
Simulating Billion-Task Parallel Programs

Kalyan S. Perumalla
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
Email: perumallaks@ornl.gov

Alfred J. Park
Microsoft Corporation

Redmond, Washington, USA
Email: alfpark@outlook.com

Abstract—In simulating large parallel systems, bottom-up ap-
proaches exercise detailed hardware models with effects from sim-
plified software models or traces, whereas top-down approaches
evaluate the timing and functionality of detailed software models
over coarse hardware models. Here, we focus on the top-down
approach and significantly advance the scale of the simulated
parallel programs. Via the direct execution technique combined
with parallel discrete event simulation, we stretch the limits of
the top-down approach by simulating parallel programs with
hundreds of millions of tasks. Although the scaling issues and
solutions presented here are generally applicable, we focus on
message passing interface (MPI) programs. Using a timing-
validated benchmark application, a proof-of-concept scaling level
is achieved to over 0.22 billion virtual MPI processes on 216,000
cores of a Cray XT5 supercomputer, representing one of the
largest direct execution simulations to date, combined with a
multiplexing ratio of 1024 simulated tasks per real task.

I. INTRODUCTION

Parallel programs with millions of tasks are already a
reality (e.g., over 1.5 million MPI ranks can be instantiated
on the Sequoia Blue Gene supercomputer[1] that has as many
processor cores). Following the scaling trends, support for
much larger number of tasks are targeted by supercomputing
installations within the next few years. With the increasing
parallelism scales of interest, simulation advancements are
needed to meet the goals of modeling fidelity, system scale
and simulation speed in experimentation with future large-scale
parallel programs.

Parallel systems being very complex systems, experimen-
tation with their designs and performance evaluation requires
the use of a variety of ways and methods [2], depending on
the purpose or use-cases. We broadly classify the simulation-
based methods into two approaches. Bottom-up approaches
such as full-system or cycle-accurate modeling use detailed
hardware models (e.g., of caches, processors, memory, and
network interface cards) driven by simplified program loads
or by traces (e.g., Wisconsin Wind Tunnel [3], SIMICS [4],
EMPOWER [5], FASE [6], hybrid [7], WARPP [8], OMNeT++
[9], and micro SST [10], [11]). While being effective for
designing the individual hardware elements, they are infeasible
for simulating the runtime operation of very large parallel

This paper has been authored by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the U.S. Dept. of Energy. Accordingly, the U.S.
Government retains and the publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for U.S. Government purposes. This
research used resources of the National Center for Computational Sciences
at Oak Ridge National Laboratory, supported by the Office of Science of the
U.S. Dept. of Energy.

programs due to limitations of scale and speed. Top-down
approaches use actual software or detailed models of programs
and execute them on simplified hardware models (e.g., MPI-
Sim [12], POSE [13], BigSim [14], [15], and LogGOPSim
[16]). They are useful to exercise actual parallel programs
at the largest scale – either full applications, benchmarks,
program prototypes, or program skeletons, all of which relate
more directly to the parallel programmer – executed with user-
chosen levels of functionality and timing details.

With top-down approaches, prototypes of actual parallel
programs can be written, compiled and tested at futuristic
scales, with user-specified hardware configurations. Verifica-
tion and exchange of findings become trivial, via exchange of
actual application or prototype source code. Early debugging
and testing of algorithms and optimizations are facilitated
by deterministic execution (which can be enabled by the
simulator) and zero-perturbation instrumentation.

The key contribution of the present article lies in scaling:
the achievement of the largest scale to date for timing-accurate,
software-level direct execution of actual parallel programs. We
describe our effort to push the simulation capacity of top-down
experimentation for very large-scale parallel programs. Our
approach involves exploring, uncovering and addressing some
of the issues in sustaining very large numbers of control-flows,
in the form of millions of virtual MPI processes. Since the
primary focus of this paper is on proof-of-concept scalability
to very large number of tasks, additional important factors
are not considered here, such as modeling the effects of
GPUs/accelerators, different processor types, file system or
disk input/output effects. However, it is possible to incorporate
them later in a more complete system.

