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ABSTRACT 

 

Parallelizing a domain-specific production code with thousands of lines that is developed over several 

years is a daunting task. Also, throwing away the existing serial code completely to design a parallel 

algorithm from scratch is not always a viable solution. Ideally, one wishes to morph the serial code to 

make it compute in parallel, so that much of knowledge built over years in the form of serial code is 

retained and the performance gain due to parallel computing is also achieved. Hence, the parallelization 

task of the production code must be very conservatively approached. 

With such a guiding principle in parallelizing a complex, production-version of a serial code, we start 

with the functional serial execution and attempt a series of parallelization steps designed to uncover the 

issues and problems that arise when the serial code is incrementally transformed into a parallel code.  

Addressing each of the arising issues individually, we incrementally transform the serial code into a 

functional parallel code that retains the correctness of the serial code yet executes in parallel, ultimately 

delivering significant reduction in run time. Since the issues are incrementally addressed, we refer to this 

strategy as an Incremental Parallelization Approach (IPA). We demonstrate the applicability of IPA, by 

parallelizing over 25,000 lines of Probabilistic Fracture Mechanics (PFM) module code of Fracture 

Analysis of Vessels Oak Ridge (FAVOR) code that was developed for the Nuclear Regulatory 

Commission (NRC) by the HSST program at Oak Ridge. As a result of applying the IPA methodology, 

we ultimately reduced the run time of FAVOR PFM module from several hours to only a few minutes, 

without any loss of accuracy in the computed result. In this article, we discuss our experience gained in 

the effort in parallelizing the FAVOR’s PFM module using our IPA methodology. 
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1.  INTRODUCTION 

In general, a team of experts develops domain-specific (serial) computer code over years, often 

incurring enormous investments of time and effort to bring it to the production level. When such a 

production serial code is stressed, either to overcome limitations in handling large input scenarios or 

improve accuracy, often, parallel execution is the only effective solution. However, parallel 

programming, with its own set of challenges and idiosyncrasies, makes the task of transforming 

thousands of lines of production code into an efficient parallel code hard and challenging. 

Fracture Analysis of Vessels – Oak Ridge (FAVOR), is one such serial code that was developed for 

the Nuclear Regulatory Commission (NRC) by the HSST program at Oak Ridge.
1,2

  It has three modules, 

(a) Deterministic Load Generator module (FAVLOAD), (b) Monte-Carlo PFM module (FAVPFM) (c) 

Post Processor module (FAVPOST). Of the three modules, the FAVPFM module requires a very long 

execution time (usually days) in order to execute the number of scenarios to effectively cover the 

parameter domain of interest. Parallel execution of the FAVPFM can help dramatically reduce the run 

time of the FAVOR application.  However, a major challenge in transforming the serial FAVOR code 

into a parallel FAVOR system is posed by the large size of the code that is over 25,000 lines long, making 

it practically and prohibitively expensive.  Hence, an approach is needed to be able to parallelize the serial 

code, and performing such a conversion in a time-efficient manner is of significant importance. 

As an alternative to the cost of understanding the serial code and re-implementing it, an alternative 

approach is explored here for the parallelization that achieves the goal and also retains the same 

confidence levels in the correctness of the output results as those from its serial counter part.  In this 

report, we propose the Incremental Parallelization Approach (IPA) to achieve this task in several of 

iterative steps. We document our experience in applying the IPA for parallelizing the serial PFM module 

of FAVOR and the final performance improvement we obtained. 

The Monte-Carlo simulation algorithm that underlies the FAVOR system is widely known to be an 

embarrassingly parallel problem
3,4,5

 and thus easily parallelizable if one started development from scratch. 

The work reported here explores the challenges involved when a Monte Carlo code such as the FAVOR 

system is to be transformed into the parallel execution while the system is handled only as a black box. 

In the following sub-sections, we introduce the IPA methodology and the FAVOR system. The 

application of IPA for the parallelization of FAVOR (specifically, the serial FAVPFM module of 

FAVOR) is discussed in Sect. 2–4.  This is followed by the performance evaluation study of the parallel 

FAVOR (FAVPFM) in Sect. 5. The report is summarized and concluded in Sect. 6. 

1.1  INCREMENTAL PARALLELIZATION APPROACH 

In the IPA approach, we first execute multiple instances of the same unchanged serial code in parallel 

to begin to uncover the interdependencies of the parallel computing processes. The interdependencies 

among the processes executing in parallel 

 

(a) can silently disappear resulting in the erroneous computation, or 

(b) can blatantly fail resulting in the abrupt termination of the execution process, or 

(c) can freeze up the execution process due to a deadlock condition. 

 

These are the only three ways by which the interdependencies non-existent in the serial code can 

surface when the same unchanged serial code is evaluated in parallel. If each of these failures in this 

failure space were to be resolved incrementally, then the resulting algorithm that the code manifests must 

be the required parallel algorithm. This algorithm will not only compute in parallel but will also replicate 

the results of the serial code exactly to the machine precision. 

