Reuvisiting Cyclic Reduction and Parallel Prefix-Based Algorithms for
Tridiagonal Systems of Equations

Sudip K. Sed, Kalyan S. Perumalla Steven P. Hirshman
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract

Direct solvers based gurefix computatiormndcyclic reductionalgorithms exploit the special structure of tridiag-
onal systems of equations to deliver better parallel peréorce compared to those designed for more general systems
of equations. This performance advantage is even more pnmed for block tridiagonal systems. Complexity anal-
yses of both algorithms based on the problem size and the enofilprocessors alone are inadequate to capture the
effect of block sizes on their relative runtimes. This papezxamines these algorithms taking ttikeets of block size
into account. Depending on the block size, the paramet@&esgaanned by the number of block rows, the block size
and the processor count is shown to favor one or the otheredfnth algorithms. A critical block size that separates
these two regions is shown to exist and its dependence bgtirobfem dependent parameters and on machine-specific
constants is established. Empirical verification of thesa\dical findings are carried out on up to 2,048 cores of a
Cray XT4 system.

Keywords: block tridiagonal matrix, cyclic reduction, prefix comptida, parallel solver

1. Introduction

A matrix equation of the forrAx = b in which x andb are vectors of lengtihN andA is anN x N matrix whose
only non-zero elements are those along its three centrgbdals is referred to as a tridiagonal system of equations.
They arise naturally in many important scientific applioat and a number of fast solvers for such systems have been
developed over the years. In a more generalized variamédcalblock tridiagonal system, the maticonsists of an
N x N array of blocks where each block is &hx M array of numbers and the elements not belonging to its three
central block diagonals are all zeros. For generality, veeiiae blocks can be dense. Fast solvers become especially
critical to runtime performance when such dense blockdgdnal systems need to be solved multiple number of
times corresponding to changidgor b during the simulation of a physical process.

A variety of parallel tridiagonal solvers is available heit as part of larger linear algebra packages or standalone
[1, 2,3, 4,5, 6]. These state-of-the-art solvers are higfigctive on matrix structures such as general dense or sparse
matrices. Customized solvers based on algorithms thatddkantage of the tridiagonal structure are, however,
known to deliver superior runtime performance and scatgbi better understanding of the performance gains from
customized block tridiagonal solvers is motivated by thechdor fast and scalable parallel solvers for dense block
tridiagonal systems of equations that form a critical cotaponal core in multiple application domains. This scglin
need is more pronounced in the context of the computing ditpeh of today’s large state-of-the-art computing
platforms.

Two classes of algorithms for block tridiagonal systemspfagions, based on cyclic reduction and parallel prefix
computations, respectively, are particularly amenableffioient and scalable parallelization. Both requidég N)

Email addressessealsk@ornl.gov (Sudip K. Seal)perumallaks@ornl.gov (Kalyan S. Perumallahirshmansp@ornl.gov (Steven P.
Hirshman)
1Computational Sciences and Engineering Division
2Fusion Energy Division

Submitted to Journal of Parallel and Distributed Computing September 7, 2011

Total runtime with N=1024, M=32 Total runtime with N=1024, M=128

10 : e 100 ‘ ‘ S
PP oo PP -
10}]
5 1r)
(] [
k))
[0} 0] 1k B
£ E
S o1} s
8 3
S 5 0lf 1
T T
= 001} =
001}]
0.001 7 10 180 1000 Toooo 00017 10 1"90 1000 10000

() (b)

Figure 1: Performance of a parallel prefix (PP) based solw&ranyclic reduction (CR) based solver on a log-log scalé) tliock rows N = 1024,
and block size: (aM = 32 and (b)M = 128.

steps. Complexity analysis of both algorithms for a systeith W row blocks onP processors suggests a better
runtime for parallel prefix-based solvers. This is foundedtoe for smaller block sizes. Interestingly, the oppadsite
found to be true when block sizes are large. An illustratibthis behavior is shown in Figure 1 in which the parallel
prefix-based solver outperforms the cyclic reduction-tadgorithm whenM = 32 and vice versa whell = 128.
Performance analyses of the two algorithms that allowssusemake the right choice of a parallel solver for block
tridiagonal systems based on the parameter® and M, whenM > 1, is lacking in the literature. The findings in
this paper fill this gap.

