
Empirical Evaluation of Conservative and Optimistic
Discrete Event Execution on Cloud and VM Platforms

Srikanth B. Yoginath and Kalyan S. Perumalla
Computational Sciences and Engineering Division,

Oak Ridge National Laboratory, USA
yoginathsb@ornl.gov, perumallaks@ornl.gov

ABSTRACT
Virtual machine (VM) technologies, especially those offered via
Cloud platforms, present new dimensions with respect to
performance and cost in executing parallel discrete event
simulation (PDES) applications. Due to the introduction of
overall cost as a metric, the choice of the highest-end computing
configuration is no longer the most economical one. Moreover,
runtime dynamics unique to VM platforms introduce new
performance characteristics, and the variety of possible VM
configurations give rise to a range of choices for hosting a PDES
run. Here, an empirical study of these issues is undertaken to
guide an understanding of the dynamics, trends and trade-offs in
executing PDES on VM/Cloud platforms. Performance results
and cost measures are obtained from actual execution of a range
of scenarios in two PDES benchmark applications on the Amazon
Cloud offerings and on a high-end VM host machine. The data
reveals interesting insights into the new VM-PDES dynamics that
come into play and also leads to counter-intuitive guidelines with
respect to choosing the best and second-best configurations when
overall cost of execution is considered. In particular, it is found
that choosing the highest-end VM configuration guarantees
neither the best runtime nor the least cost. Interestingly, choosing
a (suitably scaled) low-end VM configuration provides the least
overall cost without adversely affecting the total runtime.

Categories and Subject Descriptors
I.6.1 [Computing Methodologies]: Simulation and Modeling –
Discrete; I.6.8 [Computing Methodologies]: Simulation and
Modeling – Types of Simulation (Discrete Event, Parallel)

General Terms
Algorithms, Measurement, Performance, Design, Experimentation

Keywords
Virtual Machines, Cloud Computing, Parallel Discrete Event
Simulation, Optimistic and Conservative Synchronization,
Performance, Performance Study

1. INTRODUCTION
Historically, PDES has largely assumed the luxury of picking the
highest-end among the set of computer configuration choices one
could access, and proceeding to achieve the highest possible
speeds on the chosen high-end system. However, with the
introduction of the Cloud platforms, the new dimension of price is

introduced into consideration. Since there is a price one must pay
for all compute cycles used by the application, a “dollar value” is
now attached to each PDES run. The most interesting aspect
about this new dimension is that the price variation is non-linear.
The user might have to pay more than double the price for double
the performance. Alternatively, doubling the cost does not
guarantee double the performance. In this new milieu, little is
known about the price-performance features of PDES execution
on Cloud platforms, and about the configuration choices of PDES
over VM platforms in general.

There are several questions that arise. What, if any, is the level of
performance penalty taken by a PDES application when moving
from a traditional native execution to a VM? Is there any
performance gain obtained by insisting that the VM be a
privileged one versus the default, unprivileged mode of VMs?
Does the highest-end VM/Cloud hardware configuration always
deliver the least total execution time, and at what overall cost? If
the highest-end VM configuration is too expensive for the user,
what is the next best configuration to choose, considering overall
cost? How well does a Cloud platform designed primarily for
embarrassingly parallel jobs execute tightly coupled PDES
applications? Are runtime and dollar value largely opposed to
each other as one might expect? In general, how do the total
execution time and total cost vary with different VM/Cloud
instance configuration options?

Here, an empirical approach is undertaken to help answer such
questions. Results and findings are reported to understand the
new configuration space for PDES enabled by the introduction of
new, Cloud-specific concepts such as abstracted speeds of virtual
processors, normalized units of processors and memories, price
per packaged compute-unit, and overall “bottom-line” cost. Using
actual PDES application runs executed on a Cloud platform and
on high-end VM hosts, we study the configuration space to
uncover new insights, trends, and guidelines on the problem of
economically executing PDES applications in Cloud
environments. For experimentation purposes, we chose the
popular Amazon AWS (EC2) [1] Cloud computing platform, and
gathered data from a variety of configurations with varying price-
performance characteristics. The empirical study makes use of
two benchmarks: one is the popular synthetic PHOLD benchmark,
and the other is a complex disease spread model at the individual
level in a large population. Both optimistic and conservative
synchronization schemes are exercised, with varying levels of
locality of events.

The rest of the article is organized as follows. Section 2 briefly
introduces virtual machine systems, Cloud infrastructure, and
PDES execution. Section 3 introduces the PDES applications,
their scenario configurations, and the hardware used for the
performance study. This is followed by the performance results

Copyright 2013 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
SIGSIM-PADS’13, May 19–22, 2013, Montréal, Québec, Canada.
Copyright © 2013 ACM 978-1-4503-1920-1/13/05...$15.00.

and their analyses in Section 4. The work is summarized and
future work identified in Section 5.

2. BACKGROUND
2.1 Virtual Machines and Cloud Computing
Virtual Machine (VM) technology moves the traditional operating
system (OS) away from the actual hardware interface and
transplants it to work over a software interface. The decoupling
enables entirely new modes of execution from a user’s point of
view, and provides many benefits such as flexibility, multiplexed
use, fault tolerance, dynamic migration, automated load
balancing, and cost sharing. Anyone can exploit the benefits of
VM technology by deploying the VM implementations on their
own hardware. Cloud computing is a term generally used to refer
to such installations that provide the advantages of virtualized
computing (and storage) interfaces. Due to economies of scale,
only large commercial, dedicated installations provide the most
cost-effective provisioning of VM technologies and make them
accessible over the Internet via Web-based interfaces for very
attractive prices. They provide on-demand access to compute
resources without the burden of housing, installation,
maintenance, and upgrading needs.