In general, both types of failures (b) and (c) are more apparent, easy to detect and hence could be 

relatively easy to resolve after detection. On the other hand the failure (a) is subtler and could be hard to 

detect and overcome. While the detection of errors will be evident when the results from the serial and 

parallel runs are compared, the actual point of error generation is hard to track down. In our IPA 

procedure we aim to eliminate the easily detectable and observable failures early on and address the 
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subtler failures later, i.e. after we resolve the apparent ones. Figure 1 gives the flow chart of the IPA 

process. 

The knowledge on the characteristic of parallelization of the resulting algorithm obtained at the end of 

from the IPA procedure is essential to resolving the failures and errors. For example, in the case of 

FAVOR, we are aware that the final parallel algorithm may be viewed as embarrassingly parallel and 

hence the processors will be computing in complete independence of one another. Also this knowledge 

helps us to overcome the incorrect execution caused by dependencies on initialization by duplicating the 

initialization routine execution for every processor. This knowledge-based resolution of failures is 

extremely important because it ensures that the changes introduced into the parallel algorithm to 

overcome the failures wouldn’t perpetuate additional failures. 

 

 

Fig. 1.  Incremental Parallelization Approach (IPA) flow chart. 
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1.2  FRACTURE ANALYSIS OF VESSELS – OAK RIDGE (FAVOR) CODE 

FAVLOAD module accepts input data containing multiple thermal-hydraulic transients, and, for each 

transient, it performs deterministic calculations to produce a load-definition input file for FAVPFM.  

The PFM module in FAVOR is based on the application of Monte-Carlo techniques in which the 

deterministic fracture analyses are performed on a large number of stochastically generated RPV (Reactor 

Pressure Vessel) trials and realizations. 

Each vessel realization containing a specified number of flaws is analyzed to determine the 

conditional probability of initiation (CPI) and the conditional probability for failure (CPF) for an RPV 

challenged by thermal hydraulic transient at selected time in vessel’s operating history. The Monte-Carlo 

method involves sampling of appropriate probability distributions to simulate many possible 

combinations of flaw geometry and RPV (Reactor Pressure Vessel) material embrittlement, all exposed to 

same transient loading conditions. 

The Post Processor module combines three primary results to generate discrete distributions of the 

frequency of vessel initiation and frequency of vessel failure. The results that are combined are the 

distribution of the transient initiating frequencies obtained from probabilistic risk assessment studies, the 

values of conditional probability of fracture (contained in the FAVPFM-generated matrix PFMI), and the 

values of the conditional probability of vessel failure (contained in the FAVPFM-generated matrix 

PFMF). 

The PFM module is the part that needs to be parallelized, since it is the most time-consuming part of 

the FAVOR code. The PFM module is implemented in FORTRAN-90 that results in an executable after 

compilation. The entire module is implemented in 25,880 lines of code and it uses the Monte-Carlo 

approach. The PFM executable interactively takes input files from the command prompt during 

execution. The following 5 files are taken as input by the FAVPFM executable: 

 

(a) Output of FAVLoad 

(b) FAVPFM input file 

(c) Flaw characterization file for surface-breaking flaws applicable to weld and plate regions 

(default=S.DAT) 

(d) Flaw characterization file for embedded flaws in weld region (default=W.DAT) 

(e) Flaw characterization file for embedded flaws in plate region (default=P.DAT). 

1.3  PARALLEL FAVPFM REALIZATION USING IPA 

Parallelization of FAVOR code is a challenging task due to the complexity of the algorithm and the 

instantiation characteristics of the algorithm in the code. One of the simplest parallelization approaches 

can be applied to exploit the Monte Carlo structure of execution that is inherent in FAVOR. However, the 

software structure is not readily amenable to parallel execution, making it necessary to incorporate 

modifications to the code. Since the application is complex, its original modifications must be made 

extremely carefully, such that its verified and validated status must be retained to the extent possible. 

Refactoring approximately twenty six thousand lines of serial FAVOR code in its entirety to design an 

alternative parallel algorithm seems impractical. Hence, the IPA is used. 

The parallelization was carried out in four steps listed below. 

 Step 1: Pseudo-parallel run of serial code - To be able to run the serial code in parallel using MPI, 

without partitioning the models to processors, such that each of the parallel processes duplicates 

all work, but compute the exact same serial result at every processor. 

 Step 2: Task partitioning in pseudo-parallel code - To be able to partition the tasks across the 

parallel application that is now enabled to start running in parallel as a result of Step 1 

 Step 3: Verification of parallel code – Verify that the parallel results exactly match the 

corresponding serial results. 

 Step 4: Performance evaluation – to empirically determine the speed gain obtained from the 

whole parallelization exercise. 

Each of these steps is discussed separately in detail in Sect. 2–5, respectively. 
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2. PSEUDO-PARALLEL RUN OF SERIAL CODE 

If we are able to launch the serial program as a parallel program (sans communication dependencies, 

for a first cut), that would constitute a first, necessary step towards parallelization. The necessary 

conditions are satisfied if such a first-cut parallel execution completes without runtime errors and, if each 

of the process ranks were to produce exactly same results as the serial run.  This offers the confidence of 

having eliminated global dependencies and other necessary conditions (e.g., file name overlaps, and read-

write conflicts). This task expects that the serial procedure can be partitioned into multiple completely 

independent tasks, which when executed to yield the same result as the serial program. 