The Thomas algorithm [7] is one of the first sequential atfons to exploit the special structure of tridiagonal
systems of equations. But, its inherently serial naturelpded it from any practical parallel implementation. Al-
gorithms based on divide-and-conquer approaches weregudstly introduced in [8, 9, 10, 11]. These formed the
foundations of a large body of research [12] on parallel s@\for tridiagonal systems of equations. Most closely
related to this paper is the work in [13] which provides tigbtinds for both cyclic reduction and parallel prefix-based
algorithms. However, to the best of our knowledge, no priorkweports the #ect of block sizes on the relative
performances of direct solvers based on these two algasithm

2. Formulations

For anN x N block tridiagonal matrix with block sizé, let L;, D; andU; denote the lower, main and upper
diagonal blocks, respectively, in block rawUsing this notation, thé" row of the block tridiagonal matrix can be
written as:

Lixi-1+Dixi + Uixia =b, 1<i<N (1)
Dixg + Uix = b]_ (2)
LnXn-1 + DXy = by (3)

whereb; is thei™ block of the right hand side vector.

2.1. Cyclic Reduction

In a cyclic reduction-based approach, the boundary canmwiton the block matrices are setitp= Uy = 0. For
the even indices= 2k (i < k < N/2), Eqn (1) yields:

ok = box — Laxak 1 — Uk 1 (4)

2

where

bax = Dotbak, Lok = DopLok, Uz = DytUax
A similar equation for the odd indices= 2k — 1 (i < k < N/2) can be written and then Eqgn (4) used to eliminate the
even indexed terms. This yields:

Cov-1Xok-3 + Dace1Xoke1 + Uzce1Xoes = by (5)
where:

Dak-1 = Da1 — Lok 1Uzk 2 — Ua 1Dk
Lok-1 = —Lok-1lok-2
Uk = —Ux1Ux

Dok 1 = bak-1 — Lok 1Dox 2 — Uz

Note that Eqn (5) is “similar” to Eqn (1) but the number of etioias that need to be solved for has been reduced by
half. This step is recursively applied until only a singleiation remains which is solved fag using the appropriate
boundary conditions.

This solution is used to initiate a backward solve phase iichvtine recursion tree is traversed in the reverse direc-
tion. At each recursive step during this backward travethal even indexed unknowns are computed by substituting
the now known odd-indexed values.

2.2. Prefix Product
In a prefix formulationL; = Uy = | andXy = xny1 = O at the boundaries. This makes Eqn (1) valid for all
1 <i < Nanditcan be written as:

X1 = ~Ur D% = Uyt Lixiog + Uy

assuming thalt); is non-singular for all i< i < N. In matrix form, this can be rewritten as:

Xis1 -UDp -UtL Ut Xi
X = | O 0 Xi—1 (6)
1 0 0 1 1
Let:
Xi+1 D L b Di = -U;'D;
Yier=| X .Bi=| 1 0 0, L=-U"L (7
1 0 0 1 bi = U; by
Using Eqn (7), the matrix equation in Egn (6) can be rewriten
Yiz1 = BYi = BBi_1Yi_1 = --- = BiBi_1Bi_2--- B1Y1 = §;Y; whereS; = BiBi_1Bi_>--- By (8)

Note that the partial matrix-matrix producg's can be evaluated using a parallel prefix computation. Tdrégh
resultsYi,1 can, therefore, be computed using the partial matrix pro8uandY;. Thus, the latter must be made
available at each processor to realize the final solutfboiently. For this, a parallel prefix algorithm in which each
processor has both the total as well as the partial prefixymtsdat the end of the prefix computation is used so that
each processor has the total prefix prod&gf,= ByBn-1Bn_2 - - - By, in addition to the locab;’s. From Egn (8), it
follows that:

XN+1 Shl S,{IZ S#” X1

21 <22 <23
Yn+1 = SnY1 = | Xn =| SN SN S\ Xo
1 0o 0 1|1

3

Using the boundary conditiong = xy.1 = O yields:
XN+t = SiXe + SitXo + SE = xq = —[SH] IS ©)
Thus:

A~ T A
[xx 0 1] where0 is aM x 1 zero-vector.

At the end of the prefix sum, each processor alreadySxasand, henceS,{‘l and Sﬁ”, so that each processor can
independently comput¥; using Egn (9) and then th¥’s (hence,x;’s) locally for all i’'s that are mapped to that
processor.

3. Algorithms

For ease of presentation, we will assume tdat 2" andP = 29, for some non-negative integerandq with the
understanding that both algorithms generalizBl tandP values that are non-powers of two. We will also assume that
N > P (orn > q). In both algorithms% block rows are assigned to each processor initially.

3.1. Cyclic Reduction

Forward Phase I:This phase consists of the first %X = n—qrecursive steps of the algorithm. In each step, the even
indexed unknowns are eliminated in terms of the odd indexes @ising Eqn (4). At any intermediate steprhere
1<i<(n-q),there arEN/Z'+1 reordered odd-indexed rows and as many even-indexed roveded reordered even
row 2Kk in stepi, Dok, Lok and U are computed (for suitable choskmvithin bounds). Lo andUy at the boundary
rows are then sent to neighboring processsors. For eacttereorodd row R— 1 in stepi, box_1, Dak_1, Lok and
Uz are then computed (for suitably chodemithin bounds). At the end afi — q recursive steps, each processor
contains exactly one row block and the algorithm entersdig phase.

Forward Phase Il:Each step of this phase is identical to the ones in the prepbase with the modification that the
logical reordering of the remaining rows after the completbf each step spans across processor boundaries. Due to
the recursive bisection of the problem, only half the nundf@rocessors remain active compared to the previous step
until at the end only one processor remains active &d 1) remain idle. The computations remain the same but the
communication pattern and load balanc@edi In this phase, each step processes at most one block rgprogessor
with matrix operations similar to the previous phase. Havefour matrices are sent to neighbors (two each to top
and bottom). This phase ends when finally there is only orieeggtocessor.

Backward Phases | and IAt the end of the previous phase, a local portiox & available at processor 0. This value
is then propagated to proces$J2— 1 which in turn uses it for back substitution to evaluateadtsal portion ofx. The
newly computed values of are then similarly propagated by traversing the recursiea in the backward direction

in the reverse direction from the bottom most level to thertopt level). Once the back substitution traverses Ig
levels form the leaf level of the recursion tree, the aldnitenters its compute intensive communicatidiicent
final phase. In this phase, the remainingdy(evels are traversed in a direction opposite to that in ésdyphase

[, all the while computing new values at each level by badbssituting with values computed in the previous level.
Communication is required only for the boundary blocks.alin when the top level is reached, the solution of the
system of equations is realized.

Total Runtime:RuntimeT,, of this cyclic reduction-based tridiagonal solver can beven (see Section Appendix
A.1) to be:

Ter o (Cin + 6Cnm) M (B +1g P) + 28M?Ig(NP) (10)

whereCmnm, Cmv, Cyv andCj, denote the amortized cost per floating point number for mat@trix multiplication,
matrix-vector multiplication, vector-vector multiplitan and matrix-inversion, respectively afids the average time
to transmit one floating point number between any two praongssements across the network.

