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ABSTRACT 
Virtual machine (VM) technologies, especially those offered via 
Cloud platforms, present new dimensions with respect to 
performance and cost in executing parallel discrete event 
simulation (PDES) applications.  Due to the introduction of 
overall cost as a metric, the choice of the highest-end computing 
configuration is no longer the most economical one.  Moreover, 
runtime dynamics unique to VM platforms introduce new 
performance characteristics, and the variety of possible VM 
configurations give rise to a range of choices for hosting a PDES 
run.  Here, an empirical study of these issues is undertaken to 
guide an understanding of the dynamics, trends and trade-offs in 
executing PDES on VM/Cloud platforms.  Performance results 
and cost measures are obtained from actual execution of a range 
of scenarios in two PDES benchmark applications on the Amazon 
Cloud offerings and on a high-end VM host machine.  The data 
reveals interesting insights into the new VM-PDES dynamics that 
come into play and also leads to counter-intuitive guidelines with 
respect to choosing the best and second-best configurations when 
overall cost of execution is considered.  In particular, it is found 
that choosing the highest-end VM configuration guarantees 
neither the best runtime nor the least cost.  Interestingly, choosing 
a (suitably scaled) low-end VM configuration provides the least 
overall cost without adversely affecting the total runtime. 

Categories and Subject Descriptors 
I.6.1 [Computing Methodologies]: Simulation and Modeling – 
Discrete; I.6.8 [Computing Methodologies]: Simulation and 
Modeling – Types of Simulation (Discrete Event, Parallel) 

General Terms 
Algorithms, Measurement, Performance, Design, Experimentation 

Keywords 
Virtual Machines, Cloud Computing, Parallel Discrete Event 
Simulation, Optimistic and Conservative Synchronization, 
Performance, Performance Study 

1. INTRODUCTION 
Historically, PDES has largely assumed the luxury of picking the 
highest-end among the set of computer configuration choices one 
could access, and proceeding to achieve the highest possible 
speeds on the chosen high-end system.  However, with the 
introduction of the Cloud platforms, the new dimension of price is 

introduced into consideration.  Since there is a price one must pay 
for all compute cycles used by the application, a “dollar value” is 
now attached to each PDES run.  The most interesting aspect 
about this new dimension is that the price variation is non-linear.  
The user might have to pay more than double the price for double 
the performance.  Alternatively, doubling the cost does not 
guarantee double the performance. In this new milieu, little is 
known about the price-performance features of PDES execution 
on Cloud platforms, and about the configuration choices of PDES 
over VM platforms in general. 

There are several questions that arise.  What, if any, is the level of 
performance penalty taken by a PDES application when moving 
from a traditional native execution to a VM?  Is there any 
performance gain obtained by insisting that the VM be a 
privileged one versus the default, unprivileged mode of VMs?  
Does the highest-end VM/Cloud hardware configuration always 
deliver the least total execution time, and at what overall cost?  If 
the highest-end VM configuration is too expensive for the user, 
what is the next best configuration to choose, considering overall 
cost?  How well does a Cloud platform designed primarily for 
embarrassingly parallel jobs execute tightly coupled PDES 
applications?  Are runtime and dollar value largely opposed to 
each other as one might expect?  In general, how do the total 
execution time and total cost vary with different VM/Cloud 
instance configuration options? 

Here, an empirical approach is undertaken to help answer such 
questions.   Results and findings are reported to understand the 
new configuration space for PDES enabled by the introduction of 
new, Cloud-specific concepts such as abstracted speeds of virtual 
processors, normalized units of processors and memories, price 
per packaged compute-unit, and overall “bottom-line” cost.  Using 
actual PDES application runs executed on a Cloud platform and 
on high-end VM hosts, we study the configuration space to 
uncover new insights, trends, and guidelines on the problem of 
economically executing PDES applications in Cloud 
environments.  For experimentation purposes, we chose the 
popular Amazon AWS (EC2) [1] Cloud computing platform, and 
gathered data from a variety of configurations with varying price-
performance characteristics.  The empirical study makes use of 
two benchmarks: one is the popular synthetic PHOLD benchmark, 
and the other is a complex disease spread model at the individual 
level in a large population.  Both optimistic and conservative 
synchronization schemes are exercised, with varying levels of 
locality of events. 

The rest of the article is organized as follows.  Section 2 briefly 
introduces virtual machine systems, Cloud infrastructure, and 
PDES execution.  Section 3 introduces the PDES applications, 
their scenario configurations, and the hardware used for the 
performance study.  This is followed by the performance results 
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and their analyses in Section 4.  The work is summarized and 
future work identified in Section 5. 

2. BACKGROUND 
2.1 Virtual Machines and Cloud Computing 
Virtual Machine (VM) technology moves the traditional operating 
system (OS) away from the actual hardware interface and 
transplants it to work over a software interface.  The decoupling 
enables entirely new modes of execution from a user’s point of 
view, and provides many benefits such as flexibility, multiplexed 
use, fault tolerance, dynamic migration, automated load 
balancing, and cost sharing.  Anyone can exploit the benefits of 
VM technology by deploying the VM implementations on their 
own hardware.  Cloud computing is a term generally used to refer 
to such installations that provide the advantages of virtualized 
computing (and storage) interfaces.  Due to economies of scale, 
only large commercial, dedicated installations provide the most 
cost-effective provisioning of VM technologies and make them 
accessible over the Internet via Web-based interfaces for very 
attractive prices.  They provide on-demand access to compute 
resources without the burden of housing, installation, 
maintenance, and upgrading needs. 

