
Towards High Performance Discrete-Event Simulations of
Smart Electric Grids

Kalyan S. Perumalla, James J. Nutaro, and Srikanth B. Yoginath
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6085, USA

ABSTRACT
Future electric grid technology is envisioned on the notion
of a smart grid in which responsive end-user devices play
an integral part of the transmission and distribution control
systems. Detailed simulation is often the primary choice in
analyzing small network designs, and the only choice in ana-
lyzing large-scale electric network designs. Here, we identify
and articulate the high-performance computing needs un-
derlying high-resolution discrete event simulation of smart
electric grid operation large network scenarios such as the
entire Eastern Interconnect. We focus on the simulator’s
most computationally intensive operation, namely, the dy-
namic numerical solution for the electric grid state, for both
time-integration as well as event-detection. We explore so-
lution approaches using general-purpose dense and sparse
solvers, and propose a scalable solver specialized for the
sparse structures of actual electric networks. Based on ex-
periments with an implementation in the THYME simu-
lator, we identify performance issues and possible solution
approaches for smart grid experimentation in the large.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: Simulation and Model-
ing; J.2 [Computer Applications]: Physical Sciences and
Engineering; J.7 [Computer Applications]: Computers
in Other Systems

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Discrete Event, Smart Grid, Sparse Solver, Parallel Com-
puting

1. INTRODUCTION
The simulation of hybrid models will have a leading role in

the design of control systems for a smart power grid in the

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the United States government. As such, the UnitedStates Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
HiPCNA-PG ’11 November 13 2011, Seattle, WA, USA
Copyright 2011 ACM 978-1-4503-1061-1/11/11 ...$10.00.

large. Historically, industries adopting highly automated
systems have motivated and promoted research in hybrid
models and their simulators; manufacturing and aerospace
are prominent examples. The distributed, automatic con-
trols that are intrinsic to a smart grid will be the motivator
for another wave of research in modeling and simulation of
hybrid systems, and the size and complexity of electrical
power systems will ensure that high performance computing
is a part of this future.

Hybrid models emerge from the study of interactions be-
tween a system’s digital and analog components. The con-
tinuous dynamics of analog components are modeled with
differential-algebraic equations. Discrete event models are
used to describe the dynamics of digital components. The
interaction of these discrete event and differential-algebraic
models plays a central part in simulations of the complete
system.

A simulation of frequency regulation by loads provides one
example of a model containing continuous and discrete event
components (see, e.g., [9, 10, 13]). Consider in particular a
model used to select design requirements for the sensors. At
each load, a digital controller watches the frequency of the
power system where it is installed. The sensor in the con-
troller has finite precision, and so acts upon only discrete
changes in frequency; a typical sensitivity is ∆f = 0.005
Hz (see, e.g., [14]). When the sensor reports a change in
frequency, the controller changes the impedance of the load
(e.g., by turning electrical equipment on or off) at its loca-
tion. In the time between these control events, the electro-
mechanical aspects of the power system evolve continuously
as described by their differential-algebraic model. One vari-
able in this model is the frequency observed by the sensors.
Simulation of the interacting dynamics of these two models
– one discrete event and the other continuous – is necessary
to predict the effectiveness of the control scheme.

Discontinuity locking is a technique central to the discrete
event simulation of hybrid systems (see, e.g., [3]). With this
approach, interaction between the discrete event and contin-
uous model occurs at the roots of state event functions. In
the example above, the continuous model contains a variable
fk that is the frequency at the kth bus; the sensor has a vari-
able nk that is the frequency level at which the most recent
control event took place at the kth bus; and the next discrete
event at the kth bus happens when fk − (nk ± 1)∆f = 0.
This function is an example of a state event function; by
construction, it is zero at the event and changes sign upon
crossing zero.

