
Revisiting Cyclic Reduction and Parallel Prefix-Based Algorithms for
Tridiagonal Systems of Equations

Sudip K. Seal1, Kalyan S. Perumalla1, Steven P. Hirshman2

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract

Direct solvers based onprefix computationandcyclic reductionalgorithms exploit the special structure of tridiag-
onal systems of equations to deliver better parallel performance compared to those designed for more general systems
of equations. This performance advantage is even more pronounced for block tridiagonal systems. Complexity anal-
yses of both algorithms based on the problem size and the number of processors alone are inadequate to capture the
effect of block sizes on their relative runtimes. This paper re-examines these algorithms taking the effects of block size
into account. Depending on the block size, the parameter space spanned by the number of block rows, the block size
and the processor count is shown to favor one or the other of the two algorithms. A critical block size that separates
these two regions is shown to exist and its dependence both onproblem dependent parameters and on machine-specific
constants is established. Empirical verification of these analytical findings are carried out on up to 2,048 cores of a
Cray XT4 system.

Keywords: block tridiagonal matrix, cyclic reduction, prefix computation, parallel solver

1. Introduction

A matrix equation of the formAx = b in which x andb are vectors of lengthN andA is anN × N matrix whose
only non-zero elements are those along its three central diagonals is referred to as a tridiagonal system of equations.
They arise naturally in many important scientific applications and a number of fast solvers for such systems have been
developed over the years. In a more generalized variant, called a block tridiagonal system, the matrixA consists of an
N × N array of blocks where each block is anM × M array of numbers and the elements not belonging to its three
central block diagonals are all zeros. For generality, we assume blocks can be dense. Fast solvers become especially
critical to runtime performance when such dense block tridiagonal systems need to be solved multiple number of
times corresponding to changingA or b during the simulation of a physical process.

A variety of parallel tridiagonal solvers is available, either as part of larger linear algebra packages or standalone
[1, 2, 3, 4, 5, 6]. These state-of-the-art solvers are highlyeffective on matrix structures such as general dense or sparse
matrices. Customized solvers based on algorithms that takeadvantage of the tridiagonal structure are, however,
known to deliver superior runtime performance and scalability. A better understanding of the performance gains from
customized block tridiagonal solvers is motivated by the need for fast and scalable parallel solvers for dense block
tridiagonal systems of equations that form a critical computational core in multiple application domains. This scaling
need is more pronounced in the context of the computing capabilities of today’s large state-of-the-art computing
platforms.

Two classes of algorithms for block tridiagonal systems of equations, based on cyclic reduction and parallel prefix
computations, respectively, are particularly amenable toefficient and scalable parallelization. Both requireO(lg N)

Email addresses:sealsk@ornl.gov (Sudip K. Seal),perumallaks@ornl.gov (Kalyan S. Perumalla),hirshmansp@ornl.gov (Steven P.
Hirshman)

1Computational Sciences and Engineering Division
2Fusion Energy Division

Submitted to Journal of Parallel and Distributed Computing September 7, 2011

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

P

Total runtime with N=1024, M=32
CR
PP

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

P

Total runtime with N=1024, M=128
CR
PP

(b)

Figure 1: Performance of a parallel prefix (PP) based solver and a cyclic reduction (CR) based solver on a log-log scale, with block rows,N = 1024,
and block size: (a)M = 32 and (b)M = 128.

steps. Complexity analysis of both algorithms for a system with N row blocks onP processors suggests a better
runtime for parallel prefix-based solvers. This is found to be true for smaller block sizes. Interestingly, the oppositeis
found to be true when block sizes are large. An illustration of this behavior is shown in Figure 1 in which the parallel
prefix-based solver outperforms the cyclic reduction-based algorithm whenM = 32 and vice versa whenM = 128.
Performance analyses of the two algorithms that allows users to make the right choice of a parallel solver for block
tridiagonal systems based on the parametersN, P andM, whenM > 1, is lacking in the literature. The findings in
this paper fill this gap.