Since commercial offerings of Cloud computing are profitable 
mostly due to the ability to multiplex many smaller units of virtual 
hardware on larger units of physical hardware, one can expect a 
price structure that permits the most flexibility for multiplexing.  
In particular, the price structure favors smaller virtual units, and, 
more importantly for PDES, charges a non-linearly larger price 
for the highest-end virtual units.  Thus, virtual machines whose 
resources (e.g., speeds and numbers of virtual processors) are 
close to the capacity of the underlying physical hardware can be 
expected to be the most expensive. 

Figure 1 EC2 cost-value model 
Figure 1 illustrates the cost model for the Amazon AWS-based 
EC2 Cloud service that is based on the allotted hardware resource 
sizes.  Suppose the user requires the Cloud for executing a parallel 
job, and further suppose the user’s application enjoys an ideal 
parallel execution by which the runtime decreases in proportion to 
the number of processors. The runtime for a parallel job is plotted 
against different computational units offered by the Cloud 
platform.  Along the abscissa, the size of each indivisible virtual 
computational unit increases moving from left to right.  On the 
left ordinate, the ideal parallel runtime is plotted.  On the right 

ordinate, the cost for the computational unit is plotted.  The non-
linear aspect of the price is notable.  Also, additional non-linear 
effects can be expected due to shared-memory effects, shared 
network effects, scheduling effects, and inter-VM communication 
effects.  Thus, unless the parallel job is embarrassingly parallel in 
nature, it is rather difficult to predict the trends of runtime and 
overall cost of parallel jobs, and an empirical study is inevitable 
for properly understanding the overall tradeoffs. 

2.2 Hypervisor 
The VM technology relies on a component called the hypervisor 
that replaces the OS to be the lowest-level software running 
directly over the hardware. By doing so it the segregates the 
hardware and the OS by virtualizing the hardware components to 
the OS, and relieves the tight hardware-OS coupling. As an 
important consequence, OS instances from different vendors co-
exist and run on a same physical resource, interacting with the 
virtual counterparts of the physical hardware.  In general there are 
two different types of virtualization: full-virtualization, and para-
virtualization. In full-virtualization, the hypervisor supports any 
unmodified guest OS to run.  In para-virtualization, the hypervisor 
provides hypercalls to the OS for accessing hardware services; 
this requires the modification of a guest OS.  In the empirical 
study here, we use the Xen® hypervisor platforms for our 
performance evaluation. The Amazon’s EC2 Cloud infrastructure 
also uses the Xen hypervisor. 

Xen Hypervisor 
The Xen [2] hypervisor is a popular open source industry standard 
for virtualization, supporting a wide range of architectures 
including x86, x86-64, IA64, and ARM, and guest OS types 
including Windows®, Linux®, Solaris® and various versions of 
BSD OS.  A VM in Xen terminology is referred to as Guest 
Domain or simply DOM. Each DOM has a unique identifier 
called its Domain ID (DOM ID). The first DOM called DOM0 is 
a privileged one with special management rights. System 
administrative tasks such as suspension, resumption, and 
migration of DOMs are managed via DOM0.  Any other VM is 
called a DOMU. 

Each DOM has its own set of virtual devices, including virtual 
multi-processors called virtual CPUs (VCPUs).  The hypervisor’s 
scheduling functionality mainly deals with the efficient mapping 
(multiplexing) of all the VCPUs of multiple VMs onto the 
available physical processor cores (PCPUs).  The credit-based 
scheduler is the default Xen scheduler, which schedules VCPUs 
on to PCPUs based on the principle of fair sharing of 
computational cycles. This scheduler is very widely used, and 
works excellently for a very large variety of virtualization users. 

2.3 Parallel Discrete Event Simulation 
A discrete event simulation model of a system emulates the 
system’s behavior over time in terms of events and state changes. 
An event is a discrete point on the virtual timeline that 
corresponds to a change in the evolution of the physical system 
state. A parallel execution of the discrete event model involves a 
coordinated evolution of several serial discrete event timelines in 
parallel. The modeled system state is divided into a set of 
encapsulated states; each encapsulated state with its own 
simulation timeline is generally referred to as Logical Process 
(LP) in the PDES literature. The timelines are synchronized 
according to the timestamps of the events spanning all the 
timelines, guaranteeing a global timestamp-ordered execution.  
Two distinct synchronization mechanisms namely, conservative 
and optimistic synchronizations are popularly used in the PDES 



literature.  In conservative synchronization, no timestamp order 
violation is allowed.  In contrast, in optimistic synchronization, 
LPs are allowed to incur transient violations of timestamp order, 
which are detected at runtime and corrected on the fly using 
various algorithms.  More details on PDES and its 
synchronization mechanisms can be found in [3].  In our 
experiments, we use a parallel/distributed simulation engine that 
is optimized for very fast execution on native hardware.  The 
engine supports the notion of a Federate that hosts one or more 
LPs.  Each Federate is essentially a UNIX process with its own 
simulation loop that processes the events of all LPs mapped to 
that Federate.  There is exactly one Federate launched per virtual 
core in each VM. 

