

 ORNL/TM-2010/176

An Incremental Parallelization
Approach Applied to the ORNL/NRC
FAVOR Code

August 2010

Prepared by
Srikanth B. Yoginath
Kalyan S. Perumalla

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from
the following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM-2010/176

Computational Sciences and Engineering Division

AN INCREMENTAL PARALLELIZATION APPROACH APPLIED TO THE

ORNL/NRC FAVOR CODE

Srikanth B. Yoginath

Kalyan S. Perumalla

Paul T. Williams

Richard B. Bass

Date Published: August 2010

Prepared by

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283

Managed by

UT-BATTELLE, LLC

for the

U.S. DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

 iii

CONTENTS

Page

LIST OF FIGURES ... iv

ABSTRACT ... v

1. INTRODUCTION .. 1
1.1 INCREMENTAL PARALLELIZATION APPROACH ... 1
1.2 FRACTURE ANALYSIS OF VESSELS – OAK RIDGE (FAVOR) CODE 3
1.3 PARALLEL FAVPFM REALIZATION USING IPA .. 3

2. PSEUDO-PARALLEL RUN OF SERIAL CODE .. 4
2.1 REALIZATION ... 4

3. TASK PARTITIONING IN PSEUDO-PARALLEL CODE ... 7
3.1 REALIZATION ... 7

4. VERIFICATION OF PARALLEL CODE ... 10
4.1 REALIZATION ... 10

 4.1.1 Resolving Random Number Initialization Issue ... 10
 4.1.2 Verification Setup ... 11
 4.1.3 Verification Result .. 11

5. PERFORMANCE EVALUATION.. 13
5.1 HARDWARE .. 13
5.2 SOFTWARE .. 13
5.3 PERFORMANCE RUNS .. 13

6. SUMMARY ... 18
REFERENCES ... 19

 iv

LIST OF FIGURES

Figure Page

 1. Incremental Parallelization Approach (IPA) flow chart ... 2
 2. Excerpt of error message from failed pseudo-parallel run .. 4
 3. Excerpt of serial run output of the FAVPFM module ... 5
 4. Excerpt of Pseudo-parallel run output of FAVPFM ... 6
 5. The core algorithm structure of FAVPFM module. .. 7
 6. Serial code fragment. .. 7
 7. Parallel code fragment. ... 7
 8. Output excerpt from the parallel run after task partitioning ... 8
 9. Total number of random numbers generated in each trial .. 10
10. Total number of random numbers generated in each trial of the serial run .. 11
11. Total number of random numbers generated in each trial of the parallel run. 12
12. The parallel code usage specifics .. 13
13. Serial run with and without random number generator modifications. ... 14
14. Runtime at every MPI process rank (generate and throw-away strategy). ... 14
15. Random number generation time across trials. ... 15
16. Runtime of every MPI process rank (Initial random-seed read from a file strategy). 16
17. Parallel runtime across varying number of trials of FAVPFM. .. 16
18. Speed up curves for 10, 50, and 100 processor-cores show that the runtime speed in the FAVPFM

computation increases by 7, 35, and 70, respectively suggesting 70% efficiency. 17

 v

ABSTRACT

Parallelizing a domain-specific production code with thousands of lines that is developed over several

years is a daunting task. Also, throwing away the existing serial code completely to design a parallel

algorithm from scratch is not always a viable solution. Ideally, one wishes to morph the serial code to

make it compute in parallel, so that much of knowledge built over years in the form of serial code is

retained and the performance gain due to parallel computing is also achieved. Hence, the parallelization

task of the production code must be very conservatively approached.

With such a guiding principle in parallelizing a complex, production-version of a serial code, we start

with the functional serial execution and attempt a series of parallelization steps designed to uncover the

issues and problems that arise when the serial code is incrementally transformed into a parallel code.

Addressing each of the arising issues individually, we incrementally transform the serial code into a

functional parallel code that retains the correctness of the serial code yet executes in parallel, ultimately

delivering significant reduction in run time. Since the issues are incrementally addressed, we refer to this

strategy as an Incremental Parallelization Approach (IPA). We demonstrate the applicability of IPA, by

parallelizing over 25,000 lines of Probabilistic Fracture Mechanics (PFM) module code of Fracture

Analysis of Vessels Oak Ridge (FAVOR) code that was developed for the Nuclear Regulatory

Commission (NRC) by the HSST program at Oak Ridge. As a result of applying the IPA methodology,

we ultimately reduced the run time of FAVOR PFM module from several hours to only a few minutes,

without any loss of accuracy in the computed result. In this article, we discuss our experience gained in

the effort in parallelizing the FAVOR’s PFM module using our IPA methodology.

 1

1. INTRODUCTION

In general, a team of experts develops domain-specific (serial) computer code over years, often

incurring enormous investments of time and effort to bring it to the production level. When such a

production serial code is stressed, either to overcome limitations in handling large input scenarios or

improve accuracy, often, parallel execution is the only effective solution. However, parallel

programming, with its own set of challenges and idiosyncrasies, makes the task of transforming

thousands of lines of production code into an efficient parallel code hard and challenging.

