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Abstract—Parallel discrete event simulation (PDES) represents
a class of codes that are challenging to scale to large number
of processors due to tight global timestamp-ordering and fine-
grained event execution. One of the critical factors in scaling
PDES is the efficiency of the underlying global virtual time
(GVT) algorithm needed for correctness of parallel execution
and speed of progress. Although many GVT algorithms have
been proposed previously, few have been proposed for scalable
asynchronous execution and none customized to exploit one-
sided communication. Moreover, the detailed performance effects
of actual GVT algorithm implementations on large platforms
are unknown. Here, three major GVT algorithms intended for
scalable execution on high-performance systems are studied: (1) a
synchronous GVT algorithm that affords ease of implementation,
(2) an asynchronous GVT algorithm that is more complex to
implement but can relieve blocking latencies, and (3) a variant
of the asynchronous GVT algorithm, proposed and studied for
the first time here, to exploit one-sided communication in extant
supercomputing platforms. Performance results are presented of
implementations of these algorithms on up to 129,024 cores of a
Cray XT5 system, exercised on a range of parameters: optimistic
and conservative synchronization, fine- to medium-grained event
computation, synthetic and non-synthetic applications, and differ-
ent lookahead values. Performance to the tune of tens of billions
of events executed per second are registered, exceeding the
speeds of any known PDES engine, and showing asynchronous
GVT algorithms to outperform state-of-the-art synchronous GVT
algorithms. Detailed PDES-specific runtime metrics are presented
to further the understanding of tightly-coupled discrete event
dynamics on massively parallel platforms.

Index Terms—Parallel Discrete Event Simulation, Time Warp,
Global Virtual Time, One-sided Communication, Asynchrony

I. INTRODUCTION

Parallel discrete event simulation (PDES) [1] is used for

simulating large scenario configurations in several important

areas such as epidemiological outbreak phenomena, Internet

modeling, vehicular transportation, emergency/event planning,

and social behavioral simulations, to name a few [2]. Discrete

event execution evolves the states of the underlying entities

(e.g., vehicles) in an asynchronous fashion, in contrast to time-

stepped execution in traditional scientific computing applica-
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tions in which the entire system state is (logically) updated

over fixed time steps.

In PDES, independent logical processes (LPs) hold encap-

sulated states and evolve their states along a virtual time axis,

and exchange timestamped events to incorporate inter-LP data

dependencies. In conservative PDES, an LP does not execute

an event until it can guarantee that no event with a smaller

timestamp will later be received by that LP. In optimistic

PDES, events are potentially executed before such a guar-

antee can be obtained, but, suitable corrective action (called

rollback) is performed on the incorrectly processed events

if any timestamp order violation is later discovered. PDES

runtime engines may support conservative, optimistic, or both

approaches. Runtime engines for discrete event simulations

need to deliver fast and accurate global timestamp-ordered

execution across a large number of processors, to speed up

large-scale scenarios in a range of applications. Among the

major challenges in scaling the PDES runtime engines is the

design and development of appropriate algorithms that ad-

vance the global virtual time (GVT) which directly determines

the advancement of the distributed wave of progress of all

processors executing events staggered along a global virtual

timeline.

While multiple equivalent definitions of GVT are possible,

here, we shall view GVT as a virtual time value Tmin such that

no processor shall receive any event E with a timestamp TE

such that TE < Tmin. Thus, each processor, after receiving a

value of Tmin, can commit local processing until Tmin without

fear of any data dependency violation. Clearly, the rapidity

with with Tmin can be advanced globally determines the speed

with which processors can concurrently execute their event

work loads; and, in turn, the faster the increase of the next

global minimum time would be. The fine-grained nature of

event execution imposes tight constraints on GVT algorithms

with respect to scalability. The scalability and efficiency of

GVT algorithms can only be properly experimented with ac-

tual software implementation and benchmarking using PDES

engines and applications at scale.

Here, we look at GVT algorithms that can scale to massively

parallel platforms, and focus on three major variants that

span the space of synchrony vs. asynchrony, and traditional

two-sided communication vs. newer one-sided communication

approaches. With two-sided communication, we propose two



algorithms generalized to include optimistic as well as conser-

vative discrete event execution. With one-sided communica-

tion, we propose a new asynchronous GVT algorithm that can

be mapped directly to the one-sided communication interfaces

supported by some of the largest supercomputing systems.

In evaluating the GVT algorithms, we study their perfor-

mance by varying four different dimensions in PDES appli-

cations: (1) event dependency structure, determined by the

application’s event computation characteristics such as event

granularity, and the distribution of timestamps dynamically

generated by events, (2) conservative or optimistic synchro-

nization, which determines whether LPs can process some

local events beyond GVT, (3) lookahead, which is a measure

of static concurrency available in the application scenario, and

(4) inter-processor messaging types, categorized here as two-

sided and one-sided.

