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In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback 
effects and the significant role of transients in the dynamics make simulation the only 
effective method for proactive, reactive or post-facto analysis.  The spatial scale, runtime 
speed, and behavioral detail needed in detailed simulations of epidemic outbreaks cannot be 
supported by sequential or small-scale parallel execution, making it necessary to use large-
scale parallel processing.  Here, an optimistic parallel execution of a new discrete event 
formulation of a reaction-diffusion simulation model of epidemic propagation is presented to 
facilitate dramatic increase in the fidelity and speed by which epidemiological simulations can 
be performed. Rollback support needed during optimistic parallel execution is achieved by 
combining reverse computation with a small amount of incremental state saving.  Parallel 
speedup of over 5,500 and other runtime performance metrics of the system are observed 
with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability 
with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray 
XT5 system.  Scenarios representing large population sizes, with mobility and detailed state 
evolution modeled at the level of each individual, exceeding several hundreds of millions of 
individuals in the largest cases, are successfully exercised to verify model scalability. 
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1. Introduction 

1.1. Motivation 

The significance of gaining better insights into the 
dynamics of large-scale epidemics is well known.  The 
enormity of epidemic outbreak effects and the world-
wide attention to controlling them are common 
knowledge, often appearing in daily news.  In addition 
to the non-technical factors that come into play in the 
process of effectively dealing with epidemics, an 
important technical aspect continues to be elusive and 
remains to be explored, namely, gaining a good 
understanding of epidemic dynamics and the ways 
and means by which various contributing factors affect 
the propagation phenomena.  Public health planners 
and policy makers use epidemiological simulations to 
study a variety of factors that influence epidemic 
dynamics within a population.  For example, recently, 
Gojovic et al [1] reported the use of such simulations 
to demonstrate the effect of timely delivery of 
vaccinations on the attack rate of H1N1. 

Aside from analytical models based on 
simplifications, simulation continues to be an 

important tool.  In contrast to numerical integration-
based analysis of analytical (differential equation-
based) epidemic models, simulation often provides 
flexibility in incorporating many factors.  Large spatial 
scales and high behavioral detail contribute to the 
challenge of sustaining simulations of epidemic 
propagation dynamics at the scale of cities, states, 
and countries.  Certain epidemics with global spans 
may even serve to motivate simulations at world-
scale. 

Ideally, epidemiological models should be detailed 
enough to capture realistic models of the underlying 
phenomena and produce actionable insights.  
Realistic models tend to be very complex and the 
associated parameter space very large. In turn, this 
implies that the resulting computational problem 
becomes very large and unsuitable for sequential 
execution. 

Decisions and policies are typically based on 
statistical inferences from results of multiple 
simulation runs that attempt to explore the model's 
associated parameter space as exhaustively as 
possible. This requires very fast turnaround times for 
each run so that enough statistics can be gathered 
within a reasonable duration of wall clock time to base 
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actionable decisions on. In light of the above, the 
need for parallel execution of such epidemiological 
models becomes evident and, not surprisingly, large 
scale computational epidemiology has become an 
area of active research in recent years (see Section 
1.4), particularly, in an era when larger and more 
powerful parallel platforms are becoming increasingly 
common. Scalable algorithms are therefore imperative 
for large scale realistic epidemiological simulations 
that can exploit the computing resources offered by 
today's state-of-the-art parallel platforms.. 

1.2. Simulation Technology Focus 

The focus of this article is on advancing the state-
of-the-art in simulation technology to enable a 
dramatic leap in the population size, 
phenomenological process complexity (or model 
fidelity), and runtime speed for next generation 
epidemic outbreak simulations.  A greater emphasis is 
on advancing the simulation science and applying 
parallel computing methodologies than on exploring 
the domain science.  Our goal is to enable domain 
experts in epidemiology to be armed with new, more 
powerful simulators to help advance the science of 
epidemics analysis. Specifically, we present a 
simulation development and scaling effort, based on a 
novel reversible parallel discrete event formulation, of 
a large class of epidemics that can be modeled using 
reaction-diffusion dynamics.  We focus on the 
computational problem of sustaining simulations of 
large-scale epidemic propagation scenarios, and 
examine the performance effects of implementation 
on very large computational platforms containing 103-
105 processor cores. 

