
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper.2010;00:1–17
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Scaling the SIESTA Magnetohydrodynamics Equilibrium Code

Sudip K. Seal∗, Kalyan S. Perumalla∗ and Steven P. Hirshman†

∗Computational Sciences and Engineering Division,†Fusion Energy Division
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

{sealsk, perumallaks, hirshmansp}@ornl.gov

SUMMARY

We report the results of a scaling effort that increases boththe speed and resolution of the SIESTA
magnetohydrodynamic equilibrium code. SIESTA is capable of computing three-dimensional plasma
equilibria with magnetic islands at high spatial resolutions for toroidally confined plasmas. Starting with
a small-scale parallel implementation, we identified scale-dependent bottlenecks of the code and developed
scalable alternatives for each performance-significant functionality, cumulatively improving both its runtime
speed (on the same number of processors) as well as its scalability (across larger number of processors) by an
order of magnitude. The net outcome is an improvement in speed by over ten-fold, utilizing a few thousand
processors, enabling SIESTA to simulate high spatial-resolution scenarios in under an hour for the first time.
Copyright c© 2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

Magnetohydrodynamic (MHD) equilibrium codes are important for a wide range of plasma
applications. They are used for optimizations and data analyses related to design of tokamaks and
stellarators [18], reconstruction of plasma states from experimental data [13, 7] and initialization of
extended MHD time-dependent codes [14, 17, 3]. SIESTA (Scalable Iterative Equilibrium Solver
for Toroidal Applications, [10]) is an iterative MHD equilibrium solver [4, 8] that enables the
exploration of a wide range of new scenarios to be simulated in support of all the aforementioned
areas.

Next generation plasma applications, such as those for the International Thermonuclear
Experimental Reactor (ITER), require MHD simulations at unprecedentedspatial resolutions.
Today’s supercomputers have the computational capability of delivering MHD simulations with
significantly better accuracy and speed than before. But, a highly sophisticated framework such
as SIESTA, developed over several years, was not originally designed to exploit such large-scale
parallelism. To gainfully utilize SIESTA’s capabilities, execution of its core iteration scheme must
be capable of sufficiently high speed to enable scientists to simulate a large number of scenarios
within a given amount of wall clock time. The original implementation of SIESTA was limited in
this aspect in both speed (taking many hours per run on large runs) as well as spatial resolution
scale (runtime increasing much more than logarithmically with problem dimensions),warranting
improvement and optimization of its parallel execution capabilities. Rewriting SIESTA for improved
scaling is certainly one way to meet the scaling needs, though an extremely expensive one in
terms of manpower and development time. Instead, introducing a series of efficient, non-intrusive
optimizations offers an alternative approach to accelerating SIESTA’s performance and improving
its scalability. In this paper, we adopt the latter approach.

Copyright c© 2010 John Wiley & Sons, Ltd.

Prepared usingcpeauth.cls [Version: 2010/05/13 v3.00]

2

Existing equilibrium codes like VMEC [11] and EFIT [13] depend on an underlying assumption
of the existence of nested magnetic surfaces to achieve high performance. SIESTA avoids such
restrictions, albeit at somewhat higher computational cost. Other iterative solvers – such as the PIES
code [15] – exist but use very different solution methods. SIESTA departs fromprevious iterative
fluid solvers by using an accurate physics-based preconditioner to accelerate the convergence of
the solution of the linear ideal MHD equations (which are expansions of the nonlinear force
FMHD around an instantaneous plasma state not yet in equilibrium). As usual, preconditioning
transforms the linearized system into one with more favorable numerical convergence properties
(smaller spectral radius or condition number) for the iterative procedure. SIESTA uses the nested
magnetic flux surfaces computed by the VMEC [11] code to provide both an optimized set of quasi-
polar background coordinates and an initial guess for the iterative procedure. The spectral nature
of SIESTA’s formulation provides a natural way to implement conservativeforms of the evolution
equations for the contravariant components of the magnetic field and the plasma pressure. It departs
from the BETAS [1] code which uses an inverse representation with an integrable Hamiltonian
perturbation to describe a single magnetic island. SIESTA is not limited to such integrable (single
resonant surface) situations and only uses a nested inverse representation for the background
coordinate system.

SIESTA executes multiple complex computational kernels that exhibit a wide range of domain-
specific and parameter-dependent execution behaviors. Here, we report results from improvements
which show dramatic increases in both the execution speed of SIESTA simulations, as well
as the problem sizes that can be handled by SIESTA. Starting with an original version
developed for small-scale parallel execution, we make a series of improvements for efficient
large-scale parallel execution. The complex nature of the code makes detection of performance
bottlenecks very challenging. We address this by combining performance profiling, improved
process synchronization and customized implementations of scalable and efficient parallel solvers.
Altogether, these improvements yield a net increase in SIESTA’s speed by an order of magnitude
(compared to its initial small-scale parallel implementation), and demonstrate scalingto a few
thousands of processor cores.

Section2 describes the notation and terminology used in this paper. A brief background of the
physics behind the computations is described in the Section3. The computational flow of execution
that is at the core of SIESTA is presented in Section4. Section5 through Section8 describe the
optimizations that have been performed over the original version of SIESTA. The net performance
gain in the capabilities of SIESTA due to these optimizations is discussed in Section9. Conclusions
are presented in Section10.