This step is completely based on the assumption that there exists a parallel algorithm that can be 

applied for its parallelization and algorithm in this case is task-parallelism. Since, we are aware that the 

PFM code is Monte-Carlo based and also know that task-parallel algorithm for parallelization can be 

applied to Monte-Carlo based applications, we carry out this step 

 

2.1  REALIZATION 

As mentioned in Sect. 1, the PFM executable takes the input filenames interactively. The first 

modification that we performed to the serial code was the removal of the interactive input capability. For 

this purpose we hard coded the input filenames in the code. Also, the serial code was MPI-enabled and 

was compiled using Open-MPI with its wrapper for FORTRAN compiler. Here MPI-enabled means that 

MPI statements were added to the serial code enable the process to run as an MPI process.  

 
 : 

forrtl: No such file or directory 

forrtl: severe (28): CLOSE error, unit 16, file "Unknown" 

Image              PC                Routine            Line        Source 

mfavpfm            00000000005565F6  Unknown               Unknown  Unknown 

: 

libc.so.6          0000002A9699C40B  Unknown               Unknown  Unknown 

mfavpfm            000000000040F8EA  Unknown               Unknown  Unknown 

-------------------------------------------------------------------------- 

mpiexec has exited due to process rank 1 with PID 11432 on 

node b07n013.oic.ornl.gov exiting without calling "finalize". This may 

have caused other processes in the application to be 

terminated by signals sent by mpiexec (as reported here). 

-------------------------------------------------------------------------- 

Fig. 2. Excerpt of error message from failed pseudo-parallel run. 

The idea here was to run the serial code in parallel as it were, without any modification and see where 

it fails; once we know the failure point, we trace back the reason for failure and fix it or come up with a 

strategy that would efficiently circumvent the problem at the source of the runtime error. Throughout the 

process of parallelization, except during the performance studies, we have used two MPI processes for 

parallel runs for simplicity and ease in debugging. 

All most all the errors that we encountered, when we ran the MPI enabled serial code in parallel were 

related  to the  handling of  file operations by the parallel program. An excerpt of the error is shown in 

Fig. 2. 
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                    *********************************************** 

                    * Results for running averages of cpi and cpf * 

                    *   See cpi_history.out and cpf_history.out   * 

                    *      for the same data in a text file.      * 

                    *********************************************** 

         |------------------------------||--------------------------------| 

         |   running average of cpi     ||    running average of cpf      | 

   ntrial|----------------------------- ||--------------------------------| 

         |     1         2         3    ||     1         2         3      | 

         |------------------------------||--------------------------------| 

      1  | 0.000E+00 7.486E-06          || 0.000E+00 0.000E+00            | 

      2  | 0.000E+00 3.743E-06          || 0.000E+00 0.000E+00            | 

      3  | 0.000E+00 2.495E-06          || 0.000E+00 0.000E+00            | 

      :        :        :                     :          :                  

     44  | 4.003E-04 4.077E-05          || 0.000E+00 0.000E+00            | 

     45  | 3.914E-04 3.987E-05          || 0.000E+00 0.000E+00            | 

     46  | 3.829E-04 3.900E-05          || 0.000E+00 0.000E+00            | 

 

     97  | 1.821E-04 1.924E-05          || 0.000E+00 0.000E+00            | 

     98  | 1.803E-04 1.905E-05          || 0.000E+00 0.000E+00            | 

     99  | 1.784E-04 1.902E-05          || 0.000E+00 0.000E+00            | 

    100  | 1.766E-04 1.883E-05          || 0.000E+00 0.000E+00            | 

      :        :        :                     :          :                  

                              COMPLETING PFM ANALYSIS 

  

               Creating a FAVPFM binary restart file: restart.bin 

               Time Stamp -- DATE: 14-May-2010  TIME: 14:08:05 

               RANDOM NUMBER GENERATOR SEEDS:      1270544027     2101961695 

 

                             GENERATING OUTPUT REPORTS 

** Normal Termination ** 

Fig. 3.  Excerpt of serial run output of the FAVPFM module. 

Since, many processes can read a single file at the same time with out any problem and our parallel 

experimentation platform’s file system was based on Networked File System (NFS), the concurrent 

reading of data by all processors from input files completed without runtime errors. However, the files, 

which were opened in write mode, like the output files, error files, restart files (used for check-pointing) 

were the points of failure. These file errors were overcome by making each of the process ranks write into 

their own files. This involved identification of the contentious files and addition of very few lines of code 

to enable the each of the processes running in parallel to create/write/delete their own file. 

After the fixes we were able to run the serial code completely in parallel. Figures 3–4 show the 

excerpts of output from a serial code and the parallel code respectively. Comparing the results, it is 

observed that both serial and parallel runs print exactly the same results. Further, from Fig. 4 we also see 

that both the process ranks involved in the parallel run print exactly the same result. 