3.2. Prefix Product

Initialization: Each processor is assignédalock rows. For each local block ro'u,vUi‘l is computed. Thereatfter, for
each local block rowD;, L; andb; are computed and the matricBs as defined in Section 2.2 are constructed.
Serial Prefix ComputationEach processor performs a local prefix product oBjtenatrices and stores it in a matrix
SP where 1< i < N refers to local indices. There is no communication in thépst

ParaIIeI Prefix Computatlon Each processok maintains two matrlce§p and Tp They are both initialized to
the last prefix producISN/P, computed in the previous step. This phase has FPog Ig P stages. In each stage
s e [0,lg P — 1], processors with ranksandn exchangeTP. If processor ranked receives communication from a
lower ranked processar, thenS/ is updated as} « S”Tpk In any caseT[is always updated & — TFT}.
Finalization: Each processor sends the matrix the partlal e,irm its neighbor to the right. For each Iocal block row
index 1<i < 3 |n processor rank, S° is updated a$?® « SSSp_ Using the total product ma’[rﬂZp X1 (and hence
Y,) is locally computed using Egn (9). For each Io'cai’i (and henceq) is then locally computed using® andY;
from Eqgn (13). The final solution is now available acrosst#! processors.

Total RuntimeRuntimeT), of this prefix product-based tridiagonal solver can be sh(@ge Section Appendix A.2)
to be:

Tpp o (Cin + 18Cmm) M3 (&) + 24CnnM3Ig P + psM?Ig P (11)

4. Influence of Block Size on Performance

When the block sizéM is treated as a constant in Eqn (10) and Eqgn (11) along@itndC,m, the asymptotic
runtimes of the two algorithms, based solely on the paranset¢N, P}, are:

Ter = O(§ +Ig(NP)) and Tpp=O(} +1gP)

These runtimes are misleading. As shown in Figure 1, theivelauntimes of the two algorithms can be seen to
depend on the choice &fl, N andP. A more careful analysis of their runtimes based on the anggadeparameter
set{M, N, P}, therefore, becomes necessary to understanding the parice of one algorithm relative to the other.
Accordingly, letC = maXCym Cin}. Then, Eqn (10) and Egn (11) yields:

Ter
Top

C1M?(7TCM (% +Ig P) + 281g(NP)) (12)
CoM?(19CM(§) +24CMIg P + pglg P) (13)

whereC; andC, are positive constants. Comparing the two yields the fahgwesult:

Result 1. Tpp < Ter when

IgN
M < Q’archlg_P (14)
where N> P and
B G
Qarch = I (1%2 _ 7C1) (15)
Proof. Using Eqn (10) and Eqgn (11) and settifig, < T, yields:
1 (2C1 —pC2)ﬁ|g P+ 2ﬁC1 |g N P |g(N P)] 201
— - =pK whereK = ——————
C (19C, - 7C1)% +(24C, - 7Cy)IgP p N+ PlgP C(19C, - 7Cy)
PlgINP) | Ig N
< ﬁK[PigP]_,BK[l 2,8K , whenN > P
Sinceaarch = 28K, the result is proven. O

Result (1) reveals two important observations, namely:a(ajitical value ofM separates the parameter space
spanned by, N andP into two distinct sub-spaces such that one favors a papakdix-based solver while the other
favors a cyclic reduction-based approach, and (b) for antiicie implementation of underlying array operations (e.g
BLAS), the constandrach depends entirely on machine-specific constants. Accolditige criticalM value depends
on two factors —o4ch that is completely machine dependent whose value depends purely on a problem
specification. In particular, wheX = P, this critical value ofM depends only on machine dependent constants.

To compare the weak scaling properties of the two algoritHets® = N* where 0< y < 1. We exclude the
sequential case & = 1 (y = 0) here. Also, we limit our discussion to cases for whitkx P (y < 1). The following
result is of particular interest in practice

Result 2. For large N and M— N, the iso-granular runtime of both algorithms increaseshnly with the problem
size.