The Thomas algorithm [7] is one of the first sequential algorithms to exploit the special structure of tridiagonal
systems of equations. But, its inherently serial nature precluded it from any practical parallel implementation. Al-
gorithms based on divide-and-conquer approaches were subsequently introduced in [8, 9, 10, 11]. These formed the
foundations of a large body of research [12] on parallel solvers for tridiagonal systems of equations. Most closely
related to this paper is the work in [13] which provides tightbounds for both cyclic reduction and parallel prefix-based
algorithms. However, to the best of our knowledge, no prior work reports the effect of block sizes on the relative
performances of direct solvers based on these two algorithms.

2. Formulations

For anN × N block tridiagonal matrix with block sizeM, let Li , Di andUi denote the lower, main and upper
diagonal blocks, respectively, in block rowi. Using this notation, theith row of the block tridiagonal matrix can be
written as:

Li xi−1 + Di xi + Ui xi+1 = bi , 1 < i < N (1)

D1x1 + U1x2 = b1 (2)

LNxN−1 + DNxN = bN (3)

wherebi is theith block of the right hand side vector.

2.1. Cyclic Reduction

In a cyclic reduction-based approach, the boundary conditions on the block matrices are set toL1 = UN = 0. For
the even indicesi = 2k (i ≤ k ≤ N/2), Eqn (1) yields:

x2k = b̃2k − L̃2kx2k−1 − Ũ2kx2k−1 (4)

2

where

b̃2k = D−1
2k b2k , L̃2k = D−1

2k L2k , Ũ2k = D−1
2k U2k

A similar equation for the odd indicesi = 2k− 1 (i ≤ k ≤ N/2) can be written and then Eqn (4) used to eliminate the
even indexed terms. This yields:

L̃2k−1x2k−3 + D̃2k−1x2k−1 + Ũ2k−1x2k+1 = b̃2k−1 (5)

where:

D̃2k−1 = D2k−1 − L2k−1Ũ2k−2 − U2k−1L̃2k

L̃2k−1 = −L2k−1L̃2k−2

Ũ2k = −U2k−1Ũ2k

b̃2k−1 = b2k−1 − L2k−1b̃2k−2 − U2kb̃2k

Note that Eqn (5) is “similar” to Eqn (1) but the number of equations that need to be solved for has been reduced by
half. This step is recursively applied until only a single equation remains which is solved forx1 using the appropriate
boundary conditions.

This solution is used to initiate a backward solve phase in which the recursion tree is traversed in the reverse direc-
tion. At each recursive step during this backward traversal, the even indexed unknowns are computed by substituting
the now known odd-indexed values.

2.2. Prefix Product

In a prefix formulation,L1 = UN = I and x0 = xN+1 = 0 at the boundaries. This makes Eqn (1) valid for all
1 ≤ i ≤ N and it can be written as:

xi+1 = −U−1
i Di xi − U−1

i Li xi−1 + U−1
i bi

assuming thatUi is non-singular for all 1≤ i ≤ N. In matrix form, this can be rewritten as:

xi+1

xi

1

=

−U−1
i Di −U−1

i Li U−1
i bi

I 0 0
0 0 1

xi

xi−1

1

(6)

Let:

Yi+1 =

xi+1

xi

1

, Bi =

D̃i L̃i b̃i

I 0 0
0 0 1

,

D̃i = −U−1
i Di

L̃i = −U−1
i Li

b̃i = U−1
i bi

(7)

Using Eqn (7), the matrix equation in Eqn (6) can be rewrittenas:

Yi+1 = BiYi = Bi Bi−1Yi−1 = · · · = Bi Bi−1Bi−2 · · · B1Y1 = SiY1 whereSi = Bi Bi−1Bi−2 · · · B1 (8)

