
0

Discrete Event Execution with One-Sided and Two-Sided GVT
Algorithms on 216,000 Processor Cores

KALYAN S. PERUMALLA, Oak Ridge National Laboratory

ALFRED J. PARK, Microsoft Corporation

VINOD TIPPARAJU, Advanced Micro Devices, Inc.

Global virtual time (GVT) computation is a key determinant of the efficiency and runtime dynamics of
parallel discrete event simulations (PDES), especially on large-scale parallel platforms. Here, three execu-
tion modes of a generalized GVT computation algorithm are studied on high-performance parallel computing
systems: (1) a synchronous GVT algorithm that affords ease of implementation, (2) an asynchronous GVT
algorithm that is more complex to implement but can relieve blocking latencies, and (3) a variant of the
asynchronous GVT algorithm to exploit one-sided communication in extant supercomputing platforms. Per-
formance results are presented of implementations of these algorithms on up to 216,000 cores of a Cray XT5
system, exercised on a range of parameters: optimistic and conservative synchronization, fine- to medium-
grained event computation, synthetic and non-synthetic applications, and different lookahead values. Per-
formance to the tune of tens of billions of events executed per second is registered, and asynchronous GVT
algorithms are observed to generally outperform state-of-the-art synchronous GVT algorithms. Detailed
PDES-specific runtime metrics are presented to further the understanding of tightly-coupled discrete event
dynamics on massively parallel platforms.
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1. INTRODUCTION

Parallel discrete event simulation (PDES) is used for simulating large scenario con-
figurations in several important areas such as epidemiological outbreak phenomena,
Internet modeling, vehicular transportation, emergency/event planning, and social be-
havioral simulations, to name a few. Discrete event execution evolves the states of
the underlying entities in an asynchronous fashion, in contrast to time-stepped execu-
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tion in traditional scientific computing applications in which the entire system state
is (logically) updated over fixed time steps. In general, PDES represents a class of
codes that are challenging to scale to large number of processors, due to tight global
timestamp-ordering and fine-grained event execution. Parallel runtime engines for dis-
crete event simulations need to deliver fast and accurate global timestamp-ordered
execution across a large number of processors. The parallel runtime engine provides
correctness and speed of execution by guaranteeing preservation of the dependencies,
absence of livelocks and deadlocks, and facilitating rapid progress. A major challenge
in scaling PDES runtime engines is the design and development of appropriate al-
gorithms for virtual time synchronization. Equally critical is also the verification of
the synchronization efficiency at large parallel computing scales on a variety of PDES
models.

However, the detailed performance effects of actual virtual time synchronization al-
gorithm implementations are relatively unknown in understanding scalability to mas-
sively parallel platforms, Few synchronization algorithms have thus far been gainfully
employed on supercomputers with many thousands of processor cores, Much remains
to be explored about the dynamics of discrete execution on a range of representative
applications and benchmarks. Also, advanced network mechanisms such as one-sided
communication of massively parallel platforms have not been exploited for virtual
time synchronization and discrete event execution before (related work is discussed
in greater detail in Section 5).

The focus of this article is in advancing virtual time synchronization to massively
parallel platforms, exploiting specific hardware mechanisms that such large installa-
tions offer, and studying the dynamics of discrete event execution. Mechanisms ex-
plored here include synchronous as well as asynchronous execution and the notion
of sidedness in terms of conventional “two-sided” communication, and the native “one-
sided” communication natively supported on advanced parallel systems. The work pre-
sented here is the first in the literature in the use of one-sided communication for GVT
implementation on massively parallel systems.

1.1. Global Virtual Time

In PDES, independent logical processes (LPs) hold encapsulated states and evolve
their states along a virtual time axis, and exchange timestamped events to incorporate
inter-LP data dependencies. In conservative PDES, an LP does not execute an event
until it can guarantee that no event with a smaller timestamp will later be received by
that LP. In optimistic PDES, events are potentially executed before such a guarantee
can be obtained, but, suitable corrective action (called rollback) is performed on the in-
correctly processed events if any timestamp order violation is later discovered. PDES
runtime engines may support conservative, optimistic, or both (mixed) approaches.

At the core of execution of PDES engines of all types is the parallel/distributed syn-
chronization of virtual time to correctly process the events in conservative or opti-
mistic fashion. Fast virtual time synchronization algorithms rapidly compute a quan-
tity called the global virtual time (GVT), to directly speed up the distributed wave of
progress of all processors executing events staggered along the global virtual timeline.
The fine-grained nature of event execution imposes tight constraints on GVT algo-
rithms with respect to scalability. Thus, a performance-critical aspect of any PDES
engine is the specific GVT computation algorithm it employs.

Multiple, largely equivalent, definitions of GVT are possible; see [Gomes et al. 1998;
Fujimoto 1999] for surveys. Here, we shall employ one such view in which GVT is
a virtual time value Tmin such that no processor shall receive any event E with a
timestamp TE such that TE < Tmin. Thus, each processor, after receiving a value of
Tmin, can commit local event processing until Tmin without fear of data dependency
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violations. Clearly, the rapidity with which Tmin can be advanced globally has a direct
bearing on the speed with which processors can concurrently execute their event work
loads.

1.2. Two-sided vs. One-sided Communication

In relation to high performance execution of GVT computation on massively paral-
lel systems, GVT algorithms must take into account a communication concept called
sidedness which raises important systems-level effects at scale. Conventional mes-
sage passing communication on distributed memory platforms fall in the category
of “two-sided” communication, while a more direct, memory-to-memory interface be-
tween processors is supported in “one-sided” communication. A functional view of the
two paradigms is shown in Figure 1.

Two-sided One-sided

Fig. 1: Functional view of two-sided vs. one-sided communication systems

In two-sided communication, both the receiver and sender sides of the application
participate in every data exchange. Data and control information are transmitted via
the operating system, the central processor unit (CPU), and the messaging network
from the sender to the receiver. Two-sided communication essentially requires both
sides of the exchange to coordinate for any data transmission. On the other hand,
one-sided communication typically provides a more direct-transfer interface in which
a copy of the data from a memory location of the sender is sent to another memory
location of the receiver on another processor. Importantly, such a transfer can be per-
formed by the sender without the participation of the receiver to complete (and make
record of) the transfer. Control information regarding the inter-processor mappings
among memory locations and the signaling of events such as start and end of trans-
fer is also transmitted asynchronously via the direct access network. When one-sided
communication interfaces are supported over two-sided implementations, they are not
truly one-sided in actual execution. For example, the Message Passing Interface (MPI)
standard provides interface routines such as MPI Get() and MPI Put() that are one-
sided in semantics, but MPI does not guarantee actual one-sided implementation of
those routines. By contrast, our focus here is on using actual, natively supported im-
plementations of one-sided communication on massively parallel platforms, such as
the Portals implementation on a Cray XT5 machine (explained later in detail).

In almost all parallel systems that support one-sided communication, two-sided com-
munication is also provided as an additional interface that is implemented over either
a dedicated fraction of the one-sided communication network or an entirely separate
network. Due this facility, with one-sided communication, GVT information can be ex-
changed over the one-sided network while event data is exchanged over the two-sided
network, thereby separating the two distinct use cases. The potential advantages of
one-sided messaging are: (1) GVT messaging is separated from event communication,
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thereby eliminating competition, and its resultant latency increase, for GVT messages,
(2) overheads of dynamic memory remapping are avoided due to static inter-processor
messaging structure for GVT messages.