Fracture Analysis of Vessels – Oak Ridge (FAVOR), is one such serial code that was developed for

the Nuclear Regulatory Commission (NRC) by the HSST program at Oak Ridge.
1,2

 It has three modules,

(a) Deterministic Load Generator module (FAVLOAD), (b) Monte-Carlo PFM module (FAVPFM) (c)

Post Processor module (FAVPOST). Of the three modules, the FAVPFM module requires a very long

execution time (usually days) in order to execute the number of scenarios to effectively cover the

parameter domain of interest. Parallel execution of the FAVPFM can help dramatically reduce the run

time of the FAVOR application. However, a major challenge in transforming the serial FAVOR code

into a parallel FAVOR system is posed by the large size of the code that is over 25,000 lines long, making

it practically and prohibitively expensive. Hence, an approach is needed to be able to parallelize the serial

code, and performing such a conversion in a time-efficient manner is of significant importance.

As an alternative to the cost of understanding the serial code and re-implementing it, an alternative

approach is explored here for the parallelization that achieves the goal and also retains the same

confidence levels in the correctness of the output results as those from its serial counter part. In this

report, we propose the Incremental Parallelization Approach (IPA) to achieve this task in several of

iterative steps. We document our experience in applying the IPA for parallelizing the serial PFM module

of FAVOR and the final performance improvement we obtained.

The Monte-Carlo simulation algorithm that underlies the FAVOR system is widely known to be an

embarrassingly parallel problem
3,4,5

 and thus easily parallelizable if one started development from scratch.

The work reported here explores the challenges involved when a Monte Carlo code such as the FAVOR

system is to be transformed into the parallel execution while the system is handled only as a black box.

In the following sub-sections, we introduce the IPA methodology and the FAVOR system. The

application of IPA for the parallelization of FAVOR (specifically, the serial FAVPFM module of

FAVOR) is discussed in Sect. 2–4. This is followed by the performance evaluation study of the parallel

FAVOR (FAVPFM) in Sect. 5. The report is summarized and concluded in Sect. 6.

1.1 INCREMENTAL PARALLELIZATION APPROACH

In the IPA approach, we first execute multiple instances of the same unchanged serial code in parallel

to begin to uncover the interdependencies of the parallel computing processes. The interdependencies

among the processes executing in parallel

(a) can silently disappear resulting in the erroneous computation, or

(b) can blatantly fail resulting in the abrupt termination of the execution process, or

(c) can freeze up the execution process due to a deadlock condition.

These are the only three ways by which the interdependencies non-existent in the serial code can

surface when the same unchanged serial code is evaluated in parallel. If each of these failures in this

failure space were to be resolved incrementally, then the resulting algorithm that the code manifests must

be the required parallel algorithm. This algorithm will not only compute in parallel but will also replicate

the results of the serial code exactly to the machine precision.

In general, both types of failures (b) and (c) are more apparent, easy to detect and hence could be

relatively easy to resolve after detection. On the other hand the failure (a) is subtler and could be hard to

detect and overcome. While the detection of errors will be evident when the results from the serial and

parallel runs are compared, the actual point of error generation is hard to track down. In our IPA

procedure we aim to eliminate the easily detectable and observable failures early on and address the

 2

subtler failures later, i.e. after we resolve the apparent ones. Figure 1 gives the flow chart of the IPA

process.

The knowledge on the characteristic of parallelization of the resulting algorithm obtained at the end of

from the IPA procedure is essential to resolving the failures and errors. For example, in the case of

FAVOR, we are aware that the final parallel algorithm may be viewed as embarrassingly parallel and

hence the processors will be computing in complete independence of one another. Also this knowledge

helps us to overcome the incorrect execution caused by dependencies on initialization by duplicating the

initialization routine execution for every processor. This knowledge-based resolution of failures is

extremely important because it ensures that the changes introduced into the parallel algorithm to

overcome the failures wouldn’t perpetuate additional failures.

Fig. 1. Incremental Parallelization Approach (IPA) flow chart.

 3

1.2 FRACTURE ANALYSIS OF VESSELS – OAK RIDGE (FAVOR) CODE

FAVLOAD module accepts input data containing multiple thermal-hydraulic transients, and, for each

transient, it performs deterministic calculations to produce a load-definition input file for FAVPFM.

The PFM module in FAVOR is based on the application of Monte-Carlo techniques in which the

deterministic fracture analyses are performed on a large number of stochastically generated RPV (Reactor

Pressure Vessel) trials and realizations.

Each vessel realization containing a specified number of flaws is analyzed to determine the

conditional probability of initiation (CPI) and the conditional probability for failure (CPF) for an RPV

challenged by thermal hydraulic transient at selected time in vessel’s operating history. The Monte-Carlo

method involves sampling of appropriate probability distributions to simulate many possible

combinations of flaw geometry and RPV (Reactor Pressure Vessel) material embrittlement, all exposed to

same transient loading conditions.

The Post Processor module combines three primary results to generate discrete distributions of the

frequency of vessel initiation and frequency of vessel failure. The results that are combined are the

distribution of the transient initiating frequencies obtained from probabilistic risk assessment studies, the

values of conditional probability of fracture (contained in the FAVPFM-generated matrix PFMI), and the

values of the conditional probability of vessel failure (contained in the FAVPFM-generated matrix

PFMF).