Note that the partial matrix-matrix productsSi ’s can be evaluated using a parallel prefix computation. The partial
resultsYi+1 can, therefore, be computed using the partial matrix product Si andY1. Thus, the latter must be made
available at each processor to realize the final solution efficiently. For this, a parallel prefix algorithm in which each
processor has both the total as well as the partial prefix products at the end of the prefix computation is used so that
each processor has the total prefix product,SN = BNBN−1BN−2 · · · B1, in addition to the localSi ’s. From Eqn (8), it
follows that:

YN+1 = SNY1⇒

xN+1

xN

1

=

S11
N S12

N S13
N

S21
N S22

N S23
N

0 0 1

N

x1

x0

1

3

Using the boundary conditionsx0 = xN+1 = 0 yields:

xN+1 = S11
N x1 + S12

N x0 + S13
N ⇒ x1 = −[S11

N]−1S13
N (9)

Thus:

Y1 =
[

x1 0̂ 1
]T

where0̂ is aM × 1 zero-vector.

At the end of the prefix sum, each processor already hasSN and, hence,S11
N andS13

N , so that each processor can
independently computeY1 using Eqn (9) and then theXi ’s (hence,xi ’s) locally for all i’s that are mapped to that
processor.

3. Algorithms

For ease of presentation, we will assume thatN = 2n andP = 2q, for some non-negative integersn andq with the
understanding that both algorithms generalize toN andP values that are non-powers of two. We will also assume that
N ≥ P (or n ≥ q). In both algorithms,NP block rows are assigned to each processor initially.

3.1. Cyclic Reduction

Forward Phase I:This phase consists of the first lg(N
P) = n− q recursive steps of the algorithm. In each step, the even

indexed unknowns are eliminated in terms of the odd indexed ones using Eqn (4). At any intermediate stepi, where
1 ≤ i ≤ (n− q), there areN/2i+1 reordered odd-indexed rows and as many even-indexed row. For each reordered even
row 2k in stepi, b̃2k, L̃2k andŨ2k are computed (for suitable chosenk within bounds).L̃2k andŨ2k at the boundary
rows are then sent to neighboring processsors. For each reordered odd row 2k − 1 in stepi, b̃2k−1, D̃2k−1, L̃2k−1 and
Ũ2k−1 are then computed (for suitably chosenk within bounds). At the end ofn − q recursive steps, each processor
contains exactly one row block and the algorithm enters its next phase.
Forward Phase II:Each step of this phase is identical to the ones in the previous phase with the modification that the
logical reordering of the remaining rows after the completion of each step spans across processor boundaries. Due to
the recursive bisection of the problem, only half the numberof processors remain active compared to the previous step
until at the end only one processor remains active and (P− 1) remain idle. The computations remain the same but the
communication pattern and load balance differ. In this phase, each step processes at most one block row per processor
with matrix operations similar to the previous phase. However, four matrices are sent to neighbors (two each to top
and bottom). This phase ends when finally there is only one active processor.
Backward Phases I and II:At the end of the previous phase, a local portion ofx is available at processor 0. This value
is then propagated to processorP/2−1 which in turn uses it for back substitution to evaluate its local portion ofx. The
newly computed values ofx are then similarly propagated by traversing the recursion tree in the backward direction
in the reverse direction from the bottom most level to the topmost level). Once the back substitution traverses lgP
levels form the leaf level of the recursion tree, the algorithm enters its compute intensive communication efficient
final phase. In this phase, the remaining lg(N

P) levels are traversed in a direction opposite to that in forward phase
I, all the while computing new values at each level by back-substituting with values computed in the previous level.
Communication is required only for the boundary blocks. Finally, when the top level is reached, the solution of the
system of equations is realized.
Total Runtime:RuntimeTcr, of this cyclic reduction-based tridiagonal solver can be shown (see Section Appendix
A.1) to be:

Tcr ∝ (Cin + 6Cmm) M3
(

N
P + lg P

)

+ 2βM2 lg(NP) (10)

whereCmm, Cmv, Cvv andCin denote the amortized cost per floating point number for matrix-matrix multiplication,
matrix-vector multiplication, vector-vector multiplication and matrix-inversion, respectively andβ is the average time
to transmit one floating point number between any two processing elements across the network.

