
Improving Multi-Million Virtual Rank MPI Execution in µπ

Kalyan S. Perumalla, Alfred J. Park
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
perumallaks@ornl.gov, parkaj@ornl.gov

Abstract—µπ (MUPI) is a parallel discrete event simula-
tor designed for enabling software-based experimentation via
simulated execution across a range of synthetic to unmodified
parallel programs using the Message Passing Interface (MPI)
with millions of tasks. Here, we report work in progress in
improving the efficiency of µπ. Among the issues uncovered
are the scaling problems with implementing barriers and inter-
task message ordering. Preliminary performance shows the
possibility of supporting hundreds of virtual MPI ranks per
real processor core. Performance improvements of at least2×
are observed, and enable execution of benchmark MPI runs
with over 16 million virtual ranks synchronized in a discrete
event fashion on as few as 16,128 real cores of a Cray XT5.

Keywords-Message Passing Interface, Parallel Discrete Event
Simulation, Virtual Execution, Exascale

I. I NTRODUCTION

Motivation : Here, we attempt to further the state of the art
in large-scale simulations of parallel programs by exploring
and addressing some of the issues in sustaining very large
number of MPI-based control-flows, in the form of millions
of virtual MPI ranks. To simulate them, we enhance the
efficiency of parallel discrete event simulation methods to
support the simulation of a few million ranks on a few
thousand of actual cores.

Background: µπ [2] is a process-oriented simulator
where each task or thread is represented as a logical
process (LP). Each LP is maintained as a unique thread
and respective execution contexts (i.e. stack) are preserved.
µπ maintains all requisite information in order to suspend
and resume simulated virtual MPI ranks as needed by the
underlying simulation executiveµsik [1]. This allows µπ
to multiplex multiple virtual MPI ranks onto each available
real processor and support unmodified MPI codes within a
simulated environment.µπ runs in a purely parallel discrete
event style of execution for the best performance on a wide
range of virtual program workloads.

A hierarchical structure is adopted to accommodate the
large amount of virtual MPI ranks across the limited amount
of processing resources available. Each node may contain
multiple processor sockets, and each processor may have
multiple cores. Each physical core handles a pre-assigned
number of virtual MPI ranks, and these are time-multiplexed
on their assigned processing core.

Related Work: A relatively large body of past work
covered the problem of simulating computer systems at a

high level of fidelity. A survey article [3] captures the details
of some of the important performance prediction systems.
Disposition relative to several of these past and ongoing
works has been documented in our earlier article onµπ[2].
Our focus is on software-level experimentation, for either
experimenting with existing MPI-based codes to be scaled,
or writing skeleton MPI codes from scratch that are designed
for scale from the outset, and into which computational meat
will be infused later as application-specific computation is
included in an evolutionary fashion.

Here, we report some preliminary work on improving the
efficiency ofµπ, in terms of scalable support of MPI’s point-
to-point message ordering semantics, and increasing the run
time efficiency ofµπ virtual barrier implementation.

II. D ISCRETEEVENT MODEL OF FIFO SEMANTICS

MPI implementations must map semantics such as First-
In-First-Out (FIFO) message ordering for point-to-point
communications, sinceµπ is, in a general sense, an MPI
implementation. The FIFO requirements must be somehow
accomplished and supported inµπ’s data movement. This
raises an interesting challenge in correctly and efficiently
mapping the message-ordering to one that operates on
timestamp-based ordering of discrete events. The modeled
network for data transmission is distinct from any actual
network used as a conduit for the simulation itself, and thus
must ensure that important MPI FIFO ordering is preserved.

Problem: MPI guarantees FIFO ordering of messages
within each communicator regardless of the underlying net-
work. This must be accurately reproduced by the simulator
in order to generate correct and repeatable results. In real
applications, sending a piece of data typically only requires
information about the data itself and to whom to send. If
this is translated directly by the simulation environment,
incorrect execution will result. This is due to an absence
of any semantics and ordering without a full simulated
underlying network (e.g., a simple data transmission model
that only adds delay incurred by latency and bandwidth).

The core of the problem is that the simulated messaging
protocol is stateless. A current message being sent has no
prior knowledge of the state of the network. There are
various solution approaches to this problem for maintaining
a stateful messaging protocol to preserve FIFO ordering, but
none of the traditional approaches is scalable.