To realize a scalable top-down simulation of parallel pro-
grams, we employ a combination of direct execution [17],
[18], [19] and parallel discrete event simulation [20], [21].
Our approach is realized in μπ [22], a process-oriented sim-
ulator in which each virtual MPI process is represented as
a logical process (LP). Each LP is maintained as a distinct
thread of control flow, with its own execution context (e.g.,
stack). μπ maintains all requisite state to suspend and resume
simulated virtual MPI process as needed by the underlying
simulation executive μsik [23]. This allows μπ to multiplex
multiple virtual MPI processes onto each available processor
and support unmodified MPI codes within a simulated envi-
ronment. The simulator process on each physical core hosts
a user-specified number of virtual MPI processes multiplexed
by simulation time on that core. A hierarchical structure is
adopted to accommodate the large number of virtual MPI
processes across the limited amount of processing resources

585

kp
Typewritten Text
Best Paper Award, Summer Simulation Conference SCS (SPECTS)'14International Symposium on Performance Evaluation of Computerand Telecommunication Systems, July 6-10, 2014, Monterey, CA

kp
Typewritten Text

available. This structure follows naturally from typical high
performance computing environments. Each node may contain
multiple processor sockets, and each processor may have
multiple cores. For simplicity, the number of cores within a
node is flattened across all sockets to a single level. Typically
in a real MPI application, each MPI task or thread within
the MPI program is assigned to a single core. However,
since we are simulating a much larger MPI program on a
virtual platform, these tasks are virtualized. Each physical core
handles a pre-assigned number of virtual MPI processes, and
these are time-multiplexed on their assigned processing core.
To make simulation-based experimentation usable, we focus
on achieving very high efficiency in both multiplexing as well
as total runtime, using efficient discrete event methods for
simulating millions of MPI processes on thousands of actual
cores.

A. Organization

The rest of paper is organized as follows. In Section II,
some of the scaling issues and solutions are presented to
significanly increase the overall number of control flows as
well as the multiplexing ratio (number of simulated tasks
per real task). The challenge of efficiently modeling at scale
the first-in-first-out semantics of the simulated communication
interface is addressed. The issue of modeling global operation
primitives such as barriers and reductions is identified and
addressed. Following that, a detailed performance study is
presented in Section III, with results from a timing validation
effort and a scaling exercise to simulate up to 0.22 billion MPI
tasks. Finally, a summary and some future work are described
in Section IV.

II. SCALING ISSUES AND SOLUTIONS

Here, we identify two important issues that arise in increas-
ing the scale of the simulations both in multiplexing ratio and
in the aggregate number of control flows (MPI tasks). One is
the issue of correctness in message ordering semantics and the
second deals with efficiency of multiplexing.

A. Discrete Event Model of Ordered Matching Semantics

MPI is a messaging protocol that can sit atop various
data transmission layers such as TCP and shared memory.
The variety of layers on which the MPI protocol can transmit
data implies that the MPI implementation itself cannot assume
that underlying layers will preserve certain data transmission
characteristics. Thus, the semantics of certain MPI commu-
nications must be clearly defined by the standard, which
implementations must meet. One such characteristic is the
ordered matching of successive messages between two ranks of
the same communicator, with the same tag and no wildcards;
this is a common communication case. The modeled network
for data transmission is distinct from any actual network used
as a conduit for the simulation itself, and thus must ensure
that important MPI guarantees, such as ordered matching, are
preserved. Ordered matching of messages within a communi-
cator is non-trivial to implement in a virtual execution when
scaled to millions of tasks. Since μπ multiplexes virtual MPI
processes, application data movement is required to be mod-
eled by μπ via simulated events, thereby requiring a scalable
solution to enforcement of ordered matching guarantees in the
virtual execution.

1) Problem: MPI guarantees ordered matching of messages
between two ranks within each communicator with a single tag
and no wildcards regardless of the underlying network. This
must be accurately reproduced by the simulator in order to
generate correct and repeatable results. In real applications,
sending a piece of data typically only requires information
about the data itself and to whom to send. If this is translated
directly by the simulation environment, incorrect execution
will result. This is due to an absence of any semantics and
ordering without a full simulated underlying network (e.g., a
simple data transmission model that only adds delay incurred
by latency and bandwidth).

Figure 1 shows incorrect event processing without
proper measures in place to maintain ordered matching. An
MPI_Isend() with a data payload of 1MB is sent first
from Ranki to Rankj followed immediately by another
MPI_Isend() with a data payload of 1KB between the
same pair of MPI processes. Clearly, the message with 1MB
takes a longer transmission time through the network than the
1KB message, due to the size of the payload and available
bandwidth. In the incorrect scheme, when Rankj posts a data
receive, it will receive the 1KB message first, instead of the
1MB message which the application is expecting. This is a
clear case of a message overtaking another, when the 1MB
should be returned by the first MPI_Irecv() call followed
by the 1KB message, due to the MPI semantics of ordered
matching. Thus, without proper knowledge of outstanding
sends in the network, strict ordered matching of messages for
this scenario at the receivers is not possible.

The core of the problem is that this simple simulated
messaging protocol is stateless while the semantics require
state. A current message being sent has no prior knowledge
of the state of the network. There are different solution
approaches to this problem by essentially maintaining a stateful
messaging protocol to preserve ordered matching. We present
a few non-scalable solutions for illustration, followed by our
scalable, efficient approach.