Since commercial offerings of Cloud computing are profitable
mostly due to the ability to multiplex many smaller units of virtual
hardware on larger units of physical hardware, one can expect a
price structure that permits the most flexibility for multiplexing.
In particular, the price structure favors smaller virtual units, and,
more importantly for PDES, charges a non-linearly larger price
for the highest-end virtual units. Thus, virtual machines whose
resources (e.g., speeds and numbers of virtual processors) are
close to the capacity of the underlying physical hardware can be
expected to be the most expensive.

Figure 1 EC2 cost-value model
Figure 1 illustrates the cost model for the Amazon AWS-based
EC2 Cloud service that is based on the allotted hardware resource
sizes. Suppose the user requires the Cloud for executing a parallel
job, and further suppose the user’s application enjoys an ideal
parallel execution by which the runtime decreases in proportion to
the number of processors. The runtime for a parallel job is plotted
against different computational units offered by the Cloud
platform. Along the abscissa, the size of each indivisible virtual
computational unit increases moving from left to right. On the
left ordinate, the ideal parallel runtime is plotted. On the right

ordinate, the cost for the computational unit is plotted. The non-
linear aspect of the price is notable. Also, additional non-linear
effects can be expected due to shared-memory effects, shared
network effects, scheduling effects, and inter-VM communication
effects. Thus, unless the parallel job is embarrassingly parallel in
nature, it is rather difficult to predict the trends of runtime and
overall cost of parallel jobs, and an empirical study is inevitable
for properly understanding the overall tradeoffs.

2.2 Hypervisor
The VM technology relies on a component called the hypervisor
that replaces the OS to be the lowest-level software running
directly over the hardware. By doing so it the segregates the
hardware and the OS by virtualizing the hardware components to
the OS, and relieves the tight hardware-OS coupling. As an
important consequence, OS instances from different vendors co-
exist and run on a same physical resource, interacting with the
virtual counterparts of the physical hardware. In general there are
two different types of virtualization: full-virtualization, and para-
virtualization. In full-virtualization, the hypervisor supports any
unmodified guest OS to run. In para-virtualization, the hypervisor
provides hypercalls to the OS for accessing hardware services;
this requires the modification of a guest OS. In the empirical
study here, we use the Xen® hypervisor platforms for our
performance evaluation. The Amazon’s EC2 Cloud infrastructure
also uses the Xen hypervisor.

Xen Hypervisor
The Xen [2] hypervisor is a popular open source industry standard
for virtualization, supporting a wide range of architectures
including x86, x86-64, IA64, and ARM, and guest OS types
including Windows®, Linux®, Solaris® and various versions of
BSD OS. A VM in Xen terminology is referred to as Guest
Domain or simply DOM. Each DOM has a unique identifier
called its Domain ID (DOM ID). The first DOM called DOM0 is
a privileged one with special management rights. System
administrative tasks such as suspension, resumption, and
migration of DOMs are managed via DOM0. Any other VM is
called a DOMU.

Each DOM has its own set of virtual devices, including virtual
multi-processors called virtual CPUs (VCPUs). The hypervisor’s
scheduling functionality mainly deals with the efficient mapping
(multiplexing) of all the VCPUs of multiple VMs onto the
available physical processor cores (PCPUs). The credit-based
scheduler is the default Xen scheduler, which schedules VCPUs
on to PCPUs based on the principle of fair sharing of
computational cycles. This scheduler is very widely used, and
works excellently for a very large variety of virtualization users.

2.3 Parallel Discrete Event Simulation
A discrete event simulation model of a system emulates the
system’s behavior over time in terms of events and state changes.
An event is a discrete point on the virtual timeline that
corresponds to a change in the evolution of the physical system
state. A parallel execution of the discrete event model involves a
coordinated evolution of several serial discrete event timelines in
parallel. The modeled system state is divided into a set of
encapsulated states; each encapsulated state with its own
simulation timeline is generally referred to as Logical Process
(LP) in the PDES literature. The timelines are synchronized
according to the timestamps of the events spanning all the
timelines, guaranteeing a global timestamp-ordered execution.
Two distinct synchronization mechanisms namely, conservative
and optimistic synchronizations are popularly used in the PDES

literature. In conservative synchronization, no timestamp order
violation is allowed. In contrast, in optimistic synchronization,
LPs are allowed to incur transient violations of timestamp order,
which are detected at runtime and corrected on the fly using
various algorithms. More details on PDES and its
synchronization mechanisms can be found in [3]. In our
experiments, we use a parallel/distributed simulation engine that
is optimized for very fast execution on native hardware. The
engine supports the notion of a Federate that hosts one or more
LPs. Each Federate is essentially a UNIX process with its own
simulation loop that processes the events of all LPs mapped to
that Federate. There is exactly one Federate launched per virtual
core in each VM.

2.4 Related Work
Evaluating the HPC applications performance on Cloud
infrastructure has been reported in [4], but these applications are
largely high-performance scientific applications such as
Community Atmospheric Model (CAM), and are not PDES
applications. Network performance on Amazon EC2 data-centers
has been studied and an evaluation of the impact of virtualization
on network parameters such as latency, throughput, and packet-
loss was discussed in [5], again in non-PDES context. There is a
good overview and discussion of generic utilization of Cloud
infrastructures for PDES applications focusing on the advantages
and challenges it poses [6], which also serves as a good
motivation and background for PDES on Cloud platforms. The
Master-Worker approach to distributed (and fault tolerant) PDES
has been explored in multiple places [7][8][9], and is somewhat
related, although it is different from the traditional PDES
execution view in which all processors are equal. Recently, an
evaluation of a set of conservative synchronization protocols on
EC2 was reported [10]. Overall, the area is nascent, and much
additional research in PDES execution is needed to explore the
space opened by the new metrics of VM/Cloud computing beyond
the raw speed execution.