Scalable Solution Approach: A scalable solution that we
developed to the FIFO ordering problem is to record a small
amount of pair-wise state of the message sent to the receiver
at the sender side only. Effectively this is logically equivalent
to a very lightweight network link model that is appended to
the sending virtual MPI rank for each destination. There is
no need to pre-allocate every potential destination virtual
MPI rank; instead, this state is only maintained for the
most recently transmitted data. Therefore, memory is only
allocated on demand when a transmission is outstanding to
an (arbitrary) receiver. Memory is reclaimed on a per-active-
receiver basis if any state regarding most recent messages is
no longer relevant.

By maintaining the state of the most recent oustanding
transmission between itself and the receiver, the proper
adjustments to the receive timestamp can be made, and, these
simulation messages can be consumed in proper timestamp
order on the receiver.

III. V IRTUAL BARRIER AND V IRTUAL COLLECTIVES

Native Barriers Unsuitable for Virtual Barriers : While
obvious to a simulation expert, an important aspect that
is often misunderstood is that native barriers cannot be
employed as-is to simulate a barrier. In other words, although
the native hardware may contain a highly efficient barrier
implementation, it is not possible for every virtual rank
to simply invoke that implementation to realize its virtual
barrier functionality. Such blocking on native calls interferes
with simulation time advances and, in effect, pollutes the
distinction between wall clock time and simulation time. At
best, runtime errors such as deadlock conditions arise, and
at worst, silent, incorrect results are obtained.

When native implementation cannot be used to improve
performance, the only way to improve the scalability and
speed of the simulation is to optimize the implementation
of the virtual barrier itself by developing simulation-specific
enhancements. Here, we undertake precisely such an effort,
to design a method that can sustain large number of virtual
ranks per real rank (or per real core).

Optimized Virtual Barrier Algorithm : Conventional
butterfly barriers must perform pairwise barriers across
all processors within the system. Our optimized approach
allows efficient local shared memory operations and then
only communicating the minimum amount of information
between leader processors. The optimized approach effec-
tively reduces two levels of the hierarchy from the butterfly
process, which can result in a significant reduction in inter-
node communication. Our optimized barrier algorithm is
outlined in Algorithm 1. Every virtual rank executes this
algorithm as part of the implementation of the virtualized
MPI_Barrier().

The key to this algorithm is the use of a variable called
njoined that is globally visible to all virtual ranks mapped
to a core (each core contains its own instance of this

Algorithm 1 Optimized Virtual Barrier

1: Integernjoined {global variable initialized to zero}
2: LPX = {number of virtual ranks simulated per core}
3: Virtual MPI Barrier operation at every virtual rank
4: Incrementnjoined {guaranteed to be atomic due to

event loop}
5: if my rank modulo LPX> 0 then
6: if njoined == LPX then {I joined last locally}
7: Send BarrierEvent to local leader{whose rank

modulo LPX is 0}
8: end if
9: Wait for BarrierEvent from local leader

10: else{I am local leader}
11: if njoined < LPX then
12: Wait for BarrierEvent from any local rank
13: end if
14: njoined = 0 {reset to zero}
15: if my local core ID on my node> 0 then
16: Send BarrierEvent to local core ID 0
17: Wait for BarrierEvent from local core ID 0
18: else{I am on local core ID 0}
19: Wait for BarrierEvent from all local cores
20: Participate in butterfly communication among cores

with ID 0 on all nodes
21: Send BarrierEvent to all local cores
22: end if
23: Send BarrierEvent to all local ranks on my core
24: end if

variable), initialized to zero. Every rank increments this
variable upon entry into the barrier. Here, the number of
virtual ranks per core is called LPX. The ranks mapped to
a core are referred to as local ranks, and the first virtual
rank at any core is the leader rank (i.e. local core ID 0).
Since ranks may join the barrier at any arbitrary points in
simulation time (and hence in any relative order), exactly
two possibilities exist among the local ranks: (1) the leader
happens to arrive at the barrier last, or (2) a non-leader
arrives at the barrier last. In the first case, the leader detects
njoined to be equal to LPX, thus the leader knows it has
joined last. No additional events are necessary to coordinate
the “join” phase of the barrier among local ranks, and can
proceed with its leadership role representing all the local
ranks. In the second case, with the leader arriving early (by
detectingnjoined is less than LPX), it proceeds to wait
on an event reception. When the final local rank arrives last,
it detects that is indeed the case and sends an event to the
leader, completing the local “join” phase.

The rest is a relatively straightforward use of aggregation
at each node (among all cores) to minimize inter-node
communication, and then use of a butterfly pattern across
nodes for a fast barrier operation. Details are omitted here



for dealing with non-powers of two, in which care must be
taken to avoid long inter-node distance communication for
“outlier” nodes that fall in the non-power-of-two region.