2. TERMINOLOGY AND NOTATION

The original small-scale parallel implementation of SIESTA is referred to as theunoptimizedversion
while the version resulting from the optimization and scaling efforts describedin this paper is
referred to asoptimized. The subscriptsu ando are used to refer to runtimes resulting from executing
the unoptimized or optimized versions of SIESTA, respectively. We avoid using the termspeedup
which is conventionally used to compare runtimes on larger number of processors with that on a
(usually fixed) smaller number of processors. Instead, we define a morerelevant measure here called
performance gainas the ratio of the runtime of an unoptimized computational kernel to that of its
optimized version running on thesamenumber of processorsP . In the context of a block-tridiagonal
preconditioner matrix, to be introduced soon, the number of block rows will be denoted byN and
the block size byM . Further, for ease of presentation, we will assumeN = 2n, and the number of
processorsP = 2q, wheren andq are non-negative integers (although SIESTA’s implementation
does not have these restrictions).

All experimental results reported in this paper are based on executions ona Cray XT4 machine
with a quad-core 2.3 GHz single socket AMD Opteron processor (Budapest) and 8 GB of memory
in each compute node. The nodes are connected via a high-bandwidth SeaStar interconnect. The
software was implemented in Fortran 95 with Message Passing Interface (MPI) for inter-processor

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

3

communication. All block-level matrix-matrix and matrix-vector multiplications as wellas block-
level matrix inversions were carried out using BLAS routines optimized for best performance on
Cray systems and belonging to the Cray Scientific Libraries, LibSci.

3. BACKGROUND

The MHD energyW of a stationary plasma (velocityv = 0) with magnetic fieldB and pressurep
is:

W =

∫ [
B2

2µ0

+
p

γ − 1

]
dV, (1)

where the integral is over the plasma volumeV andµ0 is the permeability of free space. Taking
the time derivative of the above equation and using Maxwell’s equations (see [10] for details) to
substitute for the appropriate physical observables yields the following MHD energy principle:

∂W

∂t
= −

∫ [
v · (J × B −∇p) − ηJ2

]
dV, (2)

wherev is the velocity field,J = (∇× B)/µ0 is the current density andη is the resistivity. For
sufficiently small resistivity (η → 0) and treatingv as a variational parameter, an equilibrium state
(∂W/∂t=0) is reached whereW becomes quasi-stationary when the following ideal MHD force
balance is satisfied:

F ≡ J × B −∇p = 0. (3)

3.1. MHD Equilibrium Principle in Curvilinear “Flux” Coordinates

The flux coordinate system is defined in terms of three independent coordinate variables, namely,
the poloidal angleu, the toroidal anglev and the radial flux coordinates. For stellarator-symmetric
plasmas, this coordinate system maps to the cylindrical coordinate system(R,φ, Z) as follows:

R =
∑

m,n

Rmn(r) cos(mu + nv) , Z =
∑

m,n

Zmn(r) sin(mu + nv) , φ = v , wherer =
√

s.

Here, Rmn and Zmn are Fourier coefficients. In the flux coordinate system, the covariant
components of the magnetic fieldBi are linearly related to the contravariant componentsBi by
the metric tensor elementsgij as follows:

Bi = gijB
j , gij = RiRj + ZiZj + δvvR2,

where the subscripts onR andZ denote partial derivatives (Rr ≡ ∂R/∂r, etc) and summation on
repeated indices is implied. Minimization of the MHD energy (see Eqn (1)) in the flux coordinate
system can be shown (see [10]) to be equivalent to the following minimization principle:

δW = −
∫

PijFiFjdV ≤ 0,

where

Fi = µ−1

0 Bj

(
∂Bi

∂xj

− ∂Bj

∂xi

)
− ∂p

∂xi

,

andP is any positive definite matrix.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

4

3.2. Preconditioner

Let the Hessian matrix operatorH be defined as:

Hij =
∂Fi

∂ξj

, (4)

whereξ is the displacement vector in flux coordinates. It has been shown [10] that the steepest
descent method to minimize the preceding MHD energy can be greatly accelerated by choosingP
at thekth iteration to be a physics-based preconditioner of the following form:

Pk
ij = (−H̃k

ij + λkIij)
−1, (5)

whereλk is an eigenvalue shift at iteration numberk and

H̃
k = xH

k
approx + (1 − x)Hk

exact (6)

is the effective Hessian matrix (0 ≤ x ≤ 1). Hk
approx is a negative self-adjoint approximation of the

exact Hessian for the system when it isfar from equilibrium. It can be shown to have the following
form:

H
k
approx(ξk) = µ−1

0 ∇× [∇× (ξk × B
k)] × γ∇(p∇ · ξk) (7)

The shift parameterλk is added to the diagonal elements to remove the null space of the Hessian
operator. Its value is reduced based on a pseudo-transient continuous method [12] as equilibrium is
approached:

λk ∼ λ0L
k , Lk =

√
|F k

MHD|2/F 0
MHD|2.

The blending parameterx is initially chosen to be equal to 1 and approaches 0 as an MHD
equilibrium state is reached.