3. EMPIRICAL STUDY SETUP
3.1 Synchronization Protocols
Our empirical study uses an optimized implementation of parallel
discrete event simulation that provides the option of conservative
as well as optimistic synchronization. The synchronization
protocols are the blocking-based variant of the set of highly
scalable global virtual time (GVT) algorithms recently tested at
very large scale on supercomputers [11]. The algorithms are
implemented using the blocking collective call
MPI_Allreduce() inside the iterations of the GVT algorithm
to account for all transient messages. Since this is a Mattern-style
[12][13] epoch-based framework that colors messages and uses
reduction-based counting of transient messages, no NULL
messages are needed. The parallel implementation is competitive
with sequential execution, with a high efficiency.

3.2 Benchmark Applications
PHOLD
The de-facto standard PHOLD [14] benchmark application is used
as one of the applications for our performance evaluation. In all
our experiments we utilize the following variants for performance
evaluation.

• Synchronization: Type of synchronization used
[OPT=optimistic, CONS= conservative]

• Number of LPs per Federate (NLP): [NLP=100 means the
Federate hosts100 LPs]

• Number of messages (NMSG): [NMSG=1000 means 1000
messages/LP]

• Locality of the LP generated message destination (LOC): In
terms of intra-processor event communication [LOC=50, or
LOC=90]. Values of 50 and 90 suggest respectively that
50% and 90% of the messages generated by an LP are local
to its Federate. Hence, a value of 50% for LOC involves
more LP message exchanges across the network and results
in increased network traffic.

Disease Spread Simulation
For the second application, we use an epidemiological disease
spread model [16] that defines a discrete event model for the
propagation of a disease in a population of individuals in groups
called locations and aggregates of locations called regions. Each
region is mapped to a Federate. Multiple locations are contained
in each region. Each location is housed in an LP. Multiple
individuals are instantiated at each location, and they not only
interact with individuals within the same location but also
periodically (conforming to an individual-specific time
distribution function) move from one location to another. Similar
to PHOLD, the number of individuals per location are varied (e.g.,
1000 individuals/location), and the number of locations per region
(e.g., 10 locations/region).

3.3 Benchmark Configurations
Using the PDES applications listed in the previous section, four
benchmark applications, namely, conservative and optimistic
executions for each of PHOLD Simulation Benchmark (PSB) and
Disease Spread Benchmark (DSB) were designed. In all the
benchmarks using PHOLD a lookahead of 1 was used.

PHOLD Scenarios (PSB)
With PHOLD, we used scenarios with 100 LPs/Federate, 100 and
1000 messages/LP, with 32 Federates for 50% and 90% LOC
values. With performance data gathered for both optimistic and
conservative synchronization scenarios, a total of 8 sets of
readings are gathered for this benchmark.

For 100 LPs/Federate and 100 messages/LP on 32 Federates, 3200
LPs are hosted on 32 DOMs to simulate exchanges of 320,000
PHOLD messages over 100 units of simulation time. Similarly,
for 100 LPs/Federate and 1000 messages/LP on 32 Federates,
3200 LPs are hosted on 32 DOMs to simulate exchanges of
3,200,000 PHOLD messages over 100 seconds of simulation time.
With a locality value LOC of 50% half of the messages generated
are destined to LPs on remote Federates (outside the VCPU).
With a locality value LOC of 90%, only 10% are destined to LPs
on remote Federates. Thus, LOC 50 is much more taxing on the
network than LOC 90.

Disease Spread Benchmark (DSB)
DSB simulates the disease spread across regions. Each Federate
is mapped to a region, which are formed of number of locations
that are mapped to LPs. In the experiments 32 Federates and 10
locations per Federate are instantiated (representative of a small
city sized scenario for disease propagation) and each such location
has a population of 1000 people. Hence the benchmark involves
simulation of spread of disease across 320 locations across a
population of 320,000 for a simulation time of 7 days. The
mobility of the population can be set to a certain percentage,
similar to PHOLD. In the DSB we experiment with 50% and
90%. The LOC 50 mobility suggests that 50% of the trips tend to
travel across regions, while LOC 90 suggests only 10% of the
trips travel across regions. DSB is slightly I/O intensive

generating around 32M of output data compared to less than 200
KB of output data of PSB.

3.4 Test Platforms
We utilize two platforms for the VM-based experiments. One is a
local high-end machine in our laboratory, and the other is a
commercial Cloud offering. The details of these two platforms
are provided next.

Local Test Platform (LTP)
LTP is our custom-built machine with a Supermicro® H8DG6-F
motherboard supporting two 16-core (32 cores in total) AMD®
Opteron 6276 processors at 2.3 GHz, sharing 256GB of memory,
Intel Solid State Drive 240GB and a 6TB Seagate constellation
comprising 2 SAS drives configured as RAID-0. Ubuntu-12.10
runs with Linux® 3.7.1 kernel runs as DOM0 and DOMUs, over
Xen 4.2.0 hypervisor.

All DOMUs are para-virtual and networked using a software
bridge in DOM-0. DOM-0 is configured to use 10GB of memory
and the guest DOMs were configured to use at least 1GB
memories each, which were increased as necessitated by the
application benchmarks. Each guest DOM uses 2GB of LVM-
based hard disk created over SAS drives, while the DOM-0 uses
an entire Solid State Drive (SSD). OpenMPI-1.6.3 (built using
gcc-4.7.2) was used to build the simulation engine and its
applications. A machine-file listing the IP addresses of the VMs
was used along with mpirun utility of OpenMPI to launch the
MPI-based PDES applications onto VMs.

