
Optimized Hypervisor Scheduler for Parallel Discrete
Event Simulations on Virtual Machine Platforms

Srikanth B. Yoginath and Kalyan S. Perumalla
Computational Sciences and Engineering Division,

Oak Ridge National Laboratory, USA
yoginathsb@ornl.gov, perumallaks@ornl.gov

ABSTRACT
With the advent of virtual machine (VM)-based platforms for
parallel computing, it is now possible to execute parallel discrete
event simulations (PDES) over multiple virtual machines, in
contrast to executing in native mode directly over hardware as is
traditionally done over the past decades. While mature VM-based
parallel systems now offer new, compelling benefits such as
serviceability, dynamic reconfigurability and overall cost
effectiveness, the runtime performance of parallel applications can
be significantly affected. In particular, most VM-based platforms
are optimized for general workloads, but PDES execution exhibits
unique dynamics significantly different from other workloads.
Here we first present results from experiments that highlight the
gross deterioration of the runtime performance of VM-based
PDES simulations when executed using traditional VM
schedulers, quantitatively showing the bad scaling properties of
the scheduler as the number of VMs is increased. The mismatch is
fundamental in nature in the sense that any fairness-based VM
scheduler implementation would exhibit this mismatch with
PDES runs. We also present a new scheduler optimized
specifically for PDES applications, and describe its design and
implementation. Experimental results obtained from running
PDES benchmarks (PHOLD and vehicular traffic simulations)
over VMs show over an order of magnitude improvement in the
run time of the PDES-optimized scheduler relative to the regular
VM scheduler, with over 20× reduction in run time of simulations
using up to 64 VMs. The observations and results are timely in
the context of emerging systems such as cloud platforms and VM-
based high performance computing installations, highlighting to
the community the need for PDES-specific support, and the
feasibility of significantly reducing the runtime overhead for
scalable PDES on VM platforms.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation – discrete
event, distributed, parallel

General Terms
Algorithms, Measurement, Performance, Design, Experimentation

Keywords
Resource scheduling, hypervisor schedulers, virtual machines,
cloud computing, discrete-event simulations, parallel and

distributed simulations

1. INTRODUCTION
Newer parallel computing platforms, such as cloud computing,
based on virtualization technologies are maturing of late, and are
seen as a good alternative to native execution directly on specific
parallel computing hardware. There are several benefits to using
the virtualization layer, making such platforms very appealing as
an alternative approach to execute parallel computing tasks. In
the context of parallel discrete event simulation (PDES), the
benefits include the following:

• The ability of the virtualization system to simultaneously host
and execute multiple distinct operating systems (OS) enables
PDES applications to utilize a mixture of simulation
components written for disparate OS platforms

• The ability to over-subscribe physical resources (i.e., multiplex
larger number of VMs than available physical compute
resources) allows the PDES applications to dynamically grow
and, shrink the number of physical resources as the resources
become available or unavailable, respectively

• The dynamic imbalances in event loads inherent in most PDES
applications can be efficiently addressed using the process
migration feature of the virtual systems

• The fault tolerance features supported at the level of VMs in
concert with the VM migration feature also automatically helps
in achieving fault-tolerance for PDES applications.

A critical component of the virtualized system is the hypervisor,
which provides the ability to host and execute multiple VMs on
the same physical machine. To support the largest class of
applications, a fair-sharing scheme is employed by the hypervisor
for sharing the physical processors among the VMs. The concept
of fair sharing works best either when the VMs execute relatively
independently of each other, or when the concurrency across VMs
is fully realized via uniform sharing of computational cycles.
This property holds in the vast majority of applications in general.
However, in PDES, fair-share scheduling does not match the
required scheduling order, and, in fact, may run counter to the
required order of scheduling. This mismatch arises from the
fundamental aspect of inter-processor dependency in PDES,
namely, the basis on the global simulation time line.
In PDES the simulation time advances with the processing of
time-stamped simulation events. In general, the number of events
processed in a PDES application varies dynamically during the
simulation execution (i.e., across simulation time), and also varies
across processors. This implies that the amount of computation
cycles consumed by a processor for event computation does not
have any specific, direct correlation with its simulation time. A
processor that has few events to process within a simulation time
window ends up consuming few computational cycles. It is not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SIMUTools 2013 March 6–7, Cannes, France.

Copyright 2013 ICST, ISBN 99-999-9999-99-9.

ready to process events belonging to the simulation-time future
until other processors have executed their events and advanced
their local simulation time. However, a fair-share scheduler
would bias the scheduling towards this lightly loaded processor
(since it has consumed fewer cycles) and penalize the processors
that do in fact need more cycles to process their remaining events
within that time window. This type of operation works against the
actual time-based dependencies across processors, and can
dramatically deteriorate the overall performance of the PDES
application. This type of deterioration occurs when conservative
synchronization is used. Similar arguments hold for optimistic
synchronization, but, in this case, the deterioration can also arise
in the form of an increase in the number of rollbacks. The only
way to solve this problem is to design a new scheduler that is
aware of, and accounts for, the simulation time of each VM, and
schedule them in a least-simulation-time-first order.