4. EXECUTION FLOW OF SIESTA

From the computational point of view, during each iterationk of a SIESTA simulation, a set
of non-linear force equationsFk = 0 is solved. Numerically, this non-linear set of equationsis
approximated by a Taylor expansion of Eqn (3) as:

F
k = F

k + H
k · ξk + O(ξ2) = 0. (8)

Here,Fk is the residual nonlinear MHD force at iterationk, ξ is a displacement vector andHk is the
Hessian matrix defined asHk

ij = ∂Fk
i /∂ξj . Ignoring the second-order terms, the original problem

translates to numerically solving the following approximately linear set of equations:

H
k · ξk = −F

k (9)

in each iterationk. To ensure that the higher-order non-linear terms can indeed be ignored, a
small positive parameterλ is added to the diagonal elements ofH to suppress large null-space
eigenvectors. This yields the preconditionerP:

P
k = (−H

k + λk
I)−1. (10)

From Eqn (9), it follows that:

P
k · Hk · ξk = −P

k · Fk. (11)

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

5

Algorithm 1 SIESTA’s Execution Flow
1: initialize simulation parameters
2: while convergence criterion is not met, begin iterationk do
3: compute the Hessian matrix,H

k

4: check self-adjointness of Hessian
5: construct the preconditionerP

k = (−H
k + λk

I)−1

6: while GMRES convergence criterion is not metdo
7: solveξk ≈ P

k · Fk

8: end while
9: add resistive perturbations toB

10: end while

As long asλk is small (0.0001 ≤ λ0 ≤ 1 are typical values withλk → 0 for k ≫ 1), Pk ≈ −(Hk)−1

and the following approximate solution is computed:

− P
k · Fk = P

k · Hk · ξk ≈ −(Hk)−1 · H · ξk = −ξk. (12)

Thus, in iterationk, the numerically computed approximate solution isξk ≈ P
k · Fk which is then

improved using the GMRES (Generalized Minimal Residual) method [16].
Algorithm1 summarizes the execution flow of SIESTA. Most of the steps in the algorithms are

self-descriptive. Step 4 of the algorithm will be discussed shortly. Note that SIESTA’s execution
is highly non-uniform in terms of the inner and outer iterations – the number of iterations of
the inner loop is not the same for every iteration of the outer loop. Profiling theoriginal parallel
version of SIESTA revealed that constructing the preconditioner was computationally one of the
most expensive steps. Computing the preconditioner is a two-step process. First, the Hessian has to
be computed, and then the augmented Hessian (see Eqn (10)) has to be inverted, both in parallel.

5. COMPUTING AND PARTITIONING THE HESSIAN MATRIX

Because of the second-order coupling in radius of the linearized forceequations,H is block-
tridiagonal. It consists of anN × N array of blocks where each block is anM × M array.
The block size and the number of block rows, are both related to the spatial resolution of the
simulation.M = 3(2N + 1)(M + 1) where (2N + 1) is the total number of toroidal Fourier modes.
The toroidal mode numbern ∈ [−N ,N]). (M + 1) is the total number of poloidal modes. The
poloidal mode numberm ∈ [0,M]. The factor of 3 accounts for the three spatial components of the
independent displacement vector. SIESTA constructs the blocks of the Hessian matrix one column
(of lengthM) at a time using a mesh coloring scheme. For each column, three radial sweeps compute
the full radial dependence of the Hessian.

Thus, based on the above description, each column in a block of the Hessian matrix can be
uniquely identified by its global block row number,i ∈ [1, N], its block type,j ∈ [L,D,U] and its
column position within the block,k ∈ [1,M]. The computational domain can, therefore, be thought
of as a columnar space ofM(3N − 2) columns, each tagged by an integer triplet,(i, j, k). The−2
term arises from the fact that the first and the last block row each have only two blocks. In its original
form, SIESTA’s parallel column generation algorithm partitioned the columnarspace amongst the
participating processors (ranks) in a column cyclic pattern. This is illustratedin Fig. 1(a) where
the cyclic column partitioning shown is for an example withN = P = 4 andM = 8. Whereas this
partitioning of the columnar space was suitable for the original parallel blockmatrix factorization
kernel, the goal of this work is to relieve SIESTA’s performance bottleneck posed by this very same
kernel. As will be discussed soon, this is achieved by implementing and integrating a scalable block
factorization algorithm based on cyclic reduction. On the other hand, the partitioning expected by
a cyclic reduction-based algorithm is one in which the firstN

P
block rows are mapped to the first

rank, the secondN
P

block rows to the second rank and so on. An example is shown in Fig.1(b). A
remapping kernel is, therefore, necessary to translate the original to thetarget domain partitioning.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

6

There are two considerations of a remapping algorithm. First, even as the columns are being
produced based on a source pattern, the columns need to be sent to the appropriate destination
processors so that they conform to the target domain decomposition. Secondly, since this
repartitioning is executed multiple number of times inside the second loop, its runtime must be
as small as possible compared to the total runtime.

A relatively straightforward way to implement a repartitioning algorithm is to buffer the columns
into appropriate messages for destination processors and ship them out using one collective call
such as anAllgather primitive after all local columns have been generated. This approach hastwo
drawbacks, namely: (a) for realistic problem parameters, a very large memory buffer is needed to
store the impending message, and (b) using collective calls blocks all the participating processors
resulting in poor scalability.

In our implementation, only a small memory buffer is used; the task of remapping isachieved
by adopting a multiple producers-consumers approach. All columns are, therefore, sent to the
destination processor as they are produced, and the destination processor consumes them as they
become available in the network buffer. Deadlock conditions that are absent in small-scale scenarios
potentially arise when the Hessian size increases. To avoid deadlocks, care is taken to relieve
incoming network buffers by using non-blocking primitives to receive andaccept any incoming
data even while new columns are being generated. The advantage of this approach is that very little
amount of memory is required and processors can overlap communication withcomputation.

The overhead of repartitioning the columnar space across processorsclearly adds to the time
t spent within the Hessian construction kernel. However, this added time spent in repartitioning
is more than compensated by a vastly reduced total runtime. In other words, using the notation
established in Section2, althoughtu < to, Tu ≫ To. Let fu = tu/Tu be the percentage of time
spent in the Hessian construction routine in the unoptimized version of SIESTA. The corresponding
percentage of time spent in the optimized versionfo needs to be normalized to the same total runtime
for comparison and is, therefore, defined as:

fo = to/To = (to ∗ (Tu/To))/Tu = xuo(to/Tu) , wherexuo = Tu/To.