1.3. Organization

Due to the complex interactions among model behaviors, hardware features, and soft-
ware characteristics, the actual scalability and efficiency of any GVT algorithm can
only be properly evaluated with actual implementation and benchmarking of PDES
engines and applications at scale. To evaluate our GVT algorithms, we study their
performance along four different dimensions in PDES application characteristics:

(1) event dependency structure, determined by the application’s event computation
characteristics such as event granularity, and the distribution of timestamps dy-
namically generated by events,

(2) conservative or optimistic synchronization, which determines whether some local
events can be processed beyond GVT,

(3) lookahead, which is a measure of static concurrency available in the application
scenario, and

(4) inter-processor messaging types, categorized here as two-sided and one-sided.

The rest of the paper is organized as follows. The GVT algorithms are described
in Section 2, and their implementation details are presented in Section 3. A detailed
performance study on a variety of PDES benchmarks is described in Section 4. Prior,
related work on virtual time synchronization algorithms is covered in Section 5. The
paper is concluded and potential future work is identified in Section 6.

2. GVT ALGORITHMS

In a typical PDES execution, the execution engine operates in a loop to process local
events (main loop), and also participates in inter-processor synchronization for GVT.
The GVT computation, in general, is performed in a separate module (GVT loop) which
may be inlined within the main loop or executed in its own thread. Based on the specific
needs of the synchronization scheme employed by the engine, a GVT computation is
initiated inside the main loop. For example, a conservative engine initiates a new GVT
computation when it runs out of local events to process safely. An optimistic execution
initiates either at a predefined frequency or on demand when memory used for rollback
support needs to be reclaimed. Fast GVT advancement can improve caching behavior,
since it can reduce the size of the working set by quickly committing, reclaiming, and
reusing a small number of memory buffers for events.

2.1. Execution Modes

Here, we focus on three execution modes of a generalized GVT algorithm, covering the
space of synchronous vs. asynchronous execution and two-sided vs. one-sided commu-
nication:

1 Two-sided Synchronous: Whenever the engine initiates a GVT computation, it
blocks until the computation terminates and the new GVT value is obtained from it.

2a Two-sided Asynchronous: In this mode, the GVT computation and the engine’s
main loop are concurrently active. Two-sided inter-processor communication is used
for event exchanges as well as GVT messages.

2b One-sided Asynchronous: Just as in 2a, GVT and event loops are concurrent,
but they are independent with respect to communication. The GVT is computed via
one-sided communication.
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All modes support both conservative and optimistic execution. With two-sided commu-
nication, both synchronous and asynchronous execution are possible. With one-sided
communication, only asynchronous execution is sensible due to its primary benefit be-
ing the overlap of receiver’s computation with communication.

2.2. Distributed Snapshots-based GVT Computation

Our unified GVT algorithmic template is based on the general approach of computing
distributed snapshots [Mattern 1993; Choe and Tropper 1998]. In this approach, PDES
execution is divided by the GVT algorithm into epochs, as illustrated in Figure 2. Each
epoch is a distributed snapshot such that no event “goes backward” across epochs. In
other words, for every event sent by a processor in epoch numbered d, the event is
only received at the destination processor in the same epoch d or later epochs d′ > d,
but never in a previous epoch d′ < d. For example, in Figure 2, event E1 is entirely
contained in epoch d, while E2 crosses epoch d into d + 1, and E3 is contained within
epoch d+ 1. In our algorithm, it is guaranteed that all events sent in epoch d are fully
received at their destinations in epochs d or d + 1, but never beyond d + 1. This is
achieved by ensuring that the global number of events ∆ sent in d yet to be received
by their destinations is equal to zero. Events still in flight (sent but not received) are
indicated by ∆ > 0. The GVT computation is designed to carefully demarcate epoch
boundaries at each processor such that they constitute a distributed snapshot while
also computing the least event timestamp across all processors.

Wallclock time

P1

P2

P3

…

PN

Epoch 0

E1
E2

E3

Epoch d Epoch d+1...

Trial 0 Trial r-1 Trial r

Epoch

d+1

…

Epoch

d+2

Events sent in epoch d
from/to other processors

Events sent in epoch d+1
from/to other processors

Δ>0 Δ>0 Δ=0

Epoch

d

GVT computation for epoch d

(a) Epoch numbering and events

E1=Sent and received in epoch d
E2=Sent in epoch d, received in d+1
E3=Sent and received in epoch d+1

(b) Trial sequence and termination

∆=Count of events sent in epoch d not
yet received by their destinations
Trial=Parallel computation of ∆

Fig. 2: Distributed snapshots-based GVT computation

2.3. Unified GVT Algorithm Template

Algorithm 1 shows the pseudocode of our GVT algorithmic template. It is unified to suit
all the three execution modes of operation, parametrized by boolean flags synchronous
and conservative to denote synchronous vs. asynchronous execution and conservative
vs. optimistic execution, respectively. The template includes four procedures: (1) the
main simulation loop ML, (2) the GVT computation loop GL, (3) the procedure IE
that accounts for every incoming inter-processor event, and (4) the procedure OE that
tags every outgoing inter-processor event.

A variable d is used as a counter of the number of GVT computations performed so
far, which is the epoch number. Each GVT computation proceeds as sequence of tri-
als, which are successive reductions to determine the number ∆ of transient events
“in flight.” The trials are counted by the variable r (GL line 8), starting at 0 for each
epoch d. The transient event count is computed as a global reduction with the addition
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Algorithm 1 GVT algorithmic template executed at every processor p

Variables
Name Initial Value Description
synchronous ← user-defined Is synchronous execution desired?
conservative ← system-defined Is the main loop conservative?
active ← false Is a new GVT value being computed?
d ← 0 Current GVT epoch number
δp[d] ← 0 for every d ≥ 0 p’s contribution to the total count of

transient messages sent in epoch d
across all processors

τp[d] ← ∞ for every d ≥ 0 Lowerbound on any event timestamp in
epoch d sendable from p and receivable
by any processor

LV Tp ← min({TE}) Least of all event timestamps {TE} at p
LA ← user-defined ≥ 0 Lookahead on inter-processor event

times

ML: Main Loop GL: GVT Loop
1: while GV T < end time do
2: while GV T < LV Tp and (not active) do
3: active← true
4: if synchronous or conservative then
5: Wait until not active
6: end if
7: Update LV Tp

8: end while
9: if conservative then

10: Execute all E(TE), TE ≤ GV T
11: else
12: Commit all E(TE), TE ≤ GV T
13: and perform rollbacks, if any
14: or execute some E(TE), TE > GV T
15: end if
16: end while

1: start: Wait until active
2: d′ ← d
3: d← d+ 1
4: r ← 0
5: τp[d

′]← min(τp[d
′], LV Tp + LA)

6: repeat

7:

∆ ←
N
∑

q=1

δq[d
′]

T ←
N

min
q=1

τq[d
′]















Composite

reduction

8: r ← r + 1
9: until ∆ = 0

10: GV T ← T
11: active← false
12: goto start

IE: Handle Incoming Event E(TE , dE) OE: Tag Outgoing Event E(TE)
1: δp[dE ]← δp[dE ]− 1
2: if active then
3: τp[dE ]← min(τp[dE ], TE + LA)
4: else
5: LV Tp ← min(LV Tp, TE)
6: end if

1: δp[d]← δp[d] + 1
2: Tag E as E(TE , d)

operator on the difference between the number of events sent in previous epoch and
the number received in previous or current epoch. Together with the summation, a
global minimum reduction operator is also applied on the minimum local timestamps
at each processor. This combined reduction of transient message count and the mini-
mum timestamp is indicated as composite reduction in line 7 of GL. When ∆ becomes
zero, the globally reduced minimum time is usable as a (non-decreasing) GVT value
(line 10 of GVT loop GL). If ∆ is non-zero, then, another reduction is started to deter-
mine if there has been progress in event delivery.
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In optimistic discrete event executions, retractions (anti-messages) are treated as
regular events by using their timestamps just as those for regular messages.

