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Abstract Reverse computation is presented here as
an important future direction in addressing the chal-
lenge of fault tolerant execution on very large cluster
platforms for parallel computing. As the scale of paral-
lel jobs increases, traditional checkpointing approaches
suffer scalability problems ranging from computational
slowdowns to high congestion at the persistent stores
for checkpoints. Reverse computation can overcome such
problems and is also better suited for parallel com-
puting on newer architectures with smaller, cheaper or
energy-efficient memories and file systems. Initial evi-
dence for the feasibility of reverse computation in large
systems is presented with detailed performance data
from a particle simulation scaling to 65,536 processor
cores and 950 accelerators (GPUs). Reverse computa-
tion is observed to deliver very large gains relative to
checkpointing schemes when nodes rely on their host
processors/memory to tolerate faults at their acceler-
ators. A comparison between reverse computation and
checkpointing with measurements such as cache miss
ratios, TLB misses and memory usage indicates that
reverse computation is hard to ignore as a future alter-
native to be pursued in emerging architectures.
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1 Introduction

The need to save and recover program state at interme-
diate points of execution arises in multiple parallel com-
puting contexts, most notably in achieving fault toler-
ant execution. In asynchronous recovery approaches to
fault tolerance of parallel programs, state snapshots are
to be saved in order to be able to roll back a processors’s
execution to a point in its past.

The most common method to recover program state
is via checkpointing. Typically, in forward execution, a
copy of the to-be-affected data is saved before modifi-
cation, and, during rollback, the copy is fetched from
the checkpoint log to restore the data to its old value.
An advantage of checkpointing is that it is possible to
support via a generalized interface to applications. It
can be made transparent (e.g., automated at the page-
level), and implementations can be optimized. However,
the memory usage requirements and the runtime cost of
memory operations for checkpointing can become high.

1.1 Reverse Computation

An important alternative approach to checkpointing is
reverse computation. In reverse computation, the sys-
tem state is recovered not by relying on memory to
restore the state, but by computing backwards from a
current point of execution to the rollback point in the
past. This obviously requires the computation to be re-
versible, and requires the reverse code to be invoked at
run time to reach the desired point in the past. There
are limitations of generality with reverse computation,
but several significant advantages in relation to its re-
liance on computation instead of on memory.
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Since the reverse computation and checkpointing
approaches belong to a computation vs. memory cost
spectrum, reverse computation can be more efficient on
hardware in which computations are faster than mem-
ory accesses. In existing and emerging hardware archi-
tectures, a reduced reliance on memory and file systems
is very appealing, due to the (ever increasing) disparity
between processor speeds and memory/storage system
speeds. Thus, reverse computation-based rollback is ex-
pected to be an excellent alternative, or an addition,
to memory-based checkpointing schemes, especially on
emerging and future architectures in which memories
are smaller and/or slower for lower operating energy
and in clusters limited by centralized storage. Even in
the near term, in applications that can define inverse
code for forward code, the performance benefits can be
significant.

Nevertheless, the use of reverse computation is not
currently prevalent. One hurdle is the difficulty of defin-
ing reverse code in the application; this will take a while
for the community at large to address. The other ma-
jor hurdle is the lack of motivating data to demonstrate
the degree of gain that reverse computation has to of-
fer over checkpointing. There is relatively limited quan-
titative evidence regarding the detailed system effects
of the tradeoff. To fill this gap, a performance study
is useful to exercise the two approaches in an experi-
mental setting in which inverse code can be employed
for rollback. Additionally, the issues and performance
effects need to be better understood regarding how ac-
celerators (such as graphical processing units) interplay
with checkpointing and reverse computation, especially
in the presence of distinction between host memory and
accelerator memory.