4

3.2. Prefix Product

Initialization: Each processor is assignedN
P block rows. For each local block rowi, U−1

i is computed. Thereafter, for
each local block row,̃Di , L̃i andb̃i are computed and the matricesBi , as defined in Section 2.2 are constructed.
Serial Prefix Computation:Each processor performs a local prefix product of itsBi matrices and stores it in a matrix
Ss

i where 1≤ i ≤ N
P refers to local indices. There is no communication in this step.

Parallel Prefix Computation:Each processork maintains two matricesSp
k and Tp

k . They are both initialized to
the last prefix product,Ss

N/P, computed in the previous step. This phase has log2 P = lg P stages. In each stage
s ∈ [0, lg P − 1], processors with ranksk andn exchangeTp

k . If processor rankedk receives communication from a
lower ranked processorn, thenSp

k is updated asSp
k ← Sp

kTp
n . In any case,TP

k is always updated asTp
k ← Tp

k Tp
n .

Finalization: Each processor sends the matrix the partial sumSp
k to its neighbor to the right. For each local block row

index 1≤ i < N
P in processor rankk, Ss

i is updated asSs
i ← Ss

i S
p
k−1. Using the total product matrixTp

k , x1 (and hence
Y1) is locally computed using Eqn (9). For each locali, Yi (and hencexi) is then locally computed usingSs

i andY1

from Eqn (13). The final solution is now available across all the processors.
Total Runtime:RuntimeTpp, of this prefix product-based tridiagonal solver can be shown (see Section Appendix A.2)
to be:

Tpp ∝ (Cin + 18Cmm) M3
(

N
P

)

+ 24CmmM3 lg P+ ρβM2 lg P (11)

4. Influence of Block Size on Performance

When the block sizeM is treated as a constant in Eqn (10) and Eqn (11) along withCin andCmm, the asymptotic
runtimes of the two algorithms, based solely on the parameter set{N,P}, are:

Tcr = O(N
P + lg(NP)) and Tpp = O(N

P + lg P)

These runtimes are misleading. As shown in Figure 1, the relative runtimes of the two algorithms can be seen to
depend on the choice ofM, N andP. A more careful analysis of their runtimes based on the augmented parameter
set{M,N,P}, therefore, becomes necessary to understanding the performance of one algorithm relative to the other.
Accordingly, letC = max{Cmm,Cin}. Then, Eqn (10) and Eqn (11) yields:

Tcr = C1M2
(

7CM
(

N
P + lg P

)

+ 2β lg(NP)
)

(12)

Tpp = C2M2
(

19CM
(

N
P

)

+ 24CM lg P+ ρβ lg P
)

(13)

whereC1 andC2 are positive constants. Comparing the two yields the following result:

Result 1. Tpp ≤ Tcr when

M ≤ αarch
lg N
lg P

(14)

where N≥ P and

αarch =
4β
C
·

C1

(19C2 − 7C1)
(15)

Proof. Using Eqn (10) and Eqn (11) and settingTpp ≤ Tcr yields:

M ≤
1
C
·

(2C1 − ρC2)β lg P+ 2βC1 lg N

(19C2 − 7C1) N
P + (24C2 − 7C1) lg P

= βK

[

P lg(NP)
N + P lg P

]

whereK =
2C1

C(19C2 − 7C1)

≤ βK

[

P lg(NP)
P lg P

]

= βK

[

1+
lg N
lg P

]

≤ 2βK
lg N
lg P

, whenN ≥ P

Sinceαarch = 2βK, the result is proven.

5

Result (1) reveals two important observations, namely: (a)a critical value ofM separates the parameter space
spanned byM, N andP into two distinct sub-spaces such that one favors a parallelprefix-based solver while the other
favors a cyclic reduction-based approach, and (b) for an identical implementation of underlying array operations (e.g.,
BLAS), the constantαarch depends entirely on machine-specific constants. Accordingly, the criticalM value depends
on two factors –σarch that is completely machine dependent andlg N

lg P whose value depends purely on a problem
specification. In particular, whenN = P, this critical value ofM depends only on machine dependent constants.

