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ABSTRACT 
With the advent of virtual machine (VM)-based platforms for 
parallel computing, it is now possible to execute parallel discrete 
event simulations (PDES) over multiple virtual machines, in 
contrast to executing in native mode directly over hardware as is 
traditionally done over the past decades.  While mature VM-based 
parallel systems now offer new, compelling benefits such as 
serviceability, dynamic reconfigurability and overall cost 
effectiveness, the runtime performance of parallel applications can 
be significantly affected.  In particular, most VM-based platforms 
are optimized for general workloads, but PDES execution exhibits 
unique dynamics significantly different from other workloads. 
Here we first present results from experiments that highlight the 
gross deterioration of the runtime performance of VM-based 
PDES simulations when executed using traditional VM 
schedulers, quantitatively showing the bad scaling properties of 
the scheduler as the number of VMs is increased. The mismatch is 
fundamental in nature in the sense that any fairness-based VM 
scheduler implementation would exhibit this mismatch with 
PDES runs.  We also present a new scheduler optimized 
specifically for PDES applications, and describe its design and 
implementation.  Experimental results obtained from running 
PDES benchmarks (PHOLD and vehicular traffic simulations) 
over VMs show over an order of magnitude improvement in the 
run time of the PDES-optimized scheduler relative to the regular 
VM scheduler, with over 20× reduction in run time of simulations 
using up to 64 VMs.  The observations and results are timely in 
the context of emerging systems such as cloud platforms and VM-
based high performance computing installations, highlighting to 
the community the need for PDES-specific support, and the 
feasibility of significantly reducing the runtime overhead for 
scalable PDES on VM platforms. 

Categories and Subject Descriptors 
I.6.8 [Simulation and Modeling]: Types of Simulation – discrete 
event, distributed, parallel 

General Terms 
Algorithms, Measurement, Performance, Design, Experimentation 

Keywords 
Resource scheduling, hypervisor schedulers, virtual machines, 
cloud computing, discrete-event simulations, parallel and 

distributed simulations 

1. INTRODUCTION 
Newer parallel computing platforms, such as cloud computing, 
based on virtualization technologies are maturing of late, and are 
seen as a good alternative to native execution directly on specific 
parallel computing hardware. There are several benefits to using 
the virtualization layer, making such platforms very appealing as 
an alternative approach to execute parallel computing tasks.  In 
the context of parallel discrete event simulation (PDES), the 
benefits include the following: 

• The ability of the virtualization system to simultaneously host 
and execute multiple distinct operating systems (OS) enables 
PDES applications to utilize a mixture of simulation 
components written for disparate OS platforms 

• The ability to over-subscribe physical resources (i.e., multiplex 
larger number of VMs than available physical compute 
resources) allows the PDES applications to dynamically grow 
and, shrink the number of physical resources as the resources 
become available or unavailable, respectively 

• The dynamic imbalances in event loads inherent in most PDES 
applications can be efficiently addressed using the process 
migration feature of the virtual systems 

• The fault tolerance features supported at the level of VMs in 
concert with the VM migration feature also automatically helps 
in achieving fault-tolerance for PDES applications. 

A critical component of the virtualized system is the hypervisor, 
which provides the ability to host and execute multiple VMs on 
the same physical machine. To support the largest class of 
applications, a fair-sharing scheme is employed by the hypervisor 
for sharing the physical processors among the VMs.  The concept 
of fair sharing works best either when the VMs execute relatively 
independently of each other, or when the concurrency across VMs 
is fully realized via uniform sharing of computational cycles.  
This property holds in the vast majority of applications in general.  
However, in PDES, fair-share scheduling does not match the 
required scheduling order, and, in fact, may run counter to the 
required order of scheduling.  This mismatch arises from the 
fundamental aspect of inter-processor dependency in PDES, 
namely, the basis on the global simulation time line. 
In PDES the simulation time advances with the processing of 
time-stamped simulation events.  In general, the number of events 
processed in a PDES application varies dynamically during the 
simulation execution (i.e., across simulation time), and also varies 
across processors.  This implies that the amount of computation 
cycles consumed by a processor for event computation does not 
have any specific, direct correlation with its simulation time.  A 
processor that has few events to process within a simulation time 
window ends up consuming few computational cycles.  It is not 
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ready to process events belonging to the simulation-time future 
until other processors have executed their events and advanced 
their local simulation time.  However, a fair-share scheduler 
would bias the scheduling towards this lightly loaded processor 
(since it has consumed fewer cycles) and penalize the processors 
that do in fact need more cycles to process their remaining events 
within that time window.  This type of operation works against the 
actual time-based dependencies across processors, and can 
dramatically deteriorate the overall performance of the PDES 
application. This type of deterioration occurs when conservative 
synchronization is used.  Similar arguments hold for optimistic 
synchronization, but, in this case, the deterioration can also arise 
in the form of an increase in the number of rollbacks.  The only 
way to solve this problem is to design a new scheduler that is 
aware of, and accounts for, the simulation time of each VM, and 
schedule them in a least-simulation-time-first order. 