1.2 Organization

In this paper, we present a high-level approach to em-
ploying reverse computation for efficient fault tolerant
computation, and undertake a first empirical study aimed
at understanding the aforementioned performance is-
sues. The rest of the article is organized as follows. A
brief outline of the concepts in asynchronous rollback-
based fault tolerance approaches is provided in Sec-
tion 2. The particle simulation application used in the
performance study is described in Section 3. The range
of system parameters, hardware, and software exercised
in the empirical study is are documented in Section 4.
The performance results from an implementation on
parallel systems with processor and accelerator hard-
ware are presented and analyzed in Section 5, followed
by a general discussion of implications and additional

issues for resolution in Section 6. A summary of findings
is provided in Section 7.

2 Rollback-based Fault Tolerance

Fault tolerant computation in a parallel or distributed
system is the ability to gracefully continue execution
of an application despite transient faults or failures of
system components at runtime. Fault tolerance is an
extremely difficult capability to achieve in parallel sys-
tems, particularly when the number of components in
the system is very large. Simplistic schemes rely on pe-
riodically saving the entire application state to persis-
tent storage and restoring this state at all processors
for recovering from failures. However, such schemes are
woefully non-scalable and break down with large num-
ber of processors. More scalable solutions do not rely
on global checkpoint/restart views, but use in-memory
solutions. Among them, rollback-based recovery is an
important algorithmic core underlying scalable paral-
lel computing, appearing in the form of system sup-
port, middleware or applications. For example, efficient
rollback-based fault tolerance approaches (e.g., [12,8],
among many others) rely critically on the ability of pro-
cessors to revert their state back to a point in the past.

Thus, processors need the ability to go back to a pre-
vious point in execution dynamically on demand, when
they are informed of a fault. The definition of a fault
varies with application. Often, a fault is the detection
of a failure of a processor. In other software-level roll-
back schemes, a fault is the detection of a violation of
application-specific event order for correctness. For ex-
ample, in large-scale Time Warp [7,14], when an event
from a processor is received whose timestamp is smaller
than the current virtual time of the receiving processor,
it results in a primary rollback at the receiving proces-
sor, and when previously-sent messages are taken back
as a result of primary rollback, it transitively results in
secondary rollbacks at other processors.

Fig. 1 shows the schematic for this general setting.
When a processor Py encounters a fault, it restarts from
the most recently saved checkpoint LC; and informs all
other processors {P.} to roll back to the point corre-
sponding to the program state of LC. Every rolling
back processor P, can invoke reverse code to recover
the state corresponding to LC'.

Note that LCy and LC,. are in general different be-
cause, for maximum efficiency, each processor is allowed
to asynchronously and infrequently initiate a checkpoint
of its own state to persistent store. Note also that ev-
ery rolling back (non-faulted) processor P, need only
use reverse computation, but does not have to access
its own checkpoint LC, (the checkpoint is only used
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Fig. 1 Schematic of asynchronous recovery sequence using reverse computation-based rollback. Note that there are very many
processors indicated by P, that are affected due to the fault at P;. All of them need to be rolled back, although only one

processor is shown in the illustration for simplicity.

if it itself encounters the fault). This particular aspect
dramatically relieves congestion in the system (pressure
on the memory bus and on the file system).

In Fig. 1, P,’s corresponding state of LC is shown
joined by the dashed line across the processors. The
faulted processor Py restarts from LCy, because the
state from LC'¢ to the fault point is assumed to be lost
or unavailable due to failure.

2.1 Related Work

Reverse Computation has been previously applied to
some areas such as telecommunication network simu-
lations[4], debugging[1,16], reversible (adiabatic) com-
puting for low-power[16], and transaction reversal in
databases. However, very few articles have explored it
in large-scale parallel computing. Past work in the late
1990s includes a performance study on small non-uniform
memory access (NUMA) architectures [3] and fault tol-
erant matrix computations [8]. Also, while the literature
on fault tolerance in parallel computing is vast, we are
not aware of a performance study of reverse computa-
tion in the context of fault tolerance.