During the simulation of the differential algebraic model,



all of the discrete variables are used at their present values.
In this case, the nks are kept constant while simulating the
electro-mechanical dynamics. However, at each step of the
numerical scheme that solves the differential-algebraic equa-
tions, the values of the state event functions are calculated.
If the sign of any these functions has changed, then the sim-
ulator missed an event (or, in general, at least one event).
It then looks with a root-finding procedure for the precise
location in time where the state event function changed sign.
At best, the location of the event is found in just one extra

evaluation of the differential-algebraic equations. More of-
ten, several solutions to these equations must be calculated
as the root finding procedure narrows the time interval con-
taining the event. When the event has been found, the dis-
crete event is applied – in our example, the admittance at
the bus is modified – and the numerical algorithm restarted
at the time of the event.
This discourse highlights three aspects of discontinuity

locking that contribute to a high computational cost for
simulating hybrid models. The first is that the root find-
ing procedure necessitates a large number of evaluations of
the differential-algebraic equations. Secondly, the frequency
of events places a potentially severe constraint on the step
size of the numerical scheme that is used to simulate the con-
tinuous model; this also contributes to a very large number
of evaluations of the differential-algebraic systems.
Third, frequent discontinuities caused by discrete events

prohibit in practice the use of multi-step numerical meth-
ods. Although a number of multi-step numerical methods
are available for optimized simulation of electric networks,
they cannot be used for discrete event execution, owing fun-
damentally to their closed-system treatment and/or non-
interruptability at irregular points along the system trajec-
tory. While ability of multi-step methods to reuse calcu-
lations from previous time steps is useful to improve the
accuracy of the numerical solution in next steps, they can-
not be used to advance the simulation along irregular time
steps. Instead, single step methods that are easy to restart
are preferrable; for example, those in the Runge Kutta fam-
ily. These require multiple evaluations of the differential-
algebraic equations to calculate a single point in their tra-
jectory; once again, this increases the number of evalulations
of the differential algebraic equations.
To examine wide area control of electro-mechanical tran-

sients by smart devices, simulation of electro-mechanical dy-
namics at the transmission level are essential. Though pre-
vious work in power system simulation has addressed this
computational problem in a classical setting (the literature
is large, but see, e.g., [8, 7, 12] for a glimpse of recent de-
velopments), the introduction of significant discrete event
dynamics necessitates a new approach.
With regard to the differential algebraic equations that

model the electro-mechanical dynamics, it is the solution of
the linear system that relates voltages and currents of the
transmission network that poses the greatest computational
challenge. In particular, we must address two problems:
(1) the frequent refactorization of the admittance matrix as
required to model some types of control events, and (2) the
large numbers of back-substititions imposed by discontinuity
locking.
In this paper we present work towards a new algorithm for

solving this linear systems problem in the context of discrete
event simulation. The new algorithm fits neatly into the

simulation framework and will reduce execution times for
large-scale models from tens of hours to the few minutes
that are needed for a practical design tool. By large-scale,
we mean models with thousands to tens of thousands of
buses, each with its own discrete sensors and actuators.

2. DISCRETE EVENT SIMULATION
Algorithm 1 shows the discrete event-based execution loop

comprising the computational load of the simulation. It pro-
ceeds in varying increments δtmin of simulation time, the
increments being determined by the state of the system,
the desired integration error limits, the desired accuracy of
smart grid device operations, and any user-specified phe-
nomena scheduled as events to occur along the simulation
time.

The bulk of the computational burden of the simulation
arises from the computation at Step 3(a)-(c), which is at the
heart of the discrete event-based approach, namely, determi-
nation of a safest/correct leap in simulation time permissible
by the current state of the system. Every increment of sim-
ulation time involves computing the solutions for voltages in
the linear problem given by the matrix equation Y V = I,
where Y is an n × n matrix obtained from the admittance
relating the buses via line dependencies, V is the vector of
voltages at each bus, and I is the vector of injected currents
at the buses. The matrix equation is solved with multiple
right-hand side vectors, one for every integration step trial
and for threshold crossing time trial. The matrix Y is fac-
tored on demand, whenever any of its elements are modified
in the simulation loop, and the factors are saved unless and
until the matrix changes again. The saved matrix factors are
used to solve for voltages for each right hand side. The ma-
trix may be modified either by the smart device operations
at Step 5, or by externally modeled effects at Step 6.