1.1 Related Work
Poor performance of certain high-performance computing
applications has also been observed very recently [1] and
customized solutions are being proposed, which are not applicable
to PDES. The issue of executing PDES applications in cloud
environments has been studied recently [2][3], addressing the
performance issue at the application layers (e.g., cloud
architecture). The Master-Worker approach to distributed (and
fault tolerant) PDES [13] is also a related but complementary
approach, different from our support for the traditional PDES
execution view in which all processors are equal. We adopt a
different approach by focusing at the lowest level, i.e., at the level
of the hypervisor itself. Incidentally, the Time-Warp Operating
System [12] of the 1980’s is one of the earliest works that
addressed PDES performance issues by realizing the simulation
scheduler (and related functionality) at the bottom-most hardware
levels; however, this was limited to a single operating system, as
opposed to a hypervisor system.

There is also a superficial semblance with our own prior related
work in VM-based network simulations. However, VM-based
network simulations are fundamentally different from PDES
execution over VM platforms. In VM-based network simulations,
the simulation time of each VM is determined by the hypervisor
itself (in terms of computation time consumed by each VM,
tracked and accounted by the hypervisor), whereas in PDES over
VMs, the virtual time for scheduling is entirely determined by the
user’s simulation model. The hypervisor does not (in fact, cannot)
have any way of influencing the virtual time at which the
simulator executes inside each VM. The virtual time can only be
communicated from the PDES engine to the hypervisor via the
VM’s OS, and the hypervisor is obligated to respect the value of
the virtual time supplied by each VM (albeit, with the guarantee
that the global minimum of the times across all VMs will never
decrease).
While the concepts developed in this paper for VM-based PDES
are sufficiently general, our implementation and experimentation
are performed with the Xen® [4] hypervisor (a freely available,
popular hypervisor), and the µsik [5] parallel/distributed
simulation kernel (a high performance PDES simulator).

1.2 Xen hypervisor
The Xen [4] hypervisor is a popular open source industry standard
for virtualization, supporting wide range of architectures including
x86, x86-64, IA64, and ARM, and guest OS types including
Windows®, Linux®, Solaris® and various versions of BSD OS.

In Xen terminology, each VM is referred to as a Guest Domain or
simply as a DOM1. Each DOM has a unique identifier called its
Domain ID (DOM-ID). The first DOM called DOM0 is a
privileged one with special management privileges. System
administration tasks such as suspension, resumption, and
migration of DOMs are managed via DOM0.
Each DOM has its own set of virtual devices, including virtual
multi-processors called virtual CPUs (VCPUs). The hypervisor
scheduling mainly deals with efficient mapping (multiplexing) of
all the VCPUs of multiple VMs onto the available physical
processor cores (PCPUs). The credit-based scheduler (CSX) is
the default Xen scheduler, which schedules VCPUs on to PCPUs
based on the principle of fair-share. CSX uses credits for every
DOM, these credits are expended as the DOM’s VCPUs are
scheduled for execution. It provides a limited amount of control
to the user to customize the scheduler configuration through
parameters called weight and cap. The default weight value for
all DOMs is 256 and the cap is 0, ensuring fair CPU allocation to
all of the DOMs. This scheduler is very widely used, and works
excellently for a very large variety of virtualization uses.

1.3 Parallel Discrete Event Simulation
In PDES, the model is divided into distinct independent virtual
timelines referred to as Logical Process (LP). Each LP typically
encapsulates a set of state variables of a modeled entity. The
timelines of LPs within and across processors are kept
synchronized by the simulation engine. Two distinct
synchronization mechanisms namely, conservative and optimistic
synchronizations, are used in PDES. In conservative
synchronization, all event processing is always strictly performed
in virtual time order at every LP. On the contrary, in optimistic
synchronization, any LP is allowed to temporarily violate
simulation-time order of its events but uses a rollback mechanism
(event cancellations and check-pointing/reverse computation) to
correct the errors committed, and achieve eventual correctness.
More details on PDES and its synchronization mechanisms can be
found in [6]. The µsik parallel/distributed simulation kernel [5]
built upon micro-kernel architecture is used for our
experimentations. The runtime architecture of µsik supports
execution of models in which one or more LPs can be mapped to
each VM, and it supports both conservative and optimistic
synchronization mechanisms.

In general, one or more LPs can be mapped on to each µsik
federate (simulation process), each such federate maps to a
VCPU, each VM contains one or more VCPUs, and multiple such
VMs are hosted by a hypervisor.

For the purposes of this research, the µsik engine is made to
interoperate with the Xen hypervisor scheduler. We will refer to
the PDES-specific scheduler for Xen in this implementation as
PSX.

1.4 Organization
The rest of the article is organized as follows. The important
design considerations in the development of PDES-specific VM
scheduler are described in Sections 2, followed by implementation
details in Section 3. In Section 4, the PDES benchmarks and
scenarios used for performance evaluation are described. A
performance study is presented in Section 5 along with the results

1 Hence, we will use the terms VM and DOM interchangeably in

the rest of the article.

from detailed experiments. The findings are summarized and
concluded in Section 6.