Here, we investigate the system effects (cache and
TLB measurements, memory usage, elapsed time, etc.)
of checkpointing and reverse computation approaches,
to ascertain the potential runtime gains that can be

obtained from reverse computation-based rollback. To
permit a controlled experimental study, we focus on dif-
ferent ways of adding rollback support to a simulation
of a system of particles colliding in free space.

We investigate five different schemes in the spec-
trum of different checkpointing and reverse computa-
tion solutions. The overall runtime performance and
the underlying system effects are investigated with a
range of parameters, including the system size (number
of particles), dynamic behavior (number of collisions),
and computational platform (multicore and accelera-
tor).

Results from the simulated application indicate sig-
nificant performance gains that can be obtained from
reverse computation, mainly due to the dramatically
better memory usage and access characteristics of re-
verse computation-based rollback.

3 Reversible Particle Collisions

The particle collision application used in the perfor-
mance study is a template of hard sphere models in
molecular dynamics simulation [5,10,11]. It captures an
essential part of the computational workload in event-
driven molecular dynamics[13] and Time Warp-based
simulation of collisions [6]. The simulated system con-
tains particles moving in a two dimensional space and
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undergoing a series of elastic collisions. The simulation
keeps track of the particles’ positions X and velocities
X, and updates them after every particle-pair collision.
Initial positions X = X are selected randomly from a
bounded Cartesian box, along with randomly generated
initial velocities X = Xo.

The computation of new positions of the particles
after 0t time is performed after the collision operator
is applied on the next earliest collision. The computa-
tional kernel

X+ X+6t-X

for this operation appears in many particle simulation
codes (too numerous to cite; e.g., [5,10,11]). Positions
are always wrapped to remain in the domain of a unit
box. In our implementation, each element X; and X;
for particle P; is a d dimensional vector, corresponding
to the 1 < d < 3 dimensional box in which the parti-
cles are colliding. We use a reversible elastic collision
operator [15] with d = 2. The collision operator mod-
ifies the variables holding the velocities of the affected
particles. Similarly, the actual value of §t between con-
secutive collisions is computationally irrelevant. Thus,
every timestep 6t. for ¢! collision is randomly gener-
ated and applied to the particles.

The simulation proceeds as a series of iterations.
Each iteration is designed to (a) pick a random pair of
particles to collide, (b) verify if their velocities are such
that they can in fact collide with their current veloci-
ties, and, if they do, (c) generate a random delta time
after which they would collide, (d) move all particles by
that delta time, and (e) apply the collision operation on
the colliding pair. This set of collide-and-move steps is
repeated in the loop controlled by the parameter n.
denoting the number of potential collisions. The term
potential is needed because, given any random pair of
particles, the probability that their velocities are con-
vergent rather than divergent to enable them to collide
is one half, and hence, roughly only half the number of
potential collisions result in actual collisions. The pseu-
docode for the forward execution algorithm of particle
collision dynamics is shown in Algorithm 1.

To keep our simplified focus on memory and compu-
tation related effects, we omit inter-processor particle
transfer. These can be accommodated if/as necessary,
by retaining a copy of deleted particles (particles that
move out of the box) at the end of each iteration. The
study of memory effects from inter-processor message
logging is relegated to future work.

Algorithm 1: Forward computation code for par-
ticle collisions
1 iteration < 0;
2 while iteration < num_iterations do
3 repeat
i < random particle id;
j + random particle id;
until ¢ /= j;
collided[iteration] + test_collision(i, j);
if collided|iteration]| then
if checkpointing then
10 checkpoint_save(state_history, save_type,
positions, velocities);

© 0N o Cs

11 end

12 dt + random();

13 move_particles(dt, positions, velocities);
14 collide_particle(s, j, positions, velocities);
15 num_collisions < num_collisions + 1;

16 end

17 iteration <+ iteration + 1;

18 end

3.1 Reverse Code

The rollback code for the particle collision application
is shown in Algorithm 2. The program iterates back-
wards from the total number of iterations and either
restores state from the history if state saving was used.
Otherwise, it performs reverse computation. The best
case state restoration scenario where a direct jump is
made to a known prior state is used for comparative
analysis against reverse computation in the following
performance study results. Any jump via direct state
restoration incurs relatively negligible amount of time,
which we will designate as consuming zero wallclock
time in the following results section.