EC2 Cloud Platform
We also ran our benchmarks on Amazon’s EC2 Cloud platform.
We built a cluster of para-virtual VM instances of Ubuntu 12.04
LTS. The following are the VM clusters used to run the
benchmarks (typical offerings available to Amazon EC2 users).

• m1.small is a single-core VM with compute power of 1-ECU
and has a memory of 1.7 GB.

• m1.medium is a single-core VM with compute power of 2-
ECUs and has a memory of 3.7 GB.

• m1.large is a 2-core VM with compute power of 4 ECUs and
has a memory of 7.5 GB.

• m1.xlarge is a 4-core VM with compute power of 8 ECUs
and has a memory of 1.5 GB.

• m3.2xlarge is an 8-core VM with compute power of 26
ECUs and has a memory of 30 GB.

• hs.8xlarge is a 16-core VM with compute power equivalent
to 35 ECUs and has a memory of 117 GB.

The term ECU here refers to a “EC2 Compute Unit” which is an
abstraction defined and supported by Amazon as a normalization
mechanism to provide a variety of virtual computation units
independent of the actual physical hardware support that they
use/maintain/upgrade without user intervention. OpenMPI-1.6.3
was built on the virtual instance, which was used to build the
simulation engine and all the PDES applications. A machine-file
listing the DNS names of the allotted instances was used to launch
the MPI-based PDES applications using mpirun.

4. PERFORMANCE STUDY
4.1 Results from Local Test Platform (LTP)
PDES being a parallel computing application, two important
factors, namely, computation and communication, determine the
overall application performance. The hypervisor essentially
virtualizes the hardware resources and hence a VM running over
hypervisor uses a virtual CPU (VCPU) and a virtual network
interface for computation and communication, respectively. The
hypervisor essentially maps the VCPUs onto the available CPUs,
while networking is performed using front-end and back-end
virtual interfaces. Hence, the hypervisor essentially introduces
some overhead due to its presence.

Virtual Computational Performance
We know that the hypervisor is a necessity to realize Cloud
computing. However, this implies that native execution of PDES
is not possible in the presence of a hypervisor, which may
introduce overheads such as context switching costs and system
call (and hypercall) trap costs. Hence, a performance comparison
between the native and VM runs is essential to determine the
amount of degradation, if any, that PDES suffers simply for the
fact that the execution is moved from native to VM platforms.

In Figure 2, the performance results of both PSB and DSB
benchmarks runs are presented from Native, DOM0 and a single
DOMU. The Native readings correspond to a setup where Linux®
runs directly over the hardware as usual, without the hypervisor.
The DOM0 readings correspond to a setup where the control-
DOM with Linux® runs over the Xen hypervisor as the only
running instance and is configured to use all 32 CPUs. A single
DOMU readings correspond to a setup where a user-DOM with
Linux® runs in the presence of control-DOM (dOM0); however
DOM0 is not loaded with any load during performance runs.
These results demonstrate how the presence of the hypervisor
affects the compute-performance of a PDES application. As seen
from Figure 2, somewhat surprisingly, the results from all the
three setups are almost identical across all the runs, suggesting
that the overhead of the Xen® hypervisor in delegating the CPU
resources is almost negligible.
This data is helpful in addressing the issue of native vs. VM-based
performance of PDES execution, and may encourage the
community to move towards a Cloud environment by allaying
uninformed fears of incurring a significant performance penalty.

Figure 2 Native, DOM-0 and single DOMU performance

comparison on LTP

Effects of Virtual Communication and I/O via DOM0

Figure 3 PSB runtime performance in 32 VM setup scenario

for varying weights of DOM0 on LTP
Since DOM0 is partially involved in servicing the network
communication and input/output (I/O) for all DOMU, DOM0 may
need to receive sufficient number of CPU cycles (or a higher
priority weight). The need for higher DOM0 weights for better
performance was demonstrated in [17] using an older version
(3.4.2) of the Xen distribution. To understand such requirements
in the current version, the weight assigned to DOM0 relative to all
DOMU is varied from 1 to 16. For example, a factor of 4 implies
that DOM0 has four times more credits than any DOMU. This
provides an overburdened DOM0 more CPU cycles compared to
DOMUs.

The runtimes with varying weights are plotted in Figure 3 for the
PSB, and in Figure 4 for the DSB. The seemingly flat curves of
Figure 3 suggest very slight or no impact of higher weights for
DOM0 on the runtime performance with the newer version of Xen
contrary to the observation in [17]. This change can be attributed
to the incorporation of Netchannel2 [18] in Xen networking,
which transfers the burden of copying network data from DOM0
to the DOMUs. However, for DSB, a good improvement in the
performance as the weight of DOM0 is doubled is seen in Figure
4. DSB being I/O intensive and also due to the fact that DOM0
services the I/O, the additional weight provided for DOM0 helps
significantly in speeding up the I/O functionality during DSB
runs.

Figure 4 DSB runtime performance in 32 VM setup scenario

for varying weights of DOM0 on LTP

Virtual Computation and Communication
Performance
To study the impact of combined virtual computation and
communication effects on PDES applications, we ran the
benchmarks on our LTP, varying the number of VMs in the
experiments from a single DOMU with 32 VCPUs to 32 DOMUs
with 1 VCPU, keeping the total number of VCPUs constant.