The data structures δp[d] and τp[d] are shown to be arrays of length equal to the num-
ber of GVT computations. The lengths of the arrays are shown this way for simplicity
and clarity of understanding. In practice, the arrays need only have two elements each,
and all references by index d can be safely replaced by d mod 2. Thus, every reference
to δp[d] is replaced by δp[d mod 2] and every τp[d] by τp[d mod 2] in the implementa-
tion of GL, IE, and OE portions of Algorithm 1. This works correctly because no event
spans more than two epochs: every event E(TE , dE) tagged by the source processor in
epoch dE is received by the destination processor only in epochs dE or dE+1.

2.4. Correctness of GVT Computation

Here we present the correctness conditions for the GVT computation and outline a
proof sketch for the correctness of the algorithm. Consider a globally frozen snapshot
of the PDES execution. The GVT value can be easily computed as the minimum among
the timestamps of the events at all processor and the events in flight within the net-
work. However, this “ideal” value GV T cannot be efficiently computed in practice be-
cause execution cannot be frozen precisely at the same time on a large number of

processors.. Instead, the GVT algorithms compute an estimate G̃V T ≤ GV T that is

always bounded by the ideal GVT value. The challenge is to advance G̃V T as fast and
as close to GV T as possible without violating the properties of GV T . In particular,

the properties of the ideal GV T value must be reflected: G̃V T should never regress,

and no processor should ever receive an event with timestamp less than G̃V T . These
requirements translate to the following important correctness conditions in the imple-
mentation of GVT computation [Fujimoto and Hybinette 1997; Holder and Carothers
2008].

— Transient messages: For any epoch, a transient message is an event in flight (sent
but not yet received) that needs to be accounted in its epoch. In other words, the
timestamp TE of every such event E(dE , TE) in the network must be included in the
GVT computed in epoch dE . Otherwise, the GVT value can regress because failure

to account for E can take G̃V T farther than safety (TE < G̃V T ) when E eventually
arrives at its destination. This violation of correctness is avoided by rejecting all

candidates for G̃V T when even a single transient event exists in the network. Fi-
nally, when no transient event exists, all events are present in processor memories,
and hence their timestamps are all included in the global minimum. The algorithm

uses this approach in the GVT loop (line 6 to line 9) by rejecting all candidate G̃V T
until no transient events exist as indicated by ∆ = 0.

— Simultaneous Reporting: The GVT computation must also ensure that every
event always has at least one processor that takes ownership of the timestamp of
the event insofar as accounting for its timestamp. This is achieved by a combination
of two conditions: the atomicity of the establishment of the cut point line 3 and the

fact that no transient messages exist when G̃V T is evaluated at line 7.

A more rigorous proof of correctness can be derived using proof by induction for the
transient message problem and proof by contradiction for the simultaneous reporting
problem, along the lines of the proofs in [Holder and Carothers 2008].

2.5. Synchronous Two-sided GVT

The synchronous two-sided execution mode is achieved in Algorithm 1 by setting
the synchronous variable to true, and using a blocking reduction operation (e.g.,
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MPI Allreduce() of MPI) for the global reduction performed in the GVT loop GL at
line 7. This mode is a generalization of previous algorithms in the literature [Peru-
malla and Fujimoto 2001; Holder and Carothers 2008; Bauer Jr. et al. 2009], enhanced
to support conservative as well as optimistic execution with lookahead.

While this execution mode is relatively easy to implement (e.g., using the blocking
collectives of MPI), the blocking nature requires every processor to stop processing its
events while the GVT is being computed. It also is prevented from sending any ad-
ditional events (as part of executing local events) to other processors. In conservative
execution, in order to prevent other processors from blocking for too long, every proces-
sor must join the GVT computation periodically, even if that processor itself locally has
events to safely process. In optimistic execution, processors must quit optimistic event
processing while being blocked. Thus, blocking in both modes is detrimental, especially
since the blocked time increases with the number of processors. On massively parallel
platforms, the blocked time can grow substantially. Note that hardware-accelerated
collectives (e.g., Blue Gene collective networks [Almási et al. 2005; Faraj et al. 2009])
help only a little in decreasing the time taken for the collectives because, the blocked
time is dominated by the time difference between the first and last joining processors,
which cannot be accelerated by hardware. Nevertheless, this synchronous algorithm
can work well for well-balanced work loads in which the event time stamp distribution
is relatively uniformly spread across all processor timelines.

2.6. Asynchronous Two-sided GVT

The asynchronous two-sided execution mode is achieved in Algorithm 1 by setting
the synchronous variable to false, and using a non-blocking implementation of global
reduction operation performed in the GVT loop GL at line 7.

We implemented an optimized non-blocking reduction operator over the two-sided
MPI point-to-point messaging primitives. This asynchronous, application-level reduc-
tion is performed using a tree topology that uses a butterfly communication pattern
among all nodes at the node-level, in which only one core (core 0) per node participates.
Each core 0 communicates internally with other cores on its node using a centralized
communication topology, thus minimizing network traffic and making effective use of
shared memory communication within the node.

Note that the processor starts and leaves an active GVT computation in the main
loopML at line 3, thereby avoiding blocking. While GVT is being computed, it contin-
ues to execute any additional local events that are processable (safe events in conser-
vative execution, or future events in optimistic execution). Additionally, it is also free
to send and receive events without any restrictions, unlike in the previous synchronous
two-sided algorithm.

2.7. Asynchronous One-sided GVT

The one-sided GVT operates as in asynchronous two-sided GVT, with one major dif-
ference: the reduction operations are performed asynchronously using direct-memory
operations on remote processors, with data transfer carried out asynchronously by the
network. This achieves non-blocking operation for GVT messages in a way that is com-
pletely decoupled from event messaging. Normally (as in the previous two-sided asyn-
chronous algorithm), non-blocking GVT must perform its synchronization via messag-
ing that is multiplexed along with incoming and outgoing event communication. Since
GVT messages compete with event messages, the mixed communication can impose
latency for GVT messages, thereby delaying GVT completion. On the other hand, as-
suming efficient implementations of one-sided communication on the parallel machine,
GVT messages can be exchanged with minimal delay by decoupling them from the
event communication.
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Thus, the one-sided GVT algorithm must arrange memory buffers across proces-
sors in such a way that asynchronous reductions at line 7 are all performed using
one-sided communication. To enable such operation, the memory organization main-
tained on each processor is shown in Figure 3, with arrows showing the potential one-
sided transfer of data from the send buffers of processor Pi to the receive buffers of
processor Pj . Since GVT computation proceeds asynchronously with the main event
processing loop, some processors complete a given GVT epoch d earlier than others
and may proceed to initiate the next epoch d + 1. Analogously, a trial r within an
epoch d may complete on one processor which proceeds to its next trial r + 1, thereby
sending information belonging to epoch d and trial r + 1 while the receiving proces-
sor may still be in the process of completing the earlier epoch d, trial r. Hence, at
any given moment, every processor must maintain four different blocks of receivable
data: {(d, r), (d, r + 1), (d+ 1, r), (d+ 1, r + 1)}, to keep the asynchronous computations
independent of each other.

The asynchronous reductions are performed using the same inter-processor struc-
ture as for the asynchronous two-sided GVT mode. Wtih the same tree topology op-
timized for hierarchical reductions on multi-core architectures, the inter-processor
structure is fixed for GVT messaging, determined and initialized before beginning the
main simulation loop.

The unit of memory layout for the GVT data structures is a fixed message size
(a C struct) defined to hold a GVT message type, which contains the tuple <
Psource, d, r, LV Tsource, δ >. Additionally, room for jumpstart messages is also allocated
such that processors may jumpstart other processors (within or outside its hierarchy)
to begin participating in a GVT computation. Some processors may need to be informed
so, because, during their own asynchronous event processing, they may not themselves
need any additional GVT advances until they run out of local event execution work.
The jumpstart messages thus help inform processors when they need to participate in
GVT computations started by other processors.