2. DESIGN
In PDES, since LPs (and consequently, VMs) can have widely
differing event loads, they exhibit different ratios of simulation
time to wall clock time. Event load imbalance can arise across
VMs, which is not only inherent but also hard to predict due to its
dynamic nature. Fundamentally, this dynamic, scenario-specific
variation of the ratio of simulation time to wall clock time is the
critical factor that must be accounted for in the design of the
PDES-specific VM scheduler.
However, in PDES we do know that the LP with the lowest value
of local virtual time (LVT) affects the progress of its peers and
hence the entire simulation application. Hence, if the LVT of the
LP were used as the criterion in allocating processor time to VMs
by the hypervisor (i.e., LPs with lower LVT values are prioritized
over those with higher LVT values), then the runtime performance
can be optimized. This can be achieved if the LPs running on
different VMs are able to communicate their LVT values to the
hypervisor, and the hypervisor in turn uses this information during
the scheduling of VCPUs on to PCPUs. An additional aspect in
relation to global virtual time computation also becomes an
important design consideration. These design considerations are
described next.

2.1 Issues and Challenges
To realize the PDES scheduler for Xen (PSX) we need to address
two issues namely, (a) realize a way to efficiently communicate
the LVT of each LP (which is at the application layer) to the
hypervisor, and (b) to utilize this LVT information from within
the hypervisor scheduler during scheduling with minimal
overheads (such as by avoiding locking-based synchronization for
LVT value transfer from the VM to the hypervisor data
structures).

To communicate the LVT of an LP from the application layer to
the hypervisor, the LVT must first pass from the user-space of the
PDES process to the kernel-space of the guest-OS and then to the
hypervisor data regions. One way to accomplish this is by adding
a system call to the guest-OS to enable the transit of user-space
data to kernel-space. However, to make this data accessible to the
Xen hypervisor the guest kernel uses a shared memory page
named shared_info, which is used by the Xen hypervisor through
out its runtime to retrieve information about the global state [4].
The shared_info contains information that is dynamically updated
as the system runs. In fact the Xen hypervisor uses the
shared_info for time-keeping functionality of its para-virtual
guest-OS. The LVT value from the guest-OS kernel-space is
written into the shared_info, thus making it available to the
hypervisor.

Next, we need to implement the hypervisor scheduler that
employs a least-simulation-time-first policy instead of the default
credit-based fair scheduling strategy. Implementing the Xen
hypervisor scheduler for the application-specific requirements has
been previously accomplished [7][8]. Each PCPU maintains a
runq (priority-queue) in which the VCPUs requiring clock-cycles
are en-queued. The scheduler inserts the VCPUs into the PCPU
runqs based on the LVT value. Hence, every VCPU of a DOM
that hosts the LP is required to maintain a variable (VCPU-LVT)
representing LVT value of the LP. Based on the VCPU-LVT
value, the VCPUs are inserted in the runq of the PCPU. With a
least-simulation-time-first policy, the VCPU that the scheduler

picks for allotting PCPU cycles will have the lowest LVT among
all its peers.

In addition to these two major requirements, it is also necessary to
ensure that the LPs receive sufficient number of computational
cycles to participate in Global-Virtual-Time (GVT) computation
regardless of its LVT priority in relation to other LPs. In the
absence of this special treatment required for GVT computation,
the simulation would deadlock. This is because the VCPUs with
lower VCPU-LVT values (i.e., having a higher scheduling
priority) would not allow the VCPUs with a higher VCPU-LVT to
be chosen for scheduling. This results in blocking the GVT
computation at the application level, as some of the LPs (with a
higher LVT value) would never get a chance to respond during
GVT computation. This problem can be solved by ensuring that
some PCPU cycles are periodically and unconditionally provided
to the VCPUs regardless of their VCPU-LVT values.

2.2 System Architecture

Figure 1 The design of the PDES-customized scheduler

Figure 1 shows the system architecture of a hypervisor-based
parallel computing environment with a scheduler optimized for
PDES execution. For simplicity of explanation, let us assume that
a single LP is hosted on each PDES federate and each VM has a
single VCPU (note that this is not a requirement or a limitation of
our system, but it simplifies understanding). As illustrated in
Figure 1, the LVT of an LP is passed to the VCPU of its DOM.
The scheduler that performs the task of multiplexing VCPUs onto
PCPUs uses the VCPU-LVT and employs least-simulation-time-
first scheduling. With a least-simulation-time-first order, the
scheduler gives the highest priority to the VCPU with least
VCPU-LVT value, as opposed to the default fair distribution of
compute cycles across all the DOMs. The special VMs (DOM0
and Idle-DOM) in Xen do not participate in the PDES simulation.
The DOM0 is the privileged DOM, and the Idle-DOM is a Xen
mechanism to ensure that the PCPU run-queues are never empty.

3. IMPLEMENTATION
To realize the PDES-optimized hypervisor scheduler, we require
(a) each µsik kernel instance running on a DOM to independently
communicate its LVT value to the Xen scheduler, and (b) a new
Xen hypervisor scheduler implementation that utilizes the
communicated LVTs to optimize compute-resource sharing.
These implementation details are described next.

3.1 Communicating LVT to Xen Scheduler
The mechanisms for communicating the simulation time from the
simulation LPs at the user-level down to the scheduler data
structures at the hypervisor level is conceptually trivial but
implementation-wise non-trivial, especially to keep the runtime
overheads low. The scheme involves modifications to the DOM
OS kernel (Linux, in our test implementation), and corresponding
modifications to the simulation engine (µsik, in our test
implementation).