We develop a new parallel discrete event 
formulation of the reaction-diffusion model that is 
directly motivated by the one reported in [2], while 
retaining the power and flexibility afforded by their 
individual models, which are nearly agent-based in 
modeling power (with parameters tunable down to 
each individual).  We apply optimistic parallel 
execution techniques with a view to accommodating 
the low-lookahead conditions that may be present in 
certain scenarios.  For rollback, we employ a 
combination of state saving and reverse computation.  
For scalability, we utilize supercomputing platforms to 
increase the speed of simulation of large-scale 
scenarios.  The goals of our effort are not only to 
provide Parallel Discrete Event Simulation (PDES) 
alternatives to the currently best-known results that 
are non-PDES-based, but also to achieve new levels 
of scale (hundreds of millions of individuals) simulated 
on many thousands of processor cores. 

1.3. Contributions 

This article makes multiple contributions.  First, 
our new, PDES-based formulation of reaction-
diffusion models, (presented in greater detail later in 
the article), is unique in that host mobility, intra-host 
state evolution, and inter-host reactions are all 
modeled in full, discrete event fashion.  The time-
scales are completely decoupled from each other, and 
do not require any a priori determination of a time step 
and/or a minimum time increment, unlike prior 
formulation in [2].  Our model also enhances the 
mobility model of [2] by introducing arbitrary travel 
time delays across locations.  In the context of 
optimistic simulation, our reversible model for 
epidemics is unique.  In terms of scalability, the 
results reported here constitute the most scalable 
PDES execution of epidemic models.  Also, to the 
best of our knowledge, the largest run of the 
simulation scenario on 65,536 processor cores of 
Cray XT5 reported in Section 4 is the largest 
processor-count to date of any non-trivial PDES 
application reported in the literature. 

1.4. Related Work 

The epidemic modeling literature is vast, from 
classical differential equations that appeared in the 
1920s for aggregate phenomena such as critical 
thresholds and herd immunity, to articles appearing as 
recently as 2009 on phenomena such as emergence 
of critical thresholds on a variety of small-world and 
scale-free social networks [3-7]. In the past few years, 
agent-based simulations were used by the National 
Institutes of Health's Models of Infectious Disease 
Agent Study (MIDAS) group to shape avian flu 
policy[8, 9]. Other methodologies such as patch 
models, distance-transmission models and multi-
group models are discussed in [10].  A new class of 
reaction-diffusion based disaggregate models [11, 12] 
has emerged in the past few years, to facilitate 
planning by federal agencies (DHS, DoD and NIH). 

Although historically, epidemic simulations are 
sequentially executed, parallel simulation has been 
used in the late nineties and mid 2000’s to 
accommodate increasingly larger sizes of epidemic 
networks, and also speed up the execution to meet 
real-time constraints.  Within parallel simulations, 
time-stepped approaches have been used to execute 
certain complex models at large-scale.  The SPaSM 
simulator [13] is an example of such a scalable 
framework that has been successfully used for 
analyzing very large scenarios, including certain 
country-scale pandemic flu propagation analyses.  In 
scenarios involving highly varying time-scales and 
non-uniform inter-person interaction structures, 
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however, discrete event simulation can offer faster 
advances in simulation time.  On the other hand, 
parallel discrete event simulation offers its own 
challenges: the need to reformulate the dynamics in 
terms of discrete events, and the need to reduce 
runtime overheads to make it possible to scale 
execution to large numbers of processors.  The most 
closely related work is an algorithm in [14] that uses a 
“correction method” on state updates that are 
processed out of order.  However, it is not formulated 
in traditional PDES concepts of logical processes, 
events, and rollbacks, and hence hard to compare 
with PDES techniques that are more generally 
applicable.  It is restricted to shared memory 
machines, and has been used to simulate millions of 
light-weight Java-base agents, exploiting a simplified 
state machine of individual’s infection states, and 
hence does not generalize to more complex 
scenarios, models, and experimentation platforms. 

