK is too low 
to be valid for the mesoscopic model.

3  Evaluating Massive Trees 
of Incremental What–If Scenarios

In this section, we describe our approach to the 
problem of rapidly evaluating a large number of 
incremental simulations in a tree of what–if deci-
sions relative to the base mesoscopic simulation.

3.1  Concepts and Terminology
The terminology underlying our what–if tree 
evaluation approach includes concepts of base 
simulation, what–if simulation, branches, and 
decision level, as described next.

  – Base simulation: This represents the full grid 
initialized and evolved as a complete, inde-
pendent simulation, with no interference from 
the user.

 – What–if simulation: At any point during the 
evolution of the base simulation, a fraction 
(sub-rectangle) of the grid is overwritten with 
a new state that represents the new devel-
opment to be explored. This represents an 
incremental change on top of the base simu-
lation. To that extent, the what–if simulation 
shares the entire state of the base simulation 

Table 2: Mesoscopic statistics based on distribu-
tion of people in three representative countries.

Country
Population 
size

Geographical 
size (sq mile)

Density 
(resident/sq 
mile)

USA 338,898,743 3,797,000 89.25

India 1,407,368,083 1,269,000 1109.04

UK 61,171,205 93,628 653.34

Table 3: Population densities for different coun-
tries for varying grid sizes.

Country Population size Grid size

Average 
person/grid 
cell

USA 338,898,743 256 5171.18

512 1,292.80

1024 323.20

2048 80.80

4096 20.20

8192 5.05

India 1,407,368,083 256 21,474.73

512 5368.68

1024 1342.17

2048 335.54

4096 83.89

8192 20.97

UK 61,171,205 256 933.40

512 233.35

1024 58.34

2048 14.58

4096 3.65

8192 0.91
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Figure 1: Epidemic SEIR curve for USA for varying grid size.
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except for this small portion that is changed 
to reflect the what–if configuration. Note that 
the what–if incremental simulation starts 
expanding its changed state beyond the ini-
tial fraction, because the grid cells affect their 
neighboring cells at each iteration of simu-
lation time. There can be multiple ways the 
what–if scenarios can be initiated. New data 
feeds of ground truth can serve as sources of 
exogenous updates to the base simulation. 
Alternatively, new (probablistically generated) 
configurations can be introduced based on the 
current state of the simulation. These dynami-
cally generated scenarios serve as endogenous 
updates that need to be evaluated for their 
effects in the simulated future.

 – Branches: At each decision point, there can 
be one or more variations that need to be 
explored in addition to the base simulation. 
This serves as a branch of what–if variants 
that are introduced into the what–if tree. For 
example, branches include choices for new 
outbreaks at one or more locations, new cur-
few or quarantining restrictions, new vac-
cination campaigns, etc. Note that these can 
be based either on real incidents and ground 
truth, or contemplated, planned actions and 
developments.

 – Decision level: The what–if scenarios can be 
spawned in a cumulative fashion as a sequence 
of what–if decisions to be made. Therefore, 
they result in a tree of scenarios, each being 
an incremental modification of its previous 
configuration, which ultimately is a union of 
changes of what–if scenarios from the leaves 
via their branches up to the base simulation. 
The level of the what–if is its distance from 
the original base simulation.

Note that an incremental what–if simulation 
could evolve over time to expand from a localized 
change to a globally different simulation from its 
base simulation. In other words, the incremental 
simulation for a what–if starts out with a small 
fraction of the global grid being set to the new 
what–if-defined state, but, starts expanding its 
evolution beyond the confines of that incremen-
tal state (because of neighborhood interactions). 
Eventually, the size of the incremental simulation 
thus expanding may reach the boundaries of the 
grid, at which point the incremental simulation 
can be considered a bonafide simulation of its 
own. This is because, from that point in simula-
tion time, none of its state is shared with its ances-
tors in the what–if tree. In that situation, it need 
no more be maintained as an incremental simula-
tion, but can be detached as its own original, full, 
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Figure 3: Epidemic SEIR curve for India for varying grid size.
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base simulation in its own right, as though it was 
started with its own initial conditions.

3.2  Epidemic Scenarios
To study the impacts of various factors during the 
epidemic spread, we consider several well-studied 
scenarios. To evaluate the impact, a combination 
of these scenarios need to be tested16,24. Further-
more, the scenarios are also dependent on the 
type of geographical areas, such as cities, rural 
areas, mountains, rivers, etc. We present a brief 
overview of the scenarios considered in this paper 
(Figs. 4, 5, 6).

  – Outbreak Sometimes during an epidemic out-
break, some spatial regions become hot spot 
of epidemic outbreak. The geography and 
demography of those regions play an impor-
tant role in understanding the control mecha-
nism.