Linux Kernel Modifications
To send the LVT information from the application level which is
a µsik federate, we defined and implemented a new system call for
the Linux® OS to be able to invoke it from the µsik library from
within the simulation loop. This system call allows the LVT
information to transit from user-space to kernel-space; once
reaching the kernel-space, the LVT value is written into the
shared-info data structure of the host DOM, which in turn can be
accessed by the hypervisor at runtime.

Figure 2 Modified shared_info data-structure with

emboldened newly added variable names
However, the para-virtual guest-OS kernel has to be re-built after
the addition of a new system call and incorporating the changes to
the shared_info data-structure (Figure 2) in correspondence to its
modification in the hypervisor. Two fields namely, simtime and
switch_scheduler are added to the shared_info data-structure.
Each guest-OS maintains a shared_info page, which is mapped on
to memory by the hosting DOM, during its creation. While
simtime is used for holding the LVT of the federate mapped on to
this DOM, the switch_scheduler is a flag that indicates the switch
between two different modes of the scheduler operation namely,
normal-mode and simulation-mode (described later in greater
detail).

Using the system call, the µsik federate writes the simulation time
to simtime of the shared_info along with a variable that either sets
or unsets the switch_scheduler variable. The switch_scheduler in
shared_info is set to suggest that PDES scheduler is in simulation-
mode and, is maintained in this mode until the simulation ends.
This flag is also used as an indication for the scheduler to read the
LVT values from the shared_info of the DOMs into their VCPU
and to use these values during scheduling. Note that the federate
running on the guest-OS simply updates the shared_info and is
operationally independent of the shared_info variables usage by
the hypervisor.

µsik Library Modifications
In order to communicate the LVT value from the µsik federate to
the hypervisor scheduler, the µsik library is modified. It is
required for the µsik library to indicate the start and the end of the
PDES run to the hypervisor scheduler so that the scheduler can
switch its mode of operation in accordance, from normal mode to

simulation mode and back. During µsik’s initialization, the
switch_scheduler in shared_info of its host DOM is set true using
the custom system call. The scheduler reads this variable to
change its mode of operation from normal-mode to simulation-
mode. Similarly, during the termination of simulation the
switch_scheduler is set false to revert back to its normal-mode of
operation.

In µsik, the LPs hosted by the PDES federate are event-oriented,
and during the simulation run, the LP with the least LVT is
chosen by the federate for event processing. The simtime variable
of the shared_info can always be kept updated to the LVT value
of the recently processed event by the federate. However, we
limit the number of writes to shared_info by updating it only
when the subsequent changes in the federate LVT value are
greater than the lookahead value.

Every µsik federate maintains a variety of simulation times based
on its event processing state at any given moment. They are
distinctly classified into four classes, namely, committed,
committable, processable and emittable [5]. We can transmit any
of these LVT values to the hypervisor. In practice, we observed
that the use of the “earliest-committable-time-stamp” resulted in
better performance than the others, and hence, this is the
simulation time value used in all our experiments.

3.2 Xen Scheduler Implementation
The PDES Scheduler for Xen (PSX) scheduler replaces the
default Credit Scheduler of Xen (CSX) in scheduling the virtual
CPU (VCPUs) onto the physical cores of CPU (PCPU). The
strategy that we take to replace the scheduler is similar to the one
presented by [8].

PSX data-structures
The switch_sched (corresponding to switch_scheduler in
shared_info) is a field of global ps_priv global variable, which is
an instance of ps_private data-structure (shown in Figure 3) and,
by default the value of switch_sched is false (normal-mode). The
scheduler regularly checks the shared_info associated with the
guest-DOM of the VCPU it services. Hence, when the
switch_scheduler value the shared_info of any guest-DOM is
updated, the scheduler reads it from the shared_info and, writes it
to switch_sched field of ps_priv variable. The scheduler uses
spin-locks in this process to avoid any un-desirable race
conditions during its SMP execution. Each VCPU reads the LVT
value from the shared_info into its sim_time variable. Figure 3,
shows the sim_time and switch_sched variables in the PSX’s
VCPU and ps_private data-structures, respectively.

Figure 3 VCPU data-structure and ps_private global data-

structure in PSX, respectively
The vcpu_ticks and vcpu_ref_time in the VCPU data-structure are
used to record PCPU time allotted for each VCPUs. The usage of

prior_sim_time is to instrument PDES specific requirement,
which will be discussed shortly.

Scheduling in Normal-mode
The scheduler is referred to be in normal-mode if the
switch_sched (ps_private data-structure Figure 3) is false. This
corresponds to the mode in which the VMs are booted and
operational, but no PDES run has been started (and hence LVT-
based scheduling is undefined). PSX by default maintains the
sim_time (VCPU data-structure Figure 3) of all DOM0 VCPUs
lower than all the DOMUs. In the normal-mode all the guest-
DOM VCPUs will have their sim_time initialized to 1, while
DOM0 VCPUs have their sim_times initialized to 0. Only after
the switch_sched is set true by PDES federate the sim_time value
of the relevant VCPU is updated after reading the shared_info.
However, the sim_time of VCPUs of DOM0 continues to be 0
even after switching to simulation-mode.