Within each ith time increment (each iteration of the sim-
ulation loop), let Gi be the number of integration step tri-
als, Hi be the number of threshold-crossing events tested,
and Ei be the number of scheduled external events. Ev-
ery integration step trial requires a matrix solution, as does
every check for threshold-crossing. Let Fi be the number
of times matrix factorization is performed per iteration, and
Si be the number of matrix solutions performed per integra-
tion or threshold-crossing check operation in each iteration.
One additional solve is needed if an external event induces a
change in the network. Let η = 1 if an external event results
in a change in the matrix, and η = 0 otherwise. Then, the
total simulation time is dominated by the time for matrix op-
erations Tmatrix =

∑
i
(Gi +Hi + η)× Si × TS + Fi × TF ,

where TS is the time for one matrix solution, and TF is
the time for one matrix factorization. Typically, Fi ≤ 1,
although one can construct scenarios in which Fi > 1.

3. IMPLEMENTATION
The THYME electric grid simulator, developed by Nutaro

et al [11], is capable of modeling transmission and genera-
tion with high fidelity. It is written in C++, portable to
several platforms, and uses the Message Passing Interface
(MPI) for parallel execution. The simulator accepts grid
networks in standard formats such as the IEEE CDF for-
mat, and adds sensor behavior as C++ class methods in a
pre-defined class hierarchy that can be easily customized for
a variety of smart device behaviors. The classes subscribe to



Algorithm 1 Discrete event-based simulation execution

1: now ← 0
2: while now < end time do
3: δtmin ← min(δtintegrator, δtthreshold, δtexternal)

where, the δts are determined as follows:

(a) δtintegrator ← δtGg for the largest time leap, δtGg, that
gives an acceptable error εGg in numerical integration
of the grid system state from now to now+δtintegrator

now δt
G1

δt
G2

δt
Gg

...

ε
Gg

ε
G2

ε
G1< <

(b) δtthreshold ← δtHh for the earliest time leap δtHh near
the earliest time tH at which the system state (e.g.,
voltage) crosses a threshold value specified by a model
component (e.g., automated control from smart de-
vices for voltage shedding)

now δt
H1

δt
H2

δt
Hh

...

t
H

(c) δtexternal = TE − now for TE = mini(TEi), which is
the earliest of all times {TEi} at which an externally-
specified system change is scheduled to occur (e.g.,
outages due to non-electrical causes)

now δt
E1

δt
E2

δt
Ee

...

T
E1

T
E2

T
Ee

4: Advance the electric grid state from now by δtmin

5: Incorporate electric device control effects in the interval now and now + δtmin

6: Incorporate effects of external events, if any exist with time stamp ≤ now + δtmin

7: Advance the simulation time: now ← now + δtmin

8: end while

events raised by the simulator for changes of interest such as
voltage/frequency threshold crossings. While the core trans-
mission network can be specified with input files, additional
detail can be introduced into the network by adding sub-
networks as surrogates for distribution networks attached
to user-specified transmission nodes. The synthetic distri-
bution networks are generatable at simulator initialization
using Algorithm 2. Table 1 shows sample simulation output
from experiments of a generator failure executed within the
discrete event framework on different networks.
Parallel execution is realized in a master-worker frame-

work using MPI. Rank 0 hosts the simulation loop, while
ranks> 0 run the slave loop in which they receive commands
from the master to participate in parallel matrix solutions
at appropriate points in simulation.
As the structure of the admittance matrices reflects the

connectivity of the actual, sparsely-connected electric grid,
the admittance matrices are found to be extremely sparse.
Figure 2 shows the degree distributions observed on sam-
ple grids. While dense solvers can be used for smaller net-
works (e.g., those with less than a few hundred buses), sparse
solvers become imperative on larger networks to minimize
factorization times and solution times. On networks such as
the IEEE 118 and IEEE 300, implementation of the basic
linear algebra services (BLAS) [2] was found to be adequate
to deliver competitive run times relative to sparse solvers.
For larger networks, such as the ERCOT and the Eastern

Interconnect cases, sparse solvers such as SuperLU [5] or
MUMPS [1] factor and solve the matrices faster. However,
even with sparse matrix operations, the total computation
time remains very high for any large scenario. Parallel exe-
cution is the only recourse to reduce the run time.

