
Towards Reversible Basic Linear Algebra

Subprograms: A Performance Study

Kalyan S. Perumalla and Srikanth B. Yoginath

Oak Ridge National Laboratory⋆,
Oak Ridge, TN 37831-6085, USA

perumallaks@ornl.gov,yoginathsb@ornl.gov

Abstract. Problems such as fault tolerance and scalable synchroniza-
tion can be efficiently solved using reversibility of applications. Making
applications reversible by relying on computation rather than on mem-
ory is ideal for large scale parallel computing, especially for the next
generation of supercomputers in which memory is expensive in terms of
latency, energy, and price. In this direction, a case study is presented
here in reversing a computational core, namely, Basic Linear Algebra
Subprograms (BLAS), which is widely used in scientific applications. A
new Reversible BLAS (RBLAS) library interface has been designed, and
a prototype has been implemented with two modes: (1) a memory-mode
in which reversibility is obtained by checkpointing to memory, and (2) a
computational-mode in which nothing is saved, and restoration is done
entirely via inverse computation. The article is focused on detailed per-
formance benchmarking to evaluate the runtime dynamics and perfor-
mance effects, comparing reversible computation with checkpointing on
both traditional CPU platforms and recent GPU accelerator platforms.
For BLAS Level-1 subprograms, data indicates over an order of magni-
tude speed up of reversible computation compared to checkpointing. For
BLAS Level-2 and Level-3, a more complex tradeoff is observed between
reversible computation and checkpointing, depending on computational
and memory complexities of the subprograms.

Keywords: Reversible computation, linear algebra, checkpointing, run-
time performance, memory effects

1 Introduction

1.1 Reversible Computing

Reversible computing is a computing paradigm which uses a bidirectional execu-
tion capability as the basis for computation, in stark contrast to all traditional

⋆ This paper has been authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the U.S. Dept. of Energy. Accordingly, the U.S. Government retains
and the publisher, by accepting the article for publication, acknowledges that the
U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do
so, for U.S. Government purposes.

2 Perumalla and Yoginath

computing that is essentially built on unidirectional execution. Reversible com-
puting has been evolved over the past few decades, primarily driven by the need
to lower the energy consumed by computation. Besides low-power computing
(sometimes also called adiabatic computing, or, more precisely, asymptotically

isentropic computing [7]), an important additional benefit of reversible com-
putig arises in parallel computing. Reversible computing is useful in parallel
computing to address critical problems such as rollback recovery-based fault tol-
erance and optimistic synchronization. For example, reversible computation has
been recently shown to support extremely efficient rollback-based recovery [5,
4] for fault-tolerant execution due to its many desirable properties such as low
memory footprint, minimal cache pollution, and significant reduction of conges-
tion at file systems [14, 12]. Similarly, reverse computation has been successfully
applied in parallel discrete event simulations to efficiently realize Time Warp-
based synchronization on large-scale parallel computing platforms with over 105

processors [3, 13]. While these indicate the significant benefits of reversible com-
putation, introducing reversibility into any complex application remains a major
challenge.

1.2 Motivation

To reap the benefits from reversibility in parallel computing, parallel programs
need to be augmented or transformed for reversible execution, which is a very
complex endeavor. While automation can help to an extent, the highest runtime-
and memory-efficiency for reversibility is only achieved via special runtime sup-
port, especially for extant codes. Complex subroutine libraries are used by par-
allel programs, whose efficient reversal is needed before the benefits of reversible
computing can be fully obtained. In this direction, here we examine the run-
time support for efficiently adding reversibility to one of the core computa-
tional blocks, namely, Basic Linear Algebra Subprograms (BLAS), which is a
performance-critical, optimized library widely used in many parallel scientific
applications that rely on fast linear algebra operations.

In the case of linear algebra operations, every routine modifies the entire
vector or matrix in general, limiting the effectiveness of well-known optimizations
to checkpointing (such as incremental or differential checkpointing). This implies
that reversible computation can significantly relieve the pressure on the memory
system in comparison to any checkpointing-based solution. Checkpointing also
has the undesirable overhead of memory copying operations performed even
in forward execution; this overhead can be pronounced for larger vectors and
matrices. Reversible computation, on the other hand, can proceed at almost
the same speed as irreversible execution with negligible overheads in runtime or
memory. This aspect of reversible computation can deliver a significant gain in
parallel execution in which the probability for reversal is low. However, while
checkpointing can guarantee exact restoration of values, the numerical accuracy
of reversible computation becomes an important consideration.

A specific aim of our approach here is to relieve reliance on memory (check-
pointing) in enabling reversibility. Current and projected hardware trends por-

RBLAS 3

tend the so-called “memory wall” effect which observes that, in general, the
processor speed to compute a floating point operation is increasing significantly
faster than the speed to access random access memories. Further, for very large
(supercomputer) computing installations, the high energy usage and dollar costs
of memory chips are a major problem in future “exa-scale” computing. In the
context of hybrid/accelerator-based computing that uses a cluster of graphical
processing units (GPUs) and/or multi-core central processing units (CPUs), the
reversible computation is even more relevant because the relatively abundant
and inexpensive computational capacity (in comparison to memory capacity).