In this step, we converted the serial code into independently running parallel code, where in each of 

the parallel processes print out the exact same results. Hence, by doing this we thus can be sure of having 

eliminated any global dependencies in the parallel code. 
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                    *********************************************** 

                    * Results for running averages of cpi and cpf * 

                    *   See cpi_history.out and cpf_history.out   * 

                    *      for the same data in a text file.      * 

                    *********************************************** 

         |------------------------------||--------------------------------| 

         |   running average of cpi     ||    running average of cpf      | 

   ntrial|----------------------------- ||--------------------------------| 

         |     1         2         3    ||     1         2         3      | 

         |------------------------------||--------------------------------| 

                CREATING PROBABILITY DISTRIBUTIONS FOR FLAWS 

 

                         ************************** 

                         * BEGINNING PFM ANALYSIS * 

                         ************************** 

 

 

                    *********************************************** 

                    * Results for running averages of cpi and cpf * 

                    *   See cpi_history.out and cpf_history.out   * 

                    *      for the same data in a text file.      * 

                    *********************************************** 

         |------------------------------||--------------------------------| 

         |   running average of cpi     ||    running average of cpf      | 

   ntrial|----------------------------- ||--------------------------------| 

         |     1         2         3    ||     1         2         3      | 

         |------------------------------||--------------------------------| 

      1  | 0.000E+00 7.486E-06          || 0.000E+00 0.000E+00            | 

      1  | 0.000E+00 7.486E-06          || 0.000E+00 0.000E+00            | 

      2  | 0.000E+00 3.743E-06          || 0.000E+00 0.000E+00            | 

      2  | 0.000E+00 3.743E-06          || 0.000E+00 0.000E+00            | 

      :        :        :                     :          :                | 

     45  | 3.914E-04 3.987E-05          || 0.000E+00 0.000E+00            | 

     45  | 3.914E-04 3.987E-05          || 0.000E+00 0.000E+00            | 

     46  | 3.829E-04 3.900E-05          || 0.000E+00 0.000E+00            | 

     46  | 3.829E-04 3.900E-05          || 0.000E+00 0.000E+00            | 

      :        :        :                     :          :                | 

     99  | 1.784E-04 1.902E-05          || 0.000E+00 0.000E+00            | 

     99  | 1.784E-04 1.902E-05          || 0.000E+00 0.000E+00            | 

    100  | 1.766E-04 1.883E-05          || 0.000E+00 0.000E+00            | 

 

                              COMPLETING PFM ANALYSIS 

 

               Creating a FAVPFM binary restart file: restart.bin 

               Time Stamp -- DATE: 13-May-2010  TIME: 12:21:14 

               RANDOM NUMBER GENERATOR SEEDS:      1270544027     2101961695 

 

                             GENERATING OUTPUT REPORTS 

    100  | 1.766E-04 1.883E-05          || 0.000E+00 0.000E+00            | 

 

                              COMPLETING PFM ANALYSIS 

 

               Creating a FAVPFM binary restart file: restart.bin 

               Time Stamp -- DATE: 13-May-2010  TIME: 12:21:15 

               RANDOM NUMBER GENERATOR SEEDS:      1270544027     2101961695 

 

                             GENERATING OUTPUT REPORTS 

 Ending run at: Thu May 13 12:21:15 EDT 2010 

Epilogue Initiated 

Removing /scratch/90940.b15l01.oic.ornl.gov on node(s): b08n048 

Floaters flushed on node(s): 

Epilogue Complete 

Fig. 4.  Excerpt of Pseudo-parallel run output of FAVPFM.
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3.  TASK PARTITIONING IN PSEUDO-PARALLEL CODE 

In step 1, we were able to run the serial code in parallel, completely independent of one another and 

were also able to get each of the MPI processes to compute the exact same results as that of the serial run. 

In this step, we identify the independent tasks within PFM and perform task parallel execution. To do this 

we need to look into the structure of the code and see where task parallelism can be applied. The most 

time-consuming part of the PFM subroutine in FAVPFM follows the algorithm in Fig. 5. 

 
VESSELS (1:NTRIAL) 

 {read in FLAWGROUP files unique for the TRIAL or VESSEL ID} 

 FLAWS (1:NUMFLW) 

  TRANSIENTS (1:MTRAN) 

   TIME STEPS (1:NTIMES) 

    : 

    : 

   EXHAUST TIME STEPS 

  EXHAUST TRANSIENTS 

 EXHAUST FLAWS 

EXHAUST VESSELS 

    

Ref: FAVPFM.for code – comments 

Fig.  5. The core algorithm structure of FAVPFM module. 

The above algorithm documented in the FAVPFM code (and learnt from subsequent discussions with 

the original developers of the system), revealed that the runs across the trials (the outer loop) were 

independent of one another. This suggests that we could run each trial as an independent task. 

However the random number seed used in trials in parallel runs would differ from those in serial runs.  