1.1 Related Work 
Poor performance of certain high-performance computing 
applications has also been observed very recently [1] and 
customized solutions are being proposed, which are not applicable 
to PDES. The issue of executing PDES applications in cloud 
environments has been studied recently [2][3], addressing the 
performance issue at the application layers (e.g., cloud 
architecture).  The Master-Worker approach to distributed (and 
fault tolerant) PDES [13] is also a related but complementary 
approach, different from our support for the traditional PDES 
execution view in which all processors are equal.  We adopt a 
different approach by focusing at the lowest level, i.e., at the level 
of the hypervisor itself.  Incidentally, the Time-Warp Operating 
System [12] of the 1980’s is one of the earliest works that 
addressed PDES performance issues by realizing the simulation 
scheduler (and related functionality) at the bottom-most hardware 
levels; however, this was limited to a single operating system, as 
opposed to a hypervisor system. 

There is also a superficial semblance with our own prior related 
work in VM-based network simulations.  However, VM-based 
network simulations are fundamentally different from PDES 
execution over VM platforms.  In VM-based network simulations, 
the simulation time of each VM is determined by the hypervisor 
itself (in terms of computation time consumed by each VM, 
tracked and accounted by the hypervisor), whereas in PDES over 
VMs, the virtual time for scheduling is entirely determined by the 
user’s simulation model.  The hypervisor does not (in fact, cannot) 
have any way of influencing the virtual time at which the 
simulator executes inside each VM.  The virtual time can only be 
communicated from the PDES engine to the hypervisor via the 
VM’s OS, and the hypervisor is obligated to respect the value of 
the virtual time supplied by each VM (albeit, with the guarantee 
that the global minimum of the times across all VMs will never 
decrease). 
While the concepts developed in this paper for VM-based PDES 
are sufficiently general, our implementation and experimentation 
are performed with the Xen® [4] hypervisor (a freely available, 
popular hypervisor), and the µsik [5] parallel/distributed 
simulation kernel (a high performance PDES simulator). 

1.2 Xen hypervisor 
The Xen [4] hypervisor is a popular open source industry standard 
for virtualization, supporting wide range of architectures including 
x86, x86-64, IA64, and ARM, and guest OS types including 
Windows®, Linux®, Solaris® and various versions of BSD OS.  

In Xen terminology, each VM is referred to as a Guest Domain or 
simply as a DOM1. Each DOM has a unique identifier called its 
Domain ID (DOM-ID). The first DOM called DOM0 is a 
privileged one with special management privileges. System 
administration tasks such as suspension, resumption, and 
migration of DOMs are managed via DOM0. 
Each DOM has its own set of virtual devices, including virtual 
multi-processors called virtual CPUs (VCPUs).  The hypervisor 
scheduling mainly deals with efficient mapping (multiplexing) of 
all the VCPUs of multiple VMs onto the available physical 
processor cores (PCPUs).  The credit-based scheduler (CSX) is 
the default Xen scheduler, which schedules VCPUs on to PCPUs 
based on the principle of fair-share.  CSX uses credits for every 
DOM, these credits are expended as the DOM’s VCPUs are 
scheduled for execution.  It provides a limited amount of control 
to the user to customize the scheduler configuration through 
parameters called weight and cap.  The default weight value for 
all DOMs is 256 and the cap is 0, ensuring fair CPU allocation to 
all of the DOMs.  This scheduler is very widely used, and works 
excellently for a very large variety of virtualization uses. 

1.3 Parallel Discrete Event Simulation 
In PDES, the model is divided into distinct independent virtual 
timelines referred to as Logical Process (LP).  Each LP typically 
encapsulates a set of state variables of a modeled entity.  The 
timelines of LPs within and across processors are kept 
synchronized by the simulation engine.  Two distinct 
synchronization mechanisms namely, conservative and optimistic 
synchronizations, are used in PDES.  In conservative 
synchronization, all event processing is always strictly performed 
in virtual time order at every LP.  On the contrary, in optimistic 
synchronization, any LP is allowed to temporarily violate 
simulation-time order of its events but uses a rollback mechanism 
(event cancellations and check-pointing/reverse computation) to 
correct the errors committed, and achieve eventual correctness.  
More details on PDES and its synchronization mechanisms can be 
found in [6].  The µsik parallel/distributed simulation kernel [5] 
built upon micro-kernel architecture is used for our 
experimentations.  The runtime architecture of µsik supports 
execution of models in which one or more LPs can be mapped to 
each VM, and it supports both conservative and optimistic 
synchronization mechanisms. 

In general, one or more LPs can be mapped on to each µsik 
federate (simulation process), each such federate maps to a 
VCPU, each VM contains one or more VCPUs, and multiple such 
VMs are hosted by a hypervisor. 

For the purposes of this research, the µsik engine is made to 
interoperate with the Xen hypervisor scheduler.  We will refer to 
the PDES-specific scheduler for Xen in this implementation as 
PSX. 

1.4 Organization 
The rest of the article is organized as follows.  The important 
design considerations in the development of PDES-specific VM 
scheduler are described in Sections 2, followed by implementation 
details in Section 3.  In Section 4, the PDES benchmarks and 
scenarios used for performance evaluation are described. A 
performance study is presented in Section 5 along with the results 
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from detailed experiments.  The findings are summarized and 
concluded in Section 6. 