1.3 BLAS Overview

The BLAS interface is a de facto standard application programming interface
(API) for basic linear algebra primitives [6, 10]. The BLAS API is a library of
subroutines to perform a range of well-defined operations on vectors and matri-
ces of real and complex numbers of varying precision. Interfaces are available in
popular languages such as C and FORTRAN. Many implementations are avail-
able, most being vendor-optimized for the fastest execution on various platforms
(e.g., ACML[2] from AMD Inc., GotoBLAS[8] from U. Texas, and CUBLAS[1]
for NVIDIA GPUs). Here, we focus on two: ACML for CPU-based multi-core
execution, and CUBLAS for CUDA-based execution on NVIDIA GPUs.

BLAS is broadly organized into three levels: Level 1 (L1), Level 2 (L2), and
Level 3 (L3). L1 contains vector operations (and a few scalar operations, which
are insignificant for reversibility), L2 contains matrix-vector operations, and L3
contains matrix-matrix operations. Vectors and matrices can be made of single-
precision (S) or double-precision (D) real numbers, or of single-precision complex
(C) or double-precision complex (Z) numbers.

1.4 BLAS Reversal

Reversibility of BLAS implies that, after any given computational sequence of
invocations to BLAS routines in the normal (forward) direction is made, a reverse
sequence (i.e., an opposite order of forward sequence) of corresponding inverse
routines can be invoked to nullify the side-effects of the forward sequence on
all variables of the program, effectively undoing the original forward sequence.
We introduce a new library called Reversible BLAS (RBLAS) to enable such
reversibility. For every routine B() in BLAS, a pair of routines FB() and RB()

is defined in RBLAS such that FB() is the counterpart of B() and RB() is the
perfect reversal of FB(), that is, executing FB() followed by RB() is a no-op as
far as the program state is concerned. For example, corresponding to the BLAS
routine zROT(), RBLAS includes two routines, FzROT() and RzROT(), as the
forward and reverse pair. Internally, our RBLAS implementation makes use of
the native BLAS for efficiently realizing the forward and reverse computation.

4 Perumalla and Yoginath

1.5 Numerical Reversibility

Numerical reversibility is a major concern with inverse computation-based re-
versal of linear algebra operations. The ideal reversal requirement is to recover
all the bits of an overwritten matrix or vector, or, alternatively to recover to a
user-defined (application-specific) precision that may not be as high as full ma-
chine precision. The precision of inverse computation varies with each subpro-
gram, depending on its sequence of arithmetic instructions, and considerations of
(non-)associativity and (non-)commutativity of floating point arithmetic. Here,
we only focus on the runtime performance potential and do not provide any
theoretical treatment of the arithmetic precision properties of reversal. A com-
prehensive treatment is relagated to future work. Some prior methods on mixed
precision BLAS implementations [11] are useful starting points for such theo-
retical treatment. The issues and solutions in reproducibility of floating point
arithmetic-based parallel applications is also relevant [9]. Also, entirely new ap-
proaches such as fixed point arithmetic that is reversible by design [14] may be
useful in the longer term.

Nevertheless, it is unclear how significant the accuracy concern is in real-
ity, with actual codes as opposed to pathological conditions. Indeed, with non-

pathological inputs in our performance study of the RBLAS prototype interface
and implementation, a verification of numerical accuracy in the experiments (see
Section 3.7) shows zero loss of precision for vector subprograms, and negligible
loss of precision for matrix-vector subprograms. Perceivable loss of precision
seems to arise only for large matrix sizes for matrix-matrix subprograms.

1.6 Organization

The rest of the article is organized as follows. In Section 2, the high-level ap-
proach to the reversal of BLAS is presented. In Section 3, a detailed performance
study is presented. The results are summarized and future work is described in
Section 4.

2 RBLAS Approach

In this section, we present the overall reversal approach to arrive at RBLAS from
BLAS. Key observations underlying the reversal method are presented first. This
is followed by the design of the reversible interface of RBLAS that relaxes the
forward-only interface of BLAS. The analysis of memory and computational
complexities of memory-based checkpointing and inverse-based reversible com-
putation methods for reversibility are then presented.

2.1 Key Observations for Reversal

The design of the reversible computation-based solution in RBLAS is based on
the following observations.

RBLAS 5

– Input/output Types Formal arguments to each routine can be in (read-
only), out (write), or inout (read/write). Thus, for reversal, it is sufficient to
restore the out and inout arguments to pre-invocation values. For example,
zAXPY() accepts as input two vectors x and y and a scalar α, and overwrites
y with αx + y. To reverse this routine, it is sufficient to restore y to its
pre-forward values.

– Constructive versus Destructive Routines When considered from a
reversibility standpoint, we observe that almost all BLAS routines are “con-
structive” in nature, that is, information is not destroyed per se by each
routine by itself. Hence, it becomes possible to reverse them via recreation
of previous state from current state, rather than by saving to and restoring
from memory. Thus, we were able to develop reversible computation-based
reversals for almost all routines, with one exception. Only one L1 routine,
namely xCOPY, is destructive in nature because its invocation blindly over-
writes the pre-invocation values of a vector. The reversibility of this routine
can be addressed in three different ways: (1) checkpointing can be used to
save a copy of the vector that would be overwritten, (2) require the over-
written vector to contain all zero values, (3) prohibit this routine from being
available in a reversible setting. The first choice is the easiest backward-
compatible solution, but also the least desirable with respect to efficiency of
reversal. The second is an interface specification which is reasonable to intro-
duce because the blind overwriting of a vector has the semantics of reuse of a
memory location for two different purposes, which can be avoided by explicit
separation by the programmer. The third is in fact a more sensible approach
in the longer-term because a copy operation in fact can be translated into an
equivalent “variable renaming” or relabeling operation. For simplicity and
short-term backward-compatibility, we adopt the first solution.