A city-scale small-pox spread simulation was 
reported in [15], with the focus more on 
interoperability of simulator modules, less on 
scalability and efficiency.  Other, peripherally related, 
work includes Monte Carlo simulation models (e.g., 
[16]). 

Systems such as EpiSimdemics, EpiSims, and 
EpiFast from Virginia Tech [2, 17] have advanced the 
state of the art in epidemics analyses greatly in the 
past few years.  We have been directly motivated by 
their article in Supercomputing 2008 [2] that reported 
scalability of execution on up to 512 processor cores, 
encountering certain synchronization problems 
beyond that scale.  An enhanced version of their work 
to include models of exogenous interventions [17] also 
scales to about 250 processors. 

Our current work borrows their reaction-diffusion 
model, but explores an alternative execution method 
distinct from their parallelization approach that can be 
roughly classified as functional parallelism.  We apply 
the latest PDES methodologies to explore the 
potential of PDES executions to well beyond a 
thousand processor cores.  This article is an extended 
version of our earlier conference paper [18], expanded 
in terms of model detail, cost analysis and 
performance results. 

1.5. Organization 

The rest of the document is organized as follows.  
The forward model is described in Section 2. The 
reverse model is described in Section 3. An analysis 
of average memory size with state saving and reverse 
computation is presented in Section 4. The 
implementation of the system, the characteristics of 
the experimentation platform, and the specification of 
the benchmarks are described in Section 5, followed 

by a detailed performance study in Section 6.  The 
article is summarized and ongoing work identified in 
Section 7. 

2. Forward Execution Model 

The model and the details of the reaction-diffusion 
system are described in this section, along with their 
discrete event execution formulation. 

2.1. Model based on Reaction-Diffusion 

A large class of epidemics may be modeled using 
a combination of reaction and diffusion processes.  
The reactions arise as a result of inter-entity 
interactions,  (e.g., physical proximity for influenza).  
The dynamic chances for interactions arise as a result 
of mobility of the entities (e.g., meetings and other co-
located activities).  Geographical diffusion of entities 
facilitates chances for interactions among varying 
sample sets of entities. 

 
Figure 1: Abstraction of System for Epidemic 

Propagation 

Figure 1 shows a schematic for the reaction-
diffusion abstraction on a system of individuals.  
Interaction points called “locations” demarcate the 
extents of interaction that individuals within that 
location incur during the time they are present at that 
location.  Multiple locations are contained within a 
region.  An arbitrary diffusion network may be defined 
among locations within a region.  Similarly, an 
arbitrary diffusion network may be defined among 
regions.  The diffusion network can be dynamic in 
nature; in other words, the connectivity graph may be 
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changed at the modeler’s/user’s will at runtime, as 
needed by any specific scenario being modeled.  
Latencies of activities (interaction and/or mobility) 
along the links of the network may be arbitrarily 
specified. 

Reaction-diffusion based models typically consist 
of: (a) a set of interacting entities, such as humans, 
(b) a network graph that represents the interaction 
structure of the population under study, (c) a reaction 
process, called within-host progression, that models 
the evolution of the disease within an individual entity 
in the population, and (d) a diffusion process, called 
between-host transmission, that models the 
transmission of the disease between individual 
entities.  Other sub-models may be added to 
accommodate additional aspects such as resource 
limitations on all processes. 

A reaction function defines the infection behavior 
of co-located individuals (probability of an uninfected 
entity getting infected, or, alternatively, an infectious 
individual infecting other susceptible population). 

The within-host progression of the infection is 
modeled by a probabilistic timed transition system 
(PTTS) which is a finite state machine with 
probabilistic, timed state transitions. A PTTS reflects 
the reaction that changes the state of an individual 
within the population.  We use the PTTS framework of 
[2] unmodified. 

The reaction function also includes the 
determination of the probability of transmission within 
the group of individuals at any location.  For an 
individual i, the between-host transmission is modeled 
by the probability function ip , borrowed unmodified 
from [2] and reproduced here for convenience: 

(1 )
1

r i
r R

t N ln rs

ip e
ρ

∈
−∑

= −  (1) 

In the preceding equation, τ is the duration of 
exposure, R is the set of infectivities of the infected 
individuals, Nr is the number of infectious individuals 
with infectivity r, si is the susceptibility of i and ρ is the 
transmissibility which is a disease specific property.  
The rationale and additional detail on these variables 
are documented in [2]. 