Proof. Letk = N*7 = %. The ratiox remains constant in weak scaling. Substitutingan Eqn (12) and Eqn (13)
yields:

Ter C1M2 (7kCM + 7CMyIg N + 2(1+ y)BIg N)
Top = CoM?(1%CM +24CMylgN + pyglg N)

Differentiating with respect th yields:

dT, O
o = CyM? (7TCy M + 2828) - and S = CoM?(24Cy M + 22)

When N is large (the second term becomes negligible) &hd— N (the first term approaches a constant), both

ddT,gf = constantand% = constant This indicates that when both the block sieand the number of block rows

are stficiently large, the iso-granular runtime of both algorithmsrease linearly with the problem size. O

A good measure of the strong scalability of an algorithm sscibmputation-to-communication ratio. A larger
computation-to-communication ratio indicates a greaggrele of parallelism in the algorithm. Let the computation-

to-communication ratio for the two algorithms be denotedgy= Te'™"/ T&™andapp = Top' 7/ TS respectively.

Proof. Using Eqn (A.-5), Eqn (A.-4), Egn (A.-8) and Eqn (A.-7), illfmwvs that:

For equal block sizes, this yields:
&:1.N+PI9P' IlgP <1'N+PIgP' IgP :i<1
app 2p IgN+IgP 19N +24PIgP ~ 2o lgP 19N + 19PIgP 38
since 4< p < 9, as shown in Appendix A.1. Thereforey < app. O

Result (3) indicates that a parallel prefix-based solveibéshbetter scalability (in the strong sense) than one
based on cyclic reduction for the same block size.

5. Experimental Verification

To verify the results from the previous section, both altns were implemented and executed on a Cray XT4
machine with a quad-core 2.3 GHz single socket AMD Opteracgssor (Budapest) and 8 GB of memory in each
compute node. The nodes are connected via a high-bandwidtBt& interconnect. Solutions obtained by both
solvers in the experiments reported here were numericabjles

Total runtime with N=P=64 Total runtime with N=P=512
1000 . . 1000 . .

CR —+— CR —+—

PP ---x-- PP --x---

100 ¢ 9 100

10+

wall clock time (sec)
-

wall clock time (sec)
=

o1l 01l
001}] 001}
0.001;5 100 y 1000 iooo0 %009 100 y 1000 10000
()N =P =64 () N=P=512

Total runtime with N=P=1024 Total runtime with N=P=2048

1000 \

CR —+— CR —+—

PP ---x-- PP --x---

1000

100 1 100 +

10+ 10}

wall clock time (sec)
-

wall clock time (sec)
=

01f 01}
001}] 001}
0.001;5 100 y 1000 iooo0 %00%g 100 y 1000 10000
(©) N =P=1024 (d) N = P = 2048

Figure 2: Runtimes of cyclic reduction- and parallel prefaséd solvers with varyinyl. CR denotes cyclic reduction and PP denotes parallel
prefix.

In Figure 2, runtimes of the cyclic reduction- and parallelfpx- based algorithms are reported for varying block
sizes. A unit granularityN = P) was maintained for these experiments. From Eqn (14), tyiés that the critical
block sizeM becomes independent of the values\oind P. The critical block size is indeed found to be almost
identical (atM ~ 150) when Figure 2(a) and Figure 2(b) fdr= P = 64 andN = P = 512 are compared. Similarly,
for Figure 2(c) and Figure 2(d) in which the ca$¢s P = 1024 and\ = P = 2048 are compared. In the latter case,
the critical block sizevl ~ 170. Note that the critical block sizes whish= P = 1024 is roughly the same as when
N = P = 2048, atM ~ 150. Similarly, it remains the same whdh= P = 64 andN = P = 512, atM ~ 170. Since
both algorithms were executed with the same granularityhersame hardware platform, thidfdrence appears to
violate Eqn (15) which states thafch, is purely machine dependent and should have no dependefteltie reason
for this apparent contradiction is that though Eqn (15) ealty true, in practice, the value gfused in the analysis
is not a true constant. It changes, albeit slowly, dependimghe scale of the network sub-system being exercised
during an execution. The average cost of transmitting aifiggtoint number across the network tends to grow with
increasingP. Sinceagch « B, the critical value ofM also increases. It is this drift that is observed above wiken
changes from 64 to 2048.