– Reversible Ranges of Arithmetic Constants Similar considerations are
applied to other routines in which some extreme values result in destructive
overwriting of values. For example, the xSCAL operation x← αx with α = 0
blindly resets the x vector. Thus, reversible computation is used only when
α is non-zero, and checkpointing is employed when α is zero. Considering
the precision limitations of computer arithmetic, this condition needs to
be generalized to include precision-defined limits to account for underflow
and overflow conditions of multiplication, such that ǫ ≤ |α| ≤ E , where
ǫ and E are platform-specific small and large constants outside of which
multiplication operations lose reversibility.

– Side-effects Only those routines that have side-effects need to be reversed
(side-effects are any changes to program state outside the routine, such as
global variables). In the FORTRAN interface of BLAS, only those specified
as SUBROUTINE need to be considered for reversal, while those specified as
FUNCTION are not applicable for reversal (since they do not have any effect on
memory that needs to be undone). Thus, for example, while xROT (rotation
of a vector) is a subroutine that needs reversal, xDOT (dot product of two
vectors) is a function that has no memory side-effects and hence does not
need reversal.

6 Perumalla and Yoginath

2.2 RBLAS Forward and Reverse Routine Pairs

The RBLAS routines (forward and reverse) are shown in the following tables:
L1 routines in Table 1; L2 routines in three groups – group 1 in Table 2, group
2 in Table 3, and group 3 in Table 4; L3 routines in Table 5.

Call Forward Reversal Condition Types Notes

xCOPY y ← x y ← y′ y′ is known (e.g., 0) S,D,C,Z Destructive copy

xSWAP x↔ y y ↔ x None S,D,C,Z Self-inverse

xSCAL x← αx x← 1

α
x ǫ ≤ |α| ≤ E S,D,C,Z Bounded scale

xAXPY y ← αx+ y y ← −αx+ y None S,D,C,Z Constructive

Table 1. Level 1

Call Forward Reversal Condition Types Notes

xGEMV y ← αAx+ βy y ← −α
β
Ax+ 1

β
y ǫ ≤ |β| ≤ E S,D,C,Z General matrix

xGBMV y ← αBx+ βy y ← −α
β
Bx+ 1

β
y ǫ ≤ |β| ≤ E S,D,C,Z Banded matrix

xHEMV y ← αAx+ βy y ← −α
β
Ax+ 1

β
y ǫ ≤ |β| ≤ E C,Z General hermitian

xHBMV y ← αBx+ βy y ← −α
β
Bx+ 1

β
y ǫ ≤ |β| ≤ E C,Z Banded hermitian

xHPMV y ← αPx+ βy y ← −α

β
Px+ 1

β
y ǫ ≤ |β| ≤ E C,Z Packed hermitian

xSYMV y ← αAx+ βy y ← −α
β
Ax+ 1

β
y ǫ ≤ |β| ≤ E S,D Symmetric matrix

xSYMV y ← αBx+ βy y ← −α
β
Bx+ 1

β
y ǫ ≤ |β| ≤ E S,D Symmetric banded

xSPMV y ← αPx+ βy y ← −α
β
Px+ 1

β
y ǫ ≤ |β| ≤ E S,D Symmetric packed

Table 2. Level 2 Group 1

Call Forward Reversal Inverse Condition Types Notes

xTRMV x← Ax x← A−1x xTRSV Non-singular A S,D,C,Z General triangular

xTBMV x← Bx x← B−1x xTBSV Non-singular B S,D,C,Z Banded triangular

xTPMV x← Px x← P−1x xTPSV Non-singular P S,D,C,Z Packed triangular

xTRSV x← A−1x x← Ax xTRMV Non-singular A S,D,C,Z General triangular

xTBSV x← B−1x x← Bx xTBMV Non-singular B S,D,C,Z Banded triangular

xTPSV x← P−1x x← Px xTPMV Non-singular P S,D,C,Z Packed triangular

Table 3. Level 2 Group 2, for non-singular A, B, P or their transposes/conjugates

The new reversible application programming interface (API) retains iden-
tical formal arguments for all subprograms. However, new subprogram names