Several global virtual time algorithms have been proposed

over the past two decades [1]. In the history of GVT al-

gorithms, a few salient items are: the Mattern’s algorithm

[3], hardware supported algorithms [4], [5], centralized algo-

rithms [6], unreliable and reliable network-based algorithms

[7], and reductions-based algorithms [7], [8]. Few GVT al-

gorithms have been gainfully employed on supercomputers

with 100,000+ processor cores, and relatively little is known

on the dynamics of discrete execution on a range of repre-

sentative applications and benchmarks. Even fewer focused

on the potential to exploit one-sided communication in GVT

computation. Although one-sided communication has been

used in other parallel applications, its use in PDES is different

in that it mixes the fixed structures and data volumes of

GVT messaging with the dynamic structures and data volumes

of the inter-processor event exchanges. PDES, as is well-

known, is highly latency-bound, making it an excellent class

of applications that can potentially exploit the benefits of fast

one-sided communication.

The rest of the paper is organized as follows. The GVT al-

gorithms are described in Section II, and their implementation

details are presented in Section III. A detailed performance

study on a variety of PDES benchmarks is described in

Section IV, followed by a summary in Section V.

II. SYNCHRONOUS AND ASYNCHRONOUS GVT

In a typical discrete event execution, the execution engine

operates in a loop of processing local events (main loop), and

participates in inter-processor synchronization for GVT. De-

pending on the specific needs of the synchronization scheme

employed by the engine, a GVT computation is initiated inside

the main loop. For example, a conservative engine initiates a

new GVT when it runs out of local events to process safely. An

optimistic execution initiates either at a predefined frequency

or on demand when memory used for rollback support needs

to be reclaimed. In the generalized hybrid engine, µsik [9],

that supports both conservative, optimistic, and mixed synchro-

nization, GVT is always initiated as soon as a previous GVT

completes, to minimize blocking for conservative LPs, and to

minimize uncommitted activity for optimistic LPs. Fast GVT

also can improve caching behavior, since it can help keep the

working set small.

Here, we consider three major variants for GVT computa-

tion: (1) whenever the engine initiates a GVT computation, it

blocks until a new GVT is computed, (2a) GVT computation

and engine’s main loop can be concurrently active, with the

same two-sided, inter-processor communication being used for

both event exchange and GVT messages, and (2b) just as in 2a,

GVT and event loops are concurrent, but they are independent

with respect to communication, with the GVT computed using

a direct memory access mode via one-sided communication.

These three variants are described next.

A. Synchronous Two-sided GVT

Similar to the synchronous variant of the lower bound time

stamp (LBTS) algorithm (over reliable transport) in Perumalla

and Fujimoto [7], and similar to the synchronous algorithm

given in Holder and Carothers [10], Algorithm 1 is a gener-

alization of [7], [11], but enhanced to support conservative as

well as optimistic execution with lookahead. The conceptually

simple approach in Algorithm 1 assumes synchronous exe-

cution and two-sided communication. It repeatedly computes

global summation of the count of events sent and received by

each processor, thereby indicating the presence of “transient”

messages floating in the network. When all processors detect

the absence of any transient messages in the system, they

proceed to compute the global minimum of their local virtual

times, thus giving global virtual time. In optimistic discrete

event executions, retractions (anti-messages) are treated as

regular events by using their timestamps just as those for

regular messages.

Unlike previous works [10], Algorithm 1 takes into account

the lookahead value (which could be zero if needed by

the model), and hence is usable by both conservative and

optimistic executions equally well.

Algorithm 1 Synchronous GVT algorithm invoked from

within the main loop whenever a new GVT is needed

1: nsent← no. of events sent so far to other processors

2: LV T ← min( minimum of all local timestamps,∞)
3: LA← lookahead from this to any other processor

4: nrecd← 0
5: repeat

6: δ ← blocking reduction
∑

(nsent− nrecd)
7: if δ = 0 then

8: GV T ← blocking reduction min(LV T + LA)
9: else

10: while any event E from a processor is available do

11: Receive E

12: nrecd++

13: LV T ← min(LV T,E.timestamp)
14: end while

15: end if

16: until δ = 0
17: nsent← 0



B. Asynchronous Two-sided GVT

Moving to an asynchronous formulation of the GVT com-

putation requires rewriting the main discrete event execution

loop as one in which GVT-related messaging and computation

is interleaved with local event processing. This is shown in

Algorithm 2. A variable d is used as a counter of the number of

GVT computations performed so far, also termed as the epoch

number. Each computation proceeds as sequence of trials,

which are successive reductions to determine the number δ

of transient events “in flight,” computed as the reduction with

the addition operator on the difference between the number

of events sent in previous epoch and the number received

in previous or current epoch. Together with the summation,

a reduction for the global minimum is performed on the

minimum local timestamps at each processor (line 13). When

δ becomes zero, clearly, the globally reduced minimum time is

usable as a (non-decreasing) GVT value (line 20). If δ is non-

zero, then, another asynchronous reduction must be started to

determine if there has been progress in event delivery (line 24).