3An extremely practical use of this result is in estimating jpssor time to be requested when submitting a batch job on latgeber of
processors but with the same granularity.

Total runtime with M=512 Total runtime with M=1024

16 ‘ : — 90 ‘ : —
PP coces | s
141t X] sor T 1
70t * 1
<12] 1 ©
8 g a60f]
) 10¢ il)
= E 50 1
2 ol 840k |
o r 1 o
g | |
4r 1 20}]
2 */// q 10 ,// 1

0 500 1000 1500 2000 1500 2000 2500

() (b)

Figure 3: Weak scaling results for (&) = 512 and (b)M = 1024 asN andP become large while maintaining a constant granula@ity

In Figure 3, iso-granular scaling behavior of the two algoris is shown. Sinckl is much larger than the critical
value, the runtimes of the cyclic reduction-based solvaperiorms the prefix computation-based solver. While
maintaining the same granularity (in other words, usingpprtionately larger number of processors with increasing
problem size), the runtime of both solvers increases slipearly with N whenN is small but for larger values o,
the runtime change becomes linear within accordance with Result (2). Figure 3 illustrates thisNbr= 512 and
M = 1024.

Strong scaling behavior of both algorithms is shown in FégiforN = 2048. Result (3) suggests that irrespective
of the block sizeM, a prefix computation-based solver should scale betterdteyelic reduction-based solver when
the number of processors is increased while maintaininghataat problem size. This is shown in Figure 4 for two
block sizes, namelyM = 32 which is smaller than the critical block size ald= 128 which is larger. Note that,
in accordance with Result (3), the number of processorsrabwhich adding more processors no longer benefits
the runtime performance is reached earlier by the cyclioegdn-based solver compared to the prefix computation-
based one in both cases. It should be notedlibtier (strong) scalability does not necessarily implytéreparallel
runtime Figure 4(b) is such an example in which which, despite bettalability, the prefix computation-based solver
under-performs compared to the cyclic reduction-basecdesol

1 Total runtime with M=32, N=2048

Total runtime with M=128, N=2048

P 100 \ T T =
PP --oxeo PP oo

0.01

wall clock time (sec)
o
=
:

@)

10000

wall clock time (sec)
-

0.01

(b)

Figure 4: Strong scaling results with = 2048 and (aM = 32 and (b)M = 1024.

1000

10000

6. Conclusions

Analyses of cyclic reduction and parallel prefix-based e\for block tridiagonal systems of equations based
on the parameter s¢N, P} suggest better runtimes for a parallel prefix-based solMemvever, in practice, this is
not always found to be true. Motivated by the need for theefadblock tridiagonal solvers in applications such as
fusion simulations and to better understand their pargiieformance, an in-depth analysis of the two specialized
algorithms was carried out based on an augmented parareetdt, N, P}. The analysis reveals that the performance
difference between the two algorithms stems from a trafibeiween computation and communication overheads
that is determined by the block size.

We show that a critical block size that determines this tratl@oint emerges naturally. It separates the parameter
space spanned [, N, P} into distinct regions that favor one or the other algorithim.addition, the dependence
of this critical block size on the parameters of the problemvall as on architecture specific machine constants was
derived. Empirical results, based on implementationsdbale to 2,048 cores of a Cray XT4, were obtained. Theses
results convincingly agree with the theoretical findings.

The results reported here fill a practical gap in the undedétg of two important direct solvers specialized
for block tridiagonal systems of equations and, in particuare expected to aid domain scientists in choosing the
appropriate solver for their simulations.