To permit recovery via reverse computation, all ran-
dom numbers are generated using a reversible version of
a Combined Linear Congruential random number gen-
erator[9,4] that provides a large period of 2'?!. The ran-
dom number stream is traversed backward one element
by invoking the reverse(particle_rng) function. To re-
cover a previously generated random number from the
current seed position, thus, it is necessary to invoke the
reverse(), followed by the usual random number gen-
eration, followed by another invocation of reverse() to
leave the seed position backwards by one element. This
pattern is used as shown in the rollback code.

3.2 Checkpointing

In reference to the schematic of Fig. 1, each vertical line
in the schematic refers to one iteration of the collision
loop in the forward collision algorithm. Thus, any re-
versal or state restoration corresponds to the program
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Algorithm 2: Reverse computation code for par-
ticle collisions

1 while iteration > 0 do
2 if checkpointing then

3 if collided]iteration] then
4 num_collisions <— num_collisions — 1,
5 checkpoint_restore(state_history, save_type,
positions, velocities);
6 end
7 else
8 repeat
9 reverse(particle_rng);
10 reverse(particle_rng);
11 1 < random particle id;
12 j < random particle id;
13 reverse(particle_rng);
14 reverse(particle_rng);
15 until ¢ /= j;
16 if collided|iteration| then
17 num-—collisions < num_collisions — 1;
18 reverse(dt_rng);
19 dt + random();
20 reverse(dt_rng);
21 reverse_collision(i, j, positions, velocities);
22 reverse_movement(dt, positions, velocities);
23 end
24 end
25 iteration < iteration — 1;
26 end

state at one of these vertical lines. When checkpointing
is used, at each vertical line, the state of all the parti-
cles needs to be saved. State saving' is exercised with
three different approaches:

— Full state saving, abbreviated as F'SS, saves the state
for the entire system including all particle positions
and velocities regardless of whether the values have
changed since the last timestep.

— Optimal state saving, abbreviated as OSS, saves all
particle positions, since positions change for every
timestep. However, only the modified velocities are
saved for particles that have changed since the last
timestep.

— Page state saving, abbreviated as PSS, mimics page-
level checkpointing mechanisms which monitor mod-
ifications of memory locations within pages to save.
Here, we assume an idealized, sophisticated page-
level memory checkpointing library that arranges
particle positions and velocities in contiguous pages
in memory so that only linear page save operations
are invoked. This is the best case scenario for page-
level state saving libraries, which we use as our base-
line for comparison against other mechanisms.

1 In the rest of the article, we use the terms state saving
and checkpointing interchangeably.

Note that all checkpointing costs measured here are
for state restoration at a rolling-back processor (not the
faulty processor). It does not include the file system cost
that every processor asynchronously and infrequently
incurs for saving entire state to persistent store. Due
this fact, the checkpointing costs considered here are
the best case, namely, for saving intermediate states
to memory instead of to disk. No file system costs are
incurred in the performance study. Thus, in practice,
the checkpointing costs are even higher than reported
here.

3.3 Particle Collisions on Accelerators

It is well known that computations performed on ac-
celerators can be significantly faster than on the main
processor if the algorithm and data are amenable to
data-parallel processing. However, the data computed
on the accelerator can be lost if the accelerator hard-
ware encounters failure(s). To account for this, the state
has to be saved in host memory (or, worse, on disk/file
systems) rather than in device memory. For this rea-
son, a memory transfer cost is incurred from/to accel-
erator to/from host. The performance study also in-
cludes state saving to device memory for comparison
purposes to observe performance differences and degra-
dation when host memory is utilized.