3. IMPLEMENTATION

We now present implementation details of the algorithms incorporated into the µsik
discrete event execution engine [Perumalla 2005; Perumalla et al. 2011]. In µsik, con-
servative, optimistic, and mixed synchronization are supported. A new GVT compu-
tation is always initiated as soon as a previous GVT completes, to minimize blocking
for conservative LPs, and to minimize uncommitted activity for optimistic LPs. All the
GVT algorithms have been implemented into µsik, any one of which can be chosen
by the user at runtime initialization via an environment variable specification. Both
non-blocking and one-sided GVT algorithms are carefully implemented such that no
barriers are invoked from the main loop. All the benchmarks used here to evaluate the
GVT algorithm performance are written as applications over µsik.

The implementation and experimentation were performed on a Cray XT5 system
with 18,688 nodes, in which each node consists of 2 hex-core AMD Opteron 2435 (Is-
tanbul) 2.6GHz processors and 16GB of memory. The nodes are connected through
Cray’s SeaStar 2+ 3D torus interconnect. All of the software used in this performance
study was compiled with the Portland Group (pgi) compiler version 2.2.73 with -O3
-fast compilation flags. All inter-processor event communication is performed using
traditional two-sided communication via the MPI. The GVT message exchange for
two-sided GVT algorithms is also performed using MPI. Asynchrony with respect to
event messaging is realized via MPI Iprobe() for two-sided communication. The syn-
chronous two-sided GVT algorithm uses MPI Allreduce() for the blocking reduction of
the transient message counts and local virtual time values. It is also easy to imple-
ment because complexities of multiple concurrent epochs are absent due to the fact
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Fig. 3: Data structures for one-sided communication-based GVT. Each in the send or
receive buffers includes the (LV T + LA, nsent − nrecd) values of the corresponding
sender. Dashed lines represent put operations of reduced values, while the squiggly
lines represent put operations of jump start messages to initiate reduction on the re-
ceiver side.

that all processors are always at the same epoch number and the same trial number.
The asynchronous two-sided GVT algorithm is implemented with user-level reductions
performed via the previously described (optimized butterfly) topology, using MPI mes-
saging for exchanging the reduction control messages.

For one-sided GVT algorithms, the Portals interface [Brightwell et al. 2005] is used
for one-sided communication. The Portals API on the Cray XT5 is implemented using
the Portals Network Access Layer (NAL). The Portals NAL provides a bridge between
the Portals API and the SeaStar Network Interface Card (NIC) and utilizes Basic End-
to-End Reliability (BEER) protocol for ensuring reliability and performing credit-based
flow control. A Direct Memory Access (DMA) program to send/receive data from/to
each Portals memory descriptor (MD) is generated in the host and transferred to the
SeaStar DMA queue. On SeaStar, message transmission and reception machinery each
utilize a single FIFO and a single Direct Memory Access (DMA) queue. Small messages
(< 16 bytes) are handled directly from the FIFO while larger messages utilize the DMA
Queue. The message transmission machinery on SeaStar has a 32 entry transmit (TX)
DMA queue. Elements in the receive engine machinery in SeaStar NIC are: (a) 256
entry Receiver (RX) DMA queue that includes a DMA program in each entry for DMA
into a specific memory descriptor, (b) a 256 entry Content Addressable Memory (CAM)
table that maps incoming messages to one of the RX DMA queue entry, and (c) an
interrupt mechanism that interrupts the host when such a match cannot be found in
the CAM table. If a particular host receives messages from over 256 different sources
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and continues to do so randomly throughout the life of the program, the number of
host interruptions increase significantly. This is detrimental to both the application
running at the receiver (as its computations are interrupted) and the sender (due to
higher latency incurred by the interrupt).
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PTL_MD_MANAGE_REMOTE{      }

Fig. 4: Portals data structures and data movement operations for one-sided GVT

The functionality of the one-sided GVT algorithm implementation is illustrated in
Figure 4. Portals is initialized with memory descriptors (MDs) used for put operations
configured with infinite threshold, and bound using PtlMDBind() with the PTL RETAIN
setting to make MDs reusable for later sends. To send, PtlPutRegion() is used with
PTL NOACK REQ since acknowledgments for send completions are not needed by our GVT
algorithm. For notification of completion of one-sided put operations for GVT messages,
we subscribe to the PTL EVENT SEND END notification. Similarly, PTL EVENT PUT END no-
tification is subscribed to for notification of incoming GVT messages. All destina-
tion memory locations of all one-sided puts are managed on the sender-side, and
hence, PTL MD MANAGE REMOTE is used on all sender-side MDs. The PTL EQGet() and
PTL EQWait() calls are used to process all Portals notifications asynchronously. Since
the maximum number of outstanding puts are bounded per GVT (epoch), it is possi-
ble to select a Portal event queue size such that no notifications would be dropped,
and hence PTL EQ DROPPED would be flagged as an error condition. The MPI option
MPICH PTL MATCH OFF was used to make MPI perform message matching for the un-
derlying Portals device. In synchronous two-sided operation, we have found that this
provides a noticeable performance improvement due to the latency-sensitive nature of
PDES applications.

The order in which one-sided communication proceeds in the GVT algorithm is in-
dicated by the circled numbers in Figure 4. The send buffer in this figure corresponds
to a send buffer shown on the left side of Figure 3; similarly, the receive buffer in this
figure corresponds to a receive buffer shown on the right side of Figure 3. Operations
tagged with the same circled number in Figure 4 indicate concurrent operation across
the sending and receiving processors.
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4. PERFORMANCE ANALYSIS

We examine the dynamics of discrete event execution exercised with the GVT algo-
rithms presented in this work. In order to evaluate the efficacy of each GVT algorithm,
we selected four PDES benchmarks which represent a wide cross-section of PDES ap-
plication characteristics, from varied event densities to mixed messaging and event
computation intensities.

4.1. Execution Benchmarks

We use the following four PDES applications that run over µsik, thus automatically
inheriting the runtime choice of functionality of all the three GVT algorithm imple-
mentations and their optimizations incorporated into µsik.

4.1.1. RCPHOLD. The PHOLD application is a de facto standard PDES benchmark
commonly used to exercise the underlying simulator’s efficiency in event processing,
message transmission and reception to destination LPs and, if applicable, rollback
efficiency. PHOLD is a synthetic benchmark with little event computation other than
random number generation to determine the virtual time increments and destination
LPs. PHOLD can be executed conservative mode as well as optimistic mode.

PHOLD can be configured to send to random or a subset of destinations. We define
a value, neighbor reach, such that a processor only sends to remote processors whose
identifiers are within a ± neighborhood of its own. Events can also be sent to self.
Outgoing events are timestamped with a exponentially distributed timestamp with a
mean of 1.0 plus lookahead.

The PHOLD benchmark can be configured into specific structures affecting event
density and messaging behavior, two of which are used for evaluation. For the present
purposes, we denote structure as a tuple of (σ, γ), where σ is the number of LPs per
core, and γ is a specific parameter for the simulation. For PHOLD, γ is the multiplier
for the message population of the simulation. Thus, σ × γ × ω gives the total message
population of the entire simulation across ω cores.

The “RC” moniker of RCPHOLD stands for reverse computation. Instead of stor-
ing the state of the simulation prior to each event processed to facilitate rollback in
optimistic simulations. When a rollback occurs, the simulator performs a sequence of
undo operations that restore the state of the simulation to the proper good state be-
fore incorrect events were executed. This is a classic space-time tradeoff where, to roll
back the simulation, significant memory savings may be obtained in exchange for some
computational overhead.