7. Acknowledgements

This paper has been authored by UT-Battelle, LLC, underraohDE-AC05-000R22725 with the U.S. Depart-
ment of Energy. Accordingly, the United States Governmetdins and the publisher, by accepting the article for
publication, acknowledges that the United States Govenhmetains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form isftanuscript, or allow others to do so, for United States
Government purposes.

This dfort has been supported by research sponsored by the LafyoBitected Research and Development
Program of Oak Ridge National Laboratory, managed by UTellat LLC, for the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

Appendix A. Complexity Analysis

For complexity analysis, we will adopt the following notats. LetCym Cmyv, Cyw andCi, denote the implementation-
and architecture- dependent amortized cost per floatingt poimber for matrix-matrix multiplication, matrix-vecto
multiplication, vector-vector multiplication and matimversion, respectively. We will assume that identicaplea
mentations of these array operations are used in both toeitalgs. In addition, let the average time to transmit one
floating point number between any two processing elememntssithe network be denoted By

Appendix A.1. Complexity of Cyclic Reduction Algorithm

Forward Phase lin this phaseN/2' > P for all 0 < | < (n - @), wherel denotes the level of recursion. At each such
level, a processor processés®' block rows. For each even row, one matrix inversion, two iratratrix products
and one matrix-vector products are performed on blockdsizatrices. For each odd row, four matrix-matrix products
and two matrix-vector products on block-sized matricespreormed locally at each processor. Thus‘lj,'gfandT(')
denotes the computation costs to process the even and oddrrevell, respectively, then:

Te o 279 [CpM® + 2CqmM® + CryM?|
To o 270 4CHM® + 2CmM?|

Summing over all the levels in this phase, the total compriat cost of forward phase | can be shown to be:

TE™ o (279~ 1) G + 6Coun] M° = [Cin + 6Cnd M3 (¥ ~ 1)

upto leading orders it. After each even row is processed, the modified Uz andby (for suitably choserk
within bounds for the level in question) are communicateth&®neighboring processor. This involves sending two
M x M matrices and a vector of lengi. Thus, the communication cost in each level of this phasguslgos - 2M?
upto leading orders iM. Thus, the total communication cost of forward phase | is:

TE™ec 28(n - M? = 2M?B1g (§)

Forward Phase Il:In this phaseN/2 < P for all (n—q) < | < n, wherel denotes the level of recursion. In each
recursion step, a processor processes at most one row bhuadkjnvolving matrix operations identical to those in the
previous phase. Thus, the total computation time acrosbalfP = q stages of forward phase Il is:

TE P o [Cin + 6Crmm] M3Ig P

Unlike the two matrices sent to the one neighbor alone in tise Zone, each active processor in a level sends two
matrices each to two neigbors for a total of four matrices Wtal communication cost of forward phase Il is:

TEN"ec 48gM? = 45M?Ig P

Backward Phases | and Ilfhese two phases do not involve array operations and all eaoriwattions involve vector

messages. As such, both the computation and communicaigis af these two phases are lineaMnand hence

ignored in this analysis.

Total Runtime:Summing up all costs above, the total computation and conwation costs of a tridiagonal solver
based on cyclic reduction are:

$™ o [Cin + 6Cmn] M3 (Y +1g P) (A-5)
Té:romm I~ ZBMZ Ig(N P) (A.-4)
and the total runtim@., = Tge" P+ TSO™™

Appendix A.2. Complexity of Prefix Product Algorithm

Initialization: In the initialization step, a1 x M matrix, U; is inverted only once, followed by two matrix-matrix
multiplications and one matrix-vector multiplication fatotal cost of Ci,M?® + 2Cy,mM3 + C,yM?). In general, there
are% block rows per processor for which the total initializaticost is:

(Cin + 2CmmM3(R)

up to leading orders iivl. There is no communication cost in this step.
Serial Prefix ComputationEach block matrixg; is of the form:

11 12 13
BM><M BM><M BM><l
21 22 23
BM><M BM><M BM><l

Oxm O1xm 1

where the subscript of each block sub-matrix refers to thrabrar of rows times the number of columns in it. The
number of floating point operations needed to multiply twersmatrices; andB; is, therefore, (8mmM3+4CHM?+
2C,wM+1). WhenN > P, each processor h%such matrices whose partial products are computed %ﬁdr matrix-
matrix multiplications for a total cost of:

8CmmM3(R - 1)

Parallel Prefix Computationin each of the I¢P parallel stages, three matrix-matrix multiplicationseigitace — one
in the lower ranked receivers and two in the higher rankeelivecs — for a total cost of:

3-8CnmM3Ig P = 24C,mM3Ig P
10

As is typical of any parallel prefix computation, each step B& unique sender-receiver pair. In each of th@lg
stages, every processor sends to exactly one processae@ides from exactly one processor). Thus, there e Ig
rounds of communication with a message size df4 4M + 1 = pM? (where 4< p < 9)*in each. Thus, the total
communication cost for the parallel prefix stage is:

pBM?1g P

Finalization: In the final step, each processor compu%s—(l) matrix-matrix multiplications, one matrix-inversion
and two matrix-vector multiplications for a total cost of:

8CmmM3(% - 1)

There is one round of communication wjgiM? cost in this step.
Total Runtime:Summing up all costs above, the total computation and conwation costs of a tridiagonal solver
based on parallel prefix computation are:

Tep P oc [Cin + 18Cmn] M () + 24CunM3Ig P (A-8)
Too"Mec pBM?Ig P (A-7)

and the total runtim@p,, = To"P+ TSom™

References

[1] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. DempieDhillon, S. Hammarling, G. Henry, A. Petitet, K. Stanley, Walker, R. C.
Whaley, ScaLAPACK User’s Guide, Society for Industrial angphed Mathematics, Philadelphia, PA, USA, 1997.
[2] S. Balay, K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik. Knepley, L. C. Mcinnes, B. Smith, H. Zhang, PETSc 2.0 Uddesual,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.2297.
[3] SGI/CRAY Scientific Computing Software Libraryittp: //www.sgi.com/products/software/irix/scsl.html.
[4] IBM ESSL Manual, http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.essl.doc/
esslbooks.html.
[5] MUMPS, http://graal.ens-1yon.fr/MUMPS/.
[6] SuperLU,http://crd.1bl.gov/~xiaoye/SuperLU/.
[7] L. H. Thomas, Elliptic Problems In Linear Berence Equations Over A Network , Watson Sci. Comput. Lab.,REgumbia University.
[8] R.W. Hockney, A Fast Direct Solution Of Poisson’s EqoatUsing Fourier Analysis, Journal of the ACM 12 (1) (1965)-2%3.
[9] H. S. Stone, An Hicient Parallel Algorithm For The Solution Of A Tri-diagonaihear System of Equations, Journal of the ACM 20 (1)
(1973) 27-38.
[10] D. Heller, Some Aspects Of The Cyclic Reduction Algomitror Tri-diagonal Linear System, SIAM Journal of Numericaladysis 13 (4)
(1976) 484-496.
[11] H. H. Wang, A Parallel Method For Tri-diagonal EquaoACM Trans. on Mathematical Software 7 (2) (1981) 170-183.
[12] H. X. Lin, A Bibliography of Parallel Algorithms for Tridiagonal System&ttp://ta.twi.tudelft.nl/wagm/users/lin/Biblio/
tri_sol.html.
[13] E. Santos, Optimal Parallel Algorithms for Solving Tadobnal Linear Systems, in: Procs. of Euro-Par, 1997, pp. 708~

4Sincep = (4M2 + 4M + 1)/M2 = 4 + 4/M + 1/M?2, the limits are obtained by considering the boundary valli@sdoo, of M.
11