For accelerator-based tests on the GPU, the FSS,
0SS and RC state restoration mechanisms were tested.
These are denoted by the -GPU designation in the per-
formance plots. For the FSS and OSS mechanisms, two
different variations were also implemented as follows.
In-memory checkpoints were implemented on the accel-
erator itself within device-memory and also on the host.
For state saving mechanisms on the accelerator, these
variations are marked as -GPU-D which denotes device-
backed state saving on the accelerator. For state saving
mechanisms on the host while using the accelerator for
computation, these variations are marked as -GPU-H
which denotes host-backed memory checkpointing.

4 Experimental Setup

The performance study was completed on the following
platforms:

. 6-way multicore with nVidia Geforce GTX 580,
. Jaguar supercomputer, and
. TitanDev system.

The 6-way multicore SMP machine consists of one AMD
Phenom II X6 at 3.3GHz with 16 GiB of memory. The
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nVidia Geforce GTX 580 is a Fermi-based accelera-
tor with 16 streaming multiprocessors (SM) each with
32 CUDA cores for a total of 512 CUDA cores and
3GiB of device memory. The operating system is De-
bian GNU/Linux 6.0, and all software on this machine
was compiled with GNU gcc 4.4.5 with optimization
flags -03 -march=native.

AMD Interlagos nVidia Tesla X2090
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Fig. 2 TitanDev Cray XK6 node layout

TitanDev was the development platform for the re-
cently upgraded Titan supercomputer using Cray XK6
nodes as shown in Figure 2. Each compute node con-
sists of one 16-core AMD Interlagos processor with 32
GiB of memory. Although each AMD Interlagos pro-
cessor is technically classified as 16 cores, there are
only eight FPUs per processor. A TitanDev node ex-
tends a Jaguar node with one nVidia Tesla X2090 ac-
celerator connected via PCI Express. The nVidia Tesla
X2090 is a Fermi-based device with 16 SMs each with 32
CUDA cores for a total of 512 CUDA cores per acceler-
ator. Each accelerator has roughly 5.25 GiB of available
memory with ECC enabled.

All software on Jaguar and TitanDev was compiled
using GNU gcc 4.6.2 with the optimization flags -03
-march=bdver1l. The nVidia CUDA 4.1 toolkit and run-
time was used for GPU accelerated tests.

The following parameters are used in the detailed
performance study:

. Variables The list of variables exercised in the study
is shown in Table 1.

. Rollback Implementation The various rollback
implementations tested for every actual collide-and-
move operation are shown in Table 2.

. Best and Worst Cases The best and worst case
scenarios for rollback types are shown in Table 3.

5 Performance Results

Large scale execution tests on Jaguar were performed
on up to 65,536 cores as shown in Figure 3. This config-
uration exposes the effects of stressing the memory sub-
system since multiple cores may be requesting memory

Table 1 List of Variables

l Variable [ Description

System size No. of particles per rank

Potential collisions No. of potential collisions per rank

Platform Computation on main processor

(CPU) or accelerator (GPU)

Comparison Cases Best and worst cases for rollback cost

Four  different  multicore  and
accelerator-based systems

Hardware

Table 2 Rollback implementation types tested

l [ Label [ Description

FSS Full state saving: all X and X are

saved
CPU 0SS Optimized state saving: all X and

only changed X are saved

PSS Page-level state saving: only dirtied
pages are saved

RC Reverse computation-based rollback;
no state saved

FSS-GPU-D On device memory, full state saving:
all X and X are saved

GPU | OSS-GPU-D | On device memory, optimized state

saving: all X and only changed X are
saved

FSS-GPU-H | Full state saving: all X and only
changed X are copied from device to
host memory

OSS-GPU-H | Optimized state saving: all X and
only changed X are copied from de-
vice to host memory

RC-GPU Reverse computation-based rollback
performed on accelerator; no state
saved