2. DESIGN 
In PDES, since LPs (and consequently, VMs) can have widely 
differing event loads, they exhibit different ratios of simulation 
time to wall clock time.  Event load imbalance can arise across 
VMs, which is not only inherent but also hard to predict due to its 
dynamic nature.   Fundamentally, this dynamic, scenario-specific 
variation of the ratio of simulation time to wall clock time is the 
critical factor that must be accounted for in the design of the 
PDES-specific VM scheduler. 
However, in PDES we do know that the LP with the lowest value 
of local virtual time (LVT) affects the progress of its peers and 
hence the entire simulation application.  Hence, if the LVT of the 
LP were used as the criterion in allocating processor time to VMs 
by the hypervisor (i.e., LPs with lower LVT values are prioritized 
over those with higher LVT values), then the runtime performance 
can be optimized.  This can be achieved if the LPs running on 
different VMs are able to communicate their LVT values to the 
hypervisor, and the hypervisor in turn uses this information during 
the scheduling of VCPUs on to PCPUs.  An additional aspect in 
relation to global virtual time computation also becomes an 
important design consideration.  These design considerations are 
described next. 

2.1 Issues and Challenges 
To realize the PDES scheduler for Xen (PSX) we need to address 
two issues namely, (a) realize a way to efficiently communicate 
the LVT of each LP (which is at the application layer) to the 
hypervisor, and (b) to utilize this LVT information from within 
the hypervisor scheduler during scheduling with minimal 
overheads (such as by avoiding locking-based synchronization for 
LVT value transfer from the VM to the hypervisor data 
structures). 

To communicate the LVT of an LP from the application layer to 
the hypervisor, the LVT must first pass from the user-space of the 
PDES process to the kernel-space of the guest-OS and then to the 
hypervisor data regions.  One way to accomplish this is by adding 
a system call to the guest-OS to enable the transit of user-space 
data to kernel-space.  However, to make this data accessible to the 
Xen hypervisor the guest kernel uses a shared memory page 
named shared_info, which is used by the Xen hypervisor through 
out its runtime to retrieve information about the global state [4].  
The shared_info contains information that is dynamically updated 
as the system runs.  In fact the Xen hypervisor uses the 
shared_info for time-keeping functionality of its para-virtual 
guest-OS.  The LVT value from the guest-OS kernel-space is 
written into the shared_info, thus making it available to the 
hypervisor. 

Next, we need to implement the hypervisor scheduler that 
employs a least-simulation-time-first policy instead of the default 
credit-based fair scheduling strategy.  Implementing the Xen 
hypervisor scheduler for the application-specific requirements has 
been previously accomplished [7][8].  Each PCPU maintains a 
runq (priority-queue) in which the VCPUs requiring clock-cycles 
are en-queued.  The scheduler inserts the VCPUs into the PCPU 
runqs based on the LVT value.  Hence, every VCPU of a DOM 
that hosts the LP is required to maintain a variable (VCPU-LVT) 
representing LVT value of the LP.  Based on the VCPU-LVT 
value, the VCPUs are inserted in the runq of the PCPU.  With a 
least-simulation-time-first policy, the VCPU that the scheduler 

picks for allotting PCPU cycles will have the lowest LVT among 
all its peers. 

In addition to these two major requirements, it is also necessary to 
ensure that the LPs receive sufficient number of computational 
cycles to participate in Global-Virtual-Time (GVT) computation 
regardless of its LVT priority in relation to other LPs.  In the 
absence of this special treatment required for GVT computation, 
the simulation would deadlock.  This is because the VCPUs with 
lower VCPU-LVT values (i.e., having a higher scheduling 
priority) would not allow the VCPUs with a higher VCPU-LVT to 
be chosen for scheduling.  This results in blocking the GVT 
computation at the application level, as some of the LPs (with a 
higher LVT value) would never get a chance to respond during 
GVT computation.  This problem can be solved by ensuring that 
some PCPU cycles are periodically and unconditionally provided 
to the VCPUs regardless of their VCPU-LVT values. 

2.2 System Architecture 

 
Figure 1 The design of the PDES-customized scheduler 

Figure 1 shows the system architecture of a hypervisor-based 
parallel computing environment with a scheduler optimized for 
PDES execution.  For simplicity of explanation, let us assume that 
a single LP is hosted on each PDES federate and each VM has a 
single VCPU (note that this is not a requirement or a limitation of 
our system, but it simplifies understanding). As illustrated in 
Figure 1, the LVT of an LP is passed to the VCPU of its DOM.  
The scheduler that performs the task of multiplexing VCPUs onto 
PCPUs uses the VCPU-LVT and employs least-simulation-time-
first scheduling.  With a least-simulation-time-first order, the 
scheduler gives the highest priority to the VCPU with least 
VCPU-LVT value, as opposed to the default fair distribution of 
compute cycles across all the DOMs.  The special VMs (DOM0 
and Idle-DOM) in Xen do not participate in the PDES simulation.  
The DOM0 is the privileged DOM, and the Idle-DOM is a Xen 
mechanism to ensure that the PCPU run-queues are never empty. 