The PFM module is the part that needs to be parallelized, since it is the most time-consuming part of

the FAVOR code. The PFM module is implemented in FORTRAN-90 that results in an executable after

compilation. The entire module is implemented in 25,880 lines of code and it uses the Monte-Carlo

approach. The PFM executable interactively takes input files from the command prompt during

execution. The following 5 files are taken as input by the FAVPFM executable:

(a) Output of FAVLoad

(b) FAVPFM input file

(c) Flaw characterization file for surface-breaking flaws applicable to weld and plate regions

(default=S.DAT)

(d) Flaw characterization file for embedded flaws in weld region (default=W.DAT)

(e) Flaw characterization file for embedded flaws in plate region (default=P.DAT).

1.3 PARALLEL FAVPFM REALIZATION USING IPA

Parallelization of FAVOR code is a challenging task due to the complexity of the algorithm and the

instantiation characteristics of the algorithm in the code. One of the simplest parallelization approaches

can be applied to exploit the Monte Carlo structure of execution that is inherent in FAVOR. However, the

software structure is not readily amenable to parallel execution, making it necessary to incorporate

modifications to the code. Since the application is complex, its original modifications must be made

extremely carefully, such that its verified and validated status must be retained to the extent possible.

Refactoring approximately twenty six thousand lines of serial FAVOR code in its entirety to design an

alternative parallel algorithm seems impractical. Hence, the IPA is used.

The parallelization was carried out in four steps listed below.

 Step 1: Pseudo-parallel run of serial code - To be able to run the serial code in parallel using MPI,

without partitioning the models to processors, such that each of the parallel processes duplicates

all work, but compute the exact same serial result at every processor.

 Step 2: Task partitioning in pseudo-parallel code - To be able to partition the tasks across the

parallel application that is now enabled to start running in parallel as a result of Step 1

 Step 3: Verification of parallel code – Verify that the parallel results exactly match the

corresponding serial results.

 Step 4: Performance evaluation – to empirically determine the speed gain obtained from the

whole parallelization exercise.

Each of these steps is discussed separately in detail in Sect. 2–5, respectively.

 4

2. PSEUDO-PARALLEL RUN OF SERIAL CODE

If we are able to launch the serial program as a parallel program (sans communication dependencies,

for a first cut), that would constitute a first, necessary step towards parallelization. The necessary

conditions are satisfied if such a first-cut parallel execution completes without runtime errors and, if each

of the process ranks were to produce exactly same results as the serial run. This offers the confidence of

having eliminated global dependencies and other necessary conditions (e.g., file name overlaps, and read-

write conflicts). This task expects that the serial procedure can be partitioned into multiple completely

independent tasks, which when executed to yield the same result as the serial program.

This step is completely based on the assumption that there exists a parallel algorithm that can be

applied for its parallelization and algorithm in this case is task-parallelism. Since, we are aware that the

PFM code is Monte-Carlo based and also know that task-parallel algorithm for parallelization can be

applied to Monte-Carlo based applications, we carry out this step

2.1 REALIZATION

As mentioned in Sect. 1, the PFM executable takes the input filenames interactively. The first

modification that we performed to the serial code was the removal of the interactive input capability. For

this purpose we hard coded the input filenames in the code. Also, the serial code was MPI-enabled and

was compiled using Open-MPI with its wrapper for FORTRAN compiler. Here MPI-enabled means that

MPI statements were added to the serial code enable the process to run as an MPI process.

 :

forrtl: No such file or directory

forrtl: severe (28): CLOSE error, unit 16, file "Unknown"

Image PC Routine Line Source

mfavpfm 00000000005565F6 Unknown Unknown Unknown

:

libc.so.6 0000002A9699C40B Unknown Unknown Unknown

mfavpfm 000000000040F8EA Unknown Unknown Unknown

--

mpiexec has exited due to process rank 1 with PID 11432 on

node b07n013.oic.ornl.gov exiting without calling "finalize". This may

have caused other processes in the application to be

terminated by signals sent by mpiexec (as reported here).

--

Fig. 2. Excerpt of error message from failed pseudo-parallel run.

The idea here was to run the serial code in parallel as it were, without any modification and see where

it fails; once we know the failure point, we trace back the reason for failure and fix it or come up with a

strategy that would efficiently circumvent the problem at the source of the runtime error. Throughout the

process of parallelization, except during the performance studies, we have used two MPI processes for

parallel runs for simplicity and ease in debugging.

All most all the errors that we encountered, when we ran the MPI enabled serial code in parallel were

related to the handling of file operations by the parallel program. An excerpt of the error is shown in

Fig. 2.

 5

 * Results for running averages of cpi and cpf *

 * See cpi_history.out and cpf_history.out *

 * for the same data in a text file. *

 |------------------------------||--------------------------------|

 | running average of cpi || running average of cpf |

 ntrial|----------------------------- ||--------------------------------|

 | 1 2 3 || 1 2 3 |

 |------------------------------||--------------------------------|

 1 | 0.000E+00 7.486E-06 || 0.000E+00 0.000E+00 |

 2 | 0.000E+00 3.743E-06 || 0.000E+00 0.000E+00 |

 3 | 0.000E+00 2.495E-06 || 0.000E+00 0.000E+00 |

 : : : : :