2) Non-scalable Solutions:

1) Network Link Model: One approach to ensuring
ordered matching is to create a network link model
between each point-to-point communication endpoint
as widely used in network simulation. This allows
all messages sent between two MPI processes to be
funneled through the link model where appropriate
characteristics can be applied to any event. Although
this approach can allow for arbitrary complexity and
fidelity of certain network properties, when dealing
with tens of millions of virtual MPI processes, mem-
ory usage can become excessive, preventing scalabil-
ity.

2) Sequence Numbers: Another non-scalable approach
is to allocate message sequence counters for all pos-
sible senders at each virtual receiver process. When a
new message arrives, the message is only delivered to
the virtual process if the message is in-order. Other-
wise, the message is buffered in a priority queue. This
approach causes a few problems. First, messages must
be buffered on the receiver side until all preceding
messages are processed, which can result in increased
memory usage. Second, there is an increase in the

586

actual size of the event that must be sent by the
size of the message counter. And finally, perhaps the
most damaging consequence, is the requirement of
two data structures of size O(n), where n is the
number of virtual MPI processes on both the sender
and receiver. The sender needs to keep track of the
current sequence number between itself and every
other receiver in the simulation. Similarly, this is also
required on the receiver to know the in-order message
count on a per-sender basis. Clearly, this solution will
not scale well for very large scenarios.

The network link model approach encompasses undue model-
ing effort and computational effort in scenarios where point-
to-point delays are sufficient (e.g., with a user-specified barrier
time or probabilistic network latency). The sequence number
approach, while being computationally light, requires exces-
sive memory to maintain the sequence number state on a
MPI process-pair (sender,receiver) basis. For example, in a 1
million virtual MPI process simulation performed with 1,000
virtual MPI processes per core of a 12-core node used for
simulation, each MPI process will need to maintain up to
1 million sequence numbers, requiring total state of over 1
billion sequence numbers per node, which is an excessively
large fraction of memory consumed on a node.

3) Scalable Solution Approach: A scalable solution to the
ordered matching problem is to essentially record a minimal
amount of pair-wise state of the message sent to the receiver
at only the sender side. Effectively, this is a very lightweight
network link model that is appended to the sending virtual
MPI process for each destination. There is no need to pre-
allocate every potential destination virtual MPI process; instead
this state is only maintained for the most-recently sent data.
Therefore, memory is only allocated on demand when a send
operation is outstanding to any receiver. Memory is reclaimed
if any state regarding previous messages is no longer relevant.
By keeping the state of the last message sent between itself and
the receiver, proper adjustments to the receive timestamp can
be made, thus these simulation messages can be consumed in
proper timestamp order on the receiver. This scalable approach
to preserve ordered matching with MPI messaging is outlined
in Algorithm 1.

MPI_Isend(1MB)

MPI_Isend(1KB)

{ {Ranki

Rankj

MPI_Irecv(1KB) MPI_Irecv(1MB)

1KB Transfer

Time

1MB Transfer Time

Fig. 1. Incorrect Simulation that Violates Order Matching

Figure 2 shows our correct and efficient approach to
order matching between two MPI processes. In the illustrated
scenario, Ranki sends two consecutive messages to Rankj .
Assuming there are no prior outstanding messages between the
two MPI processes, the first message is sent and received with-

SendTS1 SendTS2

{ { { {Latency Delay1 {

Latency Delay2

Bandwidth Delay1

Bandwidth Delay2Busy Delay1,2

RecvTS1 RecvTS2

Ranki

Rankj

Fig. 2. Simulation with Correct Order Matching

Algorithm 1 Scalable Order Matching of Virtual MPI Mes-
sages

1: State variables: A set S (initially null) of triples
at every MPI process, where a triple is defined
as: (destination rank, source timestamp,
destination timestamp)

2: MPI_Send(torank, msgsize):
3: Flush every entry in S whose destination
timestamp < now() + latency

4: Compute the “normal” receive timestamp of this message
based on bandwidth and latency

5: if torank does not exist in S then
6: Add triple (torank, now(), receive

timestamp) to S
7: else
8: Δ = destination timestamp - now() - latency
9: Increase receive timestamp of this message by Δ

10: Increase source timestamp in torank’s entry of
triple to now()

11: Increase destination timestamp in torank’s
entry of triple to the new receive timestamp

12: end if
13: Schedule DataEvent to logical process of torank,

dt simulation time units in future, where dt = receive
timestamp - now()

out any additional delay with a send timestamp of SendTS1

and a receive timestamp of RecvTS1. At Ranki, three pieces
of information are recorded when a message is sent: the desti-
nation (Rankj), send and receive timestamp. When the second
message is sent from Ranki to Rankj , the prior send informa-
tion is queried. LatencyDelay2 is considered concurrent and
can be overlapped with any previous outstanding sends. The
remaining BandwidthDelay2 that overlaps the prior outstand-
ing send (i.e. LatencyDelay1+BandwidthDelay1) must be
proportionally delayed by that additional amount represented
as BusyDelay1,2. This amount is added on to the existing total
computed delay time for the sent message, and the receive time
for the second message is set as RecvTS2. The old state that
contains the information about the prior message is overwritten
with new message send/receive information.