The underlying social network consists of the 
following entities defined hierarchically as: (a) 
individual person (b) location: a set of individuals (c) 
region: a set of locations and (d) domain: a set of 
regions. The scale of the system depends on the 
definitions that we associate with the above entities. 
For example, a state level simulation can associate 
locations with office buildings or shopping malls, 
regions can be associated with subdivisions, towns or 

cities and the state itself as a group of regions which 
represents the computational domain over a state-
level social network. Similarly, a country-level 
simulation can be appropriately redefined. 

In summary, the system consists of (a) individual 
entities each with its own characteristics, (b) locations 
that hold individuals for periods of time, (c) regions 
that represent a set of logically related locations, who 
have a diffusion network among themselves, (d) a 
reaction function that specifies the probabilities of 
infections over time within a location, and (e) a two-
level diffusion function that takes an individual from a 
location-region pair to another location-region pair. 

In a simplified network, the following parameters 
may be defined: (i) infected probability: percentage of 
population infected at time t=0 (ii) vaccinated 
probability: percentage of population vaccinated at 
time t=0 (iii) mean stay time: average time that an 
individual stays within a location (iv) mean .local travel 
time: average time taken by an individual to travel 
between two locations within a region (v) mean 
remote travel time: average time taken by an 
individual to travel between locations across two 
regions and (vi) locality probability: probability that an 
individual stays within a region. 

2.2. Relation to Real World Entities 

The abstraction can be used to model activity at 
multiple spatial scales.  If the number of persons per 
location is Sl and the number of locations per region is 
Lr, then, the following table illustrates the rough scales 
of population for which epidemic outbreaks could be 
analyzed using this model. 

Table 1: Example Scales of Systems 

Sl Lr Scenario 
10 100 Small community 

100 100 Small town 
1000 100 Small city 
1000 1000 Large city 

10000 100 Rural state 

The model is sufficiently flexible to accommodate 
intra-city and inter-city trips (work, stores, homes, 
schools), and varying levels of exposure times for 
reactions.  In the largest case, one can envision 
modeling inter-country transport (ship, air), in 
combination with intra-country (inter-state) diffusion 
(car, air).  A visualization of a motivating example 
scenario is shown in the appendix, using a mapping of 
the modeling units (locations and regions) to a few 
cities and states of the USA. Trip statistics obtained 
from the Bureau of Transportation Statistics are 
typically utilized to initialize the network structure and 



Perumalla and Seal 

Volume 00, Number 0    SIMULATION     5 

time distributions. 

2.3. Modeling Operations and Policies 

The same abstract model is in fact sufficiently 
powerful to model complex operations and policies.  
For example, curfews can be modeled by using an 
outgoing probability of unity and incoming probability 
of zero for the location corresponding to the curfew 
(e.g., a public park).  Similarly, an outgoing probability 
of zero and incoming probability of unity may be used 
in the diffusion network to model quarantined 
locations (e.g., a school or hospital). 

Analogously, it is possible to incorporate 
vaccination production delays (manufacturing 
latencies, vehicular transportation times) by setting or 
varying diffusion network latencies accordingly. 

2.4. Our Discrete Event Model 

As mentioned previously, we employ a purely 
discrete event style of evolution for all aspects of the 
model.  Each location is mapped to a single logical 
process (LP). A number of locations (specified by the 
user at runtime) constitute a region, and each region 
is mapped to a processor.  The location LP processes 
three types of events, namely: (a) Arrival Event (AE) 
(b) State Change Event (SCE) and (c) Departure 
Event (DE).  Each individual person in a location is 
assigned a globally unique integer identity to 
distinguish it within the entire population.  A 
customized PTTS (specifiable by the user on an 
individual-basis at initialization) is used to model the 
within-host progression of the infection.  The state 
composition of each person and each location (LP) 
are given in Figure 2 and Figure 3 respectively. 