RBLAS 7

Call Forward Reversal Types Notes

xGER A← αxyT +A A← −αxyT +A S,D General

xGERU A← αxyT +A A← −αxyT +A C,Z General

xGERC A← αxyH +A A← −αxyT +A C,Z General

xHER A← αxxH +A A← −αxxH +A C,Z Hermitian

xHPR A← αxxH +A A← −αxxH +A C,Z Packed Hermitian

xHER2 A← αxyH + y(αx)H +A A← −αxyH − y(αx)H +A C,Z Hermitian

xHPR2 P ← αxyH + y(αx)H + P P ← −αxyH − y(αx)H + P C,Z Packed Hermitian

xSYR Y ← αxxT + Y Y ← −αxxT + Y S,D Symmetric

xSPR P ← αxxT + P P ← −αxxT + P S,D Packed

xSYR2 Y ← αxyT + αyxT + Y Y ← −αxyT − αyxT + Y S,D Symmetric

xSPR2 P ← αxyT + αyxT + P P ← −αxyT − αyxT + P S,D Packed

Table 4. Level 2 Group 3

Call Forward Reversal Condition Types Notes

xGEMM C ← αAB + βC C ← −α
β
AB + 1

β
C ǫ ≤ |β| ≤ E S,D,C,Z General

xSYMM C ← αY B + βC C ← −α
β
Y B + 1

β
C

ǫ ≤ |β| ≤ E S,D,C,Z Symmetric
C ← αBY + βC C ← −α

β
BY + 1

β
C

xHEMM C ← αHB + βC C ← −α

β
HB + 1

β
C

ǫ ≤ |β| ≤ E C,Z Hermitian
C ← αBH + βC C ← −α

β
BH + 1

β
C

xSYRK C ← αY Y T + βC C ← −α
β
Y Y T + 1

β
C

ǫ ≤ |β| ≤ E S,D,C,Z Symmetric
C ← αY TY + βC C ← −α

β
Y TY + 1

β
C

xHERK C ← αAAH + βC C ← −α

β
AAH + 1

β
C

ǫ ≤ |β| ≤ E C,Z Hermitian
C ← αAHA+ βC C ← −α

β
AHA+ 1

β
C

xSYR2K C ← αY BT + βC C ← −α
β
Y BT + 1

β
C

ǫ ≤ |β| ≤ E S,D,C,Z Symmetric
C ← αY TB + βC C ← −α

β
Y TB + 1

β
C

xHER2K C ← αABH + βC C ← −α
β
ABH + 1

β
C

ǫ ≤ |β| ≤ E C,Z Hermitian
C ← αAHB + βC C ← −α

β
AHB + 1

β
C

xTRMM B ← αAB B ← 1

α
A−1B ǫ ≤ |α| ≤ E S,D,C,Z Triangular

xTRSM B ← αA−1B B ← 1

α
AB ǫ ≤ |α| ≤ E S,D,C,Z Triangular

Table 5. Level 3 with options to specify transposes and conjugates of supplied matrices

are used in order to enable reversible operation: for every original BLAS rou-
tine routine (), a new pair of forward and reverse routines is defined with the
following naming convention:

[f|r][s|d|c|z] routine ()

The notation [x |y] denotes choice between x and y . The prefix f denotes
forward-mode and r denotes reverse-mode of the BLAS subprogram named
routine (). The conventional data types codes are used: s for single precision
floating point, d for double precision floating point, c for single precision com-
plex, and z for double precision complex numbers. For example, fzrot() and
rzrot() are the forward and reverse mode RBLAS subprograms corresponding
to the BLAS subprogram zrot().

8 Perumalla and Yoginath

2.3 Runtime and Memory Analysis

Since checkpointing (CP) relies on making a copy of values before they are
overwritten, its memory complexity for any given BLAS routine is proportional
to the byte size of values being modified in that routine. For reversal, CP runtime
complexity remains proportional to the memory size because the saved value is
simply copied back. On the other hand, RBLAS based on reversible computation
(RC) incurs zero additional cost (memory or runtime) over the underlying BLAS
cost for forward execution, but incurs computation time cost for reversal.

a1N + b1

a2N
2 + b2

a3N
3 + b3

Fig. 1. Illustration of varying cut-off points across different complexities

Figure 1 illustrates this performance cut-off point for different complexities,
where a higher order complexity of O(N2) (say, for recovering a vector via RC)
may in fact perform better than a lower order complexity of O(N) (say, for
saving to memory via CP), due to the computer-specific constants of fixed and
variable costs per computational or memory operation. Due to this essential
nature of the difference between reversible computation and checkpointing, the
runtime complexity and memory complexity of the two approaches differ, both
in forward execution as well as in reversal. Since the amortized cost per memory
operation is typically orders of magnitude larger than that per computational
(floating point) operation, non-linear tradeoff points arise in the choice between
the two methods.

– In L1 with vectors of size N , the memory cost of CP is O(N), while that
for RC is 0. Also, the forward overhead is O(N) for CP, but 0 for RC.
The reversal overhead is O(N) for both, but with vastly different constants
originating from memory speeds for CP and computational speeds for RC.

– For general (dense) matrices in L2 Group 1 (e.g., xGEMV), the memory cost of
CP is O(N) to save a vector, while that for RC is 0. The forward overhead
is also O(N) for CP, but 0 for RC. However, the reversal overheads are
vastly different: O(N) with memory speed constants for CP, and O(N2) with
computational speed constants for RC. For routines on banded matrices (e.g.,
xGBMV) whose number of bands is O(1), the reversal costs for RC becomes
O(N), which makes it significantly faster than CP.

RBLAS 9

– In L2 Group 2, the xGER routine has a large memory overhead of O(N2)
with CP to save and restore the matrix A, whereas RC incurs the same
quadratic complexity albeit at computational speeds as opposed to memory
speeds. This results in large savings for reversibility in both memory usage
and runtime.

– The L3 routines are O(N2) in data size but O(N3) in computational cost,
which makes it expensive for RC during reversal. Forward execution is still
slightly better with RC because no data is saved in forward mode.