B. Efficient Implementation of Virtual Barrier and Virtual
Collectives

An often misunderstood aspect is that native barriers of the
real system cannot be employed as-is to simulate a (virtual)
barrier of the simulated system. It is incorrect for every virtual

587

MPI process to simply invoke a native barrier implementation
to realize its virtual barrier functionality. Such blocking on na-
tive calls interferes with simulation time advances. In effect, it
pollutes the distinction between wall clock time and simulation
time. At best, runtime errors such as deadlock conditions arise,
and, at worst, silent, incorrect results are obtained. Software-
level collectives become necessary, implemented using times-
tamped events.

We employ an algorithm that is specifically tuned for
PDES, and is distinct from traditional optimizations per-
formed for native MPI collectives [24]. Our approach exploits
low-cost local shared memory operations without polluting
simulation time with wall clock time, and minimizes inter-
node event communication. Every virtual MPI process ex-
ecutes this algorithm as the implementation of virtualized
synchronization and collectives such as MPI_Barrier()
and MPI_Allreduce().

[
Ranki

Rankj

Rankk

Rankl

Nodex

njoined++

njoined++

njoined++

njoined++

{Interprocess Synchronization

Local Barrier Reached Wallclock Time

Fig. 3. Optimized event-based implementation of virtual barrier operation

1) Optimized Virtual Barrier Algorithm: The key to the
optimized collective algorithm is the use of a variable called
njoined that is globally visible to all virtual MPI processes
mapped to a core (each core contains its own instance of
this variable), initialized to zero. Every virtual MPI process
increments this variable upon entry into the barrier. Let λ
denote the number of virtual MPI processes per core. The
virtual MPI processes mapped to a core are referred to as local
ranks, and the first virtual MPI process on any core is that
core’s leader rank (relative to the communicator being used).
Since ranks may join the barrier at any arbitrary points in
simulation time (and hence in any relative order), exactly two
possibilities exist among the local ranks: (1) the leader happens
to arrive at the barrier last, or (2) a non-leader arrives at the
barrier last. In the first case, the leader detects njoined to be
equal to λ, and realizes it has joined last. No additional events
are necessary to coordinate the “join” phase of the barrier
among local ranks, and it can proceed with its leadership role
representing all the local ranks. In the second case, with the
leader arriving early (detected by njoined being less than
λ), it proceeds to wait on an event reception. When the final
local rank arrives last, it detects that it joined last and sends
an event to the leader, completing the local “join” phase. This
optimized virtual barrier is conceptually shown in Figure 3.

The remaining part of the synchronization is a direct map-
ping of traditional messaging for barrier (e.g., using a butterfly
pattern), after aggregation at each node among all cores.
The key difference is that messaging is again performed via

timestamped simulation events, rather than native messages.
Details are omitted here for dealing with non-powers of two,
in which care must be taken to avoid long inter-node distance
communication for “outlier” nodes that fall in the non-power-
of-two region.

This algorithm has four important, independent beneficial
factors: (a) The number of events of notification for the join
phase of the barrier is dramatically reduced. In fact, there
is at most one, and possibly zero, events generated for the
entire join phase of local virtual MPI processes. When λ is
large (e.g., 1024), thousands of events are eliminated at every
core, reducing event overhead significantly (e.g., by up to three
orders of magnitude per run for λ=1024). (b) The number
of inter-core (and inter-node) events is dramatically reduced
because the number of inter-core events is in effect decoupled
from λ, and is only dependent on number of cores and nodes.
(c) The number of context switches between threads that are
hosting virtual MPI processes is also reduced. Since each
virtual MPI process is a serial processing burden on each core,
every event scheduled for a virtual MPI process incurs not only
event cost but thread switching overhead as well. This cost,
being significant on large values of λ, is nearly eliminated in
the join phase. (d) While being efficient, this algorithm ensures
the desired decoupling between wall clock time and simulation
time, unlike other alternatives that can artificially introduce
simulation time anomalies in favor of faster runtime.