This is because we partition the tasks across trials, which results in differing outputs of serial and parallel 

runs. This does compromise the correctness of the computed results and hence, we will not be able to 

verify the correctness of the parallel computed results with the results from the serial run, in this step. 

3.1  REALIZATION 

We use the same example scenario as in step 1 and the code is modified such that the trials are 

equally partitioned across multiple processes. This was achieved by adding few variables and few lines of 

code at the start and the end of the NTRIAL loop of the algorithm shown in Fig. 5 above. 

 
10    NTRIAL = NTRIAL + 1 

          : 

          : 

          IF (NTRIAL.GE.NSIM_TEST) THEN 

          GOTO 9999 

      ELSE 

          GOTO 10 

      ENDIF 

Fig.  6. Serial code fragment. 

      NTRIAL = START_TRIAL 

10    NTRIAL = NTRIAL + 1 

          : 

          : 

 IF ((NTRIAL.GT.END_TRIAL).OR.(NTRIAL.GE.NSIM_TEST)) THEN 

          GOTO 9999 

      ELSE 

          GOTO 10 

      ENDIF 

Fig. 7. Parallel code fragment. 
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         |------------------------------||--------------------------------| 

         |   running average of cpi     ||    running average of cpf      | 

   ntrial|----------------------------- ||--------------------------------| 

         |     1         2         3    ||     1         2         3      | 

         |------------------------------||--------------------------------| 

 ***** NTRIAL :           51 

                CREATING PROBABILITY DISTRIBUTIONS FOR FLAWS 

 NSUB_TRIALS:           50 

 N_TRIALS:            0 

 ISIZE:            2 

 NSUB_TRIALS:           50 

 START_TRIAL:            0 

 RANK:            0 

 NSUB_TRIALS:           50 

 END_TRIAL:           49 

 RANK:            0 

 ******** START_TRIAL :            0 

 ******** END_TRIAL :           49 

  

                         ************************** 

                         * BEGINNING PFM ANALYSIS * 

                         ************************** 

 

 

                    *********************************************** 

                    * Results for running averages of cpi and cpf * 

                    *   See cpi_history.out and cpf_history.out   * 

                    *      for the same data in a text file.      * 

                    *********************************************** 

         |------------------------------||--------------------------------| 

         |   running average of cpi     ||    running average of cpf      | 

   ntrial|----------------------------- ||--------------------------------| 

         |     1         2         3    ||     1         2         3      | 

         |------------------------------||--------------------------------| 

 ***** NTRIAL :            1 

     51  | 3.416E-06 0.000E+00          || 0.000E+00 0.000E+00            | 

 ***** NTRIAL :           52 

      1  | 0.000E+00 7.486E-06          || 0.000E+00 0.000E+00            | 

 ***** NTRIAL :            2 

     52  | 3.350E-06 0.000E+00          || 0.000E+00 0.000E+00            | 

 ***** NTRIAL :           53 

      2  | 0.000E+00 3.743E-06          || 0.000E+00 0.000E+00            | 

      :        :        :                     :         :                   

     99  | 1.169E-05 1.576E-08          || 0.000E+00 0.000E+00            |  

 ***** NTRIAL :          100 

     49  | 3.596E-04 3.768E-05          || 0.000E+00 0.000E+00            |  

 ***** NTRIAL :           50 

    100  | 1.157E-05 1.560E-08          || 0.000E+00 0.000E+00            |  

  

                              COMPLETING PFM ANALYSIS 

 

               Creating a FAVPFM binary restart file: restart.bin 

               Time Stamp -- DATE: 14-May-2010  TIME: 14:00:40 

               RANDOM NUMBER GENERATOR SEEDS:      2128235567      491493355 

 

     50  | 3.524E-04 3.693E-05          || 0.000E+00 0.000E+00            |  

  

                              COMPLETING PFM ANALYSIS 

 

               Creating a FAVPFM binary restart file: restart.bin 

               Time Stamp -- DATE: 14-May-2010  TIME: 14:00:40 

               RANDOM NUMBER GENERATOR SEEDS:      1503797025     1823000556 

 

                             GENERATING OUTPUT REPORTS 

                             GENERATING OUTPUT REPORTS 

 Ending run at: Fri May 14 14:00:40 EDT 2010 

Epilogue Initiated 

Removing /scratch/91240.b15l01.oic.ornl.gov on node(s): b08n031 

Floaters flushed on node(s): 

Epilogue Complete 

Fig.  8. Output excerpt from the parallel run after task partitioning.  
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START_TRIAL and END_TRIAL variables were used for partitioning the trials among parallel 

processes and their values were calculated based on the process rank of the corresponding MPI process. 

Also, minor additional changes within the NTRIAL loop were done to accommodate this change. 

Figure 8 shows the excerpt of the result of the parallel run. In this particular example, of the 100 trials 

that FAVPFM runs, 50 trials were run by MPI process with rank 0 and remaining 50 were run by MPI 

process with rank 1. As can be verified from Fig. 3 and Fig. 8, the first 50 trials of the parallel run, which 

startup with same random-seed as the serial run, produce exact same result as that of first 50 trials of the 

serial run. However, the last 50 trials do not match because the initial random seed with which the trial 51 

starts during the parallel run is different from that of its serial counter part. 