 44 | 4.003E-04 4.077E-05 || 0.000E+00 0.000E+00 |

 45 | 3.914E-04 3.987E-05 || 0.000E+00 0.000E+00 |

 46 | 3.829E-04 3.900E-05 || 0.000E+00 0.000E+00 |

 97 | 1.821E-04 1.924E-05 || 0.000E+00 0.000E+00 |

 98 | 1.803E-04 1.905E-05 || 0.000E+00 0.000E+00 |

 99 | 1.784E-04 1.902E-05 || 0.000E+00 0.000E+00 |

 100 | 1.766E-04 1.883E-05 || 0.000E+00 0.000E+00 |

 : : : : :

 COMPLETING PFM ANALYSIS

 Creating a FAVPFM binary restart file: restart.bin

 Time Stamp -- DATE: 14-May-2010 TIME: 14:08:05

 RANDOM NUMBER GENERATOR SEEDS: 1270544027 2101961695

 GENERATING OUTPUT REPORTS

** Normal Termination **

Fig. 3. Excerpt of serial run output of the FAVPFM module.

Since, many processes can read a single file at the same time with out any problem and our parallel

experimentation platform’s file system was based on Networked File System (NFS), the concurrent

reading of data by all processors from input files completed without runtime errors. However, the files,

which were opened in write mode, like the output files, error files, restart files (used for check-pointing)

were the points of failure. These file errors were overcome by making each of the process ranks write into

their own files. This involved identification of the contentious files and addition of very few lines of code

to enable the each of the processes running in parallel to create/write/delete their own file.

After the fixes we were able to run the serial code completely in parallel. Figures 3–4 show the

excerpts of output from a serial code and the parallel code respectively. Comparing the results, it is

observed that both serial and parallel runs print exactly the same results. Further, from Fig. 4 we also see

that both the process ranks involved in the parallel run print exactly the same result.

In this step, we converted the serial code into independently running parallel code, where in each of

the parallel processes print out the exact same results. Hence, by doing this we thus can be sure of having

eliminated any global dependencies in the parallel code.

 6

 * Results for running averages of cpi and cpf *

 * See cpi_history.out and cpf_history.out *

 * for the same data in a text file. *

 |------------------------------||--------------------------------|

 | running average of cpi || running average of cpf |

 ntrial|----------------------------- ||--------------------------------|

 | 1 2 3 || 1 2 3 |

 |------------------------------||--------------------------------|

 CREATING PROBABILITY DISTRIBUTIONS FOR FLAWS

 * BEGINNING PFM ANALYSIS *

 * Results for running averages of cpi and cpf *

 * See cpi_history.out and cpf_history.out *

 * for the same data in a text file. *

 |------------------------------||--------------------------------|

 | running average of cpi || running average of cpf |

 ntrial|----------------------------- ||--------------------------------|

 | 1 2 3 || 1 2 3 |

 |------------------------------||--------------------------------|

 1 | 0.000E+00 7.486E-06 || 0.000E+00 0.000E+00 |

 1 | 0.000E+00 7.486E-06 || 0.000E+00 0.000E+00 |

 2 | 0.000E+00 3.743E-06 || 0.000E+00 0.000E+00 |

 2 | 0.000E+00 3.743E-06 || 0.000E+00 0.000E+00 |

 : : : : : |

 45 | 3.914E-04 3.987E-05 || 0.000E+00 0.000E+00 |

 45 | 3.914E-04 3.987E-05 || 0.000E+00 0.000E+00 |

 46 | 3.829E-04 3.900E-05 || 0.000E+00 0.000E+00 |

 46 | 3.829E-04 3.900E-05 || 0.000E+00 0.000E+00 |

 : : : : : |

 99 | 1.784E-04 1.902E-05 || 0.000E+00 0.000E+00 |

 99 | 1.784E-04 1.902E-05 || 0.000E+00 0.000E+00 |

 100 | 1.766E-04 1.883E-05 || 0.000E+00 0.000E+00 |

 COMPLETING PFM ANALYSIS

 Creating a FAVPFM binary restart file: restart.bin

 Time Stamp -- DATE: 13-May-2010 TIME: 12:21:14

 RANDOM NUMBER GENERATOR SEEDS: 1270544027 2101961695

 GENERATING OUTPUT REPORTS

 100 | 1.766E-04 1.883E-05 || 0.000E+00 0.000E+00 |

 COMPLETING PFM ANALYSIS

 Creating a FAVPFM binary restart file: restart.bin

 Time Stamp -- DATE: 13-May-2010 TIME: 12:21:15

 RANDOM NUMBER GENERATOR SEEDS: 1270544027 2101961695

 GENERATING OUTPUT REPORTS

 Ending run at: Thu May 13 12:21:15 EDT 2010

Epilogue Initiated

Removing /scratch/90940.b15l01.oic.ornl.gov on node(s): b08n048

Floaters flushed on node(s):

Epilogue Complete

Fig. 4. Excerpt of Pseudo-parallel run output of FAVPFM.

 7

3. TASK PARTITIONING IN PSEUDO-PARALLEL CODE

In step 1, we were able to run the serial code in parallel, completely independent of one another and

were also able to get each of the MPI processes to compute the exact same results as that of the serial run.

In this step, we identify the independent tasks within PFM and perform task parallel execution. To do this

we need to look into the structure of the code and see where task parallelism can be applied. The most

time-consuming part of the PFM subroutine in FAVPFM follows the algorithm in Fig. 5.