C. Asynchronous One-sided GVT

The one-sided GVT operates exactly as in Algorithm 2, with

one major difference. Non-blocking GVT must perform its

synchronization via messaging, which gets multiplexed along

with incoming and outgoing event communication. Since GVT

messages compete with event messages, the mixed communi-

cation can impose latency for GVT messages, thereby delaying

GVT completion. One-sided communication, on the other

hand, can be used to exchange GVT messages with minimal

delay which is independent of the event communication.

The memory organization on each processor is shown in

Figure 1, with arrows showing the potential one-sided transfer

of data from the send buffers of processor Pi to the receive

buffers of processor Pj . Since GVT computation proceeds

asynchronously with the main event processing loop, some

processors complete a given GVT epoch d earlier than others

and may proceed to initiate the next epoch d+1. Analogously,
a trial r within an epoch d may complete on one proces-

sor which proceeds to its next trial r + 1, thereby sending

information belonging to epoch d and trial r + 1 while the

receiving processor may still be in the process of completing

the earlier epoch d, trial r. Hence, at any given moment, every

processor must maintain four different blocks of receivable

data: {(d, r), (d, r+1), (d+1, r), (d+1, r+1)}, to keep the

asynchronous computations independent of each other.

Using a tree topology optimized for hierarchical

(application-level, asynchronous) reductions, the inter-

processor structure is fixed for GVT messaging, determined

and initialized before beginning the main simulation loop. The

unit of memory layout for the GVT data structures is a fixed

message size (a C struct) defined to hold a GVT message

type. Additionally, room for jumpstart messages is also

allocated such that processors may jumpstart other processors

(within or outside its hierarchy) to begin participating in a

GVT computation. Some processors may need to be informed

so, because, during their own asynchronous event processing,

Algorithm 2 Asynchronous GVT algorithm within main exe-

cution loop, for both two-sided and one-sided communication

1: d: GVT epoch number, initially 0

2: r: Trial number within a GVT epoch

3: nsentd: no. of events sent in epoch d

4: nrecdd: events sent in epoch d received in d or d+ 1
5: LV Td : min( all local timestamps in epoch d ,∞)
6: LA: lookahead from this to any other processor

7: isactive: flag that GVT is being computed (initially false)

8: loop

9: if (a new GVT is needed) and (not isactive) then

10: d++
11: r ← 0
12: isactive←true

13: Start asynchronous reduction of all processors’∑
(nsentd−1 − nrecdd) and min(LV Td + LA)

14: end if

15: if isactive then

16: Advance the active asynchronous reduction

17: if asynchronous reduction completed then

18: δ ← reduced
∑

(nsentd−1 − nrecdd)
19: if δ = 0 then

20: GV T ←reduced min(LV Td + LA) value
21: isactive←false

22: else

23: r ++
24: Start asynchronous reduction of all processors’∑

(nsentd−1 − nrecdd) and min(LV Td + LA)
25: end if

26: end if

27: end if

28: Perform local event processing {conservative or opti-

mistic}
29: for each event Es being sent to another processor do

30: nsentd ++
31: Tag Es as sent in epoch d

32: end for

33: while any event Er from a processor is available do

34: Receive Er and its tag dr
35: nrecddr

++
36: LV Td ← min(LV Td, Er.timestamp)
37: end while

38: ...

39: end loop

they may not themselves need any additional GVT advances

until they run out of local event execution work. The jumpstart

messages thus help inform processors when they need to

participate in GVT computations started by other processors.

The potential advantages of one-sided messaging are: (1)

GVT messaging becomes separated from event communica-

tion, thereby eliminating competition, and its resultant la-

tency increase, for GVT messages, (2) overheads of dynamic

memory remapping is avoided due to static inter-processor
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Fig. 1. Data structures for one-sided communication-based GVT. Each in the send or receive buffers includes the (LV T +LA, nsent− nrecd) values of
the corresponding sender. Dashed lines represent put operations of reduced values, while the squiggly lines represent put operations of jump start messages
to initiate reduction on the receiver side.

messaging structure for GVT messages.