The simulator is structured such that different solvers
can be incorporated in a plug-and-play fashion for the dis-
crete event detection. Solvers that are incorporated include
BLAS, SuperLU, MUMPS, and Blocktri (described later).

4. RUNTIME PERFORMANCE
The performance of the simulator has been tested with two

different simulation scenarios on four different grid network
topologies. In the first scenario, an outage of a generator is
simulated; the network stablizes after brief frequency excur-
sions due to the loss of the generator. In the second scenario,
sensor devices are attached at every bus which subscribe to
simulator events that detect voltage variation beyond sensor-
specified thresholds.

The time advances observed in the first scenario varied
from 10−2 to 10−1 seconds, with the smaller advances in-
curred during the generator-outage transients. Time ad-
vances in the second scenario varied from 10−4 to 10−3 sec-
onds, due to the tight thresholds established by the sensors,
and due to the large number of staggered states induced
by the geographically distributed sensors in the scenario.
The number of matrix factorization operations also corre-



Algorithm 2 Synthetic network expansion from transmis-
sion to distribution
1: for node ni, 0 ≤ ni < N where N is the number of

nodes do
2: Yi ≡ inductance at node ni

3: m ≡ number of branches (subsystems) in distribution
attached to node ni

4: r ≡ desired ratio yit
yil

5: Expand the network as follows:

y
1t y

mt

Y
i

y
jt

y
1l

y
jl

y
ml

... ...

6: yremaining ← Yi

7: for j = 0 to m− 1 do
8: if j < m− 1 then
9: yj ← uniform random number in

yremaining

m−j
±c%

(for some desired value of c)
10: else
11: yj ← yremaining

12: end if
13: yjl ← yj ×

(r+1)
r

14: yjt ← r × yjl
15: Add a new node (number of nodes now increases to

N + i)
16: Add a new line (N + i, N + i) with admittance yjl
17: Add a new line (ni, N + i) with admittance yjt
18: yremaining ← yremaining − yj
19: end for
20: end for
Ensure: The network now contains m×N nodes

spondingly increased in the second scenario. The number of
matrix solution operations per factorization operation also
increased.
Figure 1 shows the runtime performance obtained by ex-

ecuting the generator failure scenario on the ERCOT net-
work. The simulation is performed in parallel on varying
number of processor cores of a Cray XT4 machine in which
each node has four processor cores (1 quad-core AMD Bu-
dapest) and 8GB of main memory. Each experiment is exe-
cuted with two settings:

• MT: multi-threading is enabled, with four threads per
node, and one MPI task per node, and

• No-MT: multi-threading disabled, with four MPI tasks
per node, i.e., one task per core.

The measures of interest are the number of factorization
and solution operations, their runtime costs, and the total
runtime of the simulation.
The top part of Figure 1 shows the time per factor and

time per solve, each further qualified by MT and No-MT.
It is observed that the time to factor decreases by increasing
the number of processor cores when multi-threading is used.
However, the non-multi-threaded execution runs faster than
the multithreaded version, but does not scale with parallel
execution (in fact, it suffers increased costs at 64 proces-
sor cores). Similar trend is observed for the time per solve

operation. The solve operation, interestingly, executes an
order of magnitude faster than the factor, even though the
matrix is highly sparse. However, in the generator failure
scenario, the number of factor operations is observed to be
far fewer than the number of solves, which accentuates the
otherwise lower cost per solve. This is observed in the mid-
dle portion of Figure 1 which shows the total time spent in
factors and the total time spent in solves. The total solve
time dominates the total simulation time, which is counter-
intuitive to the expectation that factorization time O(N3)
is much larger than that of solution time O(N2). This is
because of the significant number of distinct right hand side
vectors that need to be solved on average per factor during
the discrete event execution, specifically, in Step 3(a)-(c).
The number of solves per factor is in fact observed to be
over 200, as shown in the bottom part of Figure 1.