4.1.2. RCREDIF. Another PDES benchmark used is called RCREDIF [Perumalla and
Seal 2011], which is a large-scale epidemiological outbreak simulation based on a
reaction-diffusion model. It uses a novel discrete event formulation of the phe-
nomenon, and a new reverse computation-based model as rollback support in its scal-
able optimistic simulation. Organized in terms of a number of individuals per location
(γ), a number of locations per region (σ), and a region per processor, RCREDIF sim-
ulates probabilistic transition state machines at the level of each individual within
populations Similar to RCPHOLD, RCREDIF also can be executed both in conserva-
tive mode as well as optimistic mode using reverse computation, and also employs the
neighbor reach specification (similar to RCPHOLD) in determining the remote proces-
sors selected as potential destinations.

Due to the amount of computation involved in reversing an event, the rollback cost
per event is relatively high in RCREDIF. Thus, even if the rollback length is small
in an RCREDIF simulation run, the total rollback runtime overhead can be relatively
high.
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4.1.3. µπ. µπ [Perumalla 2010; Perumalla and Park 2011] is a software-based experi-
mentation platform for testing synthetic and real unmodified MPI programs. µπ multi-
plexes virtual MPI ranks per real rank (the ratio to be referred to as LPX) for execution
over simulated virtual platforms through µsik’s process-oriented PDES framework.

Barrier Test. The barrier test benchmark aims to stress-test multiple items of inter-
est: (a) ability to instantiate and advance millions of virtual ranks on the simulation
time axis, (b) performance under very tight coupling among ranks, especially with
regard to stringent characteristics of their virtual interconnection network, and (c)
ability for a high level of multiplexing for maximum efficiency. In the benchmark, ev-
ery rank repeatedly joins a barrier by invoking MPI Barrier(), and querying the time
taken by each barrier via the times returned by MPI Wtime(). Also between each pair of
barriers, each rank advances simulation time by one millisecond to model a relatively
coarse-grained computation.

Ping Test. The ping test benchmark is used to measure bandwidth and latency be-
tween pairs of communicating MPI ranks. This ping test has virtual ranks arranged
in a naturally-ordered ring topology. The sender sends data to the next higher virtual
rank while receiving data from the lower virtual rank. If the virtual rank number is
even, it performs a blocking send followed by a blocking receive. The order of opera-
tions is reversed for odd-numbered virtual ranks. These operations are timed via calls
to MPI Wtime() for bandwidth and latency measurement.

These operations are iterated successively from 8 bytes to the maximum specified
test message size, where the length of each message is doubled for each trial until the
maximum limit is reached.

4.2. Experiment Setup

The GVT algorithms were tested with all the aforementioned applications. For labels
in all of the following charts, we use a 3-tuple (X Y Z ) to identify the scenario tested,
as follows:

X is the synchronization strategy employed: C for conservative or O for optimistic.
Y denotes usage of a one-sided GVT algorithm (utilizing the Portals interface within
µsik time management): 1 for one-sided communication and 2 for two-sided commu-
nication.

Z signifies whether or not the synchronous execution is used: S for synchronous and A
for asynchronous execution.

Thus, for example, (. 2 S) refers to the conservative or optimistic executions of the
two-sided synchronous GVT algorithm, (O 2 A) to the optimistic execution of two-
sided asynchronous GVT algorithm and (C 1 A) to the conservative one-sided asyn-
chronous GVT algorithm.

Combinations of lookahead, structure, synchronization strategy and GVT al-
gorithms were varied for each benchmark. Lookaheads were varied across the
RCPHOLD and RCREDIF benchmarks, ranging from low to high values of lookahead.
Additionally, the structure (σ, γ) of each application was varied between (10,1000)
and (100,100). Thus the message population remained constant between structures
per core, but the number of LPs per core varied resulting in high and low event densi-
ties per LP for the respective scenarios. The number of remote messages, although in
total remains the same per core, is an order of magnitude more per LP in the (10,1000)
case.

For µπ benchmarks, lookahead was fixed based on the network properties. Here we
selected a prototypical fast (i.e., latency of 10µs and bandwidth of 1Gb/s) and very fast
(i.e., latency of 1µs and bandwidth of 10Gb/s) network specification to determine the
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Table I: Notation Used in Charts

Description

ε Aggregate committed event rate
(millions events/sec)

λ Number of GVT epochs
ρ Maximum number of rollbacks ob-

served on a single core
α Average number of rollbacks per

core
F1 Factor of improvement of asyn-

chronous one-sided GVT algo-
rithm over synchronous two-sided
GVT algorithm

F2 Factor of improvement of asyn-
chronous two-sided GVT algo-
rithm over synchronous two-sided
GVT algorithm

LPX Virtual MPI ranks per real rank

Description

(σ, γ) Structure of simulation
(C . .) Conservative simulation
(O . .) Optimistic simulation
(. 2 S) Two-sided synchronous
(. 2 A) Two-sided asynchronous
(. 1 A) One-sided asynchronous

lookahead. The “structure” of the µπ benchmarks is simply LPX (i.e., number of virtual
MPI ranks multiplexed on each real rank), where values of 128 and 1024 were chosen
to showcase light and very heavy multiplexing. An MPI rank is the unique integer
assigned to each task (typically, a UNIX process) in a parallel application based on
MPI. Each virtual MPI rank is the simulated counterpart of the real MPI rank that
appears in the simulated scenario.

The simulation end times were set to 1000 simulated seconds for all RCPHOLD
runs, and 168 simulated hours (1 week of disease spread=24 hours/day × 7 days) for
all RCREDIF runs. µπ barrier test simulated one virtual barrier for all LPX, while
µπ ping test simulated up to 1KiB and 64KiB of data transfer in the LPX=1024 and
LPX=128 structures, respectively.

For the following charts, ε denotes the aggregate committed event rate in millions
of events/sec which is plotted on the primary ordinate. Each individual data point for
the three GVT algorithms tested is plotted while the best performing GVT algorithm
(i.e., the algorithm achieving the highest ε) is noted at each core count. A line joining
the maxima is drawn through each of these best-performing numbers to visually show
a trendline of performance as the simulation is scaled.

Additionally, charts include F bars which denote the factor of improvement over
the most commonly used PDES implementations, namely, the (. 2 S), which is the
synchronous two-sided GVT algorithm. This factor is plotted for the asynchronous GVT
algorithms i.e., (. 2 A) and (. 1 A) on the secondary ordinate. Secondary plots on the
following charts may include λ, which denotes the number of GVT epochs, ρ, which
denotes the maximum number of rollbacks occurring on a single core within the entire
simulation for selected optimistic executions and α which signifies the average number
of rollbacks per LP. The symbols and notations are summarized in Table I.

Every scenario is scaled up to at least 129,024 cores. Some executions were scaled
to 216,000 cores (not all could be executed at the full scale of 216,000 cores, due to
constraints on the number of hours allocated to us on the machine).
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Fig. 5: RCPHOLD Conservative Synchronization, Low Lookahead
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Fig. 7: RCPHOLD Optimistic Synchronization, Low Lookahead
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4.3. RCPHOLD Results

Conservatively synchronized RCPHOLD benchmarks at low lookahead of 0.1 shown
in Figure 5a (and Figure 14a in the supplement) scaled to 216,000 cores, we observe
in nearly all cases that asynchronous GVT algorithms performed no worse than syn-
chronous two-sided GVT, and sometimes provided significant improvements in ε – up
to 1.5× in the structure of (100,100). Interestingly, λ remained nearly the same for
all GVT algorithms and holds through all tested core counts. Thus, the runtime dif-
ference and performance improvement shown by both asynchronous GVT algorithms
is resulting from decrease in wall-clock time consumed by these algorithms per GVT
computation.