This efficient template carries over well to other global
collectives as well, such as MPI_Allreduce(), which we
also implemented. The main difference between barrier and
other collectives is that barrier does not need any data in
the events, but other collectives need data fragmentation and
reassembly with timestamped events. The optimized algorithm
template is enhanced to accommodate data by storing the
collected data in local shared-memory buffers during the join
phase, and distributed via the same buffers in the release phase.

2) Events, Messaging, and Thread-Switching Analysis: Let
n be the number of host nodes, c be the number of cores
per host node, and λ be the number of virtual MPI processes
mapped to each core. Let R = n·c·λ be the total number of vir-
tual MPI processes. For each barrier, traditional butterfly across
all virtual MPI processes gives a time complexity of log

2
R

time steps per virtual MPI process, or λ log
2
R steps per core,

λ log
2
R thread switches per core, and total events simulated

as R log
2
R in the system, of which cλ log

2
cλ are intra-node

events per node, and cλ log
2
R− cλ log

2
cλ = cλ log

2
n inter-

node events per node. Our improved algorithm reduces the
complexities to λ + c + log

2
n + c + λ time steps per virtual

MPI process (worst case), λ+c+log
2
n+c+λ thread switches

per core, and total events equal to c+ cn+n log
2
n+ cn+λc

in the system, of which log
2
n are inter-node events per node,

and 2c + λc
n

are intra-node events on average. The two most
significant gains are in terms of thread switches and inter-
node events. Compared to the straightforward implementation
with a butterfly across the complete virtual MPI process space,
thread switches are reduced by λ log

2
ncλ−2λ−2c−log

2
n =

λ(log
2
n − 1) + λ log

2
cλ − 2λ − 2c per core, and inter-node

events are reduced by (cλ−1) log
2
n per node. When λ, c and

n are large, the performance difference becomes appreciable
(e.g., inter-node events are reduced by 110,583 for a typical
configuration with λ = 1024, c = 12 and n = 512).

588

An important additional influence on the performance is the
amount of imbalance that may be present in simulation time
horizon relative to the lookahead window. While in a perfectly
balanced, synchronous execution, the preceding complexity
analysis holds well, the performance can become dominated
by synchronization cost if and when imbalance in timestamps
of events gets introduced by the application, which can initiate
a large amount of synchronization messaging by the simulation
engine. Such cost is unavoidable in a conservative parallel
execution, in which case, the observed performance serves
as a lower bound on performance, which can only improve
with either larger lookahead or more balanced workloads. In
fact, the interaction between the performance of the actual
program and the performance of its simulation is an extremely
interesting aspect of simulating at large scale in which such
effects get amplified.

III. PERFORMANCE STUDY

All empirical evaluations were performed on a Cray XT5
system in which each node has two hex-core AMD Opteron
2435 (Istanbul) 2.6GHz processors with 16GB of memory.
Communication is supported by Cray’s SeaStar 2+ router of
the Cray XT5. Compilation was performed via the Portland
Group (pgi) compiler 2.2.73 with -O3 -fast flags.

A. Validation

The ping test benchmark is used to measure bandwidth and
latency between pairs of communicating MPI processes. This
ping test has virtual MPI processes arranged in a naturally-
ordered ring topology. The sender sends data to the next higher
virtual MPI processes while receiving data from the lower
virtual MPI processes. If the virtual MPI process number is
even, it performs a blocking send followed by a blocking
receive. The order of operations is reversed for odd-numbered
virtual MPI processes. These operations are timed via calls to
MPI_Wtime() for bandwidth and latency measurement.

These operations are iterated successively from 8 bytes to
the maximum specified test message size, where the length of
each message is doubled for each trial until the maximum limit
is reached. For the validation tests, the maximum test message
size was 16 MB.

For the MPI ping test validation, the latency and bandwidth
were measured for the Cray XT5 system using the MPI ping
test itself. The average across three measurements at each data
point is assigned as the delay metric for a particular sized data
chunk that is sent through virtual MPI communicators within
μπ. The highest observed bandwidth served as the maximum
virtual bandwidth. Due to the hierarchy of communication
involved between SMP nodes, μπ can accept two-levels of
latencies and bandwidths to reflect a shared memory intra-node
communication tier and a network inter-node communication
tier. Shared memory was timed by exercising ping test across
all cores within one node. Network metrics were gathered by
executing ping test across an equivalent number of cores, but
only with one core per node. A “flat” timing model is also
measured and μπ is fed with a single level of latencies and
bandwidth observed across a test scenario of multiple nodes
exercising all cores.