CPU Forward

103 104 105 106 107 108

10
0

10
1

10
2

10
3

10
4

10
5

10
6 zSCAL−RC

zSCAL−CP

103 104 105 106 107 10810
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

zROT−RC
zROT−CP

103 104 105 106 107 108

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7 zAXPY−RC

zAXPY−CP

CPU Reverse

103 104 105 106 107 108

10
0

10
1

10
2

10
3

10
4

10
5

10
6 zSCAL−RC

zSCAL−CP

103 104 105 106 107 10810
0

10
1

10
2

10
3

10
4

10
5

10
6

zROT−RC
zROT−CP

103 104 105 106 107 108

10
0

10
1

10
2

10
3

10
4

10
5

10
6 zAXPY−RC

zAXPY−CP

Fig. 2. Forward and reverse times (µsec) as a function of N (x-axis) for RBLAS L1
routines on an N -sized double-complex (z) vector using ACML on a CPU.

3 Performance Study

In this section, we present a detailed performance study to understand the rel-
ative gains of reversible comptuation versus checkpointing in RBLAS. The im-
plementation is described followed by the experiment setup and a description of
the hardware and software employed.

Two popular computational platforms are studied: one which is based on a
traditional high performance processor and the other based on an accelerator

10 Perumalla and Yoginath

CPU Forward

102 102.5 103 103.5 104

10
1

10
2

10
3

10
4

10
5 zGEMV−RC

zGEMV−CP

102 102.5 103 103.5 104

10
0

10
1

10
2

10
3

zGBMV−RC
zGBMV−CP

102 102.5 103 103.5 104

10
1

10
2

10
3

10
4

10
5

10
6

10
7

zGERU−RC
zGERU−CP

CPU Reverse

102 102.5 103 103.5 104

10
−

1
10

0
10

1
10

2
10

3
10

4
10

5 zGEMV−RC
zGEMV−CP

102 102.5 103 103.5 104

10
−

1
10

0
10

1
10

2
10

3 zGBMV−RC
zGBMV−CP

102 102.5 103 103.5 104

10
1

10
2

10
3

10
4

10
5

10
6 zGERU−RC

zGERU−CP

Fig. 3. Forward and reverse times (µsec) as a function of N (x-axis) for RBLAS L2
routines on an N -sized double-complex (z) vector using ACML on a CPU.

(graphical processing unit or GPU) architecture. For the high performance pro-
cessor, the memory subsystem performance is studied in terms of cache behavior
of RC and CP to explain the large runtime gain of RC compared to CP. For both
platforms, the overall speed ratios of RC over CP are compared. Finally, numeri-
cal precision data are presented showing low loss of precision due to reversibility
on most subprograms.

3.1 Implementation

We have implemented a prototype of the RBLAS library that includes all the
BLAS routines. Further, it is organized in such a way as to be able to utilize
any native BLAS implementation as an efficient building block. The portable
implementation currently supports the ACML BLAS implementation on multi-
core CPUs, and the CUBLAS implementation for CUDA-based NVIDIA GPUs.
Additional native BLAS implementations can also be easily incorporated in the
future. While our RBLAS implementation supports all BLAS routines, due to
space constraints, the performance study here only focuses on a few routines (3
routines in each level).

RBLAS 11

CPU Forward

102 102.5 103 103.5 104

10
2

10
3

10
4

10
5

10
6

10
7

10
8

zGEMM−RC
zGEMM−CP

102 102.5 103 103.5 104

10
2

10
3

10
4

10
5

10
6

10
7

zSYMM−RC
zSYMM−CP

102 102.5 103 103.5 104

10
2

10
3

10
4

10
5

10
6

10
7 zSYR2K−RC

zSYR2K−CP

CPU Reverse

102 102.5 103 103.5 10410
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

zGEMM−RC
zGEMM−CP

102 102.5 103 103.5 10410
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

zSYMM−RC
zSYMM−CP

102 102.5 103 103.5 10410
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

zSYR2K−RC
zSYR2K−CP

Fig. 4. Forward and reverse times (µsec) as a function of N (x-axis) for RBLAS L3
routines on an N ×N -sized double-complex (z) matrix using ACML on a CPU.

3.2 Experiment Setup

The performance of RBLAS with checkpointing (CP) and reversible computation
(RC) implementations are tested using a benchmark. In the benchmark, for every
BLAS call B(), n invocations of FB() followed by n invocations of RB() are
made. The average time for each forward and reverse invocation is measured.
This is repeated for r trials, to account for runtime variations. In the presented
charts, the observations are from n = 10 and r = 10. Matrices are filled with
values generated as a + Rb where a and b are real numbers and R ∈ [0..1] is a
uniformly distributed random number. In the presented charts, a = b = 1000.
The accuracy of any routine B is measured by comparing the orginal input to
FB() and the restored input after reversal by RB(). The accuracy measure is the
root mean square (RMS) difference between the input and restored input values.
Thus, an RMS value of e implies a relative error (on average) of 2e/((a+ b)) in
the restored value. In the experiments (Figure 11), an RMS value of e = 0.001
with a = b = 1000 represents a relative error of 1e− 6.