Note that the sim_time corresponding to the VCPUs of the DOM0
is always maintained to be lower than that of other VCPUs
regardless of the PSX’s mode of operation. This guarantees that
DOM0 VCPUs are always preferred over the other VCPUs, which
in turn ensures better performance during inter-DOM
communications (as all the virtual network traffic passes through
DOM0) and a responsive user-interactivity with DOM0 during
simulation execution.

Scheduling in Simulation-mode
The hypervisor switches to the simulation mode after the PDES
execution is started on all the VMs. Each PCPU maintains a runq
(priority-queue) as shown in Figure 4 and, in the simulation-mode
PSX en-queues the VCPUs to be scheduled in a prescribed
priority.

Figure 4 PSX physical CPU-core specific data-structure

maintained by PSX
We use the LVT as the VCPU priority – the lower the sim_time
(VCPU data-structure Figure 3), the higher is its priority in the
runq and, hence the earlier it is picked by PSX to allocate
compute resource. Every PCPU schedules itself for every tick
using the timer named ticker. The PCPU performs accounting for
the VCPU currently being serviced by incrementing the
vcpu_ticks and, updating the sim_time by reading the shared_info.
The PCPU also generates a schedule interrupt for the VCPU being
serviced on a less loaded PCPU. During scheduling the SMP
scheduler enqueues the VCPU being serviced and picks the
VCPU with least sim_time across all PCPU runqs to service. Our
implementation of the scheduler allots a tick size (300 µs) of
PCPU time for the VCPU picked to service.

Scheduling consideration for GVT progress
In addition to event processing, the LPs also need to participate in
periodic GVT computation. This periodic computation is
necessary to consolidate the independent LVTs of each LP into a
global GVT. With least-simulation-time-first scheduling the
federate with higher LVTs never get past the federate with lower
LVTs and hence do not get any PCPU time to participate in GVT
computation. Without successful GVT computation, LPs cannot

determine which events can be processed next. Without a special
consideration for GVT computations, a strict least-simulation-
time-first based PSX does not allow completion of GVT
computation, hence the PDES execution deadlocks.

To overcome this, it is necessary to periodically provide a few
PCPU cycles for VCPUs with higher sim_time. We accomplish
this by using the prior_sim_time variable of VCPU data-structure
shown in Figure 3. The prior_sim_time is updated whenever
sim_time is read from the shared_info. When the sim_time of a
VCPU remains unchanged to its prior_sim_time value for a
consecutive read of shared_info, then the sim_time is temporarily
increased to a large value greater than simulation end_time say,
max_time and, prior_sim_time is not updated. Hence, during the
next consecutive shared_info read, the prior_sim_time value will
be different from the temporary max_time value; the sim_time and
prior_sim_time are updated regardless of whether the simulation
time actually advanced or not. Such an operation based on
temporarily flipping the sim_time to max_time ensures unhindered
GVT computations.

4. Experimental Setup
To exercise the implementation and perform a quantitative study
of runtime performance, we use a range of application scenarios,
as described next.

4.1 Benchmark Applications
Two applications namely, PHOLD [10] (a synthetic PDES
application generally used for performance evaluation) and
SCATTER-OPT [11] (a reverse-computation-based vehicular
traffic PDES application) are used in our performance studies.

PHOLD
This is a widely used synthetic benchmark for performance
evaluation in the PDES community. This PDES application
randomly exchanges a specified set of messages between the LPs.
The µsik implementation of PHOLD allows exercising a wide
variety of options in its execution. In all of our PHOLD
benchmarks we use a lookahead of 1 and utilize combinations of
the listed variants for performance evaluation.

a. Synchronization: optimistic (OPT) or conservative
(CONS)

b. Number of LPs per Federate (NLP) [for example: 10
NLP = 10 LPs/federate]

c. Number of messages per LP (NMSG) [for example: 10
NMSG = 10 messages/LP]

d. Destination locality of the LP generated message (LOC)
specifies the percentages of local and remote events.
Values of 50, 90 and 100 suggest respectively that 50%,
90% and 100% of the messages generated by an LP are
local to its federate. Hence, a value of 50% for LOC
involves more LP message exchanges across the
network and results in increased network traffic; a value
of 90% results in a reasonable amount of inter-federate
event traffic, and, 100% suggests an embarrassingly
parallel PDES application involving little inter-federate
interaction except for GVT computations.

SCATTER-OPT
This application is a discrete-event formulation and a parallel
execution framework for vehicular traffic simulation. It uses the
µsik library for parallel execution and, is amenable to both
conservative (CONS) and optimistic (OPT) synchronizations. A
simulation scenario is set up by reading an input file that specifies

the road-network structure, number of lanes, speed limit, source
nodes, sink nodes, vehicle generation rate, traffic light timings and
other relevant information. Dijkstra’s shortest-path algorithm is
used to direct a vehicle to its destination. This benchmark serves
to exercise the hypervisor-based PDES performance using CSX
and PSX schedulers with a more complex PDES application
behavior and dynamics.

In all our experiments a single-federate is hosted on each DOM
and such federate houses multiple LPs.