We now present implementation details of the algorithms

incorporated into the µsik discrete event execution engine.

III. IMPLEMENTATION

The implementation and experimentation were performed

on a Cray XT5 system in which each node consists of 2 hex-

core AMD Opteron 2435 (Istanbul) 2.6GHz processors and

16GB of memory. The nodes are connected through Cray’s

SeaStar 2+ 3D torus interconnect.

All inter-processor event communication is performed us-

ing traditional two-sided communication via MPI. The GVT

message exchange is also performed using MPI for the two-

sided GVT algorithms, and via the Portals [12] one-sided

interface for one-sided communication. Asynchrony with re-

spect to event messaging is realized via MPI_Iprobe() for

two-sided communication, and via PTL_EQGet() for one-

sided notifications. The synchronous two-sided GVT algorithm

uses MPI_Allreduce() for the blocking reduction of the

transient message counts and local virtual time values. It is also

easy to implement because complexities of multiple concurrent

epochs are absent due to the fact that all processors are always

at the same epoch number and the same trial number. The

asynchronous two-sided GVT algorithm is implemented with

user-level reductions performed via an optimized butterfly

pattern, using MPI messaging for exchanging the reduction

messages. Communication for asynchronous one-sided GVT

messaging is implemented using the Portals interface.

The Portals API on the Cray XT5 is implemented using

Portals Network Access Layer (NAL). The Portals NAL

provides a bridge between the Portals API and the SeaStar

Network Interface Card (NIC) and utilizes Basic End-to-



End Reliability (BEER) protocol for ensuring reliability and

performing credit-based flow control.

In the one-sided GVT algorithm implementation, Portals

is initialized with memory descriptors (MDs) used for put

operations configured with infinite threshold, and bound using

PtlMDBind() with the PTL_RETAIN setting to make MDs

reusable for later sends. To send, PtlPutRegion() is

used with PTL_NOACK_REQ since acknowledgments for send

completions are not needed by our GVT algorithm. For notifi-

cation of completion of one-sided put operations for GVT mes-

sages, we subscribe to the PTL_EVENT_SEND_END notifi-

cation. Similarly, PTL_EVENT_PUT_END notification is sub-

scribed to for notification of incoming GVT messages. All des-

tination memory locations of all one-sided puts are managed

on the sender-side, and hence, PTL_MD_MANAGE_REMOTE

is used on all sender-side MDs. The PTL_EQGet() and

PTL_EQWait() calls are used to process all Portals no-

tifications asynchronously. Since the maximum number of

outstanding puts are bounded per GVT (epoch), it is possible

to select a Portal event queue size such that no notifications

would be dropped, and hence PTL_EQ_DROPPED would be

flagged as an error condition.

The implementation of both non-blocking and one-sided

GVT algorithms is carefully done to ensure that no barriers

are ever invoked from the main loop.

The MPI option MPICH_PTL_MATCH_OFF was used to

make MPI perform message matching for the underlying

Portals device. In synchronous two-sided operation, we have

found that this provides a noticeable performance improve-

ment due to the latency-sensitive nature of PDES applications.

All of the benchmarks that are used to evaluate the GVT

algorithm performance are written as applications using the

same simulation engine, µsik, which is one of only two PDES

engines reported to date to scale to over 105 processor cores.

All the GVT algorithms have been implemented into µsik, any

one of which can be chosen by the user at runtime initialization

via an environment variable specification.

IV. PERFORMANCE ANALYSIS

We examine the dynamics of discrete event execution exer-

cised with the major GVT algorithms presented in this work

scaled up to 129,024 processor cores. In order to evaluate

the efficacy of each GVT algorithm, we selected four PDES

benchmarks which represent a wide cross-section of PDES ap-

plication characteristics, from varied event densities to mixed

messaging and event computation intensities.

All of the software used in this performance study was

compiled with the Portland Group (pgi) compiler version

2.2.73 with -O3 -fast compilation flags.

A. Execution Benchmarks

We use the following four PDES applications that run

over µsik, thus automatically inheriting the runtime benefits

of all the three GVT algorithm implementations and their

optimizations incorporated into µsik.

1) RCPHOLD: The PHOLD application [13] is a de facto

PDES benchmark used to exercise the underlying simula-

tor’s efficiency in event processing, message transmission

and reception to destination LPs and, if applicable, rollback

efficiency. PHOLD is a synthetic benchmark with little event

computation other than random number generation to deter-

mine the virtual time increments and destination LPs. PHOLD

can be executed conservative mode as well as optimistic mode.