2.4 Related Work 
Evaluating the HPC applications performance on Cloud 
infrastructure has been reported in [4], but these applications are 
largely high-performance scientific applications such as 
Community Atmospheric Model (CAM), and are not PDES 
applications.  Network performance on Amazon EC2 data-centers 
has been studied and an evaluation of the impact of virtualization 
on network parameters such as latency, throughput, and packet-
loss was discussed in [5], again in non-PDES context. There is a 
good overview and discussion of generic utilization of Cloud 
infrastructures for PDES applications focusing on the advantages 
and challenges it poses [6], which also serves as a good 
motivation and background for PDES on Cloud platforms.  The 
Master-Worker approach to distributed (and fault tolerant) PDES 
has been explored in multiple places [7][8][9], and is somewhat 
related, although it is different from the traditional PDES 
execution view in which all processors are equal.  Recently, an 
evaluation of a set of conservative synchronization protocols on 
EC2 was reported [10].  Overall, the area is nascent, and much 
additional research in PDES execution is needed to explore the 
space opened by the new metrics of VM/Cloud computing beyond 
the raw speed execution. 

3. EMPIRICAL STUDY SETUP 
3.1 Synchronization Protocols 
Our empirical study uses an optimized implementation of parallel 
discrete event simulation that provides the option of conservative 
as well as optimistic synchronization.  The synchronization 
protocols are the blocking-based variant of the set of highly 
scalable global virtual time (GVT) algorithms recently tested at 
very large scale on supercomputers [11].  The algorithms are 
implemented using the blocking collective call 
MPI_Allreduce() inside the iterations of the GVT algorithm 
to account for all transient messages.  Since this is a Mattern-style 
[12][13] epoch-based framework that colors messages and uses 
reduction-based counting of transient messages, no NULL 
messages are needed.  The parallel implementation is competitive 
with sequential execution, with a high efficiency. 

3.2 Benchmark Applications 
PHOLD 
The de-facto standard PHOLD [14] benchmark application is used 
as one of the applications for our performance evaluation.  In all 
our experiments we utilize the following variants for performance 
evaluation. 

• Synchronization: Type of synchronization used 
[OPT=optimistic, CONS= conservative] 

• Number of LPs per Federate (NLP): [NLP=100 means the 
Federate hosts100 LPs] 

• Number of messages (NMSG): [NMSG=1000 means 1000 
messages/LP] 

• Locality of the LP generated message destination (LOC): In 
terms of intra-processor event communication [LOC=50, or 
LOC=90].  Values of 50 and 90 suggest respectively that 
50% and 90% of the messages generated by an LP are local 
to its Federate.  Hence, a value of 50% for LOC involves 
more LP message exchanges across the network and results 
in increased network traffic. 

Disease Spread Simulation  
For the second application, we use an epidemiological disease 
spread model [16] that defines a discrete event model for the 
propagation of a disease in a population of individuals in groups 
called locations and aggregates of locations called regions.  Each 
region is mapped to a Federate.  Multiple locations are contained 
in each region.  Each location is housed in an LP.  Multiple 
individuals are instantiated at each location, and they not only 
interact with individuals within the same location but also 
periodically (conforming to an individual-specific time 
distribution function) move from one location to another.  Similar 
to PHOLD, the number of individuals per location are varied (e.g., 
1000 individuals/location), and the number of locations per region 
(e.g., 10 locations/region). 

3.3 Benchmark Configurations 
Using the PDES applications listed in the previous section, four 
benchmark applications, namely, conservative and optimistic 
executions for each of PHOLD Simulation Benchmark (PSB) and 
Disease Spread Benchmark (DSB) were designed.  In all the 
benchmarks using PHOLD a lookahead of 1 was used. 

PHOLD Scenarios (PSB) 
With PHOLD, we used scenarios with 100 LPs/Federate, 100 and 
1000 messages/LP, with 32 Federates for 50% and 90% LOC 
values.  With performance data gathered for both optimistic and 
conservative synchronization scenarios, a total of 8 sets of 
readings are gathered for this benchmark. 

For 100 LPs/Federate and 100 messages/LP on 32 Federates, 3200 
LPs are hosted on 32 DOMs to simulate exchanges of 320,000 
PHOLD messages over 100 units of simulation time.  Similarly, 
for 100 LPs/Federate and 1000 messages/LP on 32 Federates, 
3200 LPs are hosted on 32 DOMs to simulate exchanges of 
3,200,000 PHOLD messages over 100 seconds of simulation time.  
With a locality value LOC of 50% half of the messages generated 
are destined to LPs on remote Federates (outside the VCPU).  
With a locality value LOC of 90%, only 10% are destined to LPs 
on remote Federates.  Thus, LOC 50 is much more taxing on the 
network than LOC 90. 

Disease Spread Benchmark (DSB) 
DSB simulates the disease spread across regions.  Each Federate 
is mapped to a region, which are formed of number of locations 
that are mapped to LPs.  In the experiments 32 Federates and 10 
locations per Federate are instantiated (representative of a small 
city sized scenario for disease propagation) and each such location 
has a population of 1000 people.  Hence the benchmark involves 
simulation of spread of disease across 320 locations across a 
population of 320,000 for a simulation time of 7 days.  The 
mobility of the population can be set to a certain percentage, 
similar to PHOLD.  In the DSB we experiment with 50% and 
90%.  The LOC 50 mobility suggests that 50% of the trips tend to 
travel across regions, while LOC 90 suggests only 10% of the 
trips travel across regions.  DSB is slightly I/O intensive 



generating around 32M of output data compared to less than 200 
KB of output data of PSB. 