TableI shows that the extra cost incurred in repartitioning the computational domain iscompensated
for by an order of magnitude reduction in the total runtime.

Processor 4

Processor 1

Processor 2

Processor 3

(a) Original Partitioning. (b) Target Partitioning.

Figure 1. An example remapping for the case ofN = 4, M = 8 and P = 4 where each color within a
processor represents an integer triplet(i, j, k). For general values ofM , N , andP , the partitions are not all

equal and care has to be taken to accommodate differing sizedpartitions.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

7

P N N
P

tu to Tu To fu fo

64 64 1 1.43 1.93 69.37 21.89 2.10% 8.80%
128 128 1 1.55 2.04 211.95 30.22 0.70% 6.80%
256 256 1 1.87 2.40 832.80 61.29 0.20% 3.90%
512 512 1 4.99 6.17 2062.72 178.91 0.20% 3.40%

1024 1024 1 21.17 25.50 7786.86 749.87 0.03% 3.40%

64 128 2 3.00 3.90 144.10 30.44 2.10% 12.80%
128 256 2 3.62 4.50 453.99 62.06 0.80% 7.30%
256 512 2 5.03 6.25 1976.33 179.45 0.30% 3.50%
512 1024 2 21.18 25.80 7325.54 729.35 0.30% 3.50%

1024 2048 2 52.66 68.60 16422.56 1816.48 0.30% 3.80%

Table I. Runtime overhead of repartitioning during Hessianconstruction whenM = 234.

6. CONSTRUCTING THE PRECONDITIONER

Within each iterationk of the outer loop in Algorithm1, a preconditionerP is constructed based
on the HessianH computed as described above. Since the Hessian is block-tridiagonal, the block
factorization procedure to constructP can be formalized by considering theith block row of the
block-tridiagonal systemHx = b:

Lixi−1 + Dixi + Uixi+1 = bi , 1 < i < N, (13)

whereLi, Di andUi denote the lower, main and upper diagonal blocks, respectively, in blockrow i
of H, andbi is theith block of the right hand side vector.

6.1. Accelerated Thomas Algorithm

The unoptimized version of SIESTA used the Thomas algorithm [19] to constructP as follows.
From Eqn (13), the equation forxi is used to eliminatexi in the equation forxi+1 leading to the
following recursion relation:

xi = −∆i(Uixi+1 + βi), (14)

where∆i = (Di − Li∆i−1Ui−1)
−1 and βi = bi − Liβi−1 with the starting values∆0 = β0 = 0.

The recurrence is carried out until the boundary ati = N at which point the boundary condition
UN = 0 is used to initiate the backward solving process using the above recursion relation to iterate
backwards fromi = N to i = 1. Once∆i is determined and stored for a given matrixP , the relation
for βi can be iterated for multiple right hand side (RHS) vectors and the back substitution carried
out to obtain the solution for each RHS without the need for further matrix inversions or matrix-
matrix products. Originally, SIESTA used ScaLAPACK [2] to parallelize the matrix inversions,
matrix-matrix and matrix-vector operations at the block level within the Thomas algorithm. This is
a sub-optimal parallel approach as it does not take advantage of the block-tridiagonal structure of
the matrices and, hence, does not scale withN .

6.2. Cyclic Reduction Based Parallel Solver

For greater scalability, a redesigned parallel solver called BCYCLIC [9], specialized for block-
tridiagonal matrices, was integrated with SIESTA. It is based on a cyclic reduction algorithm in
which block rows with even indicesi = 2k (i ≤ k ≤ N/2) in Eqn (13) are eliminated in terms of
odd indices using:

x2k = b̃2k − L̃2kx2k−1 − Ũ2kx2k+1 (15)

where b̃2k = D−1

2k b2k , L̃2k = D−1

2k L2k , Ũ2k = D−1

2k U2k. The boundary conditions on the block
matrices areL1 = UN = 0. A similar equation for the odd indicesi = 2k − 1 (i ≤ k ≤ N/2) can

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

8

Figure 2. Performance gain in constructing the preconditionerP using a cyclic reduction-based algorithm.
The times above include the overhead of remapping the columnar space, as described in the previous section.
Note that the top and bottom labels of the horizontal axis refer to the granularity (NP) and number of block

rows (N), respectively.

be written and then Eqn (15) used to eliminate the even indexed terms. This yields:

L̃2k−1x2k−3 + D̃2k−1x2k−1 + Ũ2k−1x2k+1 = b̃2k−1 (16)

where:

D̃2k−1 = D2k−1 − L2k−1Ũ2k−2 − U2k−1L̃2k,

L̃2k−1 = −L2k−1L̃2k−2,

Ũ2k = −U2k−1Ũ2k,

b̃2k−1 = b2k−1 − L2k−1b̃2k−2 − U2k b̃2k.

Note that Eqn (16) is structurally the same as Eqn (13), with the number of new indices2j′ = 2k − 1
and2j′ ± 1 = 2k − 1 ± 2 now reduced by half. This step is recursively appliedn = log2 N times
until only a single equation remains which is trivially solved forx1 using the appropriate boundary
conditions. This solution initiates a backward solve phase in which the recursion tree is traversed
in the reverse direction. At each recursive step during this backward traversal, the even indexed
unknowns are computed by substituting the now known odd-indexed values.