Figure 4 and Figure 5 show validation results for μπ across
both 1008 and 16128 MPI processes. Note that for measured
data, the data represents real MPI processes while for μπ,
the data represents total virtual MPI processes. Since the ping
test does not perform any computation, the μπ charging API
was set to ignore CPU time accumulated in non-MPI routines.
It is observed that the simple network model without any
complexities associated with full-blown network link models
provides close-to-measured two-way transfer times. As ex-
pected, although an exact match of the simulated model to
the real measured results is impossible to obtain due to other
concurrently running jobs, operating system noise, network
traffic and unpredictable node allocation, the timing model
provides a very good approximation of the real behavior at
a fairly large fraction of the system at 16128 processors.

B. Scaling Experiments

We implemented the aforementioned algorithms in μπ
and tested them on the Cray XT5 system. For testing,
commonly available MPI examples in source form have
been successfully executed over μπ, such as matmul,
deadlock_fix, mpiping, picalc, ring_blocking
and ring_nonblocking. For performance testing, we ex-
ercised the collectives with two benchmarks, barriertest
and allreducetest. In barriertest, every MPI pro-
cess repeatedly joins a barrier by invoking MPI_Barrier(),
and querying the time taken by each barrier via the times
returned by MPI_Wtime(). Also, between each pair of
barriers, each MPI process advances simulation time by one
millisecond to model a relatively coarse-grained computa-
tion. The allreducetest operates similarly, except that
(a) MPI_Allreduce is used instead of barrier, and (b)
the virtual computation time charged between reductions is
randomized across MPI processes, in order to model staggered
arrival times at the reduction. To exercise data payload effects,
a vector of double precision values is offered (using the sum
operator) for every reduction.

The timing scenarios are chosen to represent some of the
most severe execution constraints on the simulator, stress-
testing capabilities such as: (a) ability to instantiate and
advance millions of virtual MPI processes on simulation time
axis (b) test performance under very tight coupling among MPI
processes, especially with very low inter-MPI process latencies
in the virtual interconnection network, and (c) exercise high
levels of multiplexing for maximum efficiency (i.e., largest
values of λ reasonably sustained).

Since μπ virtualizes the invoked MPI calls, all simulation
runs are fully deterministic and repeatable (i.e., observe the
same controlled bandwidth and latency effects), despite the
challenge of immense non-determinism that is inherent with
thousands of threads multiplexed on fewer number of cores.
Thus the times of barrier observed by barriertest and
reductions by allreducetest, are repeatable across runs.

While our prior results [22] on the Cray XT5 was limited
to λ=128, with the aforementioned scalability optimizations,
we were able to increase the multiplexing efficiency, thus
enabling: (1) increased number of total virtual MPI processes
simulated, and (2) a reduction in the number of processors
needed to simulate a similar virtual job size. Accordingly, we

589

 1

 10

 100

 1000

 10000

 100000

100 101 102 103 104 105 106 107 108

E
la

ps
ed

 tw
o-

w
ay

 tr
an

sf
er

 ti
m

e
(u

se
c)

Message Length (bytes)

Measured
μπ

Fig. 4. Cray XT5 MPI Ping Test Validation: 1008 Real or Virtual MPI Processes

 1

 10

 100

 1000

 10000

 100000

100 101 102 103 104 105 106 107 108

E
la

ps
ed

 tw
o-

w
ay

 tr
an

sf
er

 ti
m

e
(u

se
c)

Message Length (bytes)

Measured
μπ

Fig. 5. Cray XT5 MPI Ping Test Validation: 16128 Real or Virtual MPI Processes

experimented with multiple λ values, and chose the highest
value of λ=1024 beyond which the aggregate system memory
becomes insufficient to represent the simulated system.

Figure 6 and Figure 7 show elapsed time (lines) and corre-
sponding remote event counts (bars) for the barriertest
and allreducetest benchmark with increasing number of
virtual MPI processes. Two different scenarios of the virtual
network are simulated, simply to exercise the simulator with
different dynamics (β denotes simulated bandwidth and δ
denotes simulated latency) – virtual network latency critically
determines the amount of lookahead (a lever of concurrency),
available in the parallel simulation. At 216,000 processors and

λ=128, there were 27,648,000 virtual MPI processes simulated
with a virtual barrier taking 4.63 wallclock seconds and re-
duction of 1024 double values taking 13.92 wallclock seconds
to complete. At 216,000 processors and λ=1024, there were
221,184,000 virtual MPI processes taking 154.80 wallclock
seconds to complete a virtual barrier and reduction of 1024
double values taking 408.93 wallclock seconds. As expected, it
is observed that λ=128 runs faster than λ=1024, due to reduced
multiplexing load per core, for the same number of virtual MPI
processes being simulated. However, it is also encouraging
to note that nearly an order of magnitude fewer processors
can be employed to simulate the same number of virtual