3. IMPLEMENTATION 
To realize the PDES-optimized hypervisor scheduler, we require 
(a) each µsik kernel instance running on a DOM to independently 
communicate its LVT value to the Xen scheduler, and (b) a new 
Xen hypervisor scheduler implementation that utilizes the 
communicated LVTs to optimize compute-resource sharing.  
These implementation details are described next. 



3.1 Communicating LVT to Xen Scheduler 
The mechanisms for communicating the simulation time from the 
simulation LPs at the user-level down to the scheduler data 
structures at the hypervisor level is conceptually trivial but 
implementation-wise non-trivial, especially to keep the runtime 
overheads low.  The scheme involves modifications to the DOM 
OS kernel (Linux, in our test implementation), and corresponding 
modifications to the simulation engine (µsik, in our test 
implementation). 

Linux Kernel Modifications 
To send the LVT information from the application level which is 
a µsik federate, we defined and implemented a new system call for 
the Linux® OS to be able to invoke it from the µsik library from 
within the simulation loop. This system call allows the LVT 
information to transit from user-space to kernel-space; once 
reaching the kernel-space, the LVT value is written into the 
shared-info data structure of the host DOM, which in turn can be 
accessed by the hypervisor at runtime. 

 
Figure 2 Modified shared_info data-structure with 

emboldened newly added variable names 
However, the para-virtual guest-OS kernel has to be re-built after 
the addition of a new system call and incorporating the changes to 
the shared_info data-structure (Figure 2) in correspondence to its 
modification in the hypervisor.  Two fields namely, simtime and 
switch_scheduler are added to the shared_info data-structure.  
Each guest-OS maintains a shared_info page, which is mapped on 
to memory by the hosting DOM, during its creation.  While 
simtime is used for holding the LVT of the federate mapped on to 
this DOM, the switch_scheduler is a flag that indicates the switch 
between two different modes of the scheduler operation namely, 
normal-mode and simulation-mode (described later in greater 
detail). 

Using the system call, the µsik federate writes the simulation time 
to simtime of the shared_info along with a variable that either sets 
or unsets the switch_scheduler variable.  The switch_scheduler in 
shared_info is set to suggest that PDES scheduler is in simulation-
mode and, is maintained in this mode until the simulation ends.  
This flag is also used as an indication for the scheduler to read the 
LVT values from the shared_info of the DOMs into their VCPU 
and to use these values during scheduling.  Note that the federate 
running on the guest-OS simply updates the shared_info and is 
operationally independent of the shared_info variables usage by 
the hypervisor. 

µsik Library Modifications 
In order to communicate the LVT value from the µsik federate to 
the hypervisor scheduler, the µsik library is modified.  It is 
required for the µsik library to indicate the start and the end of the 
PDES run to the hypervisor scheduler so that the scheduler can 
switch its mode of operation in accordance, from normal mode to 

simulation mode and back.  During µsik’s initialization, the 
switch_scheduler in shared_info of its host DOM is set true using 
the custom system call.  The scheduler reads this variable to 
change its mode of operation from normal-mode to simulation-
mode.  Similarly, during the termination of simulation the 
switch_scheduler is set false to revert back to its normal-mode of 
operation. 

In µsik, the LPs hosted by the PDES federate are event-oriented, 
and during the simulation run, the LP with the least LVT is 
chosen by the federate for event processing.  The simtime variable 
of the shared_info can always be kept updated to the LVT value 
of the recently processed event by the federate.  However, we 
limit the number of writes to shared_info by updating it only 
when the subsequent changes in the federate LVT value are 
greater than the lookahead value. 

Every µsik federate maintains a variety of simulation times based 
on its event processing state at any given moment.  They are 
distinctly classified into four classes, namely, committed, 
committable, processable and emittable [5].  We can transmit any 
of these LVT values to the hypervisor.  In practice, we observed 
that the use of the “earliest-committable-time-stamp” resulted in 
better performance than the others, and hence, this is the 
simulation time value used in all our experiments. 

3.2 Xen Scheduler Implementation 
The PDES Scheduler for Xen (PSX) scheduler replaces the 
default Credit Scheduler of Xen (CSX) in scheduling the virtual 
CPU (VCPUs) onto the physical cores of CPU (PCPU).  The 
strategy that we take to replace the scheduler is similar to the one 
presented by [8]. 

PSX data-structures 
The switch_sched (corresponding to switch_scheduler in 
shared_info) is a field of global ps_priv global variable, which is 
an instance of ps_private data-structure (shown in Figure 3) and, 
by default the value of switch_sched is false (normal-mode).  The 
scheduler regularly checks the shared_info associated with the 
guest-DOM of the VCPU it services.  Hence, when the 
switch_scheduler value the shared_info of any guest-DOM is 
updated, the scheduler reads it from the shared_info and, writes it 
to switch_sched field of ps_priv variable.  The scheduler uses 
spin-locks in this process to avoid any un-desirable race 
conditions during its SMP execution.  Each VCPU reads the LVT 
value from the shared_info into its sim_time variable.  Figure 3, 
shows the sim_time and switch_sched variables in the PSX’s 
VCPU and ps_private data-structures, respectively. 