 – Spatial quarantine During an epidemic out-
break in a region, sometimes, travel restric-

tions have to be applied to control the spread 
of diseases. The effectiveness of a quaran-
tine policy depends on the spatial movement 
properties, such as inter-cell transportation 
modes and associated delays. To more accu-
rately model all transportation modes such as 
air travel, the size of the what–if sub-region 
may need to be expanded to include all cells 
in the region between the origins and desti-
nations of travel. In this paper, we restrict the 
movement of individuals from and to a quar-
antined zone.

 – Hospitalization Many disease models include 
hospitalization as an intervention. We can 
introduce the variable Q to denote the infec-
tious population being hospitalized, and the 
variable α to denote the rate of hospitaliza-
tion22. We assume that the hospitalized indi-
viduals share the same recovery probability 
with the normal infectious ones, but do not 
infect any exposed individual or susceptible 
one. With this approach, the base SEIR model 
is modified to include what–if scenarios for 
hospitalization as follows: 

 –

(2)

dSi

dt
= −

β

γ
Si(1− α)Ii +

L
∑

j=1

(

mS
ijSj −mS

ijSi

)

dEi

dt
=

β

γ
Si(1− α)Ii −

δ

γ
Ei +

L
∑

j=1

(

mE
ijEj −mE

ijEi

)

dIi

dt
=

δ

γ
Ei − Ii +

L
∑

j=1

(

mI
ijIj −mI

ijIi

)

dRi

dt
= Ii +

L
∑

j=1

(

mR
ijRj −mR

ijRi

)

dQi

dt
= αIi +

L
∑

j=1

(

m
Q
ij Qj −m

Q
ij Qi

)

.

Figure 4: Snapshot of an illustrative, working vis-
ualization of a what–if tree for USA.

Figure 5: Snapshot of an illustrative, working vis-
ualization of a what–if tree for UK.

Figure 6: Snapshot of an illustrative, working vis-
ualization of a what–if tree for India.
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 – Vaccination In the vaccination scenario, we 
apply vaccination to the susceptible indi-
viduals to become immune to the disease. To 
model vaccination, we can introduce another 
variable V(t) to be the number of individuals 
who have been vaccinated22. We let the vacci-
nation rate be given as a function of time by 
η . Thus, η is the number of individuals being 
vaccinated per unit time at time t. With this 
additional variant, the base SEIR model is 
modified to include what–if scenarios for 
vaccination as follows (this addition can be 
cumulative, together with the hospitalization 
what–if addition mentioned previously): 

 –

 – Logistics To tackle an epidemic disease, quick 
delivery of medical supplies and hospitali-
zation are crucial. However, these might be 
delayed due to various forms of social and 
geographical factors. This aspect could poten-
tially be separately modeled or included in 
the base SEIR model by changing the rate of 
movement of individuals in a region.

  

4  Computational Experiments
In the following computational experiments for 
a performance study, we use India geography and 
population data as the test case, with a grid size of 
2048× 2048 . The experiments are run on a single 
computational node for a baseline sequential per-
formance, and also on parallel computing plat-
form with several GPUs. Two what–if scenario 
trees are used: a small scale what–if tree with 
30,000 incremental simulation scenarios, and a 
large-scale what–if tree with tree size of approxi-
mately 350,000 scenarios.

(3)

dSi

dt
= −β

SiIi

Ni
− η +

L
∑

j=1

(

mS
ijSj −mS

ijSi

)

dEi

dt
= β

SiIi

Ni
− δEi +

L
∑

j=1

(

mE
ijEj −mE

ijEi

)

dIi

dt
= δEi − δIi +

L
∑

j=1

(

mI
ijIj −mI

ijIi

)

dRi

dt
= δIi +

L
∑

j=1

(

mR
ijRj −mR

ijRi

)

dVi

dt
= η +

L
∑

j=1

(

mV
ij Vj −mV

ij Vi

)

.

4.1  Performance Experiment 
Configurations

4.1.1  Hardware and Software
We used a server with an NVIDIA Tesla V100 
GPU with 16 GB RAM and Intel(R) Xeon(R) 
Silver 4110 CPU with 256 GB of host memory. 
The underlying operating system was UBUNTU 
20.04. We used C++ for the software and CUDA 
10.0 for the GPU.

For the large-scale parallel runs, we used a 
supercomputing system to conduct the multi-
node experiments. The supercomputing system 
consists of 18,688 compute nodes, a total of 710 
TB system memory, and Cray’s high-performance 
Gemini network. Each node hosts a 16-core AMD 
Opteron processor with 32 GB of host memory 
and an NVIDIA Tesla K20X GPU. Each GPU 
contains 2688 CUDA cores with 6 GB of device 
memory. The supercomputing system is based on 
CUDA 7.0 for the GPU, and a vendor-supplied 
native implementation of the Message Passing 
Interface (MPI) for inter-processor communica-
tion and synchronization.