Figure 5 and Figure 6 show the benchmark results obtained from
varying the number of DOMs hosted on LTP using PSB and DSB,
respectively. For the same benchmark the figures show how the
performance varies with the increase in the number of DOMs.
Note that as the number of DOMs running the benchmark
increases, the number of VCPUs within each DOM also
decreases. Also note that in each of these benchmark runs, the
number of Federates is equal to the number VCPUs, i.e.,
Federates have a 1:1 mapping to the VCPUs. Hence, in a fast
network environment, we expect the runtime across all types of
DOM configurations to be largely identical, since the same
number of VCPUs are involved in the computation.

Figure 5 Performance comparison with increase in number of

DOMs using PSB on LTP

Figure 6 Performance comparison with increase in DOMs

using DSB on LTP
A very interesting and common trend across all the benchmark
runs is the degradation of performance with fewer numbers of
VMs beyond 1, and its betterment with the increase in number of
VMs hosted. In other words, there is a steep rise in runtime when
moving from 1 VM to 2 VMs but a gradual drop from 2 to 32
VMs. The effect is predominant in the cases where the network

traffic is high (LOC=50), as seen in both Figure 5 and Figure 6,
for PSB and DSB, respectively.

This trend is counterintuitive to a general parallel-computing user
because a better performance is expected in scenarios involving
VMs with more VCPUs. The intuition is that the parallel
processing libraries like MPI generally use shared-memory to
communicate across processes within the same VM. Hence, one
expects to observe better performance by increasing the
communication across Federates within a DOM (shared memory)
and reducing the inter-DOM messages by reducing number of
DOMs.

The underlying reason for the counterintuitive trend is as follows.
When a VM contains many VCPUs, a bottleneck is created at the
virtual network interface card (NIC) because of serialization.
Further, DOMUs doing most of the networking work as observed
in the Figure 3 in previous section adds on to this performance
degradation.

In real hardware, the communication is often highly optimized via
direct memory accesses, cache coherence mechanisms between
NIC and CPU, and so on. However, in the case of VMs, the NIC
is a software implementation, and all synchronization is
performed in software, which significantly reduces the network
speed. This degradation increases in a quadratic nature with the
number of VCPUs sharing the virtual NIC. Unfortunately, there
is little that can be done regarding this issue other than reduce the
network traffic generated per VCPU or reduce the number of
VCPUs per VM.

As observed earlier in Figure 1, the Cloud operators charge a
lower price for low-end machines and higher cost for high-end
machines. The benchmark performance results suggest that PDES
applications can in fact take very good advantage of the lower
cost of smaller sized VMs and gain lower execution time simply
by moving to the other extreme of 1 VCPU/VM, and greatly
benefit from the existing cost model offered by the Cloud
infrastructures, like EC2.

Figure 7 Time taken per LBTS computation with increase in

the number of VMs on LTP
In Figure 7, we show the time that the simulator takes to compute
a lower bound on incoming timestamps (LBTS) for the most-
affected PSB runs namely, 1000-NMSG_50_LOC_CONS and
1000-NMSG_50_LOC_OPT runs along with LOC-50_CONS and
LOC_50_OPT DSB runs. However, the number of LBTS
computations remained the same across the same benchmark runs
even while the number of VMs is changed. Hence, within PDES,
it is the prolonged LBTS computation that affects the overall
runtime of the simulation application.

4.2 Results from EC2 Cloud
To deal with possible variance of performance in the Cloud due to
periodicity of loads and other uncontrollable phenomena, each
data point in the results is derived as an average from three runs
executed on three different days and times. Note that each request
for VMs from Cloud assigns a different set of machines and
hence, the virtual cluster built for every run is different from the
other. This averaging for variance applies to the Cloud
performance results in Figure 8 through Figure 12.

Note also that all the machines that the EC2 provides are VMs.
This provides the Cloud operator an ability to multiplex multiple
VMs more numerous than the available hardware resources.
However, by overloading the host machine, the compute cycles of
the physical machine are shared among the VM instances. By
defining the Elastic Compute Unit (ECU) that is always lesser or
equal to the compute cycles offered by physical CPU-core, the
Amazon EC2 is able to overload the host machine and still
guarantee the provision of the assured ECU worth of
computational service.

Figure 8 Runtime performance of PSB with conservative

synchronization on EC2 Cloud

Figure 9 Runtime performance of PSB with optimistic

synchronization on EC2 Cloud
With a Cloud infrastructure, the user is not guaranteed in advance
specific details of the physical hardware. The user is only assured
of the ECU, number of cores and amount of memory for an
instance created. The performance unit of the CPU-core is
provided in terms of ECUs. For example: m1.small and
m1.average are both single-core VMs but with compute units of 1
ECU and 2 ECUs, respectively. The m1.small instance’s assured

compute cycles (in ECUs) can be compared to a low priority task
that can be migrated across physical nodes or multiplexed flexibly
at the Cloud runtime’s discretion. Hence, a good performance
from m1.small instances is not guaranteed. Since, we would not
be able to characteristically determine a priori the hardware-
specific details of a physical CPU-core from the Cloud, the next
best option is to choose the VM configuration with a single core
with high number of ECUs and use it as a baseline for selecting
multi-core machines, if needed.

To observe the performance trend observed with PSB and DSB
benchmarks on our LTP we use m1 set of machines comprising
m1.small, m1.medium, m1.large and m1.xlarge. Of this set the
m1.medium, m1.large and m1.xlarge VMs are single, dual and
quad support VCPUs, respectively. Further, the compute cycles
of these increase by a factor of 2; i.e., 2 ECUs, 4 ECUs and 8
ECUs in the same specified order. The m1.small that provides
1ECU worth of compute cycles is not considered for this set of
runs because it is difficult to use it for a fair comparison with
other configurations. We built three virtual clusters using these
VM instances. 32×m1.medium, 16×m1.large and 8×m1.xlarge
are the 3 virtual clusters built using 32, 16 and 8 instances of
m1.medium, m1.large and m1.xlarge VMs, respectively.