5. SCALABLE SOLVER
Based on runtime experiments, we found that the general-

purpose sparse solvers do not exhibit the required scalability
with the number of processors. This can be attributed to
the nature of the admittance matrices which are not only
extremely sparse but also highly irregular in their non-zero
pattern. A solver that can exploit the special structure of
the networks can help improve scalability. We identify here a
provably scalable method to perform this, and apply it to the
electric grid networks. This approach relies on minimizing
the span of non-zeros from the diagonal, which is character-
ized by a well-known metric called bandwidth, elaborated
next.

5.1 Admittance Matrix Bandwidth
The bandwidth of a matrix is the farthest distance of any

non-zero element from the diagonal. The smaller the band-
width, the better the potential for efficient parallel matrix
operations. While the problem of finding the specific per-
mutation that minimizes the bandwidth is an NP-complete
problem, heuristics can be used to reduce the bandwidth.
We used a variant of the Cuthill-Mckee method [4] for band-
width minimization, and found that the bandwidth can be
dramatically reduced, relative to the bandwidth of the net-
works as given in the standard input data sets. The reduc-
tions thus obtained are illustrated in Table 2, for the four
data sets used here: IEEE 118, IEEE 300, ERCOT, and
EI NERC 09s.

Since the elements of the admittance matrix change dur-
ing the course of the simulation, the bandwidth minimiza-
tion operation must be performed dynamically before every
factorization operation. This implies that the bandwidth
minimization algorithm itself must be implemented and in-
corporated efficiently into the main discrete event loop of
the simulation.

In the larger networks (ERCOT and Eastern Interconnect
EI NERC09s), since the matrix bandwidth is observed to be
relatively small compared to the total matrix size, it makes
it possible to conceive of a provably scalable algorithm that
can solve a bandwidth-minimized matrix, as discussed next.

5.2 Block-Diagonal Solver
Given a grid with n nodes, the admittance matrix A of

n×n complex numbers is determined. Using fast heuristics,
the nodes are permuted such that matrix bandwidth M is as
small as possible. The matrix can then be viewed as a block



 0

 0.01

 0.02

 0.03

 0.04

T
im

e 
p
er

 O
p
 (

se
cs

)

Loss of Generator #87 ERCOT, 0.015 sim time units

Factor, MT

Factor, No-MT

Solve, MT

Solve, No-MT

 0

 100

 200

 300

 400

 500

 600

T
o
ta

l 
T

im
e 

(s
ec

s)

Factor, MT

Factor, No-MT

Solve, MT

Solve, No-MT

 0
 50

 100
 150
 200
 250
 300

 0  8  16  24  32  40  48  56  64

#
S

o
lv

es
/#

F
ac

to
r

No. of Cores

MT

MT

Figure 1: Discrete event simulation runtime performance on a Cray XT4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  5  10  15  20  25  30

N
um

be
r 

of
 n

od
es

Degree (number of neighbor nodes)

IEEE 118
IEEE 300

ERCOT_Run
EI_NERC09s_f_Run

Figure 2: Degree distributions of sample grid net-
works

tri-diagonal matrix of N blocks, each block of size M ×M ,
where N = ⌈ n

M
⌉. Its diagonal blocks Di, 1 ≤ i ≤ N are

matrices, each of size M × M . Its lower diagonal blocks
Li, 1 < i ≤ N are upper-triangular dense matrices, and its
upper diagonal blocks Ui, 1 ≤ i ≤ N−1 are lower-triangular
matrices. The last s = (NM − n) rows of LN , DN and UN

are padded appropriately in case s > 0, by setting the last s
rows of LN , DN and UN to be all zeroes except for the last
s diagonal entries of DN to be identity.
A block-cyclic reduction-based scheme can be utilized to

solve such a block-tridiagonal matrix in a provably scal-
able time of O(log n). A similar scheme has recently been
used successfully in other scientific codes such as plasma
physics[6]. A major difference, however, is that the tridi-
agonal matrices of the earlier works contained blocks that
are dense sub-matrices, but the blocks in the bandwidth-
minimized admittance matrices are observed to be extremely