Table 3 Best and Worst Cases

[ Type [ Best Case [ Worst Case
State Saving | No rollback, or | Sequential traversal
(SS) jump to a known | back to beginning
point
Reverse Com- | No rollback Sequential traversal
putation (RC) back to beginning

stores or loads simultaneously. In Figure 3a, the number
of potential collisions is held constant at 500, while the
size of the system (i.e., number of particles per core) is
varied. At 10K particles per core system size, the per-
formance differences begin to show between the differ-
ent state rollback schemes. At 100K particles per core,
a clear separation between each of the state restora-
tion strategies can be visualized. As expected, the FSS
mechanism disrupts forward computation the most, as
evidenced by the longest forward time and poor num-
ber of raw TLB and L1/L2 cache misses. The OSS and
PSS mechanisms fare better in runtime with the PSS
scheme slightly performing better than OSS with sim-
ilar TLB and L1/L2 cache miss characteristics. Under
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a heavily contended memory subsystem, we observe a
clear performance advantage for reverse computation.

In fact, when we consider the worst case RC execu-
tion (namely, the one that incurs the entire cost of roll-
back from the end to the beginning of simulation) and
compare it with the best case PSS execution (namely,
the one that incurs zero cost for instantly jumping from
any state to any other state in the past), the RC ap-
proach would still be faster.

Similar trends are observed when the system size is
constant at 1K particles per core and, instead, varying
the number of potential collisions per core is varied on
Jaguar as shown in Figure 3b. At 100K potential par-
ticle collisions per core, the OSS mechanism provides
the fastest memory-saving approach among the three
schemes as there is an overall smaller amount of mem-
ory that must be saved than the other two approaches.
The forward computation phases experience the per-
turbing state saving invocations which slow down the
overall forward progress of the simulation as reflected

in the lengthy forward runtimes. RC does not exhibit
these negative characteristics, as no state saving mech-
anisms need be invoked during forward computation.
Once again, the worst case RC scenario shows either
comparable or faster performance than the state saving
approaches.

The TLB and cache behavior are as expected, given
the performance gap shown between RC and the state
saving approaches. For increasing system sizes as shown
in Figure 3a, the system sizes at 100K increase the
working set size so that it no longer fits in the L2 cache.
This is observed by a significant presence of L2 DCM
during the forward and reverse computation phases for
state saving schemes. In contrast, RC can nearly remove
the need for large secondary and tertiary cache stores.
This is because the working set only needs to encom-
pass the current reverse computation. This behavior is
observed uniformly throughout all scenarios tested in
this performance study.

In both scenarios for Jaguar (Figure 3) the effects
of state saving perturbing the overall progress of for-
ward computation is observed: the observed maximum
forward time is much higher than the average forward
time in the state saving cases, especially when the sys-
tem size is scaled up as illustrated in Figure 3a. For-
ward computation time deviations of 19.0%, 17.2%, and
17.0% are observed for FSS, OSS, and PSS, respectively
compared to 16.0% for reverse computation, even given
the circumstances of a sizeable reduction in runtime
and, thus, an absolute small amount of processor time
consumed.

We have performed similar tests as these shown on
Jaguar on a system with 24-way SMP and have ob-
served that the performance gap for RC widens further.
We can infer that as the number of processes contending
for any I/O resource such as memory or file subsystems
increases, so does the performance gap in favor of RC as
compared to state saving techniques as the burden on
such resources increases at a rate far less for RC than
that of state saving.