In this step we converted the parallel code, where in the parallel processes that were duplicating each 

other’s work into a parallel program that share the work load. The sharing of workload was achieved by 

partitioning the trials equally among the parallel processes, after having learnt that the computations 

across trials are independent of one another. 
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4.  VERIFICATION OF PARALLEL CODE 

In Sect. 3, we noted that that the first 50 trial outputs by the process of rank 0, were exactly same 

as the serial run output, while the trials from 51 onto 100 (run on MPI process of rank 1) were not 

consistent with the output from the serial run. The variation of the seed values in the random number 

generator used in FAVPFM was reasoned out to be responsible for the results obtained by parallel 

run. 

We know that any two sequence of random numbers generated are exactly same, if their 

corresponding initial seeds are same.  If for each trial in the FAVPFM code, if we were to know the 

initial random seed used during the serial execution, and if we use the same random seed in a task 

partitioned parallel execution, then we can ensure the exact correspondence of the result from the 

serial and parallel runs. Hence, the knowledge of initial random seed is a must for achieving 

verifiably correct result during the parallel computation of the FAVPFM 

4.1  REALIZATION 

The very first task we carried out in this step is to check, how the random number generation and 

its subsequent usage varies across trials. If the random numbers were to be generated and used with in 

the conditional statements in the code, then this leads to varying number of random numbers across 

trials or else the number of random numbers generated will remain constant across trials. To count the 

number of random numbers generated in each trial, a counter was placed in the uniform random 

number generator function (ranf2). After every trial, the random number counter value along with 

the trial number that starts next was printed, before the counter is reset. 

 
[y54@b06l01 siam]$ cat count_seq.out | grep rnd_count 

 : 

 rnd_count NTRIAL     33616827           2 

 rnd_count NTRIAL     32624853           3 

 rnd_count NTRIAL     33015309           4 

 : 

 rnd_count NTRIAL     33934609          48 

 rnd_count NTRIAL     33828715          49 

 rnd_count NTRIAL     33253161          50 

 rnd_count NTRIAL     32882785          51 

 rnd_count NTRIAL     33544459          52 

  : 

 rnd_count NTRIAL     33788905          96 

 rnd_count NTRIAL     33200427          97 

 rnd_count NTRIAL     32889553          98 

 rnd_count NTRIAL     32671177          99 

 rnd_count NTRIAL     32856421         100 

 

 Max (rnd_count) = 35257681 

Fig.  9. Total number of random numbers generated in each trial. 

Figure 9 shows the excerpt of the output that counts the random numbers in each trial. The 

varying counter values in each trial as shown in the Fig. 9 confirms that the number of random 

numbers generated in each trial varies, which suggest that the random numbers were generated and 

used with in the conditional statements as well. 

4.1.1  Resolving Random Number Initialization Issue 

The initial random seeds can be known before hand only if, the number of random numbers 

generated across each of the trials is deterministic. Hence, in the task parallel algorithm for the serial 

FAVPFM code obtained from step 2, we fix the number of random numbers that can be generated in 
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each trial to a constant number, i.e., we set an upper limit to the number of random numbers that a 

trial can generate. This value was found empirically by counting the random numbers generated in 

each trial and we found it to be always less than 36 million, as observed in Fig. 9. Hence, we fixed the 

maximum number of random numbers that any trial could generate to 36 million and also added a 

condition that if any trial were to exceed this upper-bound value than the parallel execution would 

exit prematurely. In our implementation the number of random numbers generated per trial to 

(initial_seed + rank * 36,000,000), by doing this we ensured that a fixed set of random numbers are 

generated in each trial. 

For the purpose of verification, we altered the initially used serial FAVPFM code and the task-

parallel FAVPFM code obtained from step 2, so that the results could be compared. In the serial code, 

as we were fixing the constant number of random number generated per trial to a number is greater 

than the maximum of the number of random numbers generated across any trial, we end up throwing 

out extra random numbers at the end of each trial 

In the parallel code, in addition to the throwing away of the generated random numbers at the end 

(as in serial code), each MPI process had to exhaust generating a known set of number of random 

numbers to obtain its initial random seed. 

4.1.2 Verification Setup 

To demonstrate the correctness in the execution of the parallel FAVPFM, we compare the 

random numbers generated at each trial during serial run with that of parallel run. This we claim as 

right measure because the number of random numbers generated or used, in a particular trial depends 

on the initial random seed and with the computations with in the each trial being same in both serial 

and parallel codes, the number of random numbers generated must be same. Hence, a success in 

verification process is claimed, if the number of random numbers used in serial and parallel runs were 

observed to be exactly same in each and every trial. 

We adopt this measure because the general output of FAVPFM is the running average of CPF and 

CPI values, which print incorrect results, unless the results computed across the trials, which are 

distributed across the parallel processes, are used. We abstain from modifying the serial code further, 

since we can prove the correctness in the computation of parallel processes using an alternative means 

of comparing random numbers generated in each trials in serial and parallel runs, as discussed before. 