4.1.2  Performance Parameters
The experimental runs are conducted for a num-
ber of simulation time steps to perform a suffi-
cient mixture and reach of model dynamics. We 
used three key variables to spawn new what–if 
(incremental) simulation runs: (i) the fraction 
� of the domain affected that defines each new 
what–if simulation; (ii) the number of what–if 
scenarios m per decision sequence, and the num-
ber of decisions k in sequence. We vary these 
parameters to evaluate the runtime performance 
of the system, using a value of � = 10−3 on each 
spatial dimension.

The spatial grid dimension W ×H with width 
W and height H of all our simulation experi-
ments is set to 2048× 2048 . Larger dimensions 
result in higher resolutions and larger domains, 
for which what–if simulation would perform 
even better. For this grid size and � = 10−3 , 
each what–if scenario’s initial dimensions as √
2048× 2048× 10−3 ≈ 64 . Hence, each 

what–if simulation starts with an incrementally 
changed domain size of 64 × 64 , which will be 
modified with scenario-specific spatial data (e.g., 
new infections centered at the chosen location). 
In the experiments regarding performance evalu-
ation, we used the country data for India.

The simulation model tracks the propagation 
dynamics based on the SEIR model specified in 
Sect. 2. The incremental simulations are spawned 
based on a variety of what–if scenarios, such as 
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new outbreaks (grids with increased infected 
count), quarantines (restricted spatial move-
ment), vaccination (reducing susceptible counts), 
and hospitalization (increasing recovered counts).

4.1.3  Performance Metrics
As the measure of computational effectiveness of 
our what–if tree evaluation framework, we use 
a notion of speed-up that is different from the 
concept of parallel speed-up traditionally used 
in parallel computing. In parallel computing, the 
(strong scaling) speed-up is the factor of reduc-
tion in total computational time when multiple 
processors are used, relative to the time taken 
when only one processor is used. Here, we use a 
different notion, because the parallel speed-up is 
not applicable.

Whether one processor is used or multiple 
processors are used, the total time taken by the 
traditional simulation techniques to complete 
M what–if scenarios is M × TC , where TC is the 
time taken to complete one simulation. Note that, 
in normal simulation approaches, each what–if 
scenario essentially becomes a full simulation of 
its own. In our approach, only the base simula-
tion is by default a full simulation, but the what–
if scenarios are only incremental in nature, so 

consume time to simulate only a fraction � of the 
original domain. Therefore, the time taken by our 
framework is significantly less than that of nor-
mal (replicated) simulations for each what–if sce-
nario. A more detailed analysis of this complexity 
is available in our previous work29. Based on this 
notion, the speed-up is defined as the factor of 
reduction in time using our what–if incremental 
scenario approach compared to fully replicated 
runs. Note that the savings from experiment 
design methods apply equally to both traditional 
replication approach as well as to our approach, 
because any scenarios that can be avoided using 
some such design can be equally applied to our 
framework as well. As such, this is a robust meas-
ure with respect to comparing scenario evalu-
ation via full simulation versus our what–if tree 
evaluation method.

4.2  Single‑Node Performance Results
In this set of experiments, all simulations are per-
formed on a single computational node. In this 
single-node execution, all the incremental what–
if simulations are performed in conjunction with 
the base simulation on a single computing node 
with only a single GPU. To evaluate the perfor-
mance, we run multiple scenarios with varying 
number NB/L of what–if branches per decision 
level and number of decision levels NL . Table 4 
gives the aggregate number of what–if simula-
tions at each level, during what–if executions. The 
simulation was run for 100 timesteps and NL = 5 
and NB/L was varied from 1 to 6. We used a value 
of � = 10−3 for this experiment. Table 5 shows 
the speed-up from incremental simulation. We 
can see orders of magnitude in speed-up gain, 
peaking at 350 when the number of what–if sce-
narios handled is 1555.

4.3  Parallel Execution Performance 
Results

We evaluated the scaling behavior using two 
experiments: (a) small scale and (b) medium 
scale. In the small-scale experiments, the simula-
tion was run for 100 time steps, with NB/L = 3 
and NL = 10 , resulting in the spawning of 29, 524 
what–if simulations and, the same scenario was 
run on 32, 48, 64, 96, 128, 256, 512, and 1024 
GPUs. In the large-scale experiment, the simula-
tion was run for 100 time steps, with NB/L = 4 
and NL = 10 , resulting in the spawning of 
349, 225 what–if simulations and it was executed 
on 512, 1024, 2048, 4096, and 8192 GPUs.