sparse. This difference makes it necessary to utilize sparse
solves as sub-solvers inside the block cyclic solvers of the
overall matrix. As seen in Table 2, in the largest case of the
Easter Interconnect network (EI NERC09s), n = 45, 552,
and the minimized bandwidth M = 1600. Since the block
size of 1600 is too large for dense sub-matrix operations, we
observe degraded efficiency when a dense solver (BLAS) is
used for the blocks in the block-cyclic reduction. It is clear
that the block cyclic reduction, while providing scalability,
remains to be enhanced with efficiency by incorporating a
sparse solver within the recursive reduction algorithm of the
overall matrix.

The complete scheme for the solution is illustrated in Fig-
ure 4, starting from a given admittance matrix to be solved,
to the permutation for bandwidth minimization, and factor-
ization, and then to the actual solution for any given right
hand side.

We are currently implementing the sparse solution using
MUMPS within Blocktri; in fact, multiple simultaneously
active MUMPS instances are invoked at the same time dur-
ing the same parallel run of a single factorization/solve op-
eration via Blocktri. Additional work is pending in ex-
ecuting the networks under this solver, and observing its
scalability to even larger networks, and with futuristic au-
tomated controls based on ubiquitous sensors.

6. SUMMARY AND FUTURE WORK
Experimentation for the designs of futuristic smart grids

at regional to national scale require the use of discrete event
style of simulations for capturing the dynamics at the right
levels of fidelity. However, this style of execution presents
unique core computational requirements that are relatively
different from traditional electric grid simulators. Our ef-
forts are aimed at filling this need, by developing the algo-
rithms and implementations in parallel software. Prelimi-
nary experiments show the feasibility of the discrete event



Input (bandwidth 105) Permuted (bandwidth 18)
IEEE 118 case, with 118 nodes and 358 buses

Input (bandwidth 244) Permuted (bandwidth 36)
IEEE 300 case, with 298 nodes and 814 buses

Input (bandwidth 4434) Permuted (bandwidth 591)
ERCOT case, with 5357 nodes and 12572 buses

Input (bandwidth 38713) Permuted (bandwidth 1600)
EI NERC09s f case, with 45,552 nodes and 111,576 buses

Table 2: Original and bandwidth-optimized admittance matrices



An×n

BN,M

BN’,MB
-1
N’,M

Input Matrix

Permutation

Pn

Right hand
side vector

bn

Solution vector

xn Factors
(implicit inverse)

Bandwidth

Block tri-diagonal

with integral N’/M

Block tri-diagonal

M
Minimimize 

Bandwidth

Block 

Block

Tri- Diagonalize

Adjust matrix to 

N’=M×Ceil(N/M)
Factorize

Solve

matrix t
P

A

Mi i i i

BBB
-1

M

ors

Bandwidth

mize

idth
M

ee 

h Tri
B

eS
te

p
 1

S
te

p
 2

S
te

p
 3

S
te

p
 4

S
te

p
 5

Figure 4: Solution algorithm to solve a sparse admittance matrix A of dimension n× n.

approach in accurately capturing electro-mechanical dynam-
ics in a manner that is suitable to attach complex, smart
device behaviors for future device/protocol design and ex-
periments. The runtime performance studies also clearly
show that the most significant computational burden lies in
the solution of the admittance matrices at various points of
event execution. We identified a provably scalable solution
approach to solving very large electric grid network scenar-
ios with several thousands of buses. The implementation of
this customized solver is underway, and its scalability and
efficiency characteristics are ongoing work. Future work in-
cludes addressing the validation and cross-checking needs, as
well as collaborations with other researchers in the visualiza-
tion of geographically distributed phenomena in large-scale
smart grids.

Acknowledgements
This paper has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the U.S. Department of
Energy. Accordingly, the United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains
a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government pur-
poses. This effort has been supported by research sponsored
by the Laboratory Directed Research and Development Pro-
gram of Oak Ridge National Laboratory. The research used
resources of the National Center for Computational Sciences
(NCCS) at Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the Department of Energy.