BLAS routines are typically used in various combinations in applications. In
order to isolate the performance effects on a per-routine basis, here we focus on
an experiment design in which the same routine is called multiple times. Thus,
if A, B, and C are three routines, we focused on runs RA, RB , and RC , where
RA = A1 → A2 → A3 → · · · → An, n ≥ 1, is a sequence of n invocations to the

12 Perumalla and Yoginath

GPU Forward

103 104 105 106 107 108

10
1

10
2

10
3

10
4

10
5 zSCAL−RC

zSCAL−CP

103 104 105 106 107 108

10
1

10
2

10
3

10
4

10
5

zROT−RC
zROT−CP

103 104 105 106 107 108

10
1

10
2

10
3

10
4

10
5 zAXPY−RC

zAXPY−CP

GPU Reverse

103 104 105 106 107 10810
−

1
10

0
10

1
10

2
10

3
10

4
10

5

zSCAL−RC
zSCAL−CP

103 104 105 106 107 108

10
0

10
1

10
2

10
3

10
4

10
5 zROT−RC

zROT−CP

103 104 105 106 107 10810
−

1
10

0
10

1
10

2
10

3
10

4
10

5

zAXPY−RC
zAXPY−CP

Fig. 5. Forward and reverse times (µsec) as a function of N (x-axis) for RBLAS L1
routines on an N -sized double-complex (z) vector using CUBLAS on a GPU.

routine A, and so on. Each sequence is fully reversed before another sequence
is initiated. Thus, after RA is executed, its inverse, namely, R−1

A
= A−1

n →
· · ·A−1

3
→ A−1

2
→ A−1

1
, is executed prior to making any other calls, such as

RB or RC . The performance of combination of different calls together is in fact
interesting, which we will pursue in future work.

In each sequence of n invocations to a routine, the output of each invocation
is used as input of its subsequent invocation. This circumvents the need for
input erasure; however, in other cases, if inputs are unrelated and need to be
reset across calls, there would be an erasure cost, which may need to be added
in an expanded performance study.

3.3 Hardware and Software

All experiments were performed on a multi-core CPU platform and a GPU plat-
form.

– GPU (CUBLAS): The test system contains an NVIDIA GeForce GTX 580
GPU, used with the CUDA compilation tools (release 4.2, V0.2.1221) and
CUBLAS library. Each GPU has 16 multiprocessors, supporting 32 CUDA
cores per streaming multiprocessor, with a total global memory of 3.2 GB,

RBLAS 13

GPU Forward

102 102.5 103 103.5 104

10
2

10
3

10
4

10
5 zGEMV−RC

zGEMV−CP

102 102.5 103 103.5 104

10
2

10
3 zGBMV−RC

zGBMV−CP

102 102.5 103 103.5 104

10
2

10
3

10
4

10
5

10
6

10
7 zGERU−RC

zGERU−CP

GPU Reverse

102 102.5 103 103.5 104

10
−

1
10

0
10

1
10

2
10

3
10

4 zGEMV−RC
zGEMV−CP

102 102.5 103 103.5 104

10
−

1
10

0
10

1
10

2 zGBMV−RC
zGBMV−CP

102 102.5 103 103.5 104

10
1

10
2

10
3

10
4

10
5

10
6

10
7

zGERU−RC
zGERU−CP

Fig. 6. Forward and reverse times (µsec) as a function of N (x-axis) for RBLAS L2
routines on an N -sized double-complex (z) vector using CUBLAS on a GPU.

and shared memory of 49 KB per block. The system runs Linux using 16 GB
of memory and an AMD Phenom(tm) II X6 1100T Processor with 6 cores
each clocking at 3.3GHz.

– CPU (ACML): The test system is a Linux machine running two 16-core
(32 cores in total) AMD(tm) Opteron 6276 processors at 2.3 Ghz sharing
256GB of memory. AMD’s libacml fma4 mp library with multithreading
support was used in our benchmarks and a maximum of 16 threads were
exercised in our benchmark runs.

3.4 ACML (CPU) Runtime Performance

The CPU (ACML) runtime performance is shown in Figure 2 for L1, Figure 3
for L2, and Figure 4 for L3.

A significantly faster execution of RC is observed for all L1 routines, with
some faster than CP by an order of magnitude. Reversal of RC, on the other
hand, is on-par with CP. With L2, the forward costs are similar for RC and
CP; as expected, the reversal costs are higher for RC on GEMV and GBMV.
With GERU, both forward and reverse are significantly faster with RC, but the
gains for reversal cost diminish with increasing N . For L3, the lower cost due to
elimination of memory copying in forward execution is evident because memory

14 Perumalla and Yoginath

GPU Forward

102 102.5 103 103.5 104

10
2

10
3

10
4

10
5

10
6 zGEMM−RC

zGEMM−CP

102 102.5 103 103.5 104

10
2

10
3

10
4

10
5

10
6

10
7

10
8

zSYMM−RC
zSYMM−CP

102 102.5 103 103.5 104

10
2

10
3

10
4

10
5

10
6

10
7 zSYR2K−RC

zSYR2K−CP

GPU Reverse

102 102.5 103 103.5 104

10
1

10
2

10
3

10
4

10
5

10
6 zGEMM−RC

zGEMM−CP

102 102.5 103 103.5 104

10
1

10
2

10
3

10
4

10
5

10
6

10
7 zSYMM−RC

zSYMM−CP

102 102.5 103 103.5 104

10
1

10
2

10
3

10
4

10
5

10
6

10
7

zSYR2K−RC
zSYR2K−CP

Fig. 7. Forward and reverse times (µsec) as a function of N (x-axis) for RBLAS L3
routines on an N ×N -sized double-complex (z) matrix using CUBLAS on a GPU.

size of O(N2) is significantly large. However, CP has much lower reversal cost.
Thus, for L3, RC can be used to reduce memory usage, albeit at a significant
runtime cost (only during reversal) for than CP.