To compare the weak scaling properties of the two algorithms, let P = Nγ where 0< γ ≤ 1. We exclude the
sequential case ofP = 1 (γ = 0) here. Also, we limit our discussion to cases for whichN ≥ P (γ ≤ 1). The following
result is of particular interest in practice3:

Result 2. For large N and M→ N, the iso-granular runtime of both algorithms increase linearly with the problem
size.

Proof. Let κ = N1−γ = N
P . The ratioκ remains constant in weak scaling. Substituting forP in Eqn (12) and Eqn (13)

yields:

Tcr = C1M2 (7κCM + 7CMγ lg N + 2(1+ γ)β lg N
)

Tpp = C2M2 (19κCM + 24CMγ lg N + ργβ lg N
)

Differentiating with respect toN yields:

dTcr

dN = C1M2
(

7CγM
N +

2(1+γ)β
N

)

and dTpp

dN = C2M2
(

24CγM
N +

ργβ

N

)

When N is large (the second term becomes negligible) andM → N (the first term approaches a constant), both
dTcr

dN = constantand dTpp

dN = constant. This indicates that when both the block sizeM and the number of block rowsN
are sufficiently large, the iso-granular runtime of both algorithmsincrease linearly with the problem size.

A good measure of the strong scalability of an algorithm is its computation-to-communication ratio. A larger
computation-to-communication ratio indicates a greater degree of parallelism in the algorithm. Let the computation-
to-communication ratio for the two algorithms be denoted byαcr = Tcomp

cr /Tcomm
cr andαpp = Tcomp

pp /Tcomm
pp , respectively.

Result 3. αcr ≤ αpp ∀ M.

Proof. Using Eqn (A.-5), Eqn (A.-4), Eqn (A.-8) and Eqn (A.-7), it follows that:

αcr = M ·
7C
2β
·

(

N + P lg P
P lg N + P lg P

)

and αpp = M ·
C
ρβ
·

(

19N
P lg P

+ 24

)

For equal block sizes, this yields:

αcr

αpp
=

7
2ρ
·

N + P lg P
lg N + lg P

·
lg P

19N + 24P lg P
≤

7
2ρ
·

N + P lg P
lg P

·
lg P

19N + 19P lg P
=

7
38ρ
< 1

since 4≤ ρ ≤ 9, as shown in Appendix A.1. Therefore,αcr ≤ αpp.

Result (3) indicates that a parallel prefix-based solver exhibits better scalability (in the strong sense) than one
based on cyclic reduction for the same block size.

5. Experimental Verification

To verify the results from the previous section, both algorithms were implemented and executed on a Cray XT4
machine with a quad-core 2.3 GHz single socket AMD Opteron processor (Budapest) and 8 GB of memory in each
compute node. The nodes are connected via a high-bandwidth SeaStar interconnect. Solutions obtained by both
solvers in the experiments reported here were numerically stable.

6

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

M

Total runtime with N=P=64
CR
PP

(a) N = P = 64

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

M

Total runtime with N=P=512
CR
PP

(b) N = P = 512

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

M

Total runtime with N=P=1024
CR
PP

(c) N = P = 1024

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

M

Total runtime with N=P=2048
CR
PP

(d) N = P = 2048

Figure 2: Runtimes of cyclic reduction- and parallel prefix-based solvers with varyingM. CR denotes cyclic reduction and PP denotes parallel
prefix.