  
Figure 3 VCPU data-structure and ps_private global data-

structure in PSX, respectively 
The vcpu_ticks and vcpu_ref_time in the VCPU data-structure are 
used to record PCPU time allotted for each VCPUs.  The usage of 



prior_sim_time is to instrument PDES specific requirement, 
which will be discussed shortly. 

Scheduling in Normal-mode 
The scheduler is referred to be in normal-mode if the 
switch_sched (ps_private data-structure Figure 3) is false.  This 
corresponds to the mode in which the VMs are booted and 
operational, but no PDES run has been started (and hence LVT-
based scheduling is undefined).  PSX by default maintains the 
sim_time (VCPU data-structure Figure 3) of all DOM0 VCPUs 
lower than all the DOMUs.  In the normal-mode all the guest-
DOM VCPUs will have their sim_time initialized to 1, while 
DOM0 VCPUs have their sim_times initialized to 0.  Only after 
the switch_sched is set true by PDES federate the sim_time value 
of the relevant VCPU is updated after reading the shared_info.  
However, the sim_time of VCPUs of DOM0 continues to be 0 
even after switching to simulation-mode.   

Note that the sim_time corresponding to the VCPUs of the DOM0 
is always maintained to be lower than that of other VCPUs 
regardless of the PSX’s mode of operation. This guarantees that 
DOM0 VCPUs are always preferred over the other VCPUs, which 
in turn ensures better performance during inter-DOM 
communications (as all the virtual network traffic passes through 
DOM0) and a responsive user-interactivity with DOM0 during 
simulation execution. 

Scheduling in Simulation-mode 
The hypervisor switches to the simulation mode after the PDES 
execution is started on all the VMs.  Each PCPU maintains a runq 
(priority-queue) as shown in Figure 4 and, in the simulation-mode 
PSX en-queues the VCPUs to be scheduled in a prescribed 
priority. 

 
Figure 4 PSX physical CPU-core specific data-structure 

maintained by PSX 
We use the LVT as the VCPU priority – the lower the sim_time 
(VCPU data-structure Figure 3), the higher is its priority in the 
runq and, hence the earlier it is picked by PSX to allocate 
compute resource.  Every PCPU schedules itself for every tick 
using the timer named ticker.  The PCPU performs accounting for 
the VCPU currently being serviced by incrementing the 
vcpu_ticks and, updating the sim_time by reading the shared_info.  
The PCPU also generates a schedule interrupt for the VCPU being 
serviced on a less loaded PCPU.  During scheduling the SMP 
scheduler enqueues the VCPU being serviced and picks the 
VCPU with least sim_time across all PCPU runqs to service.  Our 
implementation of the scheduler allots a tick size (300 µs) of 
PCPU time for the VCPU picked to service. 

Scheduling consideration for GVT progress 
In addition to event processing, the LPs also need to participate in 
periodic GVT computation.  This periodic computation is 
necessary to consolidate the independent LVTs of each LP into a 
global GVT.  With least-simulation-time-first scheduling the 
federate with higher LVTs never get past the federate with lower 
LVTs and hence do not get any PCPU time to participate in GVT 
computation. Without successful GVT computation, LPs cannot 

determine which events can be processed next.  Without a special 
consideration for GVT computations, a strict least-simulation-
time-first based PSX does not allow completion of GVT 
computation, hence the PDES execution deadlocks. 

To overcome this, it is necessary to periodically provide a few 
PCPU cycles for VCPUs with higher sim_time.  We accomplish 
this by using the prior_sim_time variable of VCPU data-structure 
shown in Figure 3.  The prior_sim_time is updated whenever 
sim_time is read from the shared_info.  When the sim_time of a 
VCPU remains unchanged to its prior_sim_time value for a 
consecutive read of shared_info, then the sim_time is temporarily 
increased to a large value greater than simulation end_time say, 
max_time and, prior_sim_time is not updated.  Hence, during the 
next consecutive shared_info read, the prior_sim_time value will 
be different from the temporary max_time value; the sim_time and 
prior_sim_time are updated regardless of whether the simulation 
time actually advanced or not.  Such an operation based on 
temporarily flipping the sim_time to max_time ensures unhindered 
GVT computations. 

4. Experimental Setup 
To exercise the implementation and perform a quantitative study 
of runtime performance, we use a range of application scenarios, 
as described next. 

4.1 Benchmark Applications 
Two applications namely, PHOLD [10] (a synthetic PDES 
application generally used for performance evaluation) and 
SCATTER-OPT [11] (a reverse-computation-based vehicular 
traffic PDES application) are used in our performance studies. 