3.4 Test Platforms 
We utilize two platforms for the VM-based experiments.  One is a 
local high-end machine in our laboratory, and the other is a 
commercial Cloud offering.  The details of these two platforms 
are provided next. 

Local Test Platform (LTP) 
LTP is our custom-built machine with a Supermicro® H8DG6-F 
motherboard supporting two 16-core (32 cores in total) AMD® 
Opteron 6276 processors at 2.3 GHz, sharing 256GB of memory, 
Intel Solid State Drive 240GB and a 6TB Seagate constellation 
comprising 2 SAS drives configured as RAID-0.  Ubuntu-12.10 
runs with Linux® 3.7.1 kernel runs as DOM0 and DOMUs, over 
Xen 4.2.0 hypervisor. 

All DOMUs are para-virtual and networked using a software 
bridge in DOM-0.  DOM-0 is configured to use 10GB of memory 
and the guest DOMs were configured to use at least 1GB 
memories each, which were increased as necessitated by the 
application benchmarks.  Each guest DOM uses 2GB of LVM-
based hard disk created over SAS drives, while the DOM-0 uses 
an entire Solid State Drive (SSD).  OpenMPI-1.6.3 (built using 
gcc-4.7.2) was used to build the simulation engine and its 
applications.  A machine-file listing the IP addresses of the VMs 
was used along with mpirun utility of OpenMPI to launch the 
MPI-based PDES applications onto VMs. 

EC2 Cloud Platform 
We also ran our benchmarks on Amazon’s EC2 Cloud platform.  
We built a cluster of para-virtual VM instances of Ubuntu 12.04 
LTS.  The following are the VM clusters used to run the 
benchmarks (typical offerings available to Amazon EC2 users). 

• m1.small is a single-core VM with compute power of 1-ECU 
and has a memory of 1.7 GB. 

• m1.medium is a single-core VM with compute power of 2-
ECUs and has a memory of 3.7 GB.  

• m1.large is a 2-core VM with compute power of 4 ECUs and 
has a memory of 7.5 GB. 

• m1.xlarge is a 4-core VM with compute power of 8 ECUs 
and has a memory of 1.5 GB. 

• m3.2xlarge is an 8-core VM with compute power of 26 
ECUs and has a memory of 30 GB. 

• hs.8xlarge is a 16-core VM with compute power equivalent 
to 35 ECUs and has a memory of 117 GB. 

The term ECU here refers to a “EC2 Compute Unit” which is an 
abstraction defined and supported by Amazon as a normalization 
mechanism to provide a variety of virtual computation units 
independent of the actual physical hardware support that they 
use/maintain/upgrade without user intervention. OpenMPI-1.6.3 
was built on the virtual instance, which was used to build the 
simulation engine and all the PDES applications.  A machine-file 
listing the DNS names of the allotted instances was used to launch 
the MPI-based PDES applications using mpirun. 

4. PERFORMANCE STUDY 
4.1 Results from Local Test Platform (LTP) 
PDES being a parallel computing application, two important 
factors, namely, computation and communication, determine the 
overall application performance.  The hypervisor essentially 
virtualizes the hardware resources and hence a VM running over 
hypervisor uses a virtual CPU (VCPU) and a virtual network 
interface for computation and communication, respectively.  The 
hypervisor essentially maps the VCPUs onto the available CPUs, 
while networking is performed using front-end and back-end 
virtual interfaces.  Hence, the hypervisor essentially introduces 
some overhead due to its presence. 

Virtual Computational Performance 
We know that the hypervisor is a necessity to realize Cloud 
computing.  However, this implies that native execution of PDES 
is not possible in the presence of a hypervisor, which may 
introduce overheads such as context switching costs and system 
call (and hypercall) trap costs.  Hence, a performance comparison 
between the native and VM runs is essential to determine the 
amount of degradation, if any, that PDES suffers simply for the 
fact that the execution is moved from native to VM platforms. 

In Figure 2, the performance results of both PSB and DSB 
benchmarks runs are presented from Native, DOM0 and a single 
DOMU.  The Native readings correspond to a setup where Linux® 
runs directly over the hardware as usual, without the hypervisor.  
The DOM0 readings correspond to a setup where the control- 
DOM with Linux® runs over the Xen hypervisor as the only 
running instance and is configured to use all 32 CPUs.  A single 
DOMU readings correspond to a setup where a user-DOM with 
Linux® runs in the presence of control-DOM (dOM0); however 
DOM0 is not loaded with any load during performance runs.  
These results demonstrate how the presence of the hypervisor 
affects the compute-performance of a PDES application.  As seen 
from Figure 2, somewhat surprisingly, the results from all the 
three setups are almost identical across all the runs, suggesting 
that the overhead of the Xen® hypervisor in delegating the CPU 
resources is almost negligible. 
This data is helpful in addressing the issue of native vs. VM-based 
performance of PDES execution, and may encourage the 
community to move towards a Cloud environment by allaying 
uninformed fears of incurring a significant performance penalty. 