Performance gains delivered by BCYCLIC over the original ScaLAPACK based solver when
constructing the preconditioner are shown in Fig.2. Note thelog-log scale. The time to constructP,
denoted byT (preconditioner), shown in this figure includes the repartitioning overhead incurred
in laying out the columnar space across processors in the manner expected by a cyclic reduction-
based algorithm (see Fig.1(b)). Clearly, the advantage of using a parallel solver customized for
block-tridiagonal systems far surpasses the disadvantage of incurringthe remapping overhead.

7. ACCELERATING GMRES

The GMRES (Generalized Minimal Residual) method [16] is used in the inner loop in Algorithm1
to refine the initial solution guessx = P(b), whereb = F . Note that the execution flow of SIESTA
is such that the Hessian matrixH (or the preconditionerP) is computedonce for each iteration of
the outer loop butusedin every iteration of the inner loop. SIESTA uses the CERFACS [5] “reverse
communication” implementation of GMRES with the right-hand preconditioner option.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

9

7.1. Improving the Efficiency of Iterative Solutions

In its original parallel version, after constructing a preconditioner, SIESTA computed a solution
of ξk ≈ P

k · Fk in each iteration of the inner loop by using theLU decomposition method for
general distributed matrices. It did so by making calls to PDGETRF, PDGETRSand DGSUM2D
routines in ScaLAPACK. Unlike the cyclic reduction-based algorithm implemented in BCYCLIC, a
ScaLAPACK based general approach is inefficient as it does not takeadvantage of the special block
diagonal structure of the preconditioner.

BCYCLIC was implemented as a two-phase algorithm to best suit the execution flow of SIESTA.
In the first phase, referred to as theForwardSolvephase, BCYCLIC constructs the preconditioner
P as described in the previous section. In the second phase, referred toas theBackwardSolvephase,
BCYCLIC explicitly computes a solution of the block-tridiagonal system for a given right hand side
in parallel. The number ofBackwardSolvephases typically exceeds the number ofForwardSolve
phases by one to two orders of magnitude due to the iterative nature of the GMRES procedure. See
TableII for an example.

P N ForwardSolves BackwardSolves
64 64 6 348
64 128 6 352
128 128 6 352
128 256 6 363
256 256 6 363
256 512 7 472
512 512 7 472
512 1024 11 1099
1024 1024 11 1099
1024 2048 11 1123

Table II. Number of iterations in the outer and inner loops ofAlgorithm1 whenM = 234.

At the end of theForwardSolvephase, a local portion ofx is available at processor0. This value
is then propagated to processorP/2 − 1 which in turn uses it for back substitution to evaluate its
local portion ofx. The newly computed values ofx are then similarly propagated by traversing the
recursion tree in the backward direction from the bottom-most level to the top-most level. Once the
back substitution traverseslg P levels from the leaf level of the recursion tree, the algorithm enters
its final compute intensive opposite to that of the firstlg(N

P
) steps for theForwardSolvephase. All

the while, new values are computed at each level by back-substituting with values computed in
the previous level. Communication of matrices is required only for the boundary blocks. Finally,
when the top level is reached, the solution of the system of equations is complete. Since no matrix
inversion or matrix-matrix multiplications are involved in theBackwardSolvephase, this phase can
be shown to beO(M) faster than theForwardSolvephase. Performance advantage over the original
ScaLAPACK based implementation of the backward solve iterations is shown in Fig. 3 for the
example shown in TableII .

7.2. Improving the Efficiency of Krylov Space Generation

An integral component of the GMRES iterative procedure that computes thesolution ofH · ξ = F

is the generation of thenth Krylov subspace,Kn. Thenth Krylov subspace for this problem is

Kn = span
{
ξ,Hξ,H2ξ, · · · ,Hn−1ξ

}

In its original version, SIESTA reused two subroutines to generate the Krylov subspace. It used
an inverse Fourier subroutine to convert the displacement vector to position space. The resulting
displacement vectorχ, in position space, was used as an input to a subroutine that directly computed
f(χ), wheref(y) = Hy, which was then transformed back into the Fourier space using another call

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

10

Figure 3. Performance gain from the BackwardSolve phase of the cyclic reduction algorithm. The top and
bottom labels of the horizontal axis refer to the granularity (N

P) and number of block rows (N), respectively.

Figure 4. Performance gain from optimizing the Krylov subspace generation procedure. The top and bottom
labels of the horizontal axis refer to the granularity (N

P) and number of block rows (N), respectively.

to the Fourier routine. This pseudo-spectral technique was repeated to compute each member of
the set

{
ξ,Hξ,H2ξ, · · · ,Hn−1ξ

}
. SinceH is a sparse matrix containing a linear (in the problem

sizeNM) number of non-zero elements, it was carried out serially on each processor to avoid the
overhead of inter-processor communications and data movement. However, computation costs begin
to grow with increasing problem sizes, quickly degrading SIESTA’s performance on large numbers
of processors used for larger problem sizes.

A key advantage of the repartitioning (see Section5) carried out before constructing the
preconditioner, is that it correctly partitions the columns ofP across processors for efficient use
by the GMRES routine. From Eqn (10), it is clear that, to computeH from P, only the added
perturbation to the diagonal elements need to be subtracted out. In this optimizedversion of SIESTA,
the diagonal perturbation is stored during the Hessian computation phase and subtracted out in the
GMRES routine to regain the distributed form of the HessianH. Based on this observation, a highly
efficient parallel matrix-vector subroutine was implemented to generate thenth Krylov subspace
with almost no additional inter-processor data movement overhead.