VESSELS (1:NTRIAL)

 {read in FLAWGROUP files unique for the TRIAL or VESSEL ID}

 FLAWS (1:NUMFLW)

 TRANSIENTS (1:MTRAN)

 TIME STEPS (1:NTIMES)

 :

 :

 EXHAUST TIME STEPS

 EXHAUST TRANSIENTS

 EXHAUST FLAWS

EXHAUST VESSELS

Ref: FAVPFM.for code – comments

Fig. 5. The core algorithm structure of FAVPFM module.

The above algorithm documented in the FAVPFM code (and learnt from subsequent discussions with

the original developers of the system), revealed that the runs across the trials (the outer loop) were

independent of one another. This suggests that we could run each trial as an independent task.

However the random number seed used in trials in parallel runs would differ from those in serial runs.

This is because we partition the tasks across trials, which results in differing outputs of serial and parallel

runs. This does compromise the correctness of the computed results and hence, we will not be able to

verify the correctness of the parallel computed results with the results from the serial run, in this step.

3.1 REALIZATION

We use the same example scenario as in step 1 and the code is modified such that the trials are

equally partitioned across multiple processes. This was achieved by adding few variables and few lines of

code at the start and the end of the NTRIAL loop of the algorithm shown in Fig. 5 above.

10 NTRIAL = NTRIAL + 1

 :

 :

 IF (NTRIAL.GE.NSIM_TEST) THEN

 GOTO 9999

 ELSE

 GOTO 10

 ENDIF

Fig. 6. Serial code fragment.

 NTRIAL = START_TRIAL

10 NTRIAL = NTRIAL + 1

 :

 :

 IF ((NTRIAL.GT.END_TRIAL).OR.(NTRIAL.GE.NSIM_TEST)) THEN

 GOTO 9999

 ELSE

 GOTO 10

 ENDIF

Fig. 7. Parallel code fragment.

 8

 |------------------------------||--------------------------------|

 | running average of cpi || running average of cpf |

 ntrial|----------------------------- ||--------------------------------|

 | 1 2 3 || 1 2 3 |

 |------------------------------||--------------------------------|

 ***** NTRIAL : 51

 CREATING PROBABILITY DISTRIBUTIONS FOR FLAWS

 NSUB_TRIALS: 50

 N_TRIALS: 0

 ISIZE: 2

 NSUB_TRIALS: 50

 START_TRIAL: 0

 RANK: 0

 NSUB_TRIALS: 50

 END_TRIAL: 49

 RANK: 0

 ******** START_TRIAL : 0

 ******** END_TRIAL : 49

 * BEGINNING PFM ANALYSIS *

 * Results for running averages of cpi and cpf *

 * See cpi_history.out and cpf_history.out *

 * for the same data in a text file. *

 |------------------------------||--------------------------------|

 | running average of cpi || running average of cpf |

 ntrial|----------------------------- ||--------------------------------|

 | 1 2 3 || 1 2 3 |

 |------------------------------||--------------------------------|

 ***** NTRIAL : 1

 51 | 3.416E-06 0.000E+00 || 0.000E+00 0.000E+00 |

 ***** NTRIAL : 52

 1 | 0.000E+00 7.486E-06 || 0.000E+00 0.000E+00 |

 ***** NTRIAL : 2

 52 | 3.350E-06 0.000E+00 || 0.000E+00 0.000E+00 |

 ***** NTRIAL : 53

 2 | 0.000E+00 3.743E-06 || 0.000E+00 0.000E+00 |

 : : : : :

 99 | 1.169E-05 1.576E-08 || 0.000E+00 0.000E+00 |

 ***** NTRIAL : 100

 49 | 3.596E-04 3.768E-05 || 0.000E+00 0.000E+00 |

 ***** NTRIAL : 50

 100 | 1.157E-05 1.560E-08 || 0.000E+00 0.000E+00 |

 COMPLETING PFM ANALYSIS

 Creating a FAVPFM binary restart file: restart.bin

 Time Stamp -- DATE: 14-May-2010 TIME: 14:00:40

 RANDOM NUMBER GENERATOR SEEDS: 2128235567 491493355

 50 | 3.524E-04 3.693E-05 || 0.000E+00 0.000E+00 |

 COMPLETING PFM ANALYSIS

 Creating a FAVPFM binary restart file: restart.bin

 Time Stamp -- DATE: 14-May-2010 TIME: 14:00:40

 RANDOM NUMBER GENERATOR SEEDS: 1503797025 1823000556

 GENERATING OUTPUT REPORTS

 GENERATING OUTPUT REPORTS

 Ending run at: Fri May 14 14:00:40 EDT 2010

Epilogue Initiated

Removing /scratch/91240.b15l01.oic.ornl.gov on node(s): b08n031

Floaters flushed on node(s):

Epilogue Complete

Fig. 8. Output excerpt from the parallel run after task partitioning.

 9

START_TRIAL and END_TRIAL variables were used for partitioning the trials among parallel

processes and their values were calculated based on the process rank of the corresponding MPI process.

Also, minor additional changes within the NTRIAL loop were done to accommodate this change.