7. REFERENCES

[1] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y.
L’Excellent. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM Journal
on Matrix Analysis and Applications, 23(1):15–41,
2001.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford,
J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition,
1999.

[3] F. E. Cellier and E. Kofman. Continuous system
simulation. Springer, 2006.

[4] E. Cuthill and J. McKee. Reducing the bandwidth of
sparse symmetric matrices. In Proceedings of the 1969
24th national conference, ACM ’69, pages 157–172,
New York, NY, USA, 1969. ACM.

[5] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li,
and J. W. H. Liu. A supernodal approach to sparse
partial pivoting. SIAM J. Matrix Analysis and
Applications, 20(3):720–755, 1999.

[6] S. Hirshman, K. Perumalla, V. Lynch, and
R. Sanchez. Bcyclic: A parallel block tri-diagonal
matrix cyclic solver. Journal of Computational
Physics, 229:6392–6404, 2010.

[7] V. Jalili-Marandi and V. Dinavahi. Simd-based
large-scale transient stability simulation on the
graphics processing unit. IEEE Transactions on Power
Systems, 25(3):1589 –1599, 2010.

[8] S. Jin, Z. Huang, Y. Chen, D. G. Chavarria-Miranda,
J. Feo, and P. C. Wong. A novel application of parallel
betweenness centrality to power grid contingency



M

M

U
i

D
i

L
i

U
i-1

D
i-1

L
i-1

U
i+1

D
i+1

L
i+1

Figure 3: Matrix of bandwidth M viewed as a block-
tridiagonal matrix of block size M , with lower di-
agonal blocks Li being upper-triangular, and upper
diagonal blocks Ui being lower-triangular

analysis. In International Parallel and Distributed
Processing Symposium/International Parallel
Processing Symposium, pages 1–7, 2010.

[9] A. Molina-GarcìIA֒, F. Bouffard, and D. Kirschen.
Decentralized demand-side contribution to primary
frequency control. IEEE Transactions on Power
Systems, 26(1):411 –419, feb. 2011.

[10] S. Mullen and G. Onsongo. Decentralized agent-based
underfrequency load shedding. Integrated
Computer-Aided Engineering, 17(4):321–329, 2010.

[11] J. Nutaro, P. T. Kuruganti, V. Protopopescu, and
M. Shankar. The split system approach to managing
time in simulations of hybrid systems having
continuous and discrete event components.
SIMULATION, May 2011.

[12] J. Shu, W. Xue, and W. Zheng. A parallel transient
stability simulation for power systems. IEEE
Transactions on Power Systems, 20(4):1709 – 1717,
2005.

[13] D. Trudnowski, M. Donnelly, and E. Lightner.
Power-system frequency and stability control using
decentralized intelligent loads. In Proceedings of the
2005 IEEE Power Engineering Society T & D
Conference and Expo, pages 1453–1459, 2006.

[14] S.-J. Tsai, L. Zhang, A. Phadke, Y. Liu, M. Ingram,
S. Bell, I. Grant, D. Bradshaw, D. Lubkeman, and
L. Tang. Frequency sensitivity and electromechanical
propagation simulation study in large power systems.
IEEE Transactions on Circuits and Systems I: Regular
Papers, 54(8):1819–1828, 2007.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0  1  2  3  4  5  6  7  8  9  10

fre
qu

en
cy

 (H
er

tz
)

time (seconds)

IEEE 118

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8  9  10
fre

qu
en

cy
 (H

er
tz

)

time (seconds)

IEEE 300

-4e-12

-2e-12

 0

 2e-12

 4e-12

 6e-12

 8e-12

 1e-11

 0  0.2  0.4  0.6  0.8  1

fre
qu

en
cy

 (H
er

tz
)

time (seconds)

ERCOT

-2e-10

-1.5e-10

-1e-10

-5e-11

 0

 5e-11

 1e-10

 1.5e-10

 0  0.2  0.4  0.6  0.8  1

fre
qu

en
cy

 (H
er

tz
)

time (seconds)

EI NERC09s f

Table 1: Sample simulation output showing the
transient frequency excursions due to the outage of
a single generator (timescales are different across
networks)