The summaries of the results for the small- 
and large-scale simulations are tabulated in 

Table 4: Number of incremental simulations 
spawned for given decision level and what–if 
branch.

L = 1 L = 2 L = 3 L = 4 L = 5

NB/L=1 1 2 3 4 5

NB/L=2 1 3 7 15 31

NB/L=3 1 4 13 40 121

NB/L=4 1 5 21 85 341

NB/L=5 1 6 31 156 781

NB/L=6 1 7 43 259 1555

Table 5: Speed-up for incremental simulation 
scenarios for India with a GPU grid size of 2048.

L = 1 L = 2 L = 3 L = 4 L = 5

NB/L = 1 1 1.97 2.89 3.85 4.75

NB/L = 2 1 2.95 6.68 14.23 28.39

NB/L = 3 1 3.93 12.12 36.77 99.09

NB/L = 4 1 4.91 18.94 74.36 213.35

NB/L = 5 1 5.86 26.44 126.38 316.89

NB/L = 6 1 6.86 33.91 188.37 350.97
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Tables  6 and 7, respectively. From the experimen-
tal results, we can observe that the performance 
gain increases significantly with an increase of 
the number of nodes. Using up to 8192 nodes 
(GPUs), we can achieve a performance gain of 
approximately 75 K for approximately 350 K 
what–if simulations.

5  Summary and Future Work
A mesoscale modeling approach is presented that 
appears suitable for modeling epidemics at large 
scales for first-order metrics, and well suited for 
exploiting the GPU platforms. We have also pre-
sented a framework for generating and evaluating 
massive what–if scenarios, scalable from single 
machine to large supercomputing platforms.

It is now conceivable to rapidly evaluate mil-
lions of what–if scenarios to adequately cover 
the parameter space and aid informed deci-
sion-making in real time in evolving epidemics. 
The mesoscopic modeling approach presented 
here provides an effective way to exploit the 

computational power of GPU hardware tech-
nology. In some of the largest experiments, the 
parallel computational runs show the feasibility 
to utilize thousands of GPUs to explore what–if 
trees containing many hundreds of thousands of 
decision sequences in a matter of minutes. The 
results presented here represent some of the larg-
est and fastest what–if simulations reported in 
the literature. In the largest case, nearly 350,000 
what–if scenarios were executed on 8192 GPUs in 
about 2 min of wall-clock time. The same system 
is also usable on commodity desktop comput-
ers for local and regional-scale simulation and 
analyses.

To use this model for a given geographical 
population density and grid size, the parameters 
need to be calibrated to maintain the right bal-
ance of macroscopic versus microscopic level 
of models. As shown in Sect. 2, the exact global 
counts of SEIR compartments are depend-
ent on the grid size and constants used in the 
model. This needs to be studied to provide the 
mathematical methodology needed to partition 
a macroscopic model into multiple sub-mac-
roscopic models, so that they can be mapped to 
the grid. Another class of shortcomings of our 
approach lie in the mapping from the geographi-
cal domain to the grid. Since the representation 
is a direct mapping, domains with contiguous 
land will perform better, whereas gaps in inhabi-
tation on the land or presence of water bodies 
or other geographical separations will waste the 
grid cells in the GPU memory and computation. 
Another shortcoming is the availability of accu-
rate data to initialize the simulation state in terms 
of the mesoscopic grid. Overall, there are multi-
ple factors that need to be addressed before our 
approach can be readily used by actual decision-
makers or practitioners. For instance, verification, 
validation, and accreditation processes will need 
to be undertaken to customize it for real-life use. 
Accordingly, our focus in this paper has been to 
first present the computational advancement 
that the mesoscopic representation provides and 
showing the potential for evaluating massive trees 
of what–if scenarios as incremental simulations 
executed on state-of-the-art GPU-based comput-
ing platforms.

Publisher’s Note 
Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and insti-
tutional affiliations.

Table 6: Experiments with small what–if tree 
with 29,524 incremental simulation scenarios.

# of GPUs Run time (s) Speed-up

1 (Base simulation 
only)

25.57 1.00

32 1471.81 512.98

48 762.554 990.11

64 545.523 1384.01

96 387.765 1947.08

128 329.704 2289.97

256 171.523 4401.81

512 138.404 5455.13

1024 103.879 7268.18

Table 7: Experiments with large what–if tree 
with 349,225 incremental simulation scenarios.

# of GPUs Runtime (s) Speedup

1 (Base simulation 
only)

25.57 1.00

512 1110.89 8046.10

1024 783.26 11411.72

2048 251.52 35537.55

4096 194.86 45870.77

8192 120.08 74435.86
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