PHOLD can be configured to send to random or a subset of

destinations. We define a value, neighbor reach, such that a

processor only sends to remote processors whose identifiers

are within a ± neighborhood of its own. Events can also

be sent to self. Outgoing events are timestamped with a

exponentially distributed timestamp with a mean of 1.0 plus

lookahead.

The PHOLD benchmark can be configured into specific

structures affecting event density and messaging behavior, two

of which are used for evaluation. For the present purposes, we

denote structure as a tuple of (σ, γ), where σ is the number of

LPs per core, and γ is a specific parameter for the simulation.

For PHOLD, γ is the multiplier for the message population

of the simulation. Thus, σ × γ × ω gives the total message

population of the entire simulation across ω cores.

The “RC” moniker of RCPHOLD stands for reverse com-

putation. Instead of storing the state of the simulation prior

to each event processed to facilitate rollback in optimistic

simulations. When a rollback occurs, the simulator performs

a sequence of undo operations that restore the state of the

simulation to the proper good state before incorrect events

were executed. This is a classic space-time tradeoff where, to

rollback the simulation, significant memory savings may be

obtained in exchange for some computational overhead.

2) RCREDIF: Another significant PDES benchmark used

is called RCREDIF [14], which is a large-scale epidemiolog-

ical outbreak simulation based on a reaction-diffusion model.

It uses a novel discrete event formulation of the phenomenon,

and a new reverse computation-based model as rollback sup-

port in its scalable optimistic simulation. Organized in terms

of a number of individuals per location (γ), a number of

locations per region (σ), and a region per processor, RCREDIF

simulates probabilistic transition state machines at the level

of each individual within populations Similar to RCPHOLD,

RCREDIF also can be executed both in conservative mode

as well as optimistic mode using reverse computation, and

also employs the neighbor reach specification (similar to

RCPHOLD) in determining the remote processors selected as

potential destinations.

Due to the amount of computation involved in reversing

an event, the rollback cost per event is relatively high in

RCREDIF. Thus, even if the rollback length is small in an

RCREDIF simulation run, the total rollback runtime overhead

can be relatively high.

3) µπ: µπ [15] is a software-based experimentation plat-

form for testing synthetic and real unmodified MPI programs.

µπ multiplexes virtual MPI ranks per real rank (the ratio to

be referred to as LPX) for execution over simulated virtual



platforms through µsik’s process-oriented PDES framework.

a) Barrier Test: The barrier test benchmark aims to

stress-test multiple items of interest: (a) ability to instantiate

and advance millions of virtual ranks on the simulation time

axis, (b) performance under very tight coupling among ranks,

especially with regard to stringent characteristics of their vir-

tual interconnection network, and (c) ability for a high level of

multiplexing for maximum efficiency. In the benchmark, every

rank repeatedly joins a barrier by invoking MPI_Barrier(),

and querying the time taken by each barrier via the times

returned by MPI_Wtime(). Also between each pair of bar-

riers, each rank advances simulation time by one millisecond

to model a relatively coarse-grained computation.

b) Ping Test: The ping test benchmark is used to measure

bandwidth and latency between pairs of communicating MPI

ranks. This ping test has virtual ranks arranged in a naturally-

ordered ring topology. The sender sends data to the next higher

virtual rank while receiving data from the lower virtual rank. If

the virtual rank number is even, it performs a blocking send

followed by a blocking receive. The order of operations is

reversed for odd-numbered virtual ranks. These operations are

timed via calls to MPI_Wtime() for bandwidth and latency

measurement.

These operations are iterated successively from 8 bytes to

the maximum specified test message size, where the length

of each message is doubled for each trial until the maximum

limit is reached. Note that for testing, the µsik messaging

layer implemented a constant payload length of approximately

50KB even if the message length was smaller than this amount.

B. Experiment Setup

Each of the GVT algorithms outlined was tested within

each application. For labels in all of the following charts, we

use a 3-tuple (X Y Z). X is the synchronization strategy

employed: either C for conservative or O for optimistic. Y

denotes usage of a one-sided GVT algorithm (utilizing the

Portals interface within µsik time management) where T notes

that the feature was enabled and F if it was disabled. Z signifies

whether or not the synchronous GVT algorithm was used.

Thus, (. F T) refers to the synchronous two-sided GVT

algorithm, (. F F) to the asynchronous two-sided GVT

algorithm and (. T F) to the one-sided asynchronous GVT

algorithm.

Combinations of lookahead, structure, synchronization strat-

egy and GVT algorithms were varied for each benchmark.