 
Figure 2 Native, DOM-0 and single DOMU performance 

comparison on LTP 



Effects of Virtual Communication and I/O via DOM0 

 
Figure 3 PSB runtime performance in 32 VM setup scenario 

for varying weights of DOM0 on LTP 
Since DOM0 is partially involved in servicing the network 
communication and input/output (I/O) for all DOMU, DOM0 may 
need to receive sufficient number of CPU cycles (or a higher 
priority weight).  The need for higher DOM0 weights for better 
performance was demonstrated in [17] using an older version 
(3.4.2) of the Xen distribution.  To understand such requirements 
in the current version, the weight assigned to DOM0 relative to all 
DOMU is varied from 1 to 16.  For example, a factor of 4 implies 
that DOM0 has four times more credits than any DOMU.  This 
provides an overburdened DOM0 more CPU cycles compared to 
DOMUs. 

The runtimes with varying weights are plotted in Figure 3 for the 
PSB, and in Figure 4 for the DSB.  The seemingly flat curves of 
Figure 3 suggest very slight or no impact of higher weights for 
DOM0 on the runtime performance with the newer version of Xen 
contrary to the observation in [17].  This change can be attributed 
to the incorporation of Netchannel2 [18] in Xen networking, 
which transfers the burden of copying network data from DOM0 
to the DOMUs.  However, for DSB, a good improvement in the 
performance as the weight of DOM0 is doubled is seen in Figure 
4.  DSB being I/O intensive and also due to the fact that DOM0 
services the I/O, the additional weight provided for DOM0 helps 
significantly in speeding up the I/O functionality during DSB 
runs.  

 
Figure 4 DSB runtime performance in 32 VM setup scenario 

for varying weights of DOM0 on LTP 

Virtual Computation and Communication 
Performance 
To study the impact of combined virtual computation and 
communication effects on PDES applications, we ran the 
benchmarks on our LTP, varying the number of VMs in the 
experiments from a single DOMU with 32 VCPUs to 32 DOMUs 
with 1 VCPU, keeping the total number of VCPUs constant. 

Figure 5 and Figure 6 show the benchmark results obtained from 
varying the number of DOMs hosted on LTP using PSB and DSB, 
respectively.  For the same benchmark the figures show how the 
performance varies with the increase in the number of DOMs.  
Note that as the number of DOMs running the benchmark 
increases, the number of VCPUs within each DOM also 
decreases.  Also note that in each of these benchmark runs, the 
number of Federates is equal to the number VCPUs, i.e., 
Federates have a 1:1 mapping to the VCPUs.  Hence, in a fast 
network environment, we expect the runtime across all types of 
DOM configurations to be largely identical, since the same 
number of VCPUs are involved in the computation.  

 
Figure 5 Performance comparison with increase in number of 

DOMs using PSB on LTP 

 
Figure 6 Performance comparison with increase in DOMs 

using DSB on LTP 
A very interesting and common trend across all the benchmark 
runs is the degradation of performance with fewer numbers of 
VMs beyond 1, and its betterment with the increase in number of 
VMs hosted.  In other words, there is a steep rise in runtime when 
moving from 1 VM to 2 VMs but a gradual drop from 2 to 32 
VMs.  The effect is predominant in the cases where the network 



traffic is high (LOC=50), as seen in both Figure 5 and Figure 6, 
for PSB and DSB, respectively. 

This trend is counterintuitive to a general parallel-computing user 
because a better performance is expected in scenarios involving 
VMs with more VCPUs.  The intuition is that the parallel 
processing libraries like MPI generally use shared-memory to 
communicate across processes within the same VM.  Hence, one 
expects to observe better performance by increasing the 
communication across Federates within a DOM (shared memory) 
and reducing the inter-DOM messages by reducing number of 
DOMs. 

The underlying reason for the counterintuitive trend is as follows. 
When a VM contains many VCPUs, a bottleneck is created at the 
virtual network interface card (NIC) because of serialization.  
Further, DOMUs doing most of the networking work as observed 
in the Figure 3 in previous section adds on to this performance 
degradation. 

In real hardware, the communication is often highly optimized via 
direct memory accesses, cache coherence mechanisms between 
NIC and CPU, and so on.  However, in the case of VMs, the NIC 
is a software implementation, and all synchronization is 
performed in software, which significantly reduces the network 
speed.  This degradation increases in a quadratic nature with the 
number of VCPUs sharing the virtual NIC.  Unfortunately, there 
is little that can be done regarding this issue other than reduce the 
network traffic generated per VCPU or reduce the number of 
VCPUs per VM. 

As observed earlier in Figure 1, the Cloud operators charge a 
lower price for low-end machines and higher cost for high-end 
machines.  The benchmark performance results suggest that PDES 
applications can in fact take very good advantage of the lower 
cost of smaller sized VMs and gain lower execution time simply 
by moving to the other extreme of 1 VCPU/VM, and greatly 
benefit from the existing cost model offered by the Cloud 
infrastructures, like EC2. 

 
Figure 7 Time taken per LBTS computation with increase in 

the number of VMs on LTP 
In Figure 7, we show the time that the simulator takes to compute 
a lower bound on incoming timestamps (LBTS) for the most-
affected PSB runs namely, 1000-NMSG_50_LOC_CONS and 
1000-NMSG_50_LOC_OPT runs along with LOC-50_CONS and 
LOC_50_OPT DSB runs.  However, the number of LBTS 
computations remained the same across the same benchmark runs 
even while the number of VMs is changed.  Hence, within PDES, 
it is the prolonged LBTS computation that affects the overall 
runtime of the simulation application. 