ptype: Person Type and/or Traits 
Person State 

pid: Global Identifier 
seed: RNG Seed 
istate: Infection State 

Figure 2: State Encapsulated by every Person 

occ: Occupant Set of Persons (Person States) 
Location Data Structures (LP State) 

omap: Map from ID to Person in occ Set 
gptts: Default PTTS across local occupants 

Figure 3: Data Structures within each Location LP 

 

If(Event is AE) 
Forward Algorithm 

  Insert AE.Person into Occupant Set 
  Incorporate AE.Person’s random seed locally 
  dt=Randomized depart time of AE.Person 
  Schedule DE for AE.Person at now+dt 
  If(AE.Person turned infectious between 
      now and its departure time at source) 
      Progress infection state of AE.Person 
       (schedule SCE for AE.Person) 
  End If 
  Compute Equation 1 (reaction function) 
  Determine new infections due to Equation 1 
  For each person P in occ newly infected now 
      Progress infection state of P by PTTS 
       (retract previous SCE of P and 
        schedule a new SCE for P) 
  End For 
Else If(Event is DE) 
  Locate person P in occ with identifier DE.pid 
  Remove P from occ 
  Determine destination L (diffusion function) 
  If P has local pending SCE, note residual δt 
  Determine travel time dt (diffusion function) 
  Schedule AE for P to L at now+dt 
Else /*Event is SCE*/ 
  Locate person P in occ with ID SCE.pid 
  Progress infection state of P by PTTS 
    (schedule SCE for P) 
  If( P just turned infectious) 
    Compute Equation 1 (reaction function) 
    Determine new infections due to Eqn 1 
    For each person Q in occ newly infected 
        Progress infection state of Q by PTTS 
        (retract previous SCE of Q and 
         schedule a new SCE for Q) 
    End For 
  End If 
End If 

Figure 4: Forward Event Processing at each LP 

The forward execution algorithm is shown in 
Figure 4. When an individual arrives, an AE is 
triggered in that location. As part of processing an AE, 
the incoming person is inserted into an occupant set. 
If the incoming individual arrives in an infectious state, 
its transmission within the local population is 
computed using Eqn (1). If it is uninfected, then its 
within-host progression is computed using the PTTS. 
The incoming person’s departure is scheduled based 
on the parameter mean stay time.  The individual’s 
next departure time is computed, and departure event 
DE is scheduled by the location to itself as reminder to 
eject the individual from the location’s state at that 
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time.  At the time the departure event is processed, a 
destination location (either local to the region or in 
another region across processors) is selected, the 
travel time computed, and the state of the person 
corresponding to the moment of departure at the 
source location is packed into the event and sent. 

The processing of a DE marks the exit of that 
person from its current location.  The outgoing 
individual is removed from the occupant set and an 
AE is scheduled at the destination location. 

When an individual P within a location changes its 
state of infection, an SCE is triggered. The infection 
state of P is then evolved using its PTTS. If the final 
state is infectious, then its effect on the rest of the 
occupants within the location is computed using 
Equation 1. 

A couple of important nuances must be 
considered for correctness: (a) a person turning 
infectious while in transit must initiate infections as 
appropriate on arrival at destination, and (b) random 
number stream continuity must be maintained across 
processors when persons cross processors.  The first 
nuance is taken into account by noting the residual 
time of infection dormancy in AE so that the receiving 
location can verify the special condition and act 
accordingly (special case trapped in Forward 
Algorithm by the first conditional in processing AE).  
The latter nuance is handled by shipping in AE the 
random number generator seed of that person along 
with the person’s state.  The receiving processor 
restarts its random number stream accurately at the 
received starting seed for that person. 

3. Reverse Execution Model 

We now turn to the reverse execution handlers 
that make use of the information generated in the 
modified forward execution to undo forward operation. 

3.1. Modified LP Data Structures 

Since the original forward-only model is not 
reversible as is, a few variables need to be added to 
achieve reversibility.  Note that this does not imply the 
use of state-saving; it only implies the increase of 
sequential processing memory need by