This optimization template carries over well to other
global collectives as well, such asMPI_Allreduce(),
which we intend to explore and optimize in future work.
The main difference between barrier and other collectives is
that other collectives carry data and involve operations onthe
data in addition to the global coupling. The data, however,
can also be accommodated in our barrier algorithm template
by storing the per-rank data in a local shared-memory queue
during the join phase, and distributed via the same buffers
in the release phase.

IV. PERFORMANCESTUDY

We turn to an experimental study to measure the per-
formance improvements from the optimizations, and test
scalability with respect to the number of virtual ranks.
We implemented the optimizations inµπ, and tested it
on two different platforms: (1) an Infiniband-connected
Linux cluster called Frost containing 1,024 cores, and (2) a
Cray XT5 machine containing several thousand cores. The
former, being the more easily accessible resource of the two
machines, was used for an exhaustive number of runs, while
the latter was used for selective runs aimed at demonstrating
the ability to execute at very large-scale.

Experiment Setup: Frost is an SGI Altix ICE 8200
cluster containing 2 quad-core Intel Xeon X5560 2.8GHz
processors per node. SMT was enabled on these nodes,
providing 16 hardware threads per node for a total of 2,048
hardware threads across the entire cluster. All experiments
filled each node with 16µπ simulator processes. Each
node has 24GB of memory with an Infiniband intercon-
nect. The Intel C/C++ compiler 11.1.059 with-O3 -ipo
-xsse4.2 compilation flags was used to compile all soft-
ware on this platform.

The Cray XT5 system contains 2 hex-core AMD Opteron
2435 (Istanbul) 2.6GHz processors per node. Each node
has 16GB of memory with communications through Cray’s
SeaStar 2+ router. The Portland Group (pgi) compiler 2.2.73
with -O3 -fast compilation flags was used to compile all
software all software on this platform.

A barriertest benchmark we use for this is aimed
at stress-testing multiple items of interest: (a) ability to in-
stantiate and advance millions of virtual ranks on simulation
time axis (b) performance under very tight coupling among
ranks, especially with regard to stringent characteristics
of their virtual interconnection network, and (c) ability
for a high level of multiplexing for maximum efficiency
(i.e., largest values of LPX reasonably sustained). In the
barriertest, every rank repeatedly joins a barrier by
invokingMPI_Barrier(), and querying the time taken by
each barrier via the times returned byMPI_Wtime(). Also,
between each pair of barriers, each rank advances simulation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

10
1

10
2

10
3

10
4

10
5

10
6

10
7

F
ac

to
r 

o
f 

Im
p
ro

v
em

en
t 

o
v
er

 S
im

p
le

 B
ar

ri
er

Number of Virtual MPI Ranks

Virtual Barrier Performance Improvement on the "Frost" System

LPX=1
LPX=4

LPX=16
LPX=64

LPX=128
LPX=256
LPX=512

LPX=1024

Figure 1. Factor of run time improvement on virtual barrier

time by one millisecond to model a relatively coarse-grained
computation. Sinceµπ virtualizes the invoked MPI calls, all
simulation runs are fully deterministic and repeatable (i.e.,
observe the same controlled bandwidth and latency effects),
despite the challenge of immense non-determinism that is
inherent with thousands of threads multiplexed on fewer
number of cores. Thus the times of barrier observed by
barriertest are repeatable across runs.

Infiniband Linux Cluster : We varied LPX from 1 to
1024, to represent the spectrum from no multiplexing (one-
to-one mapping of virtual to real ranks) to the heaviest
multiplexing beyond which we see unacceptable degradation
in performance due to the limitations on the amount of
memory available and the operating system resources. We
compare the performance of our optimized barrier with that
of a straightforward implementation of barrier in which
all ranks participate in butterfly communication. Figure 1
shows the factor of speed improvement of our optimized
barrier implementation over the simple barrier. Note that the
abscissa is the total number of virtual ranks in the simulation,
and hence, the number of actual cores used in the simulation
is obtained by dividing the number of virtual ranks by the
LPX value.

In the case of small to medium number of virtual ranks,
significant performance gain is observed, most near or above
a factor of two. In the largest case of over 2 million ranks,
obtained with LPX=1024 on all 2,048 hardware threads of
Frost, a gain of close to2× is observed.