4.2 Results from EC2 Cloud 
To deal with possible variance of performance in the Cloud due to 
periodicity of loads and other uncontrollable phenomena, each 
data point in the results is derived as an average from three runs 
executed on three different days and times.  Note that each request 
for VMs from Cloud assigns a different set of machines and 
hence, the virtual cluster built for every run is different from the 
other.  This averaging for variance applies to the Cloud 
performance results in Figure 8 through Figure 12. 

Note also that all the machines that the EC2 provides are VMs.  
This provides the Cloud operator an ability to multiplex multiple 
VMs more numerous than the available hardware resources.  
However, by overloading the host machine, the compute cycles of 
the physical machine are shared among the VM instances.  By 
defining the Elastic Compute Unit (ECU) that is always lesser or 
equal to the compute cycles offered by physical CPU-core, the 
Amazon EC2 is able to overload the host machine and still 
guarantee the provision of the assured ECU worth of 
computational service.  

 
Figure 8 Runtime performance of PSB with conservative 

synchronization on EC2 Cloud 

 
Figure 9 Runtime performance of PSB with optimistic 

synchronization on EC2 Cloud 
With a Cloud infrastructure, the user is not guaranteed in advance 
specific details of the physical hardware.  The user is only assured 
of the ECU, number of cores and amount of memory for an 
instance created.  The performance unit of the CPU-core is 
provided in terms of ECUs.  For example: m1.small and 
m1.average are both single-core VMs but with compute units of 1 
ECU and 2 ECUs, respectively.  The m1.small instance’s assured 



compute cycles (in ECUs) can be compared to a low priority task 
that can be migrated across physical nodes or multiplexed flexibly 
at the Cloud runtime’s discretion.  Hence, a good performance 
from m1.small instances is not guaranteed.  Since, we would not 
be able to characteristically determine a priori the hardware-
specific details of a physical CPU-core from the Cloud, the next 
best option is to choose the VM configuration with a single core 
with high number of ECUs and use it as a baseline for selecting 
multi-core machines, if needed. 

To observe the performance trend observed with PSB and DSB 
benchmarks on our LTP we use m1 set of machines comprising 
m1.small, m1.medium, m1.large and m1.xlarge.  Of this set the 
m1.medium, m1.large and m1.xlarge VMs are single, dual and 
quad support VCPUs, respectively.  Further, the compute cycles 
of these increase by a factor of 2; i.e., 2 ECUs, 4 ECUs and 8 
ECUs in the same specified order.  The m1.small that provides 
1ECU worth of compute cycles is not considered for this set of 
runs because it is difficult to use it for a fair comparison with 
other configurations.  We built three virtual clusters using these 
VM instances.  32×m1.medium, 16×m1.large and 8×m1.xlarge 
are the 3 virtual clusters built using 32, 16 and 8 instances of 
m1.medium, m1.large and m1.xlarge VMs, respectively. 

The conservative and optimistic synchronization-based PSB 
runtimes from EC2 runs are plotted in Figure 8 and Figure 9, 
respectively.  Figure 10 presents the results for DSB runs on EC2.  
Interestingly, similar to LTP results, we observe a consistent trend 
across all the plots.  The runtime in most of the cases is at its best 
with 8×m1.xlarge virtual cluster, which worsens with 
16×m1.large virtual cluster and gets better with 32×m1.medium 
virtual cluster runs.  Note that in each of these benchmark runs the 
number of Federates is equal to number VCPUs. 

 
Figure 10 Runtime performance of DSB on EC2 Cloud 

VM m1.xlarge is the most powerful among all the other offered 
VMs in the m1 set.  The observed counterintuitive behavior on the 
Cloud can be reasoned using our prior understanding of the 
benchmark behavior on LTP, with m1.xlarge considered as the 
physical node capacity on which the all VMs belonging to m1 can 
run.  Given, the lack of a priori guarantees about the physical 
hardware properties of machinery that hosts EC2 VMs, this is a 
fair assumption for all m1 set of VMs.  In this case, the runtime 
reduction in the 8×m1.xlarge virtual cluster can be attributed to 
the very low involvement of the virtual network as the quad-core 
VMs occupying entire physical node mainly use the high-speed 
physical inter-connect during parallel computation.  The increase 
in runtime in 16×m1.large setup (instead of decrease as observed 
in LTP runs) can be attributed to the presence and active 

utilization virtual-networking as more than one m1.large could 
have been hosted on a physical node.  The reduction in the 
runtime with increase in number of VMs in the 32×m1.medium 
setup is consistent with our observations on our LTP. 

4.3 LTP and EC2 Results Comparison 
In comparing the results from LTP and EC2, note that all VMs 
running on LTP use the virtual network, whereas an indeterminate 
combination of real and virtual-network is typical of EC2 
environment.  While the LTP uses 32 CPU-cores of AMD 
Opteron at 2.3 GHz, the m1 set of EC2 is perceived to use Intel 
Xeon CPU-cores at 2.6 GHz (cpuinfo of Cloud instance). 