3.5 Memory Cache Effects

The performance gain of RC over CP can be explained by the superior memory
subsystem behavior of RC compared to that of CP. This can be verified using
low-level processor performance counters for measuring the number of mem-
ory accesses and cache-misses at different cache levels (L1 and L2 1 and at the
Translation Lookaside Buffer (TLB)). These counters are plotted for the subpro-
grams in Figure 8 for L1 cache, Figure 9 for L2 cache, and Figure 10 for TLB.
Since even a slightly better cache performance (lower number of accesses and/or
misses) results in a superior runtime, it is clear that a large gap between the
cache numbers between RC and CP accounts for the overall runtime differences.

1 The overlap in conventional terminology of “L1” and “L2” between BLAS levels and
cache levels is unfortunately unavoidable.

RBLAS 15

L1−DCA
L1−DCM

zSCAL−RC
zSCAL−CP

102 103 104 105 106 107 108

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

L1−DCA
L1−DCM

zAXPY−RC
zAXPY−CP

102 103 104 105 106 107 108

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

L1−DCA
L1−DCM

zROT−RC
zROT−CP

102 103 104 105 106 107 108

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9 10
10

L1−DCA
L1−DCM

zGERU−RC
zGERU−CP

102 103 104

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

L1−DCA
L1−DCM

zGEMM−RC
zGEMM−CP

102 103 104

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9 10

10
10

11
10

12

Fig. 8. L1-Cache performance: Number of cache misses and accesses (y-axis) against
matrix dimension (x-axis)

3.6 CUBLAS (GPU) Runtime Performance

The GPU (CUBLAS) runtime performance is shown in Figure 5 for L1, Figure 6
for L2, and Figure 7 for L3.

On a GPU, two factors weigh heavily in favor of RC: (1) very fast compu-
tations with heavy parallel execution within the GPU, thus helping reliance on
computation for reversal by RC, and (2) very large overhead of copying memory
between GPU (device) and CPU (host) memories, thus hurting the reliance of
CP on memory. The trends of the differences are similar to that for CPU, except
that for all calls on which RC is faster with the CPU, RC is observed to fare
even better on the GPU. Overall, RC performs as well as (and sometimes sig-
nificantly better than CP) for all forward execution. During reversal, RC works
better than CP for L1 and for L2 Group 3, on both CPUs and GPUs, but even
markedly better on the GPUs. However, for reversal of L2 Group 1 and Group 2,
and for L3, CP fares much better. In all cases, RC does not need any additional
memory, whereas CP incurs additional memory needs.

3.7 Numerical Error and Empirical Results of Accuracy

A verification of numerical accuracy in the experiments is obtained by comparing
the values before forward execution and after reversed execution. The accuracies
obtained with reversals of several routines for both ACML and CUDA versions
of RBLAS are shown in Figure 11.

16 Perumalla and Yoginath

L2−DCA
L2−DCM

zSCAL−RC
zSCAL−CP

102 103 104 105 106 107 108

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

L2−DCA
L2−DCM

zAXPY−RC
zAXPY−CP

102 103 104 105 106 107 108

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

L2−DCA
L2−DCM

zROT−RC
zROT−CP

102 103 104 105 106 107 108

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9 10
10

L2−DCA
L2−DCM

zGERU−RC
zGERU−CP

102 103 104

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

L2−DCA
L2−DCM

zGEMM−RC
zGEMM−CP

102 103 104

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9 10

10
10

11
10

12

Fig. 9. L2-Cache performance: Number of cache misses and accesses (y-axis) against
matrix dimension (x-axis)

With the normalized values used for matrix and vector elements in the ex-
periments, the reversal of BLAS level 1 subprograms is essentially lossless upto
vector sizes as large as 107; the RMS error is neglible even at a larger vector size
of up to 108. Reversal of BLAS level 2 subprograms is observed to be lossless
until square matrix sizes of 103.5, and continue to have negligible loss even at
104. For BLAS level 3, as expected, lossless reversal is achieved on a slightly
smaller matrix size of 103–103.5 However, lossy reversal sets in at the next size
of 104.

4 Summary and Future Work

The design, analysis, and performance study of a reversible library for basic
linear algebra subprograms has been presented. Two major reversibility ap-
proaches have been explored, namely, checkpointing and reversible computa-
tion. Reversible computation (RC) is found to be perfectly suited to overcome
the detrimental memory effects due to RC reliance of computation (which is
“cheap”) as opposed to on memory (which is “expensive” in both energy and
cost). The gains are found to be especially pronounced on GPUs. RC is found to
be over an order of magnitude faster for L1 and some L2 of BLAS, both in for-

ward and reverse; and never slower than checkpointing in forward. For GEMV,
GEMM, forward is slightly faster but the primary benefit is the avoidance of
memory needs for reversal. Savings are significant for larger matrices because

RBLAS 17

TLB−DM

zSCAL−RC
zSCAL−CP

102 103 104 105 106 107 108

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

TLB−DM

zAXPY−RC
zAXPY−CP

102 103 104 105 106 107 108

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

TLB−DM

zROT−RC
zROT−CP

102 103 104 105 106 107 108

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9 10
10

TLB−DM

zGERU−RC
zGERU−CP

102 103 104

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

TLB−DM

zGEMM−RC
zGEMM−CP

102 103 104

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9 10

10
10

11
10

12

Fig. 10. TLB performance: Number of TLB misses (y-axis) against matrix dimension
(x-axis)

memory use can be large; in fact, memory limits are encountered for N = 104

on GPU.
Future work includes the exercise of RBLAS in an actual application (scien-

tific applications) and exploration of fault tolerant execution at very large scale.
Since applications include invocations to various combinations of the BLAS rou-
tines, it would be interesting to perform benchmarking experiments on the per-
formance of RBLAS on different combinations of routines.