Figure 8 shows the excerpt of the result of the parallel run. In this particular example, of the 100 trials

that FAVPFM runs, 50 trials were run by MPI process with rank 0 and remaining 50 were run by MPI

process with rank 1. As can be verified from Fig. 3 and Fig. 8, the first 50 trials of the parallel run, which

startup with same random-seed as the serial run, produce exact same result as that of first 50 trials of the

serial run. However, the last 50 trials do not match because the initial random seed with which the trial 51

starts during the parallel run is different from that of its serial counter part.

In this step we converted the parallel code, where in the parallel processes that were duplicating each

other’s work into a parallel program that share the work load. The sharing of workload was achieved by

partitioning the trials equally among the parallel processes, after having learnt that the computations

across trials are independent of one another.

 10

4. VERIFICATION OF PARALLEL CODE

In Sect. 3, we noted that that the first 50 trial outputs by the process of rank 0, were exactly same

as the serial run output, while the trials from 51 onto 100 (run on MPI process of rank 1) were not

consistent with the output from the serial run. The variation of the seed values in the random number

generator used in FAVPFM was reasoned out to be responsible for the results obtained by parallel

run.

We know that any two sequence of random numbers generated are exactly same, if their

corresponding initial seeds are same. If for each trial in the FAVPFM code, if we were to know the

initial random seed used during the serial execution, and if we use the same random seed in a task

partitioned parallel execution, then we can ensure the exact correspondence of the result from the

serial and parallel runs. Hence, the knowledge of initial random seed is a must for achieving

verifiably correct result during the parallel computation of the FAVPFM

4.1 REALIZATION

The very first task we carried out in this step is to check, how the random number generation and

its subsequent usage varies across trials. If the random numbers were to be generated and used with in

the conditional statements in the code, then this leads to varying number of random numbers across

trials or else the number of random numbers generated will remain constant across trials. To count the

number of random numbers generated in each trial, a counter was placed in the uniform random

number generator function (ranf2). After every trial, the random number counter value along with

the trial number that starts next was printed, before the counter is reset.

[y54@b06l01 siam]$ cat count_seq.out | grep rnd_count

 :

 rnd_count NTRIAL 33616827 2

 rnd_count NTRIAL 32624853 3

 rnd_count NTRIAL 33015309 4

 :

 rnd_count NTRIAL 33934609 48

 rnd_count NTRIAL 33828715 49

 rnd_count NTRIAL 33253161 50

 rnd_count NTRIAL 32882785 51

 rnd_count NTRIAL 33544459 52

 :

 rnd_count NTRIAL 33788905 96

 rnd_count NTRIAL 33200427 97

 rnd_count NTRIAL 32889553 98

 rnd_count NTRIAL 32671177 99

 rnd_count NTRIAL 32856421 100

 Max (rnd_count) = 35257681

Fig. 9. Total number of random numbers generated in each trial.

Figure 9 shows the excerpt of the output that counts the random numbers in each trial. The

varying counter values in each trial as shown in the Fig. 9 confirms that the number of random

numbers generated in each trial varies, which suggest that the random numbers were generated and

used with in the conditional statements as well.

4.1.1 Resolving Random Number Initialization Issue

The initial random seeds can be known before hand only if, the number of random numbers

generated across each of the trials is deterministic. Hence, in the task parallel algorithm for the serial

FAVPFM code obtained from step 2, we fix the number of random numbers that can be generated in

 11

each trial to a constant number, i.e., we set an upper limit to the number of random numbers that a

trial can generate. This value was found empirically by counting the random numbers generated in

each trial and we found it to be always less than 36 million, as observed in Fig. 9. Hence, we fixed the

maximum number of random numbers that any trial could generate to 36 million and also added a

condition that if any trial were to exceed this upper-bound value than the parallel execution would

exit prematurely. In our implementation the number of random numbers generated per trial to

(initial_seed + rank * 36,000,000), by doing this we ensured that a fixed set of random numbers are

generated in each trial.

For the purpose of verification, we altered the initially used serial FAVPFM code and the task-

parallel FAVPFM code obtained from step 2, so that the results could be compared. In the serial code,

as we were fixing the constant number of random number generated per trial to a number is greater

than the maximum of the number of random numbers generated across any trial, we end up throwing

out extra random numbers at the end of each trial

In the parallel code, in addition to the throwing away of the generated random numbers at the end

(as in serial code), each MPI process had to exhaust generating a known set of number of random

numbers to obtain its initial random seed.

4.1.2 Verification Setup

To demonstrate the correctness in the execution of the parallel FAVPFM, we compare the

random numbers generated at each trial during serial run with that of parallel run. This we claim as

right measure because the number of random numbers generated or used, in a particular trial depends

on the initial random seed and with the computations with in the each trial being same in both serial

and parallel codes, the number of random numbers generated must be same. Hence, a success in

verification process is claimed, if the number of random numbers used in serial and parallel runs were

observed to be exactly same in each and every trial.

We adopt this measure because the general output of FAVPFM is the running average of CPF and

CPI values, which print incorrect results, unless the results computed across the trials, which are

distributed across the parallel processes, are used. We abstain from modifying the serial code further,

since we can prove the correctness in the computation of parallel processes using an alternative means

of comparing random numbers generated in each trials in serial and parallel runs, as discussed before.