 
Figure 11 LTP and EC2 Cloud runtime comparison for PSB 

The PSB’s LTP and EC2 runtime comparisons using 32 VM 
scenarios are shown in Figure 11; similar runtime comparisons for 
DSB are shown in Figure 12.  An important aspect of PSB plots in 
Figure 11 is the close similarities for the LTP and EC2 trends.  
However, the DSB runtime plot comparisons in Figure 12 differ 
from this view, especially in 32 VM runs.  Note that LTP runs are 
highly affected by network load as suggested by huge drop in 
runtimes as LOC value changes from 50 to 90.  However, the 
corresponding 32 m1.medium EC2 runs seem unaffected, 
essentially suggesting the absence or minimal utility of virtual 
network.  Further, 32 m1.medium EC2 runtime during LOC 90 is 
greater than its LTP peer, suggesting EC2 performance being 
effected by distribute I/O.  The 8 m1.xlarge EC2 runtimes provide 
the best runtimes on EC2, suggesting that distribute I/O affects 
VM dispersed across many nodes more than on fewer nodes. This 
observation seems to be consistent with LTP, where runtimes are 
more affected by network performance than I/O. 

 
Figure 12 LTP and EC2 Cloud runtime comparison for DSB 



Finally, we note that these observations can be helpful in 
determining an upper bound runtime on the Cloud environments 
utilizing processors of similar clock speeds. 

4.4 Cost-Value Evaluation on EC2 
In Table 1, the relevant details of on-demand VMs provided by 
the Amazon EC2 service are tabulated.  For cost-value evaluation 
we selected set of VMs based on the specified ECU value.  To run 
the PSB and DSB, we built 4 clusters of VM instances. The 
cheapest VM instance for the least compute unit of 1-ECU is 
m1.small and a VM cluster formed using 32 such instances is 
called 32×m1.small.  Similarly, VM clusters of 16×m1.medium, 
8×m1.large and 2×m3.2xlarge, are formed using 16, 8 and 2 
instances of m1.medium, m1.large, m3.2xlarge VMs, each of 
these VMs have an ECU of 2, 4 and 26, respectively.  The 
hs1.8xlarge is the most powerful and most expensive VM that 
EC2 offers and, it assures an ECU of 35. 

Table 1 Details of EC2 on-demand instances 

EC2 
Instances 

Cost/hour in 
Dollars 

Number of 
VCPUs 

Assured 
Performance 

in ECUs 
m1.small 0.06 1 1 

m1.medium 0.12 1 2 
m1.large 0.24 2 4 

m1.xlarge 0.48 4 8 
m3.2xlarge 1.00 8 26 
hs.8xlarge 4.60 16 35 

 

PSB and DSB Runtime Performance 

 
Figure 13 PSB runtime performance on EC2 Cloud 

Figure 13 plots the runtimes of various PSB scenarios.  While the 
runs with lower network traffic are almost flat, the optimistic and 
conservative curves vary significantly across different VM 
clusters.  Three significant observations can be made from the 
1000_NMSG-50_LOC_CONS and 1000_NMSG-50_LOC_OPT 
runtime plots.  They are (a) contrary to the trend observed in the 
LTP runs the runtime of both OPT and CONS curves worsen on 
32×m1.small, (b) the runtime on high-end hs1.8xlarge VM, where 
the Federates are hosted on a single node and in the absence of 
network utilization during parallel computing, the runtime is the 
worst among all (c) the best performance across almost all runs is 
obtained with 16×m1.medium cluster setup, where 32 Federates 
are hosted on 16 instances of single-core VMs. 

A VM with ECU 1 on a hypervisor running on CPU-cores whose 
compute capacity is often multiple of ECUs, can be realized either 
in scenarios where m1.small VMs are overloaded on the 
hypervisor or on nodes where it’s often run as VM with lower 
weight and are generally capped so that they do not exceed their 
provision.  Either of these cases is detrimental for highly 
asynchronous parallel computing PDES applications.  Hence, the 
poor performance with 32×m1.small is expected. 

Regarding the poor performance on hs1.8xlarge runs, note that the 
hs1.8xlarge is a 16-core VM and is loaded with 32 Federates.  In 
overloaded scenarios such as these the hypervisor VCPU 
scheduler in quest of ensuring fairness in physical CPU utilization 
among all VCPUs affects the performance.  This is a known 
problem [17]. 

Further, good runtime performance can be expected from 
16×m1.medium virtual cluster runs based on our previous 
observations both on LTP and EC2. 

 
Figure 14 DSB runtime performance on EC2 Cloud 

Figure 14 plots the runtimes of various DSB scenarios.  Here, the 
runtimes are almost same on hs1.8xlarge, 2×m3.2xlarge and 
16×m1.medium virtual clusters.  Same reason as stated for PSB 
explains the bad performance of DSB on 32×m1.small.  The 
readings for 8×m1.large are consistent with the observations seen 
with 16×m1.large virtual cluster runs shown in Figure 10 and the 
performance degradation can be attributed to virtual-networking. 

Cost factoring to PSB and DSB Scenarios 

 
Figure 15 Overall cost of PSB on EC2 Cloud 

  



After obtaining the runtime from the PSB and DSB runs and the 
cost-per-hour from the EC2 specifications, we computed the 
overall cost for the PSB and DSB scenarios.  Figure 15 and Figure 
16 plot the cost of execution in terms of dollars on various virtual 
clusters.  For most of the runs it was found that the 
16×m1.medium virtual cluster provided the best cost-value across 
almost all runs for both PSB and DSB scenarios. 