A comprehensive theoretical treatment is needed on the precision issues and
computer arithmetical aspects of reverse code for each BLAS routine on a case-
by-case basis, especially to account for unexpected or pathological cases. Of
interest is also hardware-level realization of reversible arithmetic in general,
and specialized reversible linear algebra in particular. Additionally, it would
be interesting to follow the reversible application programming interface (API)
methodology to explore reversal of other popular computational libraries at the
software-level.

18 Perumalla and Yoginath

0.
0

0.
2

0.
4

0.
6

0.
8

102 103 104 105 106 107 108

acml−dSCAL
acml−dAXPY
acml−dROT
acml−zSCAL
acml−zAXPY
acml−zROT
cuda−dSCAL
cuda−dAXPY
cuda−dROT
cuda−zSCAL
cuda−zAXPY
cuda−zROT

0.
0

0.
2

0.
4

0.
6

0.
8

102 102.5 103 103.5 104

acml−dGEMV
acml−dGBMV
acml−dGER
acml−zGEMV
acml−zGBMV
acml−zGERU
cuda−dGEMV
cuda−dGBMV
cuda−dGER
cuda−zGEMV
cuda−zGBMV
cuda−zGERU

0.
0

0.
2

0.
4

0.
6

0.
8

102 102.5 103 103.5 104

acml−dGEMM
acml−dSYMM
acml−dSYR2K
acml−zGEMM
acml−zSYMM
acml−zSYR2K
cuda−dGEMM
cuda−dSYMM
cuda−dSYR2K
cuda−zGEMM
cuda−zSYMM
cuda−zSYR2K

Fig. 11. Root Mean Square (RMS) values denoting numerical deviation of values before
and after reversal (of N values for L1 and L2, and N2 values for L3), for increasing N

(x-axis), with ACML on a CPU and CUBLAS on a GPU

RBLAS 19

References

1. Cublas: Common Unified Data Architecture Basic Linear Algebra Subprograms.
http://developer.nvidia.com/cublas (2012)

2. Acml: Advanced micro devices core math library. http://developer.amd.com

(2013)
3. Barnes, P., Carothers, C., Jefferson, D., LaPre, J.: Warp speed: Executing time

warp on 1,966,080 cores. In: Proceedings of the ACM SIGSIM Principles of Ad-
vanced Discrete Simulation (2013)

4. Besseron, X., Gautier, T.: Impact of over-decomposition on coordinated check-
point/rollback protocol. In: Euro-Par 2011: Parallel Processing Workshops, Lec-
ture Notes in Computer Science, vol. 7156, pp. 322–332. Springer Berlin Heidelberg
(2012)

5. Bessho, N., Dohi, T.: Comparing checkpoint and rollback recovery schemes in a
cluster system. In: Algorithms and Architectures for Parallel Processing, Lecture
Notes in Computer Science, vol. 7439, pp. 531–545. Springer Berlin Heidelberg
(2012)

6. Dongarra, J., Duff, I., DuCroz, J., Hammarling, S.: A set of level 3 basic linear
algebra subprograms. ACM Transactions on Mathematical Software (1989)

7. Frank, M.: Introduction to reversible computing: Motivation, progress, and chal-
lenges. In: International Workshop on Reversible Computing (Special Session at
ACM Computing Frontiers) (2005)

8. Goto, K., Van De Geijn, R.: High-performance implementation of the level-3 blas.
ACM Trans. Math. Softw. 35(1), 4:1–4:14 (Jul 2008)

9. He, Y., Ding, C.: Using accurate arithmetics to improve numerical reproducibility
and stability in parallel applications. Springer Journal of Supercomputing 18, 259–
277 (2001)

10. Lawson, C., Hanson, R., Kincaid, D., Krogh, F.: Basic linear algebra subprograms
for fortran usage. ACMTransactions on Mathematical Software (5), 308–325 (1979)

11. Li, X., Demmel, J., Baile, D., Henry, G., Hida, Y., Iskandar, J., Kahan, W., Kapur,
A., Martin, M.C., Tung, T., Yoo, D.J.: Design, implementation and testing of
extended and mixed precision blas. ACM Transactions on Mathematical Software
28(2), 206–238 (2002)

12. Perumalla, K., Park, A.: Reverse computation for rollback-based fault tolerance in
large parallel systems. Cluster Computing pp. 1–11 (2013), http://dx.doi.org/
10.1007/s10586-013-0277-4

13. Perumalla, K., Park, A., Tipparaju, V.: Discrete event execution with one-sided
and two-sided gvt algorithms on 216,000 processor cores. ACM Transactions on
Modeling and Computer Simulation (to appear) (2014)

14. Perumalla, K.S.: Introduction to Reversible Computing. Computational Science
Series, Chapman Hall/CRC Press (2013), ISBN 978-1439873403