4.2 Benchmark Application Scenarios
Using the PDES applications listed in the previous section four
benchmark applications namely, Balanced Load Benchmark
(BLB), Unbalanced Load Benchmark (ULB), High Load
Benchmark (HLB) and Vehicular-traffic Simulation Benchmark
(VSB), were designed. In all the benchmarks using PHOLD a
lookahead of 1 was used.

Balanced Load Benchmark
All BLB experiments have NLP as 1, indicating 1 LP/Federate
and the NMSG is varied (10 and 100 messages/LP). With an
experiment involving 24 DOMs (NUM_DOMS = 24) the number
of messages PHOLD uses is (

€

NUM _DOMS × NLP × NMSG),
i.e., 240 and 2400 messages for 10 and 100 messages/LP,
respectively. These set of experiments are carried out for both
OPT and CONS, for LOC values of 50, 90 and, 100 percent.

Unbalanced Load Benchmark
All ULB experiments have NMSG as 1.5, while NLP is varied (10
LPs/Federate and 100 LPs/Federate). To elaborate on 1.5 NMSG,
let us consider experiments with 24 federates, the total number of
messages PHOLD uses will be 360 (24×10×1.5) and 3600
(24×100×1.5) messages for 10 LPs/federate and 100 LPs/federate,
respectively. The distribution of total messages at the start of the
simulation is performed in round-robin pattern among all the LPs.
Hence, the first 12 DOMs hosting 1200 LPs in the 100
LPs/federate scenario, are initialized to handle 2400 messages (2
messages/LP), with each federate or DOM handling 200
messages, while the remaining 1200 LPs are initialized with
remnant 1200 messages (1 message/LP) with each federate or
DOM handling 100 messages. Thus creating a load imbalance
among DOMs, with the first half of DOMs essentially starting the
simulation with twice the number of messages than the second
half of DOMs.

High Load Benchmark
HLB is used study the impact of increase in federates (over-
subscription) from 16 to 64 in a highly loaded PHOLD
experiment scenario. We run 100 LPs/federate, 100 messages/LP
with 24, 32 and 64 federates with 90% LOC. Hence, as the
number of federates increase so does the problem size. For
example: in the 16 federate scenario 1600 LPs hosted on 16
DOMs simulate exchanges of 160000 messages over 100 seconds
of simulation time, while the 64 federate scenario involves
simulation of 640000 message exchanges among 6400 LPs hosted
on 64 DOMs.

Vehicular-traffic Simulation Benchmark
VSB simulates the evacuation of 163,840 vehicles emanating
from 128 sources (right and left) and moving towards 128 (top
and bottom) sinks through a road-network grid with 64×64 (4,096
intersections), as shown in Figure 5. As shown in Figure 5, the
sources and sinks are always equally divided among all federates.
Each source randomly (uniform random distribution) generates 10
vehicles/hour/destination for an hour. The intersections are

connected to one another by a pair of oppositely directed and a
kilometer long single-lane roads. The traffic lights are provided
with 8-second cycle (red-green-red) time, the time required by a
vehicle to cross an intersection (which is used as lookahead) 1
second.

Figure 5 VSB road-network

4.3 Hardware and Software
The experiments were performed on a high end Mac-Pro server
with two hex-core Intel® Xeon processors at 2.66 GHz, 6.4 GT/s
processor interconnect speed with 32G of memory. With hyper-
threading enabled, Xen sees 24 cores. With Xen creating 24
PCPUs to handle this, all our experiments view this system as a
24-core machine. OpenSUSE 11.1 with Xen-3.3.1 and Xen-3.4.2
source code was used on this hardware. Para-virtual DOMs
running Linux® guest-OSs connected using a software bridge and
sharing a file-based disk image (mounted as a loop-device in
DOM0) using Network File System (NFS) [9] were used for
experimentation. The Linux® guest-OSs were built using Linux-
2.6.18 distribution modified to support a system-call to update the
shared_info data-structure. Two versions of the µsik engine, one
unmodified and the other having the capability to pass LVT
values to the hypervisor, were installed on all the guest-OSs. All
the CSX experiments used the un-modified version, while PSX
used the modified version of µsik.

5. Performance Results
5.1 CSX Instrumentation
In the Xen hypervisor, all the inter-DOM network traffic passes
through the DOM0. Hence, as the number of inter-federate events
increases in a PDES application, and, if sufficiently high priority
or weight is not given to the DOM0, the performance degrades.
To identify this performance effect and to optimize the execution
by taking this factor into account in our performance comparison
with PSX, we performed experiments to determine the best
configuration for the CSX native scheduler. We present the results
from BLB and ULB using CSX with varying weights for DOM0.

By default, all DOMs including DOM0 are assigned a weight of
256. However, as mentioned earlier, CSX provides user the
ability to alter the weight of any DOM. In our performance runs
we increase the DOM0 weights in multiples of 256, while all
others are maintained at 256. Hence 2x and 4x weights suggest
twice (512) and four times (1024) the default weight of 256,
respectively, giving proportionally more weight to DOM0 than
the other DOMs.