The conservative and optimistic synchronization-based PSB
runtimes from EC2 runs are plotted in Figure 8 and Figure 9,
respectively. Figure 10 presents the results for DSB runs on EC2.
Interestingly, similar to LTP results, we observe a consistent trend
across all the plots. The runtime in most of the cases is at its best
with 8×m1.xlarge virtual cluster, which worsens with
16×m1.large virtual cluster and gets better with 32×m1.medium
virtual cluster runs. Note that in each of these benchmark runs the
number of Federates is equal to number VCPUs.

Figure 10 Runtime performance of DSB on EC2 Cloud

VM m1.xlarge is the most powerful among all the other offered
VMs in the m1 set. The observed counterintuitive behavior on the
Cloud can be reasoned using our prior understanding of the
benchmark behavior on LTP, with m1.xlarge considered as the
physical node capacity on which the all VMs belonging to m1 can
run. Given, the lack of a priori guarantees about the physical
hardware properties of machinery that hosts EC2 VMs, this is a
fair assumption for all m1 set of VMs. In this case, the runtime
reduction in the 8×m1.xlarge virtual cluster can be attributed to
the very low involvement of the virtual network as the quad-core
VMs occupying entire physical node mainly use the high-speed
physical inter-connect during parallel computation. The increase
in runtime in 16×m1.large setup (instead of decrease as observed
in LTP runs) can be attributed to the presence and active

utilization virtual-networking as more than one m1.large could
have been hosted on a physical node. The reduction in the
runtime with increase in number of VMs in the 32×m1.medium
setup is consistent with our observations on our LTP.

4.3 LTP and EC2 Results Comparison
In comparing the results from LTP and EC2, note that all VMs
running on LTP use the virtual network, whereas an indeterminate
combination of real and virtual-network is typical of EC2
environment. While the LTP uses 32 CPU-cores of AMD
Opteron at 2.3 GHz, the m1 set of EC2 is perceived to use Intel
Xeon CPU-cores at 2.6 GHz (cpuinfo of Cloud instance).

Figure 11 LTP and EC2 Cloud runtime comparison for PSB

The PSB’s LTP and EC2 runtime comparisons using 32 VM
scenarios are shown in Figure 11; similar runtime comparisons for
DSB are shown in Figure 12. An important aspect of PSB plots in
Figure 11 is the close similarities for the LTP and EC2 trends.
However, the DSB runtime plot comparisons in Figure 12 differ
from this view, especially in 32 VM runs. Note that LTP runs are
highly affected by network load as suggested by huge drop in
runtimes as LOC value changes from 50 to 90. However, the
corresponding 32 m1.medium EC2 runs seem unaffected,
essentially suggesting the absence or minimal utility of virtual
network. Further, 32 m1.medium EC2 runtime during LOC 90 is
greater than its LTP peer, suggesting EC2 performance being
effected by distribute I/O. The 8 m1.xlarge EC2 runtimes provide
the best runtimes on EC2, suggesting that distribute I/O affects
VM dispersed across many nodes more than on fewer nodes. This
observation seems to be consistent with LTP, where runtimes are
more affected by network performance than I/O.

Figure 12 LTP and EC2 Cloud runtime comparison for DSB

Finally, we note that these observations can be helpful in
determining an upper bound runtime on the Cloud environments
utilizing processors of similar clock speeds.

4.4 Cost-Value Evaluation on EC2
In Table 1, the relevant details of on-demand VMs provided by
the Amazon EC2 service are tabulated. For cost-value evaluation
we selected set of VMs based on the specified ECU value. To run
the PSB and DSB, we built 4 clusters of VM instances. The
cheapest VM instance for the least compute unit of 1-ECU is
m1.small and a VM cluster formed using 32 such instances is
called 32×m1.small. Similarly, VM clusters of 16×m1.medium,
8×m1.large and 2×m3.2xlarge, are formed using 16, 8 and 2
instances of m1.medium, m1.large, m3.2xlarge VMs, each of
these VMs have an ECU of 2, 4 and 26, respectively. The
hs1.8xlarge is the most powerful and most expensive VM that
EC2 offers and, it assures an ECU of 35.

Table 1 Details of EC2 on-demand instances

EC2
Instances

Cost/hour in
Dollars

Number of
VCPUs

Assured
Performance

in ECUs
m1.small 0.06 1 1

m1.medium 0.12 1 2
m1.large 0.24 2 4

m1.xlarge 0.48 4 8
m3.2xlarge 1.00 8 26
hs.8xlarge 4.60 16 35

PSB and DSB Runtime Performance

Figure 13 PSB runtime performance on EC2 Cloud

Figure 13 plots the runtimes of various PSB scenarios. While the
runs with lower network traffic are almost flat, the optimistic and
conservative curves vary significantly across different VM
clusters. Three significant observations can be made from the
1000_NMSG-50_LOC_CONS and 1000_NMSG-50_LOC_OPT
runtime plots. They are (a) contrary to the trend observed in the
LTP runs the runtime of both OPT and CONS curves worsen on
32×m1.small, (b) the runtime on high-end hs1.8xlarge VM, where
the Federates are hosted on a single node and in the absence of
network utilization during parallel computing, the runtime is the
worst among all (c) the best performance across almost all runs is
obtained with 16×m1.medium cluster setup, where 32 Federates
are hosted on 16 instances of single-core VMs.

A VM with ECU 1 on a hypervisor running on CPU-cores whose
compute capacity is often multiple of ECUs, can be realized either
in scenarios where m1.small VMs are overloaded on the
hypervisor or on nodes where it’s often run as VM with lower
weight and are generally capped so that they do not exceed their
provision. Either of these cases is detrimental for highly
asynchronous parallel computing PDES applications. Hence, the
poor performance with 32×m1.small is expected.