In Figure 2, runtimes of the cyclic reduction- and parallel prefix- based algorithms are reported for varying block
sizes. A unit granularity (N = P) was maintained for these experiments. From Eqn (14), this implies that the critical
block sizeM becomes independent of the values ofN andP. The critical block size is indeed found to be almost
identical (atM ∼ 150) when Figure 2(a) and Figure 2(b) forN = P = 64 andN = P = 512 are compared. Similarly,
for Figure 2(c) and Figure 2(d) in which the casesN = P = 1024 andN = P = 2048 are compared. In the latter case,
the critical block sizeM ∼ 170. Note that the critical block sizes whenN = P = 1024 is roughly the same as when
N = P = 2048, atM ∼ 150. Similarly, it remains the same whenN = P = 64 andN = P = 512, atM ∼ 170. Since
both algorithms were executed with the same granularity on the same hardware platform, this difference appears to
violate Eqn (15) which states thatαarch is purely machine dependent and should have no dependence onP. The reason
for this apparent contradiction is that though Eqn (15) is ideally true, in practice, the value ofβ used in the analysis
is not a true constant. It changes, albeit slowly, dependingon the scale of the network sub-system being exercised
during an execution. The average cost of transmitting a floating point number across the network tends to grow with
increasingP. Sinceαarch ∝ β, the critical value ofM also increases. It is this drift that is observed above whenP
changes from 64 to 2048.

3An extremely practical use of this result is in estimating processor time to be requested when submitting a batch job on largernumber of
processors but with the same granularity.

7

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 500 1000 1500 2000 2500

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

N

Total runtime with M=512
CR
PP

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 500 1000 1500 2000 2500

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

N

Total runtime with M=1024
CR
PP

(b)

Figure 3: Weak scaling results for (a)M = 512 and (b)M = 1024 asN andP become large while maintaining a constant granularityN
P .

In Figure 3, iso-granular scaling behavior of the two algorithms is shown. SinceM is much larger than the critical
value, the runtimes of the cyclic reduction-based solver outperforms the prefix computation-based solver. While
maintaining the same granularity (in other words, using proportionately larger number of processors with increasing
problem size), the runtime of both solvers increases super-linearly with N whenN is small but for larger values ofN,
the runtime change becomes linear withN in accordance with Result (2). Figure 3 illustrates this forM = 512 and
M = 1024.

Strong scaling behavior of both algorithms is shown in Figure 4 forN = 2048. Result (3) suggests that irrespective
of the block sizeM, a prefix computation-based solver should scale better thana cyclic reduction-based solver when
the number of processors is increased while maintaining a constant problem size. This is shown in Figure 4 for two
block sizes, namely,M = 32 which is smaller than the critical block size andM = 128 which is larger. Note that,
in accordance with Result (3), the number of processors beyond which adding more processors no longer benefits
the runtime performance is reached earlier by the cyclic reduction-based solver compared to the prefix computation-
based one in both cases. It should be noted thatbetter (strong) scalability does not necessarily imply better parallel
runtime. Figure 4(b) is such an example in which which, despite better scalability, the prefix computation-based solver
under-performs compared to the cyclic reduction-based solver.

 0.01

 0.1

 1

 1 10 100 1000 10000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

P

Total runtime with M=32, N=2048
CR
PP

(a)

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

P

Total runtime with M=128, N=2048
CR
PP

(b)

Figure 4: Strong scaling results withN = 2048 and (a)M = 32 and (b)M = 1024.

8

6. Conclusions

Analyses of cyclic reduction and parallel prefix-based solvers for block tridiagonal systems of equations based
on the parameter set{N,P} suggest better runtimes for a parallel prefix-based solver.However, in practice, this is
not always found to be true. Motivated by the need for the fastest block tridiagonal solvers in applications such as
fusion simulations and to better understand their parallelperformance, an in-depth analysis of the two specialized
algorithms was carried out based on an augmented parameter set {M,N,P}. The analysis reveals that the performance
difference between the two algorithms stems from a trade-off between computation and communication overheads
that is determined by the block size.

We show that a critical block size that determines this trade-off point emerges naturally. It separates the parameter
space spanned by{M,N,P} into distinct regions that favor one or the other algorithm.In addition, the dependence
of this critical block size on the parameters of the problem as well as on architecture specific machine constants was
derived. Empirical results, based on implementations thatscale to 2,048 cores of a Cray XT4, were obtained. Theses
results convincingly agree with the theoretical findings.