4.1.3 Verification Result

 :

 rnd_count NTRIAL 33292957 8

 rnd_count NTRIAL 32915719 9

 rnd_count NTRIAL 32902650 10

 :

 rnd_count NTRIAL 33087948 25

 rnd_count NTRIAL 32552058 26

 :

 rnd_count NTRIAL 32704406 55

 rnd_count NTRIAL 32367023 56

 :

 rnd_count NTRIAL 34483647 79

 rnd_count NTRIAL 33511330 80

 :

 rnd_count NTRIAL 32889778 98

 rnd_count NTRIAL 32671260 99

 rnd_count NTRIAL 32856346 100

Fig. 10. Total number of random numbers generated in each trial of the serial run.

Figures 10–11 show the excerpts of the output from serial and parallel runs. They show that the

number of random numbers generated in each trial of both serial and parallel computations exactly

match each other. However, the outputs corresponding to running average of CPI and CPF, for the

 12

MPI process rank not equal to 0, do not match (as expected). This is because the results of the trials

performed on ranks 1 to M, do not take previous CPIs and CPFs into consideration while computing

the running average.

 :

 rnd_count NTRIAL 33292957 8

 rnd_count NTRIAL 32915719 9

 rnd_count NTRIAL 32902650 10

 :

 rnd_count NTRIAL 32704406 55

 rnd_count NTRIAL 32367023 56

 rnd_count NTRIAL 34735077 16

 rnd_count NTRIAL 33670039 17

 :

 rnd_count NTRIAL 35257457 64

 rnd_count NTRIAL 33087948 25

 rnd_count NTRIAL 33511128 65

 rnd_count NTRIAL 32552058 26

 :

 rnd_count NTRIAL 34483647 79

 rnd_count NTRIAL 33511330 80

 rnd_count NTRIAL 32823220 89

` :

 rnd_count NTRIAL 33828984 49

 rnd_count NTRIAL 33213537 90

 rnd_count NTRIAL 33253350 50

 :

 rnd_count NTRIAL 32889778 98

 rnd_count NTRIAL 32671260 99

 rnd_count NTRIAL 32856346 100

 Fig. 11. Total number of random numbers generated in each trial of the parallel run.

 The first 50 trials were run on MPI process rank-0 and remaining 50 trials were run on rank-1

 process. We find that for every trial, the random number count here are exactly same as that in

 Fig. 10. Hence, we conclude that they are computing exactly same result.

In this step, errors observed in the output of the task parallel system of step2 were addressed. The

errors were reasoned to be originating from the disruption in the random number stream that surfaced

as an artifact of task partitioning across the trials. This issue was addressed by setting an upper limit

for the random numbers generated in each trial, which was found out empirically. The results from

the serial runs and parallel runs were compared and were verified to be exactly same based on the

random number counts.

Note that the solution of fixed number of random number generations, is to verify the correctness

of the parallel algorithm, by comparing it with its serial counter part. If there is no need to maintain

the same stream of random numbers across the trials, or if we could initialize each of the trials with

different RNG streams, then we already have reached completion of parallelization task at this point.

 13

5. PERFORMANCE EVALUATION

As we know that parallel computing code is embarrassingly parallel in nature, we expect to

achieve a linear speed up.

5.1 HARDWARE

All the runs were carried out on Oak Ridge Institutional Clusters (OIC). They consist of a bladed

architecture from Ciara Technologies (http://www.ciara-tech.com) called VXRACK. Each VXRACK

contains two login nodes, three storage nodes and 80 compute nodes. Each compute node has Dual

Intel 3.4GHz Xeon EM64T processors, 4GB of memory and dual Gigabit Ethernet Interconnects. All

nodes run Red Hat Linux Enterprise WSv4 OS.

5.2 SOFTWARE

Only FAVPFM.for source file from the FAVOR9.1 source code distribution was used. The

Intel® FORTRAN90 compiler was used to compile the serial code and Intel® FORTRAN90

compiler based OpenMPI v1.3.2, was used to compile the parallel code.

The FAVPFM_MPI executable named mfavpfm takes all the input file names as command line

arguments; in addition to these inputs, it also takes the random seed file name and the maximum

number of random numbers generated per trial.

[y54@b06l02 mpifavor]$./mfavpfm

USAGE: ./mfavpfm [FAVPFM.in] [FAVLOAD.out] [S.DAT] [W.DAT] [P.DAT]

[SEEDS.TXT] [MAX_RN_PER_TRIAL]

Fig. 12. The parallel code usage specifics.

5.3 PERFORMANCE RUNS

Figure 13 shows the runtime performance of the serial runs, the solid blue curve gives the runtime

performance of serial FAVPFM for varying number of trials. The dashed red curve is the modified

code that implements the throwaway of the random numbers at the end of each trial and is used for

verification purpose. As is expected and can be seen from Fig. 13, their performance results closely

correspond to each other.

During parallel runs, as mentioned to achieve the correctness we generate and throwaway many

generated random numbers, during the startup of the parallel MPI process and during the end of each

trial. This needless computation does impact performance significantly.

Figure 14 shows the runtime when 100 trials were evaluated using 100 MPI processes in parallel.

In this scenario, each MPI process handles the execution of exactly one trial. As seen, the minimum

time taken in the trial execution by a MPI process is little over 2 s (2.36 s) while the maximum time is

close to 50 s (49.86 s). This clearly is an artifact of the generation and subsequent throw away of

random numbers. This can be verified by the random number generation performance curve in

Fig. 15, where we see that 48 s is used for RNG generation for 100 trials and in the throw away

scheme, the 100
th
 trial generates and throws away random numbers pertaining to the previous 99

trials, before executing the 100
th
 trial and this explains the overhead seen in the Fig. 14.

http://www.ciara-tech.com/

 14

Fig. 13. Serial run with and without random number generator modifications.