Figure 4 shows the runtime characteristics for exe-
cution of the particle collision code on the 6-core SMP
machine with the nVidia GTX 580 GPU. The non-GPU
runs are performed using only 1 core. Figure 4a shows
the performance as the system size is increased from
1K to 100K particles per rank while maintaining 1K
potential collisions. At a system size of 100K particles,
GPU execution with device-backed state saving offers
significant performance improvement compared to the
CPU-based execution. The rollback time for non-direct
jump-based state saving rollbacks is nearly negligible
in device-backed memory saving schemes. The perfor-
mance for host-backed state saving even with GPU-
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assisted computation is not as significant as with device-
backed state saving. In fact, the FSS-GPU-H scheme
shows performance degradation as the memory syn-
chronization cost between host and device slows down
the overall forward computation resulting in slightly
slower forward runtime than the CPU-based FSS scheme.
Here, even the pure CPU-based reverse computation
scheme in the worst case nearly outperforms OSS-GPU-
H in the best case. The RC-GPU test case performs very
well as reverse computation can take advantage of the
fast accelerator routines for reversal. RC-GPU is 5.0x
and 5.6x faster than FSS-GPU-D and OSS-GPU-D,
respectively in the forward computation phase. Worst
case RC-GPU performance is 3.1x and 3.4x faster than
FSS-GPU-D and OSS-GPU-D in the best case, respec-
tively.

Figure 4b shows a very large execution scenario on
the 6-core SMP machine. With 1 million particles in the
system, the memory on the accelerator can no longer
fully save the state for the simulation within its de-

vice memory. Thus state must be saved on the host in
the case of state recovery. As expected, the FSS state
saving mechanism incurs a large amount of overhead
when attempting to save the state of the system. The
use of an accelerator does not provide any advantage
as the speed of the simulation is limited by the band-
width of the PCle bus and speed of the memory sub-
system. The OSS state saving mechanism performs far
better as the state of the system is reduced significantly.
OSS completes the forward phase in 17.92 seconds while
OSS-GPU-H completes in 14.05 seconds. Reverse com-
putation naturally does not incur any memory copying
penalties for state saving and completes the forward
phase in 8.88 seconds. RC-GPU exhibits extremely fast
forward runtime characteristics by being able to offload
the majority of the forward computation to the accel-
erator without incurring any state saving penalties and
thus completes in 0.29 seconds. Worst case RC time
yields 16.87 seconds which is faster than best case OSS
and nearly as fast as best case OSS-GPU-H. Worst case
RC-GPU is 202x and 25.4x faster than the best case
FSS-GPU-H and OSS-GPU-H cases, respectively.

The large-scale GPU performance data on TitanDev
is shown in Figure 5. Figure 5a shows runtime charac-
teristics as the system is scaled from 1K to 250K par-
ticles per core while holding the number of potential
collisions constant at 750 per core. Similar to the 6-
core single machine results, we observe a reduction in
runtime by offloading the computation on to the ac-
celerator, but significant gains are only achieved if the
offload is accompanied by device-backed state saving.
Host-backed state saving suffers too much memory syn-
chronization overhead, thus reducing the benefits of ac-
celerated computation via GPU. Figure 5b only shows
the GPU-based executions with device-backed memory
or reverse computation. In each of the system sizes,
the worst case reverse computation is faster in runtime
than the best case FSS or OSS state saving scheme,
even with device-backed checkpointing.

Figure 6 shows the performance in terms of the ac-
tual number of particle collisions executed per wallclock
second when the simulation is scaled on TitanDev for
a system size of 1 million particles per core or accel-
erator. Due to the large system size, no device-backed
state saving schemes can be used.

At nearly all scaling data points, worst case RC-
GPU is over an order of magnitude (33x) faster than
the best case OSS-GPU-H state saving scheme. Addi-
tionally, it is observed that the worst case pure CPU-
based RC mechanism for state recovery is only 6.6%
slower than OSS-GPU-H. This provides strong evidence
that accelerated computation can be severely handi-
capped if state saving mechanisms are incorporated in
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molecular dynamics codes that are too large to fit ex-
clusively within the accelerator’s device memory.