Lookaheads were varied across the RCPHOLD and RCREDIF

benchmarks, ranging from very low to very high values of

lookahead. Additionally, the structure (σ, γ) of each applica-

tion was varied between (10,1000) and (100,100). Thus

the message population remained constant between structures

per core, but the number of LPs per core varied.

For µπ benchmarks, lookahead was fixed based on the

network properties. Here we selected a prototypical fast (i.e.,

latency of 10µs and bandwidth of 1Gb/s) and very fast (i.e.,

latency of 1µs and bandwidth of 10Gb/s) network specifica-

tion to determine the lookahead. The “structure” of the µπ

TABLE I
SYMBOLS USED IN CHARTS

Symbol Description

ε Aggregate committed event rate (millions events/sec)

λ Number of GVT epochs

ρ Maximum number of rollbacks observed on a single core

α Factor of improvement of asynchronous algorithms over
synchronous two-sided GVT algorithm

F F α Factor of improvement of asynchronous two-sided GVT
algorithm over synchronous two-sided GVT algorithm

T F α Factor of improvement of asynchronous one-sided GVT
algorithm over synchronous two-sided GVT algorithm

TABLE II
NOTATIONS USED IN CHARTS

Notation Description

(σ, γ) Structure of simulation

LPX Number of virtual MPI ranks multiplexed on each real
MPI rank

(C . .) Conservatively synchronized simulation

(O . .) Optimistically synchronized simulation

(. F T) Synchronous two-sided GVT algorithm

(. F F) Asynchronous two-sided GVT algorithm

(. T F) Asynchronous one-sided GVT algorithm

benchmarks is simply LPX (i.e., number of virtual MPI ranks

multiplexed on each real rank), where values of 128 and 1024

were chosen to showcase light and very heavy multiplexing.

The simulation end times were set to 1000 simulated sec-

onds and 168 simulated hours for all scenarios in RCPHOLD

and RCREDIF, respectively. µπ barrier test simulated one

virtual barrier for all LPX, while µπ ping test simulated up

to 1KiB and 64KiB of data transfer in the LPX=1024 and

LPX=128 structures, respectively.

For the following charts, ε denotes the aggregate committed

event rate in millions of events/sec which is plotted on the

primary ordinate. Each individual data point for the three

GVT algorithms tested is plotted while the best performing

GVT algorithm (i.e., the algorithm achieving the highest ε) is

noted at each core count. A line joining the maxima is drawn

through each of these best-performing numbers to visually

show a trendline of performance as the simulation is scaled.

Additionally, charts include α bars which denote the factor

of improvement over (. F T) or the synchronous two-

sided GVT algorithm for the asynchronous GVT algorithms

i.e., (. F F) and (. T F) on the secondary ordinate.

Secondary plots on the following charts may include λ, which

denotes the number of GVT epochs or ρ, which denotes the

maximum number of rollbacks occurring on a single core

within the entire simulation for selected optimistic executions.

The symbols and notations are summarized in Table I and

Table II.

C. RCPHOLD Results

For conservatively synchronized RCPHOLD benchmarks at

low lookahead of 0.1 shown in Figure 2a and Figure 2b, we
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Fig. 2. RCPHOLD Conservative Synchronization
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Fig. 3. RCPHOLD Optimistic Synchronization



observe nearly in all cases that asynchronous GVT algorithms

performed no worse than synchronous two-sided GVT, and

sometimes provided significant improvements in ε – up to

1.5× in the structure of (100,100). Interestingly, λ re-

mained nearly the same for all GVT algorithms and holds

through all tested core counts. Thus, the runtime difference

and performance improvement shown by both asynchronous

GVT algorithms is from decrease in wall-clock time consumed

by these algorithms per GVT computation.

At high lookahead of 0.5 shown in Figure 2c and Figure 2d,

we observe similar performance from both synchronous and

asynchronous GVT algorithms at smaller scales. As the sim-

ulation is scaled to 32K processor cores and beyond, asyn-

chronous GVT algorithms tend to cope with larger number of

processor cores better as ε improvements exceeding 1.5× is

observed in the (100,100) case. We can reason here that

the increased amount of lookahead lowers the total amount

of synchronization burden across the entire simulation which

becomes increasingly more taxing as the simulation is spread

across more processor cores. A 5× decrease is observed in

λ, which is inversely correlated with 5× the increase in the

amount of lookahead, as expected.

Optimistically synchronized RCPHOLD provides further

insight into how the speed, behavior and quality of information

delivered by the underlying GVT algorithms can drastically

impact the performance of this particular PDES benchmark.