4.1.3 Verification Result 

 : 

 rnd_count NTRIAL     33292957           8 

 rnd_count NTRIAL     32915719           9 

 rnd_count NTRIAL     32902650          10 

 : 

 rnd_count NTRIAL     33087948          25 

 rnd_count NTRIAL     32552058          26 

  : 

 rnd_count NTRIAL     32704406          55 

 rnd_count NTRIAL     32367023          56 

  : 

 rnd_count NTRIAL     34483647          79 

 rnd_count NTRIAL     33511330          80 

  : 

 rnd_count NTRIAL     32889778          98 

 rnd_count NTRIAL     32671260          99 

 rnd_count NTRIAL     32856346         100 

Fig.  10. Total number of random numbers generated in each trial of the serial run. 

Figures 10–11 show the excerpts of the output from serial and parallel runs. They show that the 

number of random numbers generated in each trial of both serial and parallel computations exactly 

match each other. However, the outputs corresponding to running average of CPI and CPF, for the 
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MPI process rank not equal to 0, do not match (as expected). This is because the results of the trials 

performed on ranks 1 to M, do not take previous CPIs and CPFs into consideration while computing 

the running average. 

 
 : 

 rnd_count NTRIAL     33292957           8 

 rnd_count NTRIAL     32915719           9 

 rnd_count NTRIAL     32902650          10 

  : 

 rnd_count NTRIAL     32704406          55 

 rnd_count NTRIAL     32367023          56 

 rnd_count NTRIAL     34735077          16 

 rnd_count NTRIAL     33670039          17 

  : 

 rnd_count NTRIAL     35257457          64 

 rnd_count NTRIAL     33087948          25 

 rnd_count NTRIAL     33511128          65 

 rnd_count NTRIAL     32552058          26 

  : 

 rnd_count NTRIAL     34483647          79 

 rnd_count NTRIAL     33511330          80 

 rnd_count NTRIAL     32823220          89 

` :  

 rnd_count NTRIAL     33828984          49 

 rnd_count NTRIAL     33213537          90 

 rnd_count NTRIAL     33253350          50 

  : 

 rnd_count NTRIAL     32889778          98 

 rnd_count NTRIAL     32671260          99 

 rnd_count NTRIAL     32856346         100 

                  Fig.  11.  Total number of random numbers generated in each trial of the parallel run. 

              The first 50 trials were run on MPI process rank-0 and remaining 50 trials were run on rank-1 

               process. We find that for every trial, the random number count here are exactly same as that in 

              Fig.  10. Hence, we conclude that they are computing exactly same result. 

In this step, errors observed in the output of the task parallel system of step2 were addressed. The 

errors were reasoned to be originating from the disruption in the random number stream that surfaced 

as an artifact of task partitioning across the trials. This issue was addressed by setting an upper limit 

for the random numbers generated in each trial, which was found out empirically. The results from 

the serial runs and parallel runs were compared and were verified to be exactly same based on the 

random number counts. 

Note that the solution of fixed number of random number generations, is to verify the correctness 

of the parallel algorithm, by comparing it with its serial counter part. If there is no need to maintain 

the same stream of random numbers across the trials, or if we could initialize each of the trials with 

different RNG streams, then we already have reached completion of parallelization task at this point. 
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5. PERFORMANCE EVALUATION 

As we know that parallel computing code is embarrassingly parallel in nature, we expect to 

achieve a linear speed up. 

5.1  HARDWARE 

All the runs were carried out on Oak Ridge Institutional Clusters (OIC). They consist of a bladed 

architecture from Ciara Technologies (http://www.ciara-tech.com) called VXRACK. Each VXRACK 

contains two login nodes, three storage nodes and 80 compute nodes. Each compute node has Dual 

Intel 3.4GHz Xeon EM64T processors, 4GB of memory and dual Gigabit Ethernet Interconnects. All 

nodes run Red Hat Linux Enterprise WSv4 OS. 

5.2  SOFTWARE 

Only FAVPFM.for source file from the FAVOR9.1 source code distribution was used. The 

Intel® FORTRAN90 compiler was used to compile the serial code and Intel® FORTRAN90 

compiler based OpenMPI v1.3.2, was used to compile the parallel code. 

The FAVPFM_MPI executable named mfavpfm takes all the input file names as command line 

arguments; in addition to these inputs, it also takes the random seed file name and the maximum 

number of random numbers generated per trial. 

 
[y54@b06l02 mpifavor]$ ./mfavpfm 

USAGE: ./mfavpfm [FAVPFM.in] [FAVLOAD.out] [S.DAT] [W.DAT] [P.DAT] 

[SEEDS.TXT] [MAX_RN_PER_TRIAL] 

Fig. 12. The parallel code usage specifics. 

5.3 PERFORMANCE RUNS 

Figure 13 shows the runtime performance of the serial runs, the solid blue curve gives the runtime 

performance of serial FAVPFM for varying number of trials. The dashed red curve is the modified 

code that implements the throwaway of the random numbers at the end of each trial and is used for 

verification purpose. As is expected and can be seen from Fig. 13, their performance results closely 

correspond to each other. 