 
Figure 16 Overall cost for DSB on EC2 Cloud 

 
Figure 17 Cost and runtime plots of PSB 1000-NMSG 50-LOC 

scenario with conservative synchronization on EC2 Cloud 
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Figure 18 Cost and Runtime plots of DSB with LOC-50 using 
optimistic synchronization on EC2 Cloud 

To compare the runtime and costs, we pick the better-performing 
large-scale scenarios with high-network traffic from PSB (100-
NLP_1000-NMSG_50-LOC_CONS) scenario and DSB (LOC-

50_OPT) scenario, as shown in Figure 17 and Figure 18, 
respectively.  The PSB plot in Figure 17 shows best runtime and 
best cost associated with virtual cluster of decently compute-
intensive instances of VM, i.e. 16×m1.medium, which is against 
popular belief.  The cost and runtime on the expensive high-end 
resource is far higher than that on the 16×m1.medium cluster. 
Similar to PSB, the DSB plot shown in Figure 18 also provides 
better runtime performance and cost at 16×m1.medium.  Even 
though the runtime provided by the expensive high-end compute 
resource compares well with runtime, the cost of computation is 
higher than that of 16×m1.medium. 

4.5 Performance Summary 
From the benchmarks and scenarios, we find that VM-based 
execution can be as fast as native execution, with little perceivable 
performance degradation.  Also, privileged and unprivileged VMs 
deliver the same runtime, indicating that it is not worthwhile to 
elevate privileges with the goal of increasing performance for 
PDES runs. 

On dedicated machines in which the number of virtual cores is 
exactly the same as the number of physical cores, the fastest 
execution is obtained by using only a single VM that contains all 
the virtual cores.  However, such a dedicated allocation of virtual 
to real cores is almost impossible to ensure in a typical Cloud 
environment because the underlying physical machine is opaque 
and also subject to change.  Thus, the fastest execution that is 
competitive with native execution cannot be obtained on the 
Cloud.  In fact, due to complex scheduler artifacts that arise due to 
a fundamental mismatch between virtual time order and fair 
scheduling order, the PDES execution on the highest end VM 
configuration in the Cloud suffers from degraded performance.  
To make matters worse, since the computational cycles on the 
highest-end configuration also cost significantly more than other 
lower end configurations, the overall cost can be much higher, 
hence less competitive, than execution on lower end 
configurations.  Thus, on the Cloud, it seems to be more 
economical to choose some of the least expensive configurations 
(which have only one or two virtual cores per VM), which deliver 
a dramatic reduction in cost coupled with good runtime relative to 
the high-end configurations. 

On dedicated VM hosts outside the Cloud, there is also an 
interesting tendency towards the extremes: while the best runtime 
is obtained on one VM with all the virtual cores, the next best is 
obtained on the other extreme of the spectrum in which each VM 
has only one virtual core.  In other words, to obtain the best 
performance, either 1xN or Nx1 should be chosen (N is the 
number of physical cores), but all other configurations in between 
should be avoided as they suffer from worse performance. 

Recommendations to Cloud users 
We find that an analogy to automobiles is appropriate here.  An 
automobile engine may be designed for speed (e.g., 0-60mph 
time) and/or gas mileage (miles per gallon, mpg).  While racecars 
may exclusively focus on speed, consumer market automobiles 
have to find a good tradeoff between speed and mileage.  
Similarly, while PDES has largely focused so far on speed, it may 
be time to visit the counter part of miles per gallon, namely, the 
dollar value, when the PDES applications are executed in a Cloud 
environment. 

Taking the preceding observations into account, it is clear that low 
cost and small runtime are not always opposed to each other, and 
that trade-offs exist. 



• On a node with N physical processor cores, the overheads of 
the virtual network interface should be avoided either by 
using the entire physical node with a single-VM using N 
VCPUs or or by using N VMs each with only one VCPU. 

• When a PDES simulation is executed using a single VM (that 
uses the entire physical node), the host node must avoid not 
be overloaded with more VCPUs than physical cores; i.e., the 
number of federates per VM should equal the number of 
VCPUs (not the number of ECUs).  This avoids the 
undesired effects of VM scheduling on PDES performance. 

5. CONCLUSIONS AND FUTURE WORK 
Virtual Machine-based systems form an appealing computational 
platform that is a strong alternative to high-end native execution 
that has been the traditional focus of PDES.  However, due to the 
introduction of new dimensions such as configuration options and 
corresponding price points, a PDES user is faced with a new 
problem of having to decide on the most cost-effective 
configuration.  Overall, the dollar-value of PDES runs has now 
become an important metric.  In this context, relatively few 
studies exist as guidance to help contemplate, understand and 
decide on the various factors and effects for effective use of VM-
based platforms such as commercial Cloud offerings.  To help 
bridge this gap, an empirical study was conducted on a wide range 
of VM configurations, PDES applications, and scenarios.  The 
results helped uncover counter-intuitive effects, the significant 
among which being that it may be not only economical but also 
faster to split the simulation into fine units; dividing the 
simulation into many VMs may in fact provide a better overall 
dollar-value than using the highest-end or second-to-highest VM 
configurations.  Also, PDES runs may benefit from the inclusion 
of a network metric in the specification of the abstract 
computational unit, the absence of which seems to leave the 
computation to be highly sensitive to the vagaries of virtual 
network devices.  The study and results presented here are among 
the first to evaluate the characteristics of PDES in detail.  The 
results are also timely due to the great appeal of commercial 
Cloud offerings that many find to be very user-friendly and 
convenient to access and manage.  Additional work is needed to 
evaluate even larger VM configurations, and more PDES 
applications with a wider variety of event granularity and event 
loads.  Also, Cloud-specific synchronization algorithms may also 
be needed to be resilient to variations in virtual network latencies. 
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