590

 0.1

 1

 10

 100

 1000

 10000

105 106 107 108
103

104

105

106

107

108

R
un

tim
e

(s
ec

on
ds

)

R
em

ot
e

E
ve

nt
 C

ou
nt

Number of Virtual MPI Processes

Events: Barrier, λ=128, β=10Gbps Δ=1us
Events: Barrier, λ=1024, β=1Gbps Δ=10us
Run time: Barrier, λ=128, β=10Gbps Δ=1us

Run time: Barrier, λ=1024, β=1Gbps Δ=10us

Fig. 6. Virtual Barrier Performance

 0.1

 1

 10

 100

 1000

 10000

105 106 107 108
103

104

105

106

107

108

R
un

tim
e

(s
ec

on
ds

)

R
em

ot
e

E
ve

nt
 C

ou
nt

Number of Virtual MPI Processes

Events: AllReduce, λ=128, β=10Gbps δ=1us
Events: AllReduce, λ=1024, β=1Gbps δ=10us
Run time: AllReduce, λ=128, β=10Gbps δ=1us

Run time: AllReduce, λ=1024, β=1Gbps δ=10us

Fig. 7. Virtual AllReduce Performance

MPI processes, as a cumulative result of our performance
improvements. It is also seen that the remote event count scales
very well (note logarithmic abscissa).

The main point of the performance chart is that it shows
the feasibility to perform fully time-controlled, software-level
experimentation with very large number MPI jobs. This perfor-
mance data represents the most scalable simulation of unmod-
ified MPI programs, under stringent global operations such as
virtual barrier/reduction simulated in just a few seconds. The
number of virtual MPI processes has been pushed to hundreds
of millions primarily to test the scalability of the approach

and the actual implementation. Clearly, normal jobs with fewer
MPI processes can be expected to perform very well.

Overall, the results strongly indicate a sweet spot that is
worth further exploration by the parallel computing community
in the experimentation tradeoff between scale, fidelity, speed
and control on accuracy. It is conceivable that new enhance-
ments and extensions to massively parallel computation (e.g.,
fault tolerance, non-blocking collectives) can be debugged,
analyzed, tested, and evaluated with actual software virtually
at scale.

591

IV. SUMMARY AND FUTURE WORK

With large-scale computing initiatives moving towards ex-
ascale computing, software-level experimentation is crucial in
helping design and develop future systems. Also, parallel soft-
ware development in general stands to benefit from simulations
that help better prepare codes in anticipation of next levels of
scalability. Large-scale top-down simulation capabilities are a
step in that direction.

Here, we addressed some of the key issues arising at
scale, and presented solutions with the net outcome of being
able to achieve hundreds of millions of virtual MPI process
executions much more efficiently than before. Although our
implementation focused on MPI, the concepts apply to any
simulation of massively parallel communicating sequential
process systems.

Admittedly, different design problems warrant different
frameworks and systems for software-level experimentation.
Nevertheless, here we have reported the feasibility of sustain-
ing very large top-down parallel program simulations in time-
controlled, user-specified scenarios. The approach appears
promising, yet much additional work is needed to carry the
results to more complex codes and couple them with hardware
and system-level simulators to enhance fidelity.

As may be expected, new issues and challenges arise in
simulating future large-scale applications, and we are poten-
tially only scratching the surface. With the introduction of
accelerators such as GPUs into large-scale computing installa-
tions, the concurrency increases even more dramatically, with
millions of threads being executed on each GPU. A future
extension to the scaling is the incorporation of GPU thread
models, and the ability to incorporate accelerator code into
the simulation just as the MPI code is incorporated directly
by μπ into the simulation. Since the offered load by such an
extension magnifies the discrete event simulation load by an
additional factor of 106 − 108 (corresponding to the GPU-
level launch of millions of threads per kernel invocation at
each node), scalability of the simulator will be further stressed,
which in turn will require additional optimizations. Also, the
interconnection network(s) within the parallel system play a
crucial role in the overall parallel program performance, and
hence, a more detailed model may need to be incorporated for
uncovering runtime dynamics (such as congestion) that may be
missed from simple point-to-point model. Similarly, parallel
programs that have intensive input/output behaviors will need
incoporporation of file system and disk operation models.

REFERENCES

[1] “Top 500 supercomputer sites.” [Online]. Available: http://top500.org

[2] S. Pllana, I. Brandic, and S. Benkner, “Performance modeling and
prediction of parallel and distributed computing systems: A survey of
the state of the art,” in Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 279–284.

[3] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis,
and D. A. Wood, “The wisconsin wind tunnel: Virtual prototyping of
parallel computers,” in SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, 1993, vol. 21, pp. 48–60.