PHOLD 
This is a widely used synthetic benchmark for performance 
evaluation in the PDES community.  This PDES application 
randomly exchanges a specified set of messages between the LPs.  
The µsik implementation of PHOLD allows exercising a wide 
variety of options in its execution.  In all of our PHOLD 
benchmarks we use a lookahead of 1 and utilize combinations of 
the listed variants for performance evaluation. 

a. Synchronization: optimistic (OPT) or conservative 
(CONS) 

b. Number of LPs per Federate (NLP) [for example: 10 
NLP = 10 LPs/federate] 

c. Number of messages per LP (NMSG) [for example: 10 
NMSG = 10 messages/LP] 

d. Destination locality of the LP generated message (LOC) 
specifies the percentages of local and remote events.  
Values of 50, 90 and 100 suggest respectively that 50%, 
90% and 100% of the messages generated by an LP are 
local to its federate.  Hence, a value of 50% for LOC 
involves more LP message exchanges across the 
network and results in increased network traffic; a value 
of 90% results in a reasonable amount of inter-federate 
event traffic, and, 100% suggests an embarrassingly 
parallel PDES application involving little inter-federate 
interaction except for GVT computations. 

SCATTER-OPT 
This application is a discrete-event formulation and a parallel 
execution framework for vehicular traffic simulation.  It uses the 
µsik library for parallel execution and, is amenable to both 
conservative (CONS) and optimistic (OPT) synchronizations.  A 
simulation scenario is set up by reading an input file that specifies 



the road-network structure, number of lanes, speed limit, source 
nodes, sink nodes, vehicle generation rate, traffic light timings and 
other relevant information.  Dijkstra’s shortest-path algorithm is 
used to direct a vehicle to its destination.  This benchmark serves 
to exercise the hypervisor-based PDES performance using CSX 
and PSX schedulers with a more complex PDES application 
behavior and dynamics. 

In all our experiments a single-federate is hosted on each DOM 
and such federate houses multiple LPs. 

4.2 Benchmark Application Scenarios 
Using the PDES applications listed in the previous section four 
benchmark applications namely, Balanced Load Benchmark 
(BLB), Unbalanced Load Benchmark (ULB), High Load 
Benchmark (HLB) and Vehicular-traffic Simulation Benchmark 
(VSB), were designed.  In all the benchmarks using PHOLD a 
lookahead of 1 was used. 

Balanced Load Benchmark 
All BLB experiments have NLP as 1, indicating 1 LP/Federate 
and the NMSG is varied (10 and 100 messages/LP).  With an 
experiment involving 24 DOMs (NUM_DOMS = 24) the number 
of messages PHOLD uses is (

€ 

NUM _DOMS × NLP × NMSG ), 
i.e., 240 and 2400 messages for 10 and 100 messages/LP, 
respectively. These set of experiments are carried out for both 
OPT and CONS, for LOC values of 50, 90 and, 100 percent. 

Unbalanced Load Benchmark 
All ULB experiments have NMSG as 1.5, while NLP is varied (10 
LPs/Federate and 100 LPs/Federate).  To elaborate on 1.5 NMSG, 
let us consider experiments with 24 federates, the total number of 
messages PHOLD uses will be 360 (24×10×1.5) and 3600 
(24×100×1.5) messages for 10 LPs/federate and 100 LPs/federate, 
respectively.  The distribution of total messages at the start of the 
simulation is performed in round-robin pattern among all the LPs.  
Hence, the first 12 DOMs hosting 1200 LPs in the 100 
LPs/federate scenario, are initialized to handle 2400 messages (2 
messages/LP), with each federate or DOM handling 200 
messages, while the remaining 1200 LPs are initialized with 
remnant 1200 messages (1 message/LP) with each federate or 
DOM handling 100 messages.  Thus creating a load imbalance 
among DOMs, with the first half of DOMs essentially starting the 
simulation with twice the number of messages than the second 
half of DOMs. 

High Load Benchmark 
HLB is used study the impact of increase in federates (over-
subscription) from 16 to 64 in a highly loaded PHOLD 
experiment scenario.  We run 100 LPs/federate, 100 messages/LP 
with 24, 32 and 64 federates with 90% LOC.  Hence, as the 
number of federates increase so does the problem size.  For 
example: in the 16 federate scenario 1600 LPs hosted on 16 
DOMs simulate exchanges of 160000 messages over 100 seconds 
of simulation time, while the 64 federate scenario involves 
simulation of 640000 message exchanges among 6400 LPs hosted 
on 64 DOMs. 

Vehicular-traffic Simulation Benchmark 
VSB simulates the evacuation of 163,840 vehicles emanating 
from 128 sources (right and left) and moving towards 128 (top 
and bottom) sinks through a road-network grid with 64×64 (4,096 
intersections), as shown in Figure 5.  As shown in Figure 5, the 
sources and sinks are always equally divided among all federates. 
Each source randomly (uniform random distribution) generates 10 
vehicles/hour/destination for an hour.  The intersections are 

connected to one another by a pair of oppositely directed and a 
kilometer long single-lane roads.  The traffic lights are provided 
with 8-second cycle (red-green-red) time, the time required by a 
vehicle to cross an intersection (which is used as lookahead) 1 
second. 