The plots in Figure 6 and Figure 7 show the runtime results for
BLB and ULB for varying weights of DOM-0, respectively, with
24 federates hosted on 24 DOMs. CSX BLB plot correspond to
1LP/federate and 100 messages/LP. While, the CSX ULB plot
corresponds to 100 LPs/federate (2400 LPs) and 1.5 messages/LP

(3600 messages). From both plots two important points can be
derived (a) special treatment for DOM-0 in terms of weight is
absolutely needed for performance (b) increase in weight beyond
certain factor neither yields better performance nor deteriorates it.
Flat performance with increasing weights of DOM-0 is expected
because CSX divides the unused credits of DOM-0 equally among
other DOMs. Yet another interesting point to note is CSX with
OPT performs better than CSX_CONS for the same load
conditions, this is more clear in ULB.

Figure 6 CSX with balanced workload

Figure 7 CSX with unbalanced workload

Based on the results, it is clear that performance gains are not so
pronounced after reach 8x. However, to be conservative, we use a
DOM0 weight of 32x (8192, which provides the maximum gain)
for CSX in all the following comparative performance study with
PSX. Thus, all PSX (PDES-optimized scheduler) runs are in fact
judged against this already optimized CSX (native, fairness-based
VM scheduler).

5.2 Speedup under Balanced and Unbalanced
Workloads
In this section we compare the runtime performance of PSX and
CSX using BLB and ULB. Two experimental setups are
considered (a) Virtual compute resources closely match physical
resources (b) Virtual compute resources are slightly over-
subscribed.

Virtual and Physical compute resources match
We use 24 DOMUs in this case; hence this setup more closely
matches the virtual compute resources with physical compute

resources. Even though DOM0 infringes into the resource pool, it
is not involved in the simulation. Note the CSX runs are not
burdened to write into and read from shared_info. However, PSX
requires that LVT be written into the shared_info, which is read
during scheduling. Note that all BLB benchmarks have NLP=1,
while NMSG and LOC values vary. Similarly, all ULB
benchmarks have NMSG=1.5, while NLP and LOC values vary.

Figure 8 Speed-up of PSX over CSX-32x in 24-DOM with

balanced workload

Figure 9 Speed-up of PSX over CSX-32x in 24-DOM with

unbalanced workload
Figure 8 and Figure 9 plot the observed speed-up of PSX over
CSX for BLB and ULB, respectively. It is observed from both
BLB and ULB plots that when the physical resources match
virtual resources CSX performs better than PSX. This
performance loss in PSX can be attributed to the overhead
involving the shared_info writes and reads. One can see that as
the simulation load (in-terms of number of messages exchanged)
increases PSX’s performance gets better and catches up with that
of CSX. The only exception to this observation can be seen in
ULB plot in Figure 9, where the runtime and hence the
corresponding speedup of the OPT run in LOC_50-NLP-100-
NMSG_1.5 scenario suffers, this can be attributed to the reversals
in the OPT run.

Virtual compute resources are slightly over-
subscribed
When the physical resources are over-subscribed the effects of
PSX becomes noticeable. Figure 10 shows the speed-up plot for
BLB. It is noticed from the plot that apart from the scenarios with
LOC is 100 (inter-federate message passing is 0) where the gains

are small all the others show a significant speed-up (about 6×
increase from CSX). The best speed-up is observed in the plots of
ULB runs shown in Figure 11, where the speed-up gains are over
an order (close to 20×). The ULB scenarios are slightly more
loaded and imbalanced in their load distribution among LPs
compared to BLB. Hence, PSX greatly excels in these sets of
experiments. The speed-up achieved by PSX using CONS is
always greater than its OPT counterpart. This is partly because
CSX tends to perform better with OPT. However, when only
runtime is taken into consideration the PSX with OPT is the best
in most of the cases.

Figure 10 Speed-up of PSX over CSX-32x in 32-DOM with

balanced workload

Figure 11 Speed-up of PSX over CSX-32x in 32-DOM with

unbalanced workload

5.3 Scaling to many DOMs
This scenario of experiments exercise even higher simulation
loads compared to BLB and ULB. With these benchmark runs,
we observe the performance implications of running large PDES
simulation scenarios on under-subscribed and over-subscribed
physical resource. The plots in Figure 12 show an increase in the
speed-up gains with increased over-subscription, thus suggesting
efficient utilization of physical resources.

The worst speedup in PSX (with both CONS and OPT) is
observed when the resources are under-subscribed. When the
virtual compute resources match the physical resources the speed-
up is slightly greater than 1. The speed-up increases with the

increase in the over-subscription of the physical compute
resources.

We observe that CSX with OPT is always better than CSX with
CONS and this difference is more apparent when number of
DOMs is 64. On the contrary the runtime of the PSX varies
seldom with CONS and OPT. However, PSX with CONS does
slightly well in benchmarks with 48 DOMs. Similar to previous
observations the speedup gained in CONS is better than that
gained in OPT. This weak-scaling benchmark with its
performance numbers clearly demonstrates the significance of
efficiently allocating of compute resources.

Figure 12 CSX-32x and PSX runtime plots (weak scaling)

5.4 Runtime variation of event load
Note that in the PDES applications, compute cycles consumed
directly corresponds to the number of processed simulation
events. In such scenarios the capability of a parallel simulation
execution environment to grow or shrink its physical compute
resources as necessitated by the varying workload is extremely
beneficial in efficient utilization of available resources. Figure 13
plots the results from VSB experimental setup comprising 64
DOMs where, number of events processed by all federates are
plotted against the runtime. This figure also pictorially shows the
potential points (based on some number-of-processed-events
threshold) at which simulation execution environment could grow
and shrink.