At a high lookahead of 0.5 shown in Figure 6a (and Figure 15a in the supplement)
with data to 216,000 cores, we observe similar performance from both synchronous and
asynchronous GVT algorithms at smaller scales. As the simulation is scaled to 32K
processor cores and beyond, asynchronous GVT algorithms tend to cope with larger
number of processor cores better as ε improvements exceeding 1.5× is observed in the
(100,100) case. We can reason here that the increased amount of lookahead lowers the
total amount of synchronization burden across the entire simulation which becomes
increasingly more taxing as the simulation is spread across more processor cores. A
5× decrease is observed in λ, which is correlated with 5× increase in the amount of
lookahead, compared to the low lookahead case of 0.1, as expected.

Optimistically synchronized RCPHOLD provides further insight into how the speed,
behavior and quality of information delivered by the underlying GVT algorithms can
significantly impact the performance of this particular PDES benchmark.

In the RCPHOLD optimistic scenarios shown in Figure 7 and Figure 8 we see that, in
nearly all cases, both asynchronous GVT algorithms provide at least the performance
of synchronous two-sided GVT algorithm, but can often accelerate the simulation much
faster showing, consistently 1.2× to over 1.5× the performance of synchronous two-
sided GVT, especially in the (10,1000) structure cases.

The striking detail that comes forth through all of the RCPHOLD optimistic charts is
the significant difference in λ for the synchronous two-sided GVT algorithm. Frequent
GVT computation is not necessarily a detriment to overall performance. In fact, having
fresh GVT information can reduce the number of potential incorrect events processed
(and thus the number of rollbacks) in an optimistic parallel simulation. However, this
generalization only holds if the cost of the GVT computation is relatively inexpen-
sive compared to the cost of rollback. Since RCPHOLD is a synthetic benchmark that
is not computationally intensive, rollback costs are relatively inexpensive. Thus, for
RCPHOLD, the rollback cost is significantly less than GVT computation cost.

We can clearly observe these dynamics in RCPHOLD. λ is more than 1.5× in the
synchronous two-sided GVT cases over both the asynchronous cases, yet there are no
rollbacks in the synchronous two-sided GVT cases while there are rollbacks present in
the both asynchronous cases. We see that in certain cases, such as shown in (10,1000)
structure in Figure 7a and Figure 21a, at larger core counts, the ε gap widens as the
cost per λ increases with the number cores. It is clear here that the quality of the GVT
information delivered by both asynchronous GVT algorithms is no less than, if not bet-
ter than, that of the synchronous two-sided GVT algorithm. Thus, both asynchronous
GVT algorithms incur less overhead through expedited GVT computations in addition
to smaller λ in the scenarios with lookahead greater than 0.01.

4.4. RCREDIF Results

RCREDIF with low lookahead of 0.01 is shown in Figure 9a and Figure 22a with data
up to 216,000 cores. Similar to RCPHOLD, we observe that both asynchronous GVT
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Fig. 9: RCREDIF Conservative Synchronization, Low Lookahead
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Fig. 11: RCREDIF Optimistic Synchronization, High Lookahead

algorithms provide better performance than the synchronous two-sided GVT algorithm
at all core counts. λ remains nearly identical for all GVT algorithms as the RCREDIF
application is scaled out. Clearly, the cost per λ is the differentiating determinant for
ε and thus, F . Scenarios at lookahead of 0.1 shown in Figure 25a and Figure 25b
(scaled to 129,024 cores) follow similar trends to the lookahead cases of 0.1. In the
structure of (10,1000) the synchronous two-sided GVT algorithm slightly edges the
asynchronous GVT algorithms at up to 32,256 cores. After this point, the asynchronous
GVT algorithms pull ahead in a rather extraordinary fashion. In fact, in these low
lookahead scenarios in Figure 25 the differences between GVT algorithms is minimal
until a certain amount of scale is reached. After such a scaling point, the performance
difference in ε is significant as we can observe improvements in F exceeding a factor
of 1.5× up to nearly 2.5× at the largest scales tested.

In contrast to the RCPHOLD synthetic benchmark, RCREDIF is a non-synthetic ap-
plication that uses significant computation per event. Thus, rollbacks are expensive in
comparison to those found in RCPHOLD. At a low lookahead of 0.01 under optimistic
synchronization for RCREDIF shown in Figure 10a and Figure 23a scaled to 216,000
cores, we observe that ρ and α for the synchronous two-sided GVT algorithm is sig-
nificant while both asynchronous GVT algorithms very little rollback. This inversely
correlates with ε where we observe 1.2× to nearly 3× F . In these low lookahead sce-
narios, λ tends to be very large (i.e., 16K to 30K+ computations) over the course of the
execution. The speed and frequency of the GVT algorithm comes into play for these
small lookaheads. Both asynchronous GVT algorithms exhibit larger λ, providing more
up-to-date GVT information without sacrificing the simulation speed of event compu-
tation. The synchronous two-sided GVT algorithm on the other hand synchronizes less
frequently, up to nearly 50% less, yet performs significantly worse at scale. The speed
of the GVT algorithm clearly impacts the event execution dynamics: as potentially
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more incorrect events are executed they must ultimately be rolled back, incurring sig-
nificant synchronization overhead cost. This is compounded on top of higher rollback
costs in RCREDIF.

We observe that α decreases steadily as the simulation scales in lookahead cases
of 0.01, yet does not impact the performance gap with respect to ε compared to the
asynchronous GVT algorithms, the one-sided approach in particular. The combination
of a slower GVT computation speed and presence of larger ρ lead to the ε difference.
It is also interesting to note that λ decreases for the asynchronous GVT algorithms
while maintaining very good rollback characteristics resulting in very little overhead.
The F observed in some of the low lookahead scenarios shown in Figure 27 empha-
sizes the potential performance gain that can be achieved by exploiting lower layer
communication interfaces such as one-sided Portals.

Figure 12b shows speedup for the best and worst case committed event rates for
RCREDIF. The best and worst observed ε for RCREDIF are both using conservative
synchronization at lookahead of 1 with a structure of (100, 100) and lookahead of
0.01 with a structure of (10, 1000), respectively.

4.5. µπ Results

In the µπ benchmarks as shown in Figure 13, the performance difference between
synchronous two-sided GVT algorithms and asynchronous GVT algorithms are clearly
pronounced. Here, λ is approximately equal for all scenarios, thus indicating that the
time to complete GVT computations in the synchronous two-sided GVT algorithm is
significantly longer than both asynchronous GVT cases. We observe a 1.67× perfor-
mance improvement in runtime for the asynchronous one-sided GVT algorithm over
the synchronous two-sided GVT algorithm at 216,000 processor cores simulating over
221 million virtual MPI ranks in the LPX=1024 case for barrier test as shown in Fig-
ure 13a. Similarly for the ping test shown in Figure 13b, there is a 2.07× improvement
in runtime for the asynchronous one-sided GVT algorithm over the synchronous two-
sided GVT algorithm at the same scale for LPX=1024. For the lightly multiplexed
cases of LPX=128, the runtime performance differential between synchronous and
asynchronous GVT algorithms begins to appear at scale when the number of cores
exceeds approximately 8K.

The difference in performance between GVT algorithms can be attributed to the
time-slicing nature of process-oriented PDES where multiple virtual threads are mul-
tiplexed on top of a single real execution thread of the main loop. As the number of
virtual contexts are increased, the proportional amount of time taken by the GVT al-
gorithm becomes larger in relation to the amount of time given per context switch to
each virtual thread. Thus, the effects of a slower, synchronous GVT algorithm becomes
apparent on high multiplexing counts.