Performance gains from the aforementioned optimized Krylov subspace generation is shown
in Fig. 4. The advantage of the new approach is clear from the order of magnituderuntime
improvements.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

11

L D U0 0

L D U0 0

L D U0 0

L D U0 0

L D U0 0

L D U0 0

Pi−1

Pi

Pi+1

(a)

(b)

Figure 5. (a) The local portion of the asymmetry index can be computed without any additional
communication once the lower block diagonal matrix of the first block row of the next rank is made available.
(b) Performance gain in Hessian asymmetry detection due to the optimized kernel. Note thelog scale along
the vertical axis. The top and bottom labels of the horizontal axis refer to the granularity (NP) and number of

block rows (N), respectively.

8. HESSIAN ASYMMETRY DETECTION

As the plasma state approaches equilibrium in the outer loop of Algorithm1, the Hessian matrix
approaches self-adjointness. SIESTA computes a measure of the self-adjointness ofH every time
it is generated, to monitor that the simulation has not strayed from its path to equilibrium. This is
accomplished by computing an asymmetry index defined by:

δ =
√
||H − HT ||2/||H||2, (17)

where ||B|| =
√∑m

i=1

∑n

j=1
|b|2ij is the Frobenius norm of them × n matrix B. In the original

version of SIESTA, this asymmetry index was computed using calls to the ScaLAPACK routines
PDLANGE and PDGEADD. The routine PDLANGE returns the Frobenius norm of a distributed
matrix while the routine PDGEADD adds (or subtracts) two distributed matrices, both of which use
a set of Basic Linear Algebra Communication Subprograms (BLACS) for communication.

To gainfully exploit the special block-tridiagonal structure of the Hessian, we optimized SIESTA
to take advantage of the already distributed Hessian available after step 3 in Algorithm1. Recall that
after repartitioning the columnar space, as described in Section5, theN block rows of the matrix
H are already partitioned acrossP processors such that theith set of N

P
block rows are owned

by rank i. Given this partitioning scheme of the Hessian matrix, it isnot necessary to compute
H

T explicitly. The local part ofHT can be generated by simply assigningDi ← DT
i , Li ← UT

i−1

andUi ← LT
i+1 for all 1 ≤ i ≤ N

P
. Thus, if each process with ranki > 0 (the first rank is rank 0)

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

12

sends the lower diagonal block matrix of its first block row to the process withranki − 1, then the
local portion of both the numerator and the denominator in Eqn (17) can be computed without any
further communication. See Fig.5(a). The partial sums can then be aggregated on each processor
using anAllGather operation to make the global value of the asymmetry index available in each
processor. Thus, an extremely scalable and efficient parallel kernelresults as an additional advantage
of repartitioning the columnar space for the cyclic reduction algorithm.

Runtime overhead of Hessian asymmetry detection in the original code is not noticeable on
smaller processor counts but it quickly surpasses other computational costs as the number of cores
increases to thousands. This is because a ScaLAPACK-based implementation, although simpler in
practice, does not take advantage of the special structure of the Hessian or the simplifying properties
of the asymmetry index computation in Eqn (17). This optimization delivers performance gains by
multiple orders of magnitude for this kernel, as demonstrated in Fig.5(b) in which the percentage
of time spent in asymmetry detection,T (asym), is compared to the total runtime of SIESTA.

9. OVERALL PERFORMANCE AND RESULTS

A series of optimizations in key kernels of SIESTA was described in the previous sections. The
net performance improvement of SIESTA can be measured (and demonstrated) using two common
parallel performance metrics, namely,weak (or iso-granular)scaling andstrong scaling [6]. In
weak scaling, total run times on varying number of processors while maintaining a fixed ratio of
the problem size to processor counts are compared. Strong scaling, on the other hand, compares
runtimes in which the problem size is held constant while varying the processor count. Performance
gain (see Section2 for the definition of performance gain) is used to compare weak and strong
scaling of the unoptimized (Tu) and optimized (To) runtimes.

P N Unoptimized Optimized Gain

512 512 9775.39 969.04 10.09
512 1024 > 24000.00 2395.90 > 10.02
1024 1024 25557.35 3213.71 7.95
1024 2048 > 30600.00 3874.86 > 7.90

Table III. Runtimes (in sec) withM = 459. Runtimes which exceeded the alloted machine times are
indicated accordingly with lower bounds on the resulting gains.

Weak scaling performance gains are shown in Fig.6(a)with block sizeM = 234 for two different
granularities, namely,N

P
= 1 and N

P
= 2. When N

P
= 1 and M = 234, the optimized version of

SIESTA runs three times faster than the unoptimized version on 64 processors. This performance
gain increases as the number of processors is increased while keeping the granularity constant.

(a) Weak scaling withM = 234. (b) Strong scaling withM = 99 andN = 2048.

Figure 6. Weak (iso-granular) and strong scaling of optimized SIESTA. Performance gain is defined as
Tu/To for both weak and strong scaling executions.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

13

(a) Weak scaling withM = 234 andN = P . (b) Weak scaling withM = 234 andN = 2P .

Figure 7. Weak (iso-granular) scaling of unoptimized and optimized SIESTA.

When the number of processors increases to 256, the optimized version ofSIESTA runsover
thirteen times fasterthan the unoptimized version. The performance gain continues to remain an
order of magnitude higher even as the number of processors is increased to 1024. Even with larger
granularity (N

P
= 2 is shown in Fig.6(a)), the performance advantage increases to over ten times

as the number of processors increases from 64 to 256. Performance gains begin to diminish with
increasing number of processors, as can be expected. There is a point of diminishing return, which
depends on both the value of the block size and the number of row blocks.