[4] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hall-
berg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A
full system simulation platform,” IEEE Computer, vol. 35, no. 2, pp.
pp. 50–58, 2002.

[5] P. Zheng and L. M. Ni, “Empower: a scalable framework for network
emulation,” in International Conference on Parallel Processing, 2002,
pp. 185–192.

[6] E. Grobelny, D. Bueno, I. Troxel, A. D. George, and J. S. Vetter, “Fase:
A framework for scalable performance prediction of hpc systems and
applications,” Simulation, vol. 83, no. 10, pp. 721–745, 2007.

[7] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli, “Hybrid performance
modeling and prediction of large-scale computing systems,” in Complex,
Intelligent and Software Intensive Systems, 2008. CISIS 2008. Interna-
tional Conference on, March 2008, pp. 132–138.

[8] S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, J. A.
Herdman, and A. Vadgama, “Warpp: a toolkit for simulating high-
performance parallel scientific codes,” in Proceedings of the 2nd Inter-
national Conference on Simulation Tools and Techniques, ser. Simutools
’09, ICST, Brussels, Belgium, 2009, pp. 1–10.

[9] C. Minkenberg and G. R. Herrera, “Trace-driven co-simulation of high-
performance computing systems using omnet++,” in 2nd International
Workshop on OMNeT++, 2009.

[10] C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar,
D. A. Evensky, and J. Mayo, “A simulator for large-scale parallel
computer architectures,” International Journal of Distributed Systems
and Technologies, vol. 1, no. 2, pp. 57–73, 2010.

[11] C. L. Janssen, H. Adalsteinsson, and J. P. Kenny, “Using simulation
to design extremescale applications and architectures,” SIGMETRICS
Perform. Eval. Rev., vol. 38, pp. 4–8, March 2011.

[12] S. Prakash, E. Deelman, and R. Bagrodia, “Asynchronous parallel
simulation of parallel programs,” IEEE Transactions on Software En-
gineering, vol. 26, no. 5, pp. 385–400, 2000.

[13] T. Wilmarth, G. Zheng, E. J. Bohm, Y. Mehta, N. Choudhury, P. Ja-
gadishprasad, and L. V. Kale, “Performance prediction using simulation
of large-scale interconnection networks in pose,” in Workshop on
Principles of Advanced and Distributed Simulation, 2005.

[14] G. Zheng, G. Kakulapati, and L. Kale, “Bigsim: a parallel simulator
for performance prediction of extremely large parallel machines,” in
Parallel and Distributed Processing Symposium, 2004. Proceedings.
18th International, April 2004.

[15] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kale, “Simulation-
based performance prediction for large parallel machines,” Intl. J. of
Parallel Programming, vol. 33, no. 2, pp. 183–207, 2005.

[16] T. Hoefler, T. Schneider, and A. Lumsdaine, “Loggopsim: simulating
large-scale applications in the loggops model,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing. New York, NY, USA: ACM, 2010, pp. 597–604.

[17] P. Dickens, P. Heidelberger, and D. M. Nicol, “Parallelized direct
execution simulation of message-passing programs,” IEEE Trans. on
Par. and Dist. Systems, vol. 7, no. 10, pp. 1090–1105, 1996.

[18] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau, “Feedback-directed virtualization techniques
for scalable network experimentation,” University of Utah, Technical
Report, 2004.

[19] J. Liu, Y. Yuan, D. M. Nicol, R. S. Gray, C. C. Newport, D. Kotz, and
L. F. Perrone, “Simulation validation using direct execution of wireless
ad-hoc routing protocols,” in 18th Workshop on Parallel and Distributed
Simulation. ACM, 2004.

[20] J. Liu, D. Nicol, B. Predmore, and A. Poplawski, “Performance pre-
diction of a parallel simulator,” in 13th Workshop on Parallel and
Distributed Simulation, 1999, pp. 156–164.

[21] K. S. Perumalla, R. Fujimoto, P. Thakare, S. Pande, H. Karimabadi,
J. Driscoll, and Y. Omelchenko, “Performance prediction of large-scale
parallel discrete event models of physical systems,” in Winter Simulation
Conference. Orlando, FL: IEEE, 2005.

[22] K. S. Perumalla, “μπ: A scalable and transparent system for simulating
mpi programs,” in Proceedings of the 3rd International Conference on
SIMUTools, 2010.

[23] ——, “μsik - a micro-kernel for parallel/distributed simulation sys-
tems,” in Workshop on Principles of Advanced and Distributed Simu-
lation, 2005.

[24] K. S. Perumalla and A. J. Park, “Improving multi-million virtual
rank mpi execution in μπ,” in Proceedings of the 19th International
Symposium on MASCOTS, 2011.

592

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