In all cases of lookahead as shown in Figure 3, we see

that in nearly all cases, both asynchronous GVT algorithms

provide at least the performance of synchronous two-sided

GVT algorithm but can often accelerate the simulation much

faster showing consistent 1.2× to over 1.5× the performance

of synchronous two-sided GVT, especially in the (10,1000)

structure cases. The striking detail that comes forth through all

of the RCPHOLD optimistic charts is the significant difference

in λ for the synchronous two-sided GVT algorithm. Frequent

GVT computation is not necessarily a detriment to overall per-

formance. In fact, having fresh GVT information can reduce

the number of potential incorrect events processed (and thus

the number of rollbacks) in an optimistic parallel simulation.

However, this generalization only holds if the cost of the GVT

computation is relatively inexpensive compared to the cost of

rollback. Since RCPHOLD is a synthetic benchmark that is not

computationally intense, rollback costs are very inexpensive.

Thus, for RCPHOLD, the rollback cost is significantly less

than GVT computation cost.

We can clearly observe these dynamics in RCPHOLD. λ is

more than 1.5× in the synchronous two-sided GVT cases over

both the asynchronous cases, yet there are no rollbacks in the

synchronous two-sided GVT cases while there are rollbacks

present in the both asynchronous cases (charts for rollback

data were omitted due to space considerations). We see that

in certain cases, such as shown in (10,1000) structure in

Figure 3a and Figure 3c, at larger core counts, the ε gap widens

as the cost per λ increases with the number cores. It is clear

here that the quality of the GVT information delivered by both

asynchronous GVT algorithm is no less than, if not better than,

that of the synchronous two-sided GVT algorithm, yet incurs

less overhead by way of smaller λ.

Figure 6a shows the overall speedup trends for the best and

worst committed event rate trends. Speedup is measured over

the base of 1008 cores for their respective GVT algorithm

(i.e., self-relative speedup). The best and worst observed ε

for RCPHOLD are both using conservative synchronization at

lookahead of 0.5 with a structure of (100, 100) and looka-

head of 0.1 with a structure of (10, 1000), respectively.

D. RCREDIF Results

RCREDIF with very low lookahead of 0.01 is shown in

Figure 4a and Figure 4b. Similar to RCPHOLD, we observe

that both asynchronous GVT algorithms provide better perfor-

mance than the synchronous two-sided GVT algorithm at all

core counts. λ remains nearly identical for all GVT algorithms

as the RCREDIF application is scaled out. Clearly, the cost

per λ is the differentiating determinant for ε and thus, α.

Due to space considerations the RCREDIF charts for low

lookahead of 0.1 and high lookahead of 0.5 were omitted, but

generally followed the same trends as very low (0.01) or very

high (1) lookahead, respectively.

In the cases of higher lookahead of 1 in Figure 4c and

Figure 4d, the difference between the GVT algorithms is

lessened due to the relatively small λ during the simulation

execution. Even in most of these cases, we observe that both

asynchronous GVT algorithms provide ε performance on par

to that of the synchronous two-sided GVT algorithm, if not

better. This clearly becomes the case at 129,024 cores where

the use of the asynchronous GVT algorithms, and one-sided

in particular, provide significant performance gains.

In contrast to the RCPHOLD synthetic benchmark,

RCREDIF is a real application that has significant event com-

putation costs. Thus, rollbacks are expensive in comparison

to those found in RCPHOLD. At very low lookahead of

0.01 under optimistic synchronization for RCREDIF shown

in Figure 5a and Figure 5b, we observe that ρ for the

synchronous two-sided GVT algorithm is significant while

both asynchronous GVT algorithms incur zero rollback. This

inversely correlates with ε where we observe 1.2× to over

2× α. In these very low lookahead scenarios, λ tends to

be very large (i.e., 16K to 30K+ computations) over the

course of the execution. The speed and frequency of the

GVT algorithm comes in to play for these small lookaheads.

Both asynchronous GVT algorithms exhibit larger λ, providing

more up-to-date GVT information without sacrificing simula-

tion speed of event computation. The synchronous two-sided

GVT algorithm on the other hand synchronizes less frequently,

up to nearly 50% less, yet performs significantly worse at

scale. The speed of the GVT algorithm clearly impacts the

event execution dynamics: as potentially more incorrect events

are executed they must ultimately be rolled back, incurring

significant synchronization overhead cost.