4.6. Performance Summary

A cost trade-off is observed between GVT frequency and rollbacks. Executions which
incur higher per-event rollback costs can benefit from more frequent GVT computa-
tions. GVT algorithms that complete faster, such as in the asynchronous approaches,
can lead to significant performance gains by minimizing rollbacks at the relatively
smaller expense of more frequent GVT computations. Also, the cost per rollback does
not remain constant as executions scale. RCREDIF shows that, as an execution is
scaled out, the GVT algorithms which lead to little or no rollback provides significant
gains in simulation performance.

Asynchronous GVT algorithms almost always performed at least as well as their
synchronous counterpart. In the majority of cases, the asynchronous GVT algorithms
accelerate the execution by spending less time in synchronization overheads. The
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Fig. 12: Self-relative Speedups for Best and Worst Committed Event Rate Trends

notable exception to this rule is observed with optimistic execution at high looka-
head, where the synchronous two-sided GVT algorithm tends to synchronize more fre-
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Fig. 13: µπ Runtime Performance

quently, in effect, reducing the staggered nature of execution and rolled-back event
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computation. However, this exception only seems to be limited to executions with less
than 105 cores.

Process-oriented discrete event execution (exercised with µπ), which time-multiplex
multiple thread contexts on a single core, are seen to benefit the most from asyn-
chronous GVT algorithms at large multiplexing levels and/or at larger core counts. As
the amount of processor time per thread becomes more scarce at higher multiplexing
counts, the relative amount of time spent in GVT rises. Thus, the asynchronous nature
of GVT algorithm is beneficial in allowing events to be processed asynchronously with
GVT computation.

In the fastest RCPHOLD runs, the event rate was nearly 54 billion events per sec-
ond on 216,000 cores. The best self-relative speedup for RCPHOLD exceeded 170,600
on 216,000 cores. The best self-relative speedup for RCREDIF exceeded 131,790 on
129,024 cores (superlinearity attributable to a suboptimal, cache-limited performance
of the baseline run on 1008 cores). In the largest runs of RCREDIF on 216,000 cores,
over 2.1 billion individuals were simulated. With µπ, a total of 221,184,000 virtual
MPI ranks were simulated, representing the largest case of process-oriented discrete
event mode of execution to date. In the barrier test of µπ, one-sided GVT gave 1.67×
faster execution than blocking GVT. The ping test of µπ executed over 2.07× faster with
one-sided GVT than blocking GVT.

5. RELATED WORK

Research in efficient virtual time synchronization experienced rich development over
the past few decades. In the early 1990s, after parallel/distributed discrete event sim-
ulation began gaining sufficient attention in the research community, a spurt of syn-
chronization algorithms were proposed, for use in conservative schemes, optimistic
schemes, or both. A rich variety of parameters were considered, such as the presence
or absence of first-in-first-out (FIFO) guarantees, message send-back protocols, virtual
time horizons and windows, message acknowledgments, and different network archi-
tectures or topologies such as token rings and trees. These advancements included
seminal works such as the Chandy Misra Bryant (null message) algorithm [Chandy
and Misra 1981], the Time Warp algorithm [Jefferson and Sowzral 1982; Jefferson
1985], Samadi’s algorithm [Samadi 1985] based on message acknowledgments, Mat-
tern’s algorithm [Mattern 1993] based on distributed snap shots, Lin-Lazowska algo-
rithm [Lin and Lazowska 1990] based on combination of time stamped histories and
message sequence numbers, and the Bauer-Sporrer [Bauer and Sporrer 1992] algo-
rithm based on centralized resolution on FIFO network channels, and many other
variants (e.g., [Su and Seitz 1989; Steinman 1992; Reiher et al. 1990; Preiss et al.
1991; Nicol 1993a; 1993b; Lipton and Mizell 1990; Konas and Yew 1992; Felderman
and Kleinrock 1991; DeVries 1990]). The majority of them were analyzed for theo-
retical correctness of operation and analytical complexity measures such as latency
between successive time advances [Gomes et al. 1998; Fujimoto 1999].

Additional innovative directions, such as hardware-assisted and shared memory-
optimized algorithms, were pursued in early and mid 1990s. Reynolds et al. [Reynolds
et al. 1993] proposed hardware support for GVT computations, using a specialized co-
processor style of interface to central processing units to offload reduction operations
onto the custom-designed co-processors and their interconnection network. Perhaps
due to the hardware limitations of their times, performance study was only limited to
a few dozen processors. Rosu et al. [Rosu et al. 1997] proposed offloading GVT com-
putations to programmable, general-purpose network cards, again limited in scale by
the network hardware technologies of the time. Fujimoto and Hybinette [Fujimoto and
Hybinette 1997] developed a fast algorithm for GVT computation optimized for shared
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memory machines, carefully avoiding any locking (semaphore) costs among concurrent
threads of execution.

Later, in the late 1990s and early 2000s, synchronization gained additional attention
largely in the context of the Time Management interface of the High Level Architec-
ture, and in the context of large-scale computer network simulations. The former saw
real-time (receive ordered) executions scaled to 103 processors, but time-constrained
executions were limited to 102 processors using centralized run time infrastructures.
The latter saw conservative time synchronization advanced to the 103-processor scale,
using global reductions-based algorithms [Fujimoto et al. 2003] as well as null message
variants exploiting locality of communication [Park et al. 2004]. Also, virtual time algo-
rithms for operation over combinations of unreliable and reliable network channels for
events and synchronization messages were developed [Perumalla and Fujimoto 2001]
and applied to both HLA simulations as well as network simulations.

In mid 2000s, research continued, attempting further scaling [Chen and Szymanski
2005; 2008] using a centralized algorithm on up to 1000 processor cores. Also, ways
to combine real time with virtual time advances were explored [McLean et al. 2004;
Bauer Jr. et al. 2005]. A GVT algorithm based on ”network atomic operations” was
designed by Bauer et al. [Bauer Jr. et al. 2005], and its performance was evaluated on
a small scale of 16 processors.

In the late 2000s, a marked shift occurred, catching up to the dramatically increas-
ing sizes of the supercomputing installations that began to emerge with 104 processor
cores for the first time. The focus of some of the GVT algorithm design and implementa-
tion, as a result, shifted to scalability, aimed at sustaining discrete event execution on
some of the largest computing installations. Feasibility of executing conservative, op-
timistic and mixed-mode executions on up to 32,768 processor cores was first realized
on Blue Gene/L platforms [Perumalla 2007], followed by speed and efficiency improve-
ments to optimistic execution on Blue Gene/L [Holder and Carothers 2008; Bauer Jr.
et al. 2009]. Additional analyses of the event dynamics between conservative and op-
timistic execution were compared with synthetic benchmarks on 16,384 Blue Gene/L
cores [Carothers and Perumalla 2010]. In the line of evolution, the next largest super-
computing installations emerged, containing on the order of 105–106 cores. Execution
of PDES at this scale is the focus of this paper (a preliminary version of this work
appeared in [Perumalla et al. 2011]).