During parallel runs, as mentioned to achieve the correctness we generate and throwaway many 

generated random numbers, during the startup of the parallel MPI process and during the end of each 

trial. This needless computation does impact performance significantly. 

Figure 14 shows the runtime when 100 trials were evaluated using 100 MPI processes in parallel. 

In this scenario, each MPI process handles the execution of exactly one trial. As seen, the minimum 

time taken in the trial execution by a MPI process is little over 2 s (2.36 s) while the maximum time is 

close to 50 s (49.86 s). This clearly is an artifact of the generation and subsequent throw away of 

random  numbers. This  can be verified  by the random  number  generation  performance curve in 

Fig. 15, where we see that 48 s is used for RNG generation for 100 trials and in the throw away 

scheme, the 100
th
 trial generates and throws away random numbers pertaining to the previous 99 

trials, before executing the 100
th
 trial and this explains the overhead seen in the Fig. 14. 

 

http://www.ciara-tech.com/
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Fig.  13.  Serial run with and without random number generator modifications. 

 

           Fig. 14.  Runtime at every MPI process rank (generate and throw-away strategy).  Task 

       partitioning is done such that the lower rank MPI process gets the lower trial number and 

       higher rank MPI process gets higher trial number. Hence we see MPI process handling higher 

       trial number needs more runtime, since most of its time is used in generating and throwing 

       away the unwanted random numbers. 
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          Fig.  15.  Random number generation time across trials.  In Fig. 14, the MPI process of rank 0 used 

       just over 2 s to compute the result, while the process with rank 99 used around 50 s. We notice from this 

      figure that almost 48 s rank 99’s time is consumed in random number generation.  

As seen in Fig. 15, if the same strategy for parallelization of FAVPFM is used the overhead 

increases with the increase in the number of trials and hence for 10000 trials the overhead is around 

4800 s or 1.34 h, that is 1/3 of the evaluation time (16314 s or 4.5 h) is spent in the generation and 

throw away process. 

Alternatively, if the serial RNG process is carried out before parallel execution, we can reduce 

several hours of parallel execution time to minutes. In the 10000-trial scenario the parallel 

computation time would be around 234 s, i.e. less than 4 minutes by eliminating the unwanted 

(generate and throw-away) computations performed by the MPI processes. By doing this we achieve 

linear speed up. 

Hence, we generate the initial random number seeds before hand and read them from a file during 

the execution. Figure 14 shows the time consumed by each MPI process during the execution of a 100 

trial scenario in parallel, using 100 processes. Average time taken by each MPI process is 2.34 s and 

the maximum time taken is 2.42 s. Hence, 100 trials are evaluated in less than 2.5 s. Note that the 

needless computation that made the maximum computation time for 100 trials around 50 s (shown in 

Fig. 6) is eliminated here. 
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           Fig.  16.  Runtime of every MPI process rank (Initial random-seed read from a file strategy). 

       Note here the runtime of all the MPI processes fall in between 2.2 s and 2.5 s. Comparing this 

      with Fig. 14 (where the runtime was dependent on the trial number the MPI process was running), we 

      ensure that the overhead due to the unnecessary generation of random numbers is eliminated. 

 

          Fig.  17.  Parallel runtime across varying number of trials of FAVPFM.  Comparing this result 

       with Fig. 13, we show that the runtime in parallel run with 10000 trials is reduced from 4.5 h to less 

       than 4 min with 100 processor cores. 
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          Fig. 18.  Speed up curves for 10, 50, and 100 processor-cores show that the runtime speed in the 

      FAVPFM computation increases by 7, 35, and 70, respectively suggesting 70% efficiency.  Further, the 

      curves suggest this efficiency remains consistent regardless of the change in the number of trials in the 

      simulation. 

Figure 17 shows the time taken by parallel processes (10, 50, and 100) to execute (100, 1000, and 

10000) FAVPFM trials. The maximum-time taken by a parallel process in the parallel execution is 

used to plot the speed-up graph shown in Fig. 18. The speedup graph suggests a linear speedup with a 

consistent 70% efficiency across varying number of trials. 
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6.   SUMMARY 

As opposed to a standard way of designing parallel algorithms for a particular problem, this 

report discusses a methodology to infuse the parallel computing capability into a production code. 

The report started with a brief introduction to the Incremental Parallelization Approach (IPA) and 

Fracture Analysis of Vessels – Oak Ridge (FAVOR). Using IPA, we incrementally overcame the 

dependencies of the parallel processes using various strategies and finally verified the correctness of 

the result by comparing it with the result from the serial code. We evaluated the performance of the 

parallel runs for scenarios with varying number of trials using 10, 50, and 100 processor-cores and 

achieved linear speedup with 70% efficiency. In the largest scenario involving 10000 trials that we 

ran, we were able to reduce the runtime of the FAVPFM module from 4.5 h to less than 4 min using 

100 processor cores and with zero loss in accuracy. 

. 
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