Strong scaling performance gains are shown in Fig.6(b) with block sizeM = 99 on up to
P = 2048. The optimized version of SIESTA runs 5 to 7 times faster than the unoptimized version
when the number of processors vary by over an order of magnitude between 128 to 2048. As can
be inferred from Fig.6(a), this performance gain will only be more pronounced as the block sizeM
increases. For example, whenM = 459 , the optimized version of SIESTA runs over 8 times faster
compared to the unoptimized version withN = 2048 andP = 1024 (see TableIII) but 7 times faster
whenM = 99 (see Fig.6(b)).

Weak scaling of the total runtimes is presented in Fig.7 for M = 234. Fig. 7(a) and Fig.7(b)
differ only in the granularity of the problem, as indicated. In both cases, theoptimized version of
SIESTA clearly exhibits superior weak scaling. Strong scaling of the total runtimes, presented in
Fig. 8 for M = 99 andN = 2048, shows that asP approachesN , optimized SIESTA scales better
than the unoptimized version in the strong sense, despite a decreasing self-relative strong speedup
of both versions. The speedup decreases because of incremental optimization, benefits of which are
not uniformly manifested in the parallel execution flow of the entire code. That this happens despite
excellent strong scaling of the optimized versions of the computationally intensive components, as
presented in the earlier sections, is an indication that performance bottlenecks have shifted from
the original time-consuming linear algebra routines to other portions of the original code which
still retain vestiges of sequentiality. Elimination of these bottlenecks is a focus ofthe next phase of
optimizations.

The most important outcome of this scaling effort is providing SIESTA with the capability to
execute runs that are almost an order of magnitude faster than previouslypossible. For example, the
runtime of a configuration of current interest withM = 459 andN = 1024 is reduced from over
25,000 seconds down to less than 3,300 seconds (see TableIII). Even larger gains are expected for
largerM and/orN .

Application of the accelerated SIESTA code to a low pressure stellarator equilibrium plasma is
shown in Fig.9 and Fig.10 for two M values (the variation with the number of radial points is
small for this case). In Fig.9, the pressure contours are plotted in flux-coordinate space for two
toroidal cross sectionsv = 0 andv = π/Nfp, whereNfp = 5 is the number of field periods for this
plasma. The three different color levels shown correspond to significant changes in the pressure. The
most significant change occurs in the island contours inside the dominant resonance around radius
s = 0.55 where ι/Nfp = 1/6 (m = 6 islands). AsM (the mode number product) increases, the
amplitude of the variation of the pressure inside the islands is reduced but anoscillatory component

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

14

Figure 8. Strong scaling of SIESTA.

develops. This can be clearly seen in Fig.10 where the local pressure as a function of radius is
plotted for vertical cuts (in Fig.9) atu = 0. In thev = 0 plane, that cut goes through the “O” point
(widest point) of the island, while forv = π/Nfp, the cut is through the “X” point and shows very
little departure of the pressure from its original (no island) profile. Thus,the poloidal variation of
the island couples with the radial variation to give a slow oscillatory convergence to an eventually
flattened pressure profile inside the island asM increases. WithN = P = 256, the unoptimized
and optimized run times for the experiments corresponding to Fig.9(a) and Fig.9(b), are 2,852
seconds and 241 seconds, respectively. For the experiments withM = 528, corresponding to Fig.
9(c) and Fig.9(d), the unoptimized and optimized run times are 4,602 seconds and 540 seconds
with N = P = 256. The performance gain due to the optimizations is almost an order of magnitude
in both cases.

For every experiment reported here, the results obtained from the optimized version of SIESTA
were fully verified for correctness. The original unoptimized version was used as the baseline. For
each experiment, irrespective of whether the unoptimized or the optimized versions was used, the
force residual was at the level of10−19, ensuring convergence of the iterations.

10. CONCLUSION AND FUTURE WORK

Developed over several years, SIESTA is a computationally complex magnetohydrodynamics
equilibrium code. To extend its capabilities to meet the demands of new plasma applications (such
as those for ITER), the code needs to scale to thousands of processors. Rewriting a sophisticated
code such as SIESTA to be able to scale to that many processors is an extremely time-consuming
and expensive enterprise. Instead, taking an alternative approach,this paper describes a sequence
of optimizations which were implemented to deliver a dramatic improvement in SIESTA’s runtime.
Starting with the original small-scale parallel implementation, runtime profiling of SIESTA was
used to identify major bottlenecks. Each of these bottlenecks was relieved through a combination of
efficient algorithmic redesign and careful re-assessment of pre-existing computational strategies.
Both were possible due to a new parallel domain decomposition scheme that allowed multiple
elegant optimizations based on the special structure of the underlying system of equations.
Together, these non-intrusive optimizations improved SIESTA’s runtime by over ten-fold without
any significant modification to the original code while scaling it to 2,048 processors.

Further improvements are indeed possible.Though the values ofN (which limit the maximum
number of processorsP that can be used to maintain a minimum of unit granularity of the block row
to processor mapping) used in this paper are adequate for current plasma applications,significantly
higher values ofN as well asM are of interest in the evaluation of next generation plasma
applications (in which, for example, the correspondingN and/orM are as large as 10,000 or more).
In fact, core counts larger thanN can be used if the extra cores are deployed to parallelize block
level linear algebra operations, particularly for larger block sizeM . This translates to the potential of

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

15

(a) M = 273, N = 256, v = 0 (b) M = 273, N = 256, v = π/Nfp

(c) M = 528, N = 256, v = 0 (d) M = 528, N = 256, v = π/Nfp

Figure 9. Pressure contours for a variety of poloidal and toroidal resolutions. The subscriptNfp refers to
the number of field periods of the plasma.

testing our non-intrusive optimizations on much larger number of processorcores (e.g.,P = 10, 000
for simple optimizations, or even greater values ofP and larger values ofM). Evaluation of SIESTA
at these scales, with particular emphasis on multithreading-based optimizations toexploit multi-core
systems, is of interest in the near future.