 Fig. 14. Runtime at every MPI process rank (generate and throw-away strategy). Task

 partitioning is done such that the lower rank MPI process gets the lower trial number and

 higher rank MPI process gets higher trial number. Hence we see MPI process handling higher

 trial number needs more runtime, since most of its time is used in generating and throwing

 away the unwanted random numbers.

 15

 Fig. 15. Random number generation time across trials. In Fig. 14, the MPI process of rank 0 used

 just over 2 s to compute the result, while the process with rank 99 used around 50 s. We notice from this

 figure that almost 48 s rank 99’s time is consumed in random number generation.

As seen in Fig. 15, if the same strategy for parallelization of FAVPFM is used the overhead

increases with the increase in the number of trials and hence for 10000 trials the overhead is around

4800 s or 1.34 h, that is 1/3 of the evaluation time (16314 s or 4.5 h) is spent in the generation and

throw away process.

Alternatively, if the serial RNG process is carried out before parallel execution, we can reduce

several hours of parallel execution time to minutes. In the 10000-trial scenario the parallel

computation time would be around 234 s, i.e. less than 4 minutes by eliminating the unwanted

(generate and throw-away) computations performed by the MPI processes. By doing this we achieve

linear speed up.

Hence, we generate the initial random number seeds before hand and read them from a file during

the execution. Figure 14 shows the time consumed by each MPI process during the execution of a 100

trial scenario in parallel, using 100 processes. Average time taken by each MPI process is 2.34 s and

the maximum time taken is 2.42 s. Hence, 100 trials are evaluated in less than 2.5 s. Note that the

needless computation that made the maximum computation time for 100 trials around 50 s (shown in

Fig. 6) is eliminated here.

 16

 Fig. 16. Runtime of every MPI process rank (Initial random-seed read from a file strategy).

 Note here the runtime of all the MPI processes fall in between 2.2 s and 2.5 s. Comparing this

 with Fig. 14 (where the runtime was dependent on the trial number the MPI process was running), we

 ensure that the overhead due to the unnecessary generation of random numbers is eliminated.

 Fig. 17. Parallel runtime across varying number of trials of FAVPFM. Comparing this result

 with Fig. 13, we show that the runtime in parallel run with 10000 trials is reduced from 4.5 h to less

 than 4 min with 100 processor cores.

 17

 Fig. 18. Speed up curves for 10, 50, and 100 processor-cores show that the runtime speed in the

 FAVPFM computation increases by 7, 35, and 70, respectively suggesting 70% efficiency. Further, the

 curves suggest this efficiency remains consistent regardless of the change in the number of trials in the

 simulation.

Figure 17 shows the time taken by parallel processes (10, 50, and 100) to execute (100, 1000, and

10000) FAVPFM trials. The maximum-time taken by a parallel process in the parallel execution is

used to plot the speed-up graph shown in Fig. 18. The speedup graph suggests a linear speedup with a

consistent 70% efficiency across varying number of trials.

 18

6. SUMMARY

As opposed to a standard way of designing parallel algorithms for a particular problem, this

report discusses a methodology to infuse the parallel computing capability into a production code.

The report started with a brief introduction to the Incremental Parallelization Approach (IPA) and

Fracture Analysis of Vessels – Oak Ridge (FAVOR). Using IPA, we incrementally overcame the

dependencies of the parallel processes using various strategies and finally verified the correctness of

the result by comparing it with the result from the serial code. We evaluated the performance of the

parallel runs for scenarios with varying number of trials using 10, 50, and 100 processor-cores and

achieved linear speedup with 70% efficiency. In the largest scenario involving 10000 trials that we

ran, we were able to reduce the runtime of the FAVPFM module from 4.5 h to less than 4 min using

100 processor cores and with zero loss in accuracy.

.

 19

REFERENCES

1. P. T. Williams, T. L. Dickson, and S. Yin, Fracture Analysis of Vessels – Oak Ridge:

FAVOR, v0.61, Computer Code: Theory and Implementation of Algorithms, Methods and

Correlations, ORNL/NRC/LTR=05/18, Oak Ridge National Laboratory, Oak Ridge, TN.

2. T. L. Dickson, P. T. Williams, and S. Yin, Fracture Analysis of Vessels – Oak Ridge

FAVOR,v05.1, Computer Code: User’s Guide, ORNL/NRC/LTR=05/17, Oak Ridge

National Laboratory, Oak Ridge, TN.

3. G. M. Fox, G. Lyzenga Johnson, S. Otto, J. Salmon, and D. Walker, Solving Problems on

Concurrent Processors, Vol.1, Prentice Hall, Eaglewood Cliffs, New Jersey, 1988.

4. W. Gropp, E. Lusk, and A. Skjellum, Using MPI Portable Parallel Programming with

the Message-Passing Interface, MIT press, Cambridge, Massachusetts, 1994.

5. B. Wilkinson and M. Allen, Parallel Programming Techniques and Applications Using

Networked Workstations and Parallel Computers, Prentice Hall, New Jersey, 1999.