6. CONCLUSIONS AND FUTURE WORK

The feasibility of executing discrete event execution, both in conservative and opti-
mistic modes, on some of the largest parallel processing platforms has been shown
here. Using a comprehensive experimental study that covers a variety of PDES perfor-
mance parameters on dissimilar applications, detailed quantitative performance data
has been documented on up to 216,000 processor cores of a Cray XT5 system. Perfor-
mance of nearly 54 billion events per wall clock second has been logged in some of
the fastest runs. The performance data can be helpful to both users and researchers
of discrete event execution in terms of the scales and speeds that can be expected for
different combinations of modeling and system parameters. The experiment results
advance the levels of PDES capabilities on massively parallel platforms reported in
the literature. A new GVT algorithm based on one-sided communication has been pro-
posed and studied at scale for the first time here, as one of three variants in the space
of synchronous vs. asynchronous computation and one-sided vs. two-sided communica-
tion. The results highlight PDES as a potential candidate in the class of supercomput-
ing applications, whose benefits can be explored in various domains such as Internet
simulations, vehicular transportation simulations, and social behavioral simulations.
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Integration of large-scale agent-based simulation with discrete event execution is
part of our future work, along with evaluation with more discrete event applications.
Porting and optimizing to the next generation of network interconnects (such as the
Gemini and Aries lines of networks in multi-petascale Cray systems) remains to be
explored. Also of immediate interest is the exploration of the interplay with accelerator
technologies that are being incorporated into the largest supercomputing platforms.
It would also be interesting to explore the use of one-sided communication for event
messaging as well, complementing that for GVT algorithm communication.
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7. SUPPLEMENTAL PERFORMANCE STUDY DATA AND ANALYSIS

7.1. Additional RCPHOLD Results

At very low lookahead of 0.01 for conservative synchronization, the simulation is scaled
up to 16,128 processor cores. For structure of (10,1000) shown in Figure 18a, the syn-
chronous two-sided GVT algorithm performs nearly the same as the asynchronous
variants. However, even as soon as reaching the 4,032-core mark, the asynchronous
GVT algorithms begin to pull ahead while λ remains relatively constant. We can de-
duce that the amount of time to complete GVT computations is the primary differen-
tiating factor, resulting in improved ε. In the (100,100) structure scenario shown in
Figure 18b, we see a similar trend appear at 8,064 cores.

At a very high lookahead of 1 shown in Figure 19a and Figure 19b scaled to 16,128
cores, both asynchronous GVT algorithms outperform the synchronous two-sided GVT
algorithm in nearly all cases up to 16,128 processor cores. In the (100,100) structure
case, the δ performance improvement is on average much higher due to the smaller
event densities and spare event computation compared to the (10,1000) case. With
less local events to process per LP, the relative cost in the GVT computation is higher.
Thus the speed in the GVT computation can significantly improve the overall perfor-
mance and ε rates of the simulation for not only the LA of 1 case, but for all structure
(100,100) cases for RCPHOLD.

For optimistic simulation, in the low lookahead of 0.01 with structure of (10,1000)
scenario shown in Figure 20a, the synchronous two-sided GVT algorithm outperforms
both asynchronous GVT algorithms for up to 16,128 cores. For this scenario, λ is 1.5×
to 3× lower than that of the asynchronous GVT algorithms with very little difference in
ρ and α. Thus the significant increase in λ overhead translates to poorer performance
by the asynchronous GVT algorithms for this scenario. In the (100,100) structure case
shown in Figure 20b, we observe that the asynchronous GVT algorithms slightly edge
the synchronous two-sided GVT algorithm although λ is lower for the synchronous two-
sided GVT algorithm. However, in this scenario, the difference is not as significant as
the (10,1000) structure case with the asynchronous two-sided GVT algorithm incur-
ring nearly 2× the amount of λ at in the worst cases. The reason for the asynchronous
one-sided GVT algorithm exhibiting better ε yet with higher λ can be attributed to the
speed of the GVT algorithm compared to the synchronous two-sided algorithm.

It is interesting to note in Figure 16a, where machine conditions are nearly perfect
and staggering of LP execution is minimized, we see a significant performance gain of
ε for the asynchronous GVT algorithms. At the final data points at 216,000 cores, we
observe low amount of λ, nearly zero ρ and a non-increasing amount of α from 129,024
cores results in the highest F gain for any lookahead at structure of (100,100) at scale.

Figure 12a shows the overall speedup trends for the best and worst committed event
rate trends among scenarios of lookahead 0.1 and 0.5. Speedup is measured over the
base of 1,008 cores for their respective GVT algorithm (i.e., self-relative speedup). The
best and worst observed ε for RCPHOLD are both using conservative synchroniza-
tion at lookahead of 0.5 with a structure of (100, 100) and lookahead of 0.1 with a
structure of (10, 1000), respectively. For most data points, the asynchronous GVT
algorithms outperform the synchronous two-sided GVT algorithm.

7.2. Additional RCREDIF Results

RCREDIF at very high lookaheads of 1 for conservative synchronization as shown in
Figure 29 exhibit similar behavior to that of high lookaheads of 0.5. However, the effi-
ciency gains at high scales due to asynchronous GVT computations is less pronounced.
This can be attributed to the reduced frequency of GVT computation and thus the non-
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Fig. 18: RCPHOLD Conservative Synchronization, Very Low Lookahead
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Fig. 22: RCREDIF Conservative Synchronization, Low Lookahead
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Fig. 24: RCREDIF Optimistic Synchronization, High Lookahead

interferring impact of the computation on the forward progress of the simulation as
seen by the halved λ value, as expected, compared to that of lookahead of 0.5.

Figure 30 shows the accompanying simulation using optimistic synchronization at a
lookahead of 1. We observe similar synchronization behavior to that of lookahead of 0.5
where the synchronous two-sided GVT computation performs well up until the largest
of scales. At the 129,024 core mark, we observe the asynchronous GVT computations
perform better. Although further experimentation is needed to uncover reasons why
this occurs, the size of the simulation may begin to burden the network which may
compete with GVT computations. Asynchrony and one-sided communications in these
cases could provide the necessary flexibility to provide timely information needed for
simulation progress.

In the cases of higher lookahead values of 0.5 and 1 shown in Figure 26 scaled to
129,024 cores, the difference between the GVT algorithms is lessened due to the rela-
tively small λ during the simulation execution. Even in most of these cases, we observe
that both asynchronous GVT algorithms provide ε performance on par with that of the
synchronous two-sided GVT algorithm, if not better. This clearly becomes the case at
129,024 cores where the use of the asynchronous GVT algorithms, and one-sided com-
munication in particular, provide significant performance gains.

Figure 27a and Figure 27b show RCREDIF scenarios for lookahead of 0.1 to 129,024
cores. For the particular structure of (10,1000) it is interesting to observe that the syn-
chronous two-sided GVT algorithm outperform both asynchronous GVT algorithms to
scale. The differences in λ, ρ and α do not suggest such a gap, but a possible expla-
nation may rest with the synchronizing effect of the synchronous two-sided GVT al-
gorithm which essentially forces the simulation to globally synchronize every so often
which may be advantageous for this particular structure at this lookahead. This is
further evidenced by the (100,100) structure which exhibits similar λ, ρ and α trends
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Fig. 27: RCREDIF Optimistic Synchronization, Low Lookahead
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Fig. 28: RCREDIF Optimistic Synchronization, High Lookahead
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but does not show an across-the-board speed advantage for the synchronous two-sided
GVT algorithm.

For high lookahead values of 0.5 shown in Figure 28, the trends clearly favor the
synchronous two-sided GVT algorithms up to 64,512 cores. Generally, the synchronous
two-sided GVT algorithm incurs nearly no rollbacks while both asynchronous GVT al-
gorithms do. Since λ is reduced significantly in these cases due to high lookahead, each
GVT advance is important to ensuring minimal amount of rollbacks. The scenarios em-
ploying the synchronous two-sided GVT algorithm synchronize more frequently: up to
50% more than both asynchronous cases. However, since λ in these runs are relatively
small compared to the total elapsed runtime of the simulation, the additional num-
ber of λ do not significantly interfere with event computations. This tends to prevent
excessive rollbacks and thus lower ε performance as shown in the respective charts.
At 129,024 processors, the asynchronous GVT algorithms outperform the synchronous
two-sided GVT algorithm. With λ and ρ metrics remaining consistent with the prior
data point at 64,512 cores, the drop-off in performance for synchronous two-sided GVT
performance might be attributed to the increased wallclock time incurred per λ. Fur-
ther experimentation is needed to verify the cause of the performance degradation for
synchronous two-sided GVT at very large-scale for RCREDIF.
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