6 Discussion

Although the performance gain from reverse compu-
tation is significant, it may not be relatively straight-
forward to apply immediately in all applications, be-
cause (a) the computation and memory usage patterns
in some applications may need difficult reformulations
or transformations to make reverse computation give
better performance, and (b) reverse code may be dif-
ficult or impossible to generate in certain cases. For
example, operations such as conjugate gradient meth-
ods and other linear algebra that are widely used in
high performance computing are not yet (known to
be) amenable to efficient reverse computation. How-
ever, in reality, reverse computation can be used in
combination with existing checkpointing methods, to
help reduce the overall memory footprint for rollback
and recovery. Thus, portions that are difficult to re-
verse can be treated via traditional checkpointing, while
portions that are amenable to reversal can use reverse
computation. Many portions of scientific codes, for ex-
ample, contain parts that are easy to reverse (e.g., in-
sert/remove operations on tree data structures, and
statistics collection routines, to name just a few [4]).
Combined use of checkpointing and reverse computa-
tion, however, requires enhancement of the checkpointing-
based runtime system in order to be able to traverse
back in program execution using reverse computation.

Issues of numerical reversibility arise in applying re-
verse computation to numerically intensive codes. While
the reversal was in fact exact in the particle collisions
application presented in this paper (results match to
1072 or better), other complex codes may need specific
treatment to ensure numerically stable reversal. Some
work in this direction has been reported recently (e.g.,
“bit-wise time reversibility” in [2]), but more work is
needed in a generalized setting.

For a complete fault tolerance system based on re-
verse computation, message logging also must be taken
into account, and its system effects need to be evalu-
ated in conjunction with re-creation of state via reverse
computation. The results reported here do not include
those costs. It can be expected that the costs will de-
pend on the type of application workload (e.g., whether
it is communication-intensive or not), but it would be
interesting to see what would be the best and worst
cases.

7 Conclusions and Future Work

As the scale of parallel computing systems increases,
new alternatives to traditional checkpointing-based are
needed to overcome the reliance on memory and file
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subsystems for fault tolerant operation. Reverse com-
putation is one such alternative that can nearly re-
move state-copying overheads from the forward path,
and also rely largely on computation instead of memory
for state restoration in the reverse path. Here, we de-
scribed a scheme to employ reverse computation as the
building block for fault tolerant operation. We also pre-
sented a detailed performance study based on a particle
simulation benchmark to evaluate the potential level of
performance gains that could be obtained by moving
from checkpointing to reverse computation. The under-
lying factors that contribute to the large reductions in
runtime achieved by reverse computation have been an-
alyzed using detailed cache-level data collected with ex-
ecutions on up to 65,536 processor cores and 950 GPUs.

The observed performance gain of reverse compu-
tation vs. checkpointing may be expected, given the
disparity between processor and memory speeds. How-
ever, the more surprising aspect was the large amount
by which the disparity is biased in favor of reverse com-
putation. The worst-case scenario for reverse compu-
tation performs better than the best-case scenario for
checkpointing: The worst-case for reverse computation
(recreating state by computing all the way from the
end back to the beginning) is found to be faster than
the best-case for checkpointing (simply jumping from
the end state to beginning state with a single copy). In
one of the largest cases, reverse computation was found
to execute 30x faster than with checkpointing. When
GPU accelerators are used, the gain was highly pro-
nounced. The performance gain also is observed to be
not limited to any specific hardware configuration, such
as a certain cache size, but is confirmed to be obtained
on a variety of hardware configurations, based on our
performance data on four different computing systems.

The data overall points to the need for further ex-
ploring this alternative approach to rollback-based fault
tolerance in large scale parallel systems. The system ef-
fects point to the possibility of using reverse computa-
tion for significantly reducing the memory needs, mem-
ory contention, cache pollution, working set size, and
other performance problems in supporting rollback for
recovery. Considering that the hardware trends seem
to forecast a non-decreasing disparity between proces-
sor and memory speeds, restoration of state via reverse
computation appears appealing for the future.

Reverse computation, by definition, moves the restora-

tion paradigm to the computation subsystem (which is
continuously becoming faster and cheaper), away from
the memory subsystem and file systems (which are,

relatively, not advancing commensurately with proces-
sors). This aspect may prove to be a disruptive change.
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