Regarding the poor performance on hs1.8xlarge runs, note that the
hs1.8xlarge is a 16-core VM and is loaded with 32 Federates. In
overloaded scenarios such as these the hypervisor VCPU
scheduler in quest of ensuring fairness in physical CPU utilization
among all VCPUs affects the performance. This is a known
problem [17].

Further, good runtime performance can be expected from
16×m1.medium virtual cluster runs based on our previous
observations both on LTP and EC2.

Figure 14 DSB runtime performance on EC2 Cloud

Figure 14 plots the runtimes of various DSB scenarios. Here, the
runtimes are almost same on hs1.8xlarge, 2×m3.2xlarge and
16×m1.medium virtual clusters. Same reason as stated for PSB
explains the bad performance of DSB on 32×m1.small. The
readings for 8×m1.large are consistent with the observations seen
with 16×m1.large virtual cluster runs shown in Figure 10 and the
performance degradation can be attributed to virtual-networking.

Cost factoring to PSB and DSB Scenarios

Figure 15 Overall cost of PSB on EC2 Cloud

After obtaining the runtime from the PSB and DSB runs and the
cost-per-hour from the EC2 specifications, we computed the
overall cost for the PSB and DSB scenarios. Figure 15 and Figure
16 plot the cost of execution in terms of dollars on various virtual
clusters. For most of the runs it was found that the
16×m1.medium virtual cluster provided the best cost-value across
almost all runs for both PSB and DSB scenarios.

Figure 16 Overall cost for DSB on EC2 Cloud

Figure 17 Cost and runtime plots of PSB 1000-NMSG 50-LOC

scenario with conservative synchronization on EC2 Cloud

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

0.4"

0.45"

0"

100"

200"

300"

400"

500"

600"

700"

800"

900"

1"x"hs1.8xlarge"
(35"ECUs)"

2"x"m3.2xlarge"
(26"ECUs)"

8"x"m1.large"(4"
ECU)"

16"x"
m1.medium"(2"

ECUs)"

32"x"m1.small"
(1"ECU)"

CO
ST
%IN

%D
O
LL
AR

S%

RU
N
TI
M
E%
IN
%S
EC

O
N
DS

%

LOC@50_OPT_RUNTIME" LOC@50_OPT_COST"

Figure 18 Cost and Runtime plots of DSB with LOC-50 using
optimistic synchronization on EC2 Cloud

To compare the runtime and costs, we pick the better-performing
large-scale scenarios with high-network traffic from PSB (100-
NLP_1000-NMSG_50-LOC_CONS) scenario and DSB (LOC-

50_OPT) scenario, as shown in Figure 17 and Figure 18,
respectively. The PSB plot in Figure 17 shows best runtime and
best cost associated with virtual cluster of decently compute-
intensive instances of VM, i.e. 16×m1.medium, which is against
popular belief. The cost and runtime on the expensive high-end
resource is far higher than that on the 16×m1.medium cluster.
Similar to PSB, the DSB plot shown in Figure 18 also provides
better runtime performance and cost at 16×m1.medium. Even
though the runtime provided by the expensive high-end compute
resource compares well with runtime, the cost of computation is
higher than that of 16×m1.medium.

4.5 Performance Summary
From the benchmarks and scenarios, we find that VM-based
execution can be as fast as native execution, with little perceivable
performance degradation. Also, privileged and unprivileged VMs
deliver the same runtime, indicating that it is not worthwhile to
elevate privileges with the goal of increasing performance for
PDES runs.

On dedicated machines in which the number of virtual cores is
exactly the same as the number of physical cores, the fastest
execution is obtained by using only a single VM that contains all
the virtual cores. However, such a dedicated allocation of virtual
to real cores is almost impossible to ensure in a typical Cloud
environment because the underlying physical machine is opaque
and also subject to change. Thus, the fastest execution that is
competitive with native execution cannot be obtained on the
Cloud. In fact, due to complex scheduler artifacts that arise due to
a fundamental mismatch between virtual time order and fair
scheduling order, the PDES execution on the highest end VM
configuration in the Cloud suffers from degraded performance.
To make matters worse, since the computational cycles on the
highest-end configuration also cost significantly more than other
lower end configurations, the overall cost can be much higher,
hence less competitive, than execution on lower end
configurations. Thus, on the Cloud, it seems to be more
economical to choose some of the least expensive configurations
(which have only one or two virtual cores per VM), which deliver
a dramatic reduction in cost coupled with good runtime relative to
the high-end configurations.

On dedicated VM hosts outside the Cloud, there is also an
interesting tendency towards the extremes: while the best runtime
is obtained on one VM with all the virtual cores, the next best is
obtained on the other extreme of the spectrum in which each VM
has only one virtual core. In other words, to obtain the best
performance, either 1xN or Nx1 should be chosen (N is the
number of physical cores), but all other configurations in between
should be avoided as they suffer from worse performance.

Recommendations to Cloud users
We find that an analogy to automobiles is appropriate here. An
automobile engine may be designed for speed (e.g., 0-60mph
time) and/or gas mileage (miles per gallon, mpg). While racecars
may exclusively focus on speed, consumer market automobiles
have to find a good tradeoff between speed and mileage.
Similarly, while PDES has largely focused so far on speed, it may
be time to visit the counter part of miles per gallon, namely, the
dollar value, when the PDES applications are executed in a Cloud
environment.

Taking the preceding observations into account, it is clear that low
cost and small runtime are not always opposed to each other, and
that trade-offs exist.