The results reported here fill a practical gap in the understanding of two important direct solvers specialized
for block tridiagonal systems of equations and, in particular, are expected to aid domain scientists in choosing the
appropriate solver for their simulations.

7. Acknowledgements

This paper has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Depart-
ment of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States
Government purposes.

This effort has been supported by research sponsored by the Laboratory Directed Research and Development
Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

Appendix A. Complexity Analysis

For complexity analysis, we will adopt the following notations. LetCmm, Cmv, Cvv andCin denote the implementation-
and architecture- dependent amortized cost per floating point number for matrix-matrix multiplication, matrix-vector
multiplication, vector-vector multiplication and matrix-inversion, respectively. We will assume that identical imple-
mentations of these array operations are used in both the algorithms. In addition, let the average time to transmit one
floating point number between any two processing elements across the network be denoted byβ.

Appendix A.1. Complexity of Cyclic Reduction Algorithm

Forward Phase I:In this phase,N/2l > P for all 0 ≤ l < (n− q), wherel denotes the level of recursion. At each such
level, a processor processes 2n−q−l block rows. For each even row, one matrix inversion, two matrix-matrix products
and one matrix-vector products are performed on block-sized matrices. For each odd row, four matrix-matrix products
and two matrix-vector products on block-sized matrices areperformed locally at each processor. Thus, ifT l

E andT l
O

denotes the computation costs to process the even and odd rows in levell, respectively, then:

T l
E ∝ 2n−q−1−l

[

CinM3 + 2CmmM3 +CmvM
2
]

T l
O ∝ 2n−q−1−l

[

4CmmM3 + 2CmvM
2
]

Summing over all the levels in this phase, the total computational cost of forward phase I can be shown to be:

Tcomp
FI ∝ (2n−q − 1) [Cin + 6Cmm] M3 = [Cin + 6Cmm] M3

(

N
P − 1

)

9

upto leading orders inM. After each even row is processed, the modifiedL2k, U2k andb2k (for suitably chosenk
within bounds for the level in question) are communicated tothe neighboring processor. This involves sending two
M×M matrices and a vector of lengthM. Thus, the communication cost in each level of this phase is equal toβ ·2M2

upto leading orders inM. Thus, the total communication cost of forward phase I is:

Tcomm
FI ∝ 2β(n− q)M2 = 2M2β lg

(

N
P

)

Forward Phase II:In this phase,N/2l ≤ P for all (n − q) ≤ l < n, wherel denotes the level of recursion. In each
recursion step, a processor processes at most one row block,each involving matrix operations identical to those in the
previous phase. Thus, the total computation time across allthe lgP = q stages of forward phase II is:

Tcomp
FII ∝ [Cin + 6Cmm] M3 lg P

Unlike the two matrices sent to the one neighbor alone in the first zone, each active processor in a level sends two
matrices each to two neigbors for a total of four matrices. The total communication cost of forward phase II is:

Tcomm
FII ∝ 4βqM2 = 4βM2 lg P

Backward Phases I and II:These two phases do not involve array operations and all communications involve vector
messages. As such, both the computation and communication costs of these two phases are linear inM, and hence
ignored in this analysis.
Total Runtime:Summing up all costs above, the total computation and communication costs of a tridiagonal solver
based on cyclic reduction are:

Tcomp
cr ∝ [Cin + 6Cmm] M3

(

N
P + lg P

)

(A.-5)

Tcomm
cr ∝ 2βM2 lg(NP) (A.-4)

and the total runtimeTcr = Tcomp
cr + Tcomm

cr .