For the very high lookahead of 1 as shown in Figure 5,

the trend reverses, where the synchronous two-sided GVT

algorithm incurs mostly no rollbacks while both asynchronous
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Fig. 4. RCREDIF Conservative Synchronization
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Fig. 6. Self-relative Speedups for Best and Worst Committed Event Rate Trends
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Fig. 7. µπ Runtime Performance

GVT algorithms do. Since λ is reduced significantly in these

cases due to high lookahead, each GVT advance is important

to ensuring minimal amount of rollbacks. The scenarios em-

ploying the synchronous two-sided GVT algorithm synchro-

nize more frequently: up to 50% more than both asynchronous

cases. However, since λ in these runs are relatively small

compared to the total elapsed runtime of the simulation, the

additional number of λ do not significantly interfere with

event computations. This tends to prevent excessive rollbacks

and thus lower ε performance as shown in the respective

charts. At 129,024 processors, the asynchronous GVT algo-

rithms outperform the synchronous two-sided GVT algorithm.

With λ and ρ metrics remaining consistent with the prior

data point at 64,512 cores, the drop-off in performance for

synchronous two-sided GVT performance might be attributed

to the increased wallclock time incurred per λ. Further exper-

imentation is needed to verify the cause of the performance

degradation for synchronous two-sided GVT at very large-

scale for RCREDIF.

Figure 6b shows speedup for the best and worst case

committed event rates for RCREDIF. The best and worst

observed ε for RCREDIF are both using conservative synchro-

nization at lookahead of 1 with a structure of (100, 100)

and lookahead of 0.01 with a structure of (10, 1000),

respectively.

E. µπ Results

In the µπ benchmarks as shown in Figure 7, the per-

formance difference between synchronous two-sided GVT

algorithms and asynchronous GVT algorithms are clearly

pronounced. Here, λ is approximately equal for all scenarios,

thus indicating that the time to complete GVT computations



in the synchronous two-sided GVT algorithm is significantly

longer than both asynchronous GVT cases. We observe a 1.6×
performance improvement in runtime for the asynchronous

one-sided GVT algorithm over the synchronous two-sided

GVT algorithm at 129,024 processor cores simulating over

132 million virtual MPI ranks in the LPX=1024 case for

barrier test as shown in Figure 7a. Similarly for the ping

test shown in Figure 7b, there is a 1.95× improvement in

runtime for the asynchronous one-sided GVT algorithm over

the synchronous two-sided GVT algorithm at the same scale

for LPX=1024. For the lightly multiplexed cases of LPX=128,

the runtime performance differential between synchronous and

asynchronous GVT algorithms begins to appear at scale when

the number of cores exceeds approximately 8K.

The difference in performance between GVT algorithms

can be attributed to the time-slicing nature of process-oriented

PDES where multiple virtual threads are multiplexed on top

of a single real execution thread of the main loop. As the

number of virtual contexts are increased, the proportional

amount of time taken by the GVT algorithm becomes larger in

relation to the amount of time given per context switch to each

virtual thread. Thus, the effects of a slower, synchronous GVT

algorithm becomes apparent on high multiplexing counts.

V. SUMMARY

The performance data gathered in this study to the scale of

tens of thousands of processors offers confirmation of some

general knowledge in PDES, but also uncovers new insight

into discrete event dynamics at scale.

1) There exists a cost trade-off between GVT frequency

and rollbacks. Executions which incur higher per-event

rollback costs can benefit from more frequent GVT

computations. GVT algorithms that complete faster,

such as in the asynchronous approaches, can lead to

significant performance gains by minimizing rollbacks

at the relatively smaller expense of more frequent GVT

computations.

2) Cost per rollback is not constant as executions scale.

RCREDIF shows that, as an execution is scaled out,

the gap between GVT algorithms which lead to little

or no rollback provides significant gains in simulation

performance.

3) Asynchronous GVT algorithms tend to almost always

perform at least as well as their synchronous counterpart.

In the majority of cases, the asynchronous GVT algo-

rithms accelerate the execution by spending less time in

synchronization overheads. The notable exception to this

rule, as we have observed, comes in optimistic execution

at high lookahead where the synchronous two-sided

GVT algorithm tends to synchronize more frequently,

thus, in effect, preventing possibility of staggered exe-

cution and rolled-back event computation. However, this

exception only seems to be limited to executions with

less than 105 cores.

4) Process-oriented PDES which time-multiplex multiple

contexts on to a single core can benefit from asyn-

chronous GVT algorithms with greater multiplexing

levels and/or at larger core counts. As the amount of

processor time per thread becomes more scarce at higher

multiplexing counts, the relative amount of time spent

in GVT rises. Thus, the asynchronous nature of GVT

algorithm is beneficial in allowing events to be processed

asynchronously with GVT computation.

Overall, synchronous and asynchronous GVT computation

on large systems achieve performance with high efficiency in

discrete event execution. While additional analysis is possible,

such as a study of the influence of the frequency of global

synchronization on optimistic execution, the high event rates

(of several billions of events executed per wall clock second)

are very encouraging for a broad class of PDES applications.
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