A means to achieve the capability to grow and shrink in physical
resource utilization is via oversubscribing the compute resources
at the beginning of the simulation and, growing using process-
migration or shrinking by oversubscribing again. Hence, it
becomes necessary to optimize the performance of the hypervisor
when it is oversubscribed.
The VSB plots in Figure 14 show a speedup of 1.5 for both CONS
and OPT runs in 32 DOMs experimental setup and, a speedup
over 4.5 and 8 for CONS and OPT, respectively, in experimental
setup with 64 DOMs. More interesting than the speedup is that
the runtime of simulations using PSX remains nearly constant
even as the oversubscription intensity is doubled. This aspect of
scalability with the number of VMs makes PSX better suited for
parallel execution environments requiring the capability to grow
and shrink in physical resources over runtime.

6. SUMMARY AND CONCLUSION
We identified the performance degradation of native scheduling as
a potential drawback of existing virtualization-based parallel
computing installations. When this performance problem is
solved, the numerous other benefits such as serviceability and cost

effectiveness offered by the new platforms can be reaped for
PDES applications. We addressed the performance problem by
first tracing it to the mismatch of virtual time-based dependencies
of PDES across VMs and the time sharing-based operation of VM
platforms for typical applications. Based on this insight, a new
PDES-optimized scheduler was designed, developed and
implemented. Several benchmarks, with different event workload
patterns, load imbalance levels and application behaviors were
used in a detailed performance study. Results from all benchmarks
demonstrate excellent speedup, scalability and suitability (for
growing and shrinking in compute resources) of the PDES-
optimized hypervisor.

Figure 13 Number of processed events with respect to runtime

in VSB using PSX with 64 DOMs

Figure 14 VSB performance plots for experimental setups

comprising 32 DOMs and 64 DOMs (strong scaling)

Overall, it is clear from the results that virtualization-based
parallel computing platforms should be required to provide
facilities for application-specific scheduling on compute node
instances in order to avoid the performance degradation in
specialized applications such as PDES.
Future work of interest includes incorporating and benchmarking
the support for dynamic growth and shrinkage of physical
processors allocated to a PDES run dynamically during its
execution.

ACKNOWLEDGMENTS
This research was performed as part of a project sponsored by the
U.S. Army Research Laboratory. This paper has been authored
by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with
the U.S. Department of Energy. Accordingly, the United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or
allow others to do so, for US Government purposes.

REFERENCES
[1] Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S.,

Cholia, S., Shalf, J., Wasserman, H.J., Wright, N.J.,
“Performance Analysis of High Performance Computing
Applications on the Amazon Web Services Cloud,” IEEE
Second International Conference on Cloud Computing
Technology and Science (CloudCom), 2010

[2] Malik, A., Park, A., Fujimoto, R., “Optimistic
Synchronization of Parallel Simulations in Cloud Computing
Environments,” IEEE International Conference on Cloud
Computing, 2009

[3] Fujimoto, R.M., Malik A. W., Park, A. J., “Parallel and
Distributed Simulation in the Cloud,” SCS Modeling and
Simulation Magazine, Society for Modeling and Simulation
International, Vol. 1, No. 3, 2010

[4] David Chisnall, “The Definitive Guide to the Xen
Hypervisor,” ISBN 978-013-234971-0, Prentice Hall, 2008.

[5] Perumalla, K. S. “µsik - A Micro-Kernel for
Parallel/Distributed Simulation Systems,” IEEE Workshop
on Principles of Advanced and Distributed Simulation, 2005

[6] Fujimoto, R. M., “Parallel and Distributed Simulation
Systems,” Wiley-Interscience, 2000

[7] Gu, Z. and Q. Zhao, “A State-of-the-Art Survey on Real-
Time Issues in Embedded Systems Virtualization,” Journal
of Software Engineering and Applications, 2012

[8] Yoginath, S.B. and Perumalla, K.S., “Efficiently Scheduling
Multi-Core Guest Virtual Machines on Multi-Core Hosts in
Network Simulation,” IEEE Workshop on Principles of
Advanced and Distributed Simulation, 2011

[9] Callaghan, B., Pawlowski, B., and Statubach, P, “NFS
Version 3 Protocol Specification,” RFC 1813

[10] Fujimoto, R. M., “Performance of Time Warp Under
Synthetic Workloads,” Distributed Simulation Conference,
1990

[11] Yoginath, S.B. and Perumalla, K.S., “Parallel Vehicular
Traffic Simulation using Reverse Computation-based
Optimistic Execution,” IEEE Workshop on Principles of
Advanced and Distributed Simulation, 2008

[12] Jefferson, D., Beckman B., Wieland, F., Blume, L., and
Diloreto, M. “Time warp operating system” Proceedings of
the ACM Symposium on Operating systems principles, 1987

[13] Park, A., “Master/Worker Parallel Discrete Event
Simulation” PhD thesis, Georgia Institute of Technology,
2008