Appendix A.2. Complexity of Prefix Product Algorithm

Initialization: In the initialization step, aM × M matrix, Ui is inverted only once, followed by two matrix-matrix
multiplications and one matrix-vector multiplication fora total cost of (CinM3+ 2CmmM3+CmvM2). In general, there
are N

P block rows per processor for which the total initializationcost is:

(Cin + 2Cmm)M3(N
P)

up to leading orders inM. There is no communication cost in this step.
Serial Prefix Computation:Each block matrixBi is of the form:

B11
M×M B12

M×M B13
M×1

B21
M×M B22

M×M B23
M×1

01×M 01×M 1

where the subscript of each block sub-matrix refers to the number of rows times the number of columns in it. The
number of floating point operations needed to multiply two such matricesBi andBj is, therefore, (8CmmM3+4CmvM2+

2CvvM+1). WhenN > P, each processor hasN
P such matrices whose partial products are computed afterN

P −1 matrix-
matrix multiplications for a total cost of:

8CmmM3(N
P − 1)

Parallel Prefix Computation:In each of the lgP parallel stages, three matrix-matrix multiplications take place – one
in the lower ranked receivers and two in the higher ranked receivers – for a total cost of:

3 · 8CmmM3 lg P = 24CmmM3 lg P

10

As is typical of any parallel prefix computation, each step has P/2 unique sender-receiver pair. In each of the lgP
stages, every processor sends to exactly one processor (andreceives from exactly one processor). Thus, there are lgP
rounds of communication with a message size of 4M2 + 4M + 1 = ρM2 (where 4≤ ρ ≤ 9)4 in each. Thus, the total
communication cost for the parallel prefix stage is:

ρβM2 lg P

Finalization: In the final step, each processor computes (N
P − 1) matrix-matrix multiplications, one matrix-inversion

and two matrix-vector multiplications for a total cost of:

8CmmM3(N
P − 1)

There is one round of communication withρβM2 cost in this step.
Total Runtime:Summing up all costs above, the total computation and communication costs of a tridiagonal solver
based on parallel prefix computation are:

Tcomp
pp ∝ [Cin + 18Cmm] M3

(

N
P

)

+ 24CmmM3 lg P (A.-8)

Tcomm
pp ∝ ρβM2 lg P (A.-7)

and the total runtimeTpp = Tcomp
pp + Tcomm

pp .

References

[1] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C.
Whaley, ScaLAPACK User’s Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.

[2] S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C. Mcinnes, B. Smith, H. Zhang, PETSc 2.0 UsersManual,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.2297.

[3] SGI/CRAY Scientific Computing Software Library,http://www.sgi.com/products/software/irix/scsl.html.
[4] IBM ESSL Manual, http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/

esslbooks.html.
[5] MUMPS, http://graal.ens-lyon.fr/MUMPS/.
[6] SuperLU,http://crd.lbl.gov/~xiaoye/SuperLU/.
[7] L. H. Thomas, Elliptic Problems In Linear Difference Equations Over A Network , Watson Sci. Comput. Lab. Rep., Columbia University.
[8] R. W. Hockney, A Fast Direct Solution Of Poisson’s Equation Using Fourier Analysis, Journal of the ACM 12 (1) (1965) 95–113.
[9] H. S. Stone, An Efficient Parallel Algorithm For The Solution Of A Tri-diagonalLinear System of Equations, Journal of the ACM 20 (1)

(1973) 27–38.
[10] D. Heller, Some Aspects Of The Cyclic Reduction Algorithm For Tri-diagonal Linear System, SIAM Journal of Numerical Analysis 13 (4)

(1976) 484–496.
[11] H. H. Wang, A Parallel Method For Tri-diagonal Equations, ACM Trans. on Mathematical Software 7 (2) (1981) 170–183.
[12] H. X. Lin, A Bibliography of Parallel Algorithms for Tri-diagonal Systems,http://ta.twi.tudelft.nl/wagm/users/lin/Biblio/

tri_sol.html.
[13] E. Santos, Optimal Parallel Algorithms for Solving Tridiagonal Linear Systems, in: Procs. of Euro-Par, 1997, pp. 700–709.

4Sinceρ = (4M2 + 4M + 1)/M2 = 4+ 4/M + 1/M2, the limits are obtained by considering the boundary values,1 and∞, of M.

11