• On a node with N physical processor cores, the overheads of
the virtual network interface should be avoided either by
using the entire physical node with a single-VM using N
VCPUs or or by using N VMs each with only one VCPU.

• When a PDES simulation is executed using a single VM (that
uses the entire physical node), the host node must avoid not
be overloaded with more VCPUs than physical cores; i.e., the
number of federates per VM should equal the number of
VCPUs (not the number of ECUs). This avoids the
undesired effects of VM scheduling on PDES performance.

5. CONCLUSIONS AND FUTURE WORK
Virtual Machine-based systems form an appealing computational
platform that is a strong alternative to high-end native execution
that has been the traditional focus of PDES. However, due to the
introduction of new dimensions such as configuration options and
corresponding price points, a PDES user is faced with a new
problem of having to decide on the most cost-effective
configuration. Overall, the dollar-value of PDES runs has now
become an important metric. In this context, relatively few
studies exist as guidance to help contemplate, understand and
decide on the various factors and effects for effective use of VM-
based platforms such as commercial Cloud offerings. To help
bridge this gap, an empirical study was conducted on a wide range
of VM configurations, PDES applications, and scenarios. The
results helped uncover counter-intuitive effects, the significant
among which being that it may be not only economical but also
faster to split the simulation into fine units; dividing the
simulation into many VMs may in fact provide a better overall
dollar-value than using the highest-end or second-to-highest VM
configurations. Also, PDES runs may benefit from the inclusion
of a network metric in the specification of the abstract
computational unit, the absence of which seems to leave the
computation to be highly sensitive to the vagaries of virtual
network devices. The study and results presented here are among
the first to evaluate the characteristics of PDES in detail. The
results are also timely due to the great appeal of commercial
Cloud offerings that many find to be very user-friendly and
convenient to access and manage. Additional work is needed to
evaluate even larger VM configurations, and more PDES
applications with a wider variety of event granularity and event
loads. Also, Cloud-specific synchronization algorithms may also
be needed to be resilient to variations in virtual network latencies.

ACKNOWLEDGMENTS
This research was performed as part of a project sponsored by the
U.S. Army Research Laboratory. This paper has been authored
by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with
the U.S. Department of Energy. Accordingly, the United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.

REFERENCES
[1] Amazon Elastic Compute Cloud User Guide

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Wel
come.html

[2] D. Chisnall, “The Definitive Guide to the Xen Hypervisor,”
ISBN 978-013-234971-0, Prentice Hall, 2008

[3] R. M. Fujimoto, “Parallel and Distributed Simulation
Systems,” Wiley Interscience, 2000

[4] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S.
Cholia, J. Shalf, H. J. Wasserman, and N. J. Wright,
“Performance Analysis of High Performance Computing
Applications on the Amazon Web Services Cloud,” IEEE 2nd
International Conference on Cloud Computing Technology
and Science (CloudCom), pages 159-168, December 2010

[5] G. Wang and T.S.E. Ng, “The Impact of Virtualization on
Network Performance of Amazon EC2 Data Center,” IEEE
INFOCOM, pages 1-9, March 2010

[6] G. D'Angelo, “Parallel and distributed simulation from many
cores to the public cloud,” High Performance Computing
and Simulation (HPCS), pages14-23, July 2011

[7] R. M. Fujimoto, A. W. Malik, and A. J. Park, “Parallel and
Distributed Simulation in the Cloud,” SCS Modeling and
Simulation Magazine, Vol. 1, No. 3, July 2010

[8] A. Malik, A. Park, and R. M. Fujimoto, “Optimistic
Synchronization of Parallel Simulations in Cloud Computing
Environments,” IEEE International Conference on Cloud
Computing, pages 49-56, September 2009

[9] A. J. Park, “Master/Worker Parallel Discrete Event
Simulation” in College of Computing. PhD thesis, Georgia
Institute of Technology, 2008

[10] K. Vanmechelen, S. De Munck, and J. Broeckhove,
“Conservative Distributed Discrete Event Simulation on
Amazon EC2,” 12th International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pages 853-860, May
2012

[11] K. S. Perumalla, A. J. Park, and V. Tipparaju, “GVT
Algorithms and Discrete Event Dynamics on 129K+
Processor Cores,” International Conference on High
Performance Computing (HiPC), December 2011

[12] A. O. Holder, and C. D. Carothers, “Analysis of Time Warp
on a 32,768 Processor IBM Blue Gene/L Supercomputer,”
European Modeling and Simulation Symposium (EMSS),
2008

[13] F. Mattern, “Efficient Algorithms for Distributed Snapshots
and Global Virtual Time Approximation,” Journal of
Parallel and Distributed Computing, Vol. 18, No. 4, 1993.

[14] R. M. Fujimoto, “Performance of Time Warp Under
Synthetic Workloads,” Distributed Simulation Conference,
pages 23-28, 1990

[15] K. S. Perumalla, “µsik - A Micro-Kernel for Parallel and
Distributed Simulation Systems,” Workshop on Principles of
Advanced and Distributed Simulation (PADS), 2005

[16] K. S. Perumalla, and S. K. Seal, “Discrete event modeling
and Massively Parallel Execution of Epidemic Outbreak
Phenomena,” Simulation, Vol. 88, No. 7, pages 768-783,
2012

[17] S. B. Yoginath, and K. S. Perumalla, “Optimized Hypervisor
Scheduler for Parallel Discrete Event Simulations on Virtual
Machine Platforms,” International ICST Conference on
Simulation Tools and Techniques (SIMUTools), 2013

[18] S. J. Renato, G. Janakiraman, Y. Turner, and I. Pratt.
“Netchannel 2: Optimizing network performance.”
Proceedings of the XenSource/Citrix Xen Summit, 2007.