 
Figure 5 VSB road-network 

4.3 Hardware and Software 
The experiments were performed on a high end Mac-Pro server 
with two hex-core Intel® Xeon processors at 2.66 GHz, 6.4 GT/s 
processor interconnect speed with 32G of memory. With hyper-
threading enabled, Xen sees 24 cores. With Xen creating 24 
PCPUs to handle this, all our experiments view this system as a 
24-core machine.  OpenSUSE 11.1 with Xen-3.3.1 and Xen-3.4.2 
source code was used on this hardware.  Para-virtual DOMs 
running Linux® guest-OSs connected using a software bridge and 
sharing a file-based disk image (mounted as a loop-device in 
DOM0) using Network File System (NFS) [9] were used for 
experimentation. The Linux® guest-OSs were built using Linux-
2.6.18 distribution modified to support a system-call to update the 
shared_info data-structure.  Two versions of the µsik engine, one 
unmodified and the other having the capability to pass LVT 
values to the hypervisor, were installed on all the guest-OSs.  All 
the CSX experiments used the un-modified version, while PSX 
used the modified version of µsik. 

5. Performance Results 
5.1 CSX Instrumentation 
In the Xen hypervisor, all the inter-DOM network traffic passes 
through the DOM0.  Hence, as the number of inter-federate events 
increases in a PDES application, and, if sufficiently high priority 
or weight is not given to the DOM0, the performance degrades.  
To identify this performance effect and to optimize the execution 
by taking this factor into account in our performance comparison 
with PSX, we performed experiments to determine the best 
configuration for the CSX native scheduler. We present the results 
from BLB and ULB using CSX with varying weights for DOM0. 

By default, all DOMs including DOM0 are assigned a weight of 
256.  However, as mentioned earlier, CSX provides user the 
ability to alter the weight of any DOM.  In our performance runs 
we increase the DOM0 weights in multiples of 256, while all 
others are maintained at 256.  Hence 2x and 4x weights suggest 
twice (512) and four times (1024) the default weight of 256, 
respectively, giving proportionally more weight to DOM0 than 
the other DOMs. 

The plots in Figure 6 and Figure 7 show the runtime results for 
BLB and ULB for varying weights of DOM-0, respectively, with 
24 federates hosted on 24 DOMs.  CSX BLB plot correspond to 
1LP/federate and 100 messages/LP.  While, the CSX ULB plot 
corresponds to 100 LPs/federate (2400 LPs) and 1.5 messages/LP 



(3600 messages).  From both plots two important points can be 
derived (a) special treatment for DOM-0 in terms of weight is 
absolutely needed for performance (b) increase in weight beyond 
certain factor neither yields better performance nor deteriorates it.  
Flat performance with increasing weights of DOM-0 is expected 
because CSX divides the unused credits of DOM-0 equally among 
other DOMs.  Yet another interesting point to note is CSX with 
OPT performs better than CSX_CONS for the same load 
conditions, this is more clear in ULB.   
 

 
Figure 6 CSX with balanced workload 

 
Figure 7 CSX with unbalanced workload 

Based on the results, it is clear that performance gains are not so 
pronounced after reach 8x.  However, to be conservative, we use a 
DOM0 weight of 32x (8192, which provides the maximum gain) 
for CSX in all the following comparative performance study with 
PSX.  Thus, all PSX (PDES-optimized scheduler) runs are in fact 
judged against this already optimized CSX (native, fairness-based 
VM scheduler). 

5.2 Speedup under Balanced and Unbalanced 
Workloads 
In this section we compare the runtime performance of PSX and 
CSX using BLB and ULB.  Two experimental setups are 
considered (a) Virtual compute resources closely match physical 
resources (b) Virtual compute resources are slightly over-
subscribed. 

Virtual and Physical compute resources match 
We use 24 DOMUs in this case; hence this setup more closely 
matches the virtual compute resources with physical compute 

resources.  Even though DOM0 infringes into the resource pool, it 
is not involved in the simulation.  Note the CSX runs are not 
burdened to write into and read from shared_info.  However, PSX 
requires that LVT be written into the shared_info, which is read 
during scheduling.  Note that all BLB benchmarks have NLP=1, 
while NMSG and LOC values vary. Similarly, all ULB 
benchmarks have NMSG=1.5, while NLP and LOC values vary. 

 
Figure 8 Speed-up of PSX over CSX-32x in 24-DOM with 

balanced workload 

 
Figure 9 Speed-up of PSX over CSX-32x in 24-DOM with 

unbalanced workload 
Figure 8 and Figure 9 plot the observed speed-up of PSX over 
CSX for BLB and ULB, respectively.  It is observed from both 
BLB and ULB plots that when the physical resources match 
virtual resources CSX performs better than PSX.  This 
performance loss in PSX can be attributed to the overhead 
involving the shared_info writes and reads.  One can see that as 
the simulation load (in-terms of number of messages exchanged) 
increases PSX’s performance gets better and catches up with that 
of CSX.  The only exception to this observation can be seen in 
ULB plot in Figure 9, where the runtime and hence the 
corresponding speedup of the OPT run in LOC_50-NLP-100-
NMSG_1.5 scenario suffers, this can be attributed to the reversals 
in the OPT run. 