Cray XT5 : On the Cray XT5, we aimed to show the
effects of increased multiplexing efficiency on large core
counts. While our prior results utilized 216,000 cores with
LPX=128, we aimed to reduce the number of cores nearly
by one order of magnitude. Consequently, we experimented
with multiple LPX values, and chose the highest value of
LPX=1024 beyond which the system became unstable.

Figure 2 shows the elapsed time forbarriertest



 0.1

 1

 10

 100

 1000

R
u
n
 T

im
e 

(s
ec

o
n
d
s)

Virtual Barrier Performance on Cray XT5

LPX=128, VBW=10Gbps VLAT=1us
LPX=1024, VBW=1Gbps VLAT=10us

 10
 20
 30
 40
 50
 60
 70
 80

10
5

10
6

10
7

10
8

L
B

T
S

 C
o
m

p
u
ta

ti
o
n
s

 

Number of Virtual MPI Ranks

Figure 2. Simulation run time for virtual barrier

on Cray XT5 with increasing number of processors. At
LPX=1024 on 16,128 real cores, we simulate over 16
million concurrent virtual MPI ranks, achieving nearly an
order of magnitude greater multiplexing efficiency. Two
different scenarios of the virtual network are simulated,
simply to exercise the simulator with different dynamics
(virtual network latency critically determines the amount
of lookahead, hence concurrency, available in the parallel
simulation). It is observed that the runtime cost of simulating
a barrier increases once reaching a million simulated ranks.
This is interesting because the various costs contributing
to simulation overhead have been minimized (number of
events, intensity of inter-node messaging, and amount of
thread-switching cost). One of the remaining suspects is the
amount of concurrency in the system which may be decreas-
ing with increasing virtual scale. This can sometimes be
gleaned from the number of global time computations (also
called lower bound on time stamp, or LBTS computations
for conservative parallel execution) that the simulation is
incurring. The larger the number of LBTS computations,
the lower the concurrency.

The number of LBTS computations is plotted against
increasing number of virtual ranks, as shown in Figure 2.
The trend appears to hold correlation with the runtime,
suggesting the LBTS cost as a major part of the runtime.
This, in turn, may suggest decreased level of concurrency.
It may also suggest the occurence of strange dynamics that
may be only activated with the barrier-induced event horizon
across processors. One possibility to ameliorate the lack of
concurrency is to simulate a more reasonable scenario in
which the virtual ranks are not so markedly out of balance
with respect to computing load variance, and/or employ
larger inter-node latency/lookahead values by exploiting
the coarse-grained computation that often intercedes global
communications.

V. SUMMARY

As part of work in progress, improvements toµπ event
model are being made to enhance its efficiency and scalabil-
ity. Here, we reported initial experience and experimentalre-
sults in increasing multiplexing efficiency ofµπ to multiple
millions of virtual ranks. Traditional approaches or systems
have neither attempted nor uncovered scalability problems
that we identify here, namely, scalability of FIFO ordering
realization for millions of virtual ranks, and the high costof
simplistic approaches for modeling virtual barriers at levels
of multiplexing virtual ranks as high as 1024 virtual ranks
per real rank/core. Although these issue may appear simple
in hindsight, they are critical to realizing large-scale virtual
MPI simulations. As part of additional, ongoing work, we
are experimenting with larger number of actual ranks/cores
used to sustain much larger scenarios, the extension of the
improved algorithms to a richer set of collectives, and the
development of a theoretical complexity analysis of event
cost, threading cost, and inter-processor communication of
traditional vs. improved virtual barrier implementations.

ACKNOWLEDGEMENTS

This paper has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the U.S. Dept. of En-
ergy. Accordingly, the U.S. Government retains and the pub-
lisher, by accepting the article for publication, acknowledges
that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so,
for U.S. Government purposes. This research used resources
of the National Center for Computational Sciences at Oak
Ridge National Laboratory, supported by the Office of
Science of the U.S. Dept. of Energy. The authors are grateful
to Vinod Tipparaju for helpful comments and discussions.

REFERENCES

[1] K. Perumalla, “µsik - A Micro-kernel for Parallel/Distributed
Simulation Systems,” in Proceedings of the IEEE/ACM Work-
shop on Principles of Advanced and Distributed Simulation
(PADS), 2005.

[2] K. Perumalla, “µπ: A Scalable and Transparent System for
Simulating MPI Programs,” in Proceedings of the ICST Con-
ference on Simulation Tools and Techniques (SimuTools),
2010.

[3] S. Plana, I. Brandic, S. Benkner, “Performance Modeling and
Prediction of Parallel and Distributed Computing Systems:
A Survey of the State of the Art,” in Proceedings of the
International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS), 2007.