ACKNOWLEDGEMENTS

This paper has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the
U.S. Department of Energy. Accordingly, the United States Government retains and the publisher,

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

16

(a)

(b)

Figure 10. Radial variation of the pressure profile atu = 0 for (a) v = 0, through the “O” point of the
dominantm = 6 island and (b)v = π/Nfp, through the “X” point.

by accepting the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes.

REFERENCES

1. O. Betancourt. BETAS, A Spectral Code for Three-dimensional Magnetohydrodynamic Equilibrium and Nonlinear
Stability Calculations.Communications of Pure and Applied Mathematics, 41(5):551, 1988.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

17

2. L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I.Dhillon, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley.ScaLAPACK User’s Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1997.

3. L. Chacon. An Optimal, Parallel, Fully Implicit Newton-Krylov Solver for Three-dimensional Viscoresistive
Magnetohydrodynamics.Physics of Plasmas, 15:056103, 2008.

4. R. Chodura and A. Schluter. A 3D code for MHD Equilibrium and Stability. Journal of Computational Physics,
41:68, 1981.

5. V. Fraysse, L. Giraud, S. Gratton, and J. Langou. A Set of GMRESRoutines for Real and Complex Arithmetics
on High Performance Computers.ACM Transactions on Mathematical Software, 31(2):228–238, 2005.

6. A. Grama, G. Karypis, V. Kumar, and A. Gupta.Introduction to Parallel Computing. Addison Wesley, 2 edition
edition, 2003.

7. J. D. Hanson, S. P. Hirshman, S. F. Knowlton, L. L. Lao, E. A. Lazarus, and J. M. Shields. V3FIT: A Code for
Three-dimensional Equilibrium Reconstruction.Nuclear Fusion, 49:075031, 2009.

8. T. Hayashi and et al. . InPlasma Phys. Control. Fusion, page 29, 1993.
9. S. P. Hirshman, K. S. Perumalla, V. E. Lynch, and R. Sanchez. BCYCLIC: A Parallel Block Tri-diagonal Matrix

Cyclic Solver. Journal of Computational Physics, 229:6392–6404, 2010.
10. S. P. Hirshman, R. Sanchez, and C. R. Cook. SIESTA: A Scalable Iterative Equlibrium Solver for Toroidal

Applications. Physics of Plasmas, 18:062504, 2011.
11. S. P. Hirshman and J. C. Whitson. Steepest-descent Moment Methodfor Three-dimensional Magnetohydrodynamic

Equilibria. Physics of Fluids, 26(12):3553, 1983.
12. C. T. Kelley and D. E. Keyes. Convergence Analysis of Pseudo-Transient Continuation.SIAM Journal of Scientific

Computing, 35(2):508–523, 1998.
13. L. L. Lao, H. S. John, R. Stambaugh, A. Kellman, and W. Pfeiffer. Reconstruction of Current Profile Parameters

and Plasma Shapes in Tokamaks.Nuclear Fusion, 25:1611, 1985.
14. W. Park, E. V. Belova, G. Y. Fu, X. Z. Tang, H. R. Strauss, and L. E. Sugiyama. Plasma Simulation Studies using

Multilevel Physics Models.Physics of Plasmas, 6:1796, 1999.
15. A. H. Reiman and H. S. Greenside. Calculation of Three-dimensional MHD Equilibria with Islands and Stochastic

Regions.Computational Physics Communications, 43:157, 1986.
16. Y. Saad and M. H. Shcultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Non-symmetric

Linear Systems.SIAM J. Sc. Statist. Comput., 7:856–869, 1986.
17. C. R. Sovenic, A. H. Glasser, T. A. Gianakon, D. C. Barnes, R. A. Nebel, S. E. Kruger, D. D. Schnack, S. J.

Plimpton, A. Tarditi, M. S. Chu, and the NIMROD Team. NonlinearMagnetohydrodynamics Simulation using
high-order Finite Elements.Journal of Computational Physics, 195:355, 2004.

18. D. Spong, S. Hirshman, L. Berry, J. Lyon, R. Fowler, D. Strickler, M. Cole, B. Nelson, D. Williamson, A. Ware,
D. Alban, R. Sanchez, G. Fu, D. Monticello, W. Miner, and P. Valanju. Physics Issues of Compact Drift Optimized
Stellarators.Nuclear Fusion, 41:771, 2001.

19. L. H. Thomas. Elliptic Problems In Linear Difference Equations Over A Network . Watson Sci. Comput. Lab.
Rep., Columbia University, 1949.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.(2010)
Prepared usingcpeauth.cls DOI: 10.1002/cpe

	1 Introduction
	2 Terminology and Notation
	3 Background
	3.1 MHD Equilibrium Principle in Curvilinear ``Flux'' Coordinates
	3.2 Preconditioner

	4 Execution Flow of SIESTA
	5 Computing and Partitioning the Hessian Matrix
	6 Constructing the Preconditioner
	6.1 Accelerated Thomas Algorithm
	6.2 Cyclic Reduction Based Parallel Solver

	7 Accelerating GMRES
	7.1 Improving the Efficiency of Iterative Solutions
	7.2 Improving the Efficiency of Krylov Space Generation

	8 Hessian Asymmetry Detection
	9 Overall Performance and Results
	10 Conclusion and Future Work