Virtual compute resources are slightly over-
subscribed 
When the physical resources are over-subscribed the effects of 
PSX becomes noticeable.  Figure 10 shows the speed-up plot for 
BLB.  It is noticed from the plot that apart from the scenarios with 
LOC is 100 (inter-federate message passing is 0) where the gains 



are small all the others show a significant speed-up (about 6× 
increase from CSX).  The best speed-up is observed in the plots of 
ULB runs shown in Figure 11, where the speed-up gains are over 
an order (close to 20×).  The ULB scenarios are slightly more 
loaded and imbalanced in their load distribution among LPs 
compared to BLB.  Hence, PSX greatly excels in these sets of 
experiments.  The speed-up achieved by PSX using CONS is 
always greater than its OPT counterpart. This is partly because 
CSX tends to perform better with OPT.  However, when only 
runtime is taken into consideration the PSX with OPT is the best 
in most of the cases. 

 
Figure 10 Speed-up of PSX over CSX-32x in 32-DOM with 

balanced workload 
 

 
Figure 11 Speed-up of PSX over CSX-32x in 32-DOM with 

unbalanced workload 
 

5.3 Scaling to many DOMs 
This scenario of experiments exercise even higher simulation 
loads compared to BLB and ULB.  With these benchmark runs, 
we observe the performance implications of running large PDES 
simulation scenarios on under-subscribed and over-subscribed 
physical resource.  The plots in Figure 12 show an increase in the 
speed-up gains with increased over-subscription, thus suggesting 
efficient utilization of physical resources. 

The worst speedup in PSX (with both CONS and OPT) is 
observed when the resources are under-subscribed. When the 
virtual compute resources match the physical resources the speed-
up is slightly greater than 1.  The speed-up increases with the 

increase in the over-subscription of the physical compute 
resources. 

We observe that CSX with OPT is always better than CSX with 
CONS and this difference is more apparent when number of 
DOMs is 64.  On the contrary the runtime of the PSX varies 
seldom with CONS and OPT.  However, PSX with CONS does 
slightly well in benchmarks with 48 DOMs.  Similar to previous 
observations the speedup gained in CONS is better than that 
gained in OPT.  This weak-scaling benchmark with its 
performance numbers clearly demonstrates the significance of 
efficiently allocating of compute resources. 

 
Figure 12 CSX-32x and PSX runtime plots (weak scaling) 

5.4 Runtime variation of event load 
Note that in the PDES applications, compute cycles consumed 
directly corresponds to the number of processed simulation 
events.  In such scenarios the capability of a parallel simulation 
execution environment to grow or shrink its physical compute 
resources as necessitated by the varying workload is extremely 
beneficial in efficient utilization of available resources.  Figure 13 
plots the results from VSB experimental setup comprising 64 
DOMs where, number of events processed by all federates are 
plotted against the runtime.  This figure also pictorially shows the 
potential points (based on some number-of-processed-events 
threshold) at which simulation execution environment could grow 
and shrink. 

A means to achieve the capability to grow and shrink in physical 
resource utilization is via oversubscribing the compute resources 
at the beginning of the simulation and, growing using process-
migration or shrinking by oversubscribing again.  Hence, it 
becomes necessary to optimize the performance of the hypervisor 
when it is oversubscribed. 
The VSB plots in Figure 14 show a speedup of 1.5 for both CONS 
and OPT runs in 32 DOMs experimental setup and, a speedup 
over 4.5 and 8 for CONS and OPT, respectively, in experimental 
setup with 64 DOMs.  More interesting than the speedup is that 
the runtime of simulations using PSX remains nearly constant 
even as the oversubscription intensity is doubled.  This aspect of 
scalability with the number of VMs makes PSX better suited for 
parallel execution environments requiring the capability to grow 
and shrink in physical resources over runtime. 

6. SUMMARY AND CONCLUSION 
We identified the performance degradation of native scheduling as 
a potential drawback of existing virtualization-based parallel 
computing installations.  When this performance problem is 
solved, the numerous other benefits such as serviceability and cost 



effectiveness offered by the new platforms can be reaped for 
PDES applications.  We addressed the performance problem by 
first tracing it to the mismatch of virtual time-based dependencies 
of PDES across VMs and the time sharing-based operation of VM 
platforms for typical applications.  Based on this insight, a new 
PDES-optimized scheduler was designed, developed and 
implemented.  Several benchmarks, with different event workload 
patterns, load imbalance levels and application behaviors were 
used in a detailed performance study. Results from all benchmarks 
demonstrate excellent speedup, scalability and suitability (for 
growing and shrinking in compute resources) of the PDES-
optimized hypervisor. 
 

 
Figure 13 Number of processed events with respect to runtime 

in VSB using PSX with 64 DOMs 
 

 
Figure 14 VSB performance plots for experimental setups 

comprising 32 DOMs and 64 DOMs (strong scaling) 
 

Overall, it is clear from the results that virtualization-based 
parallel computing platforms should be required to provide 
facilities for application-specific scheduling on compute node 
instances in order to avoid the performance degradation in 
specialized applications such as PDES. 
Future work of interest includes incorporating and benchmarking 
the support for dynamic growth and shrinkage of physical 
processors allocated to a PDES run dynamically during its 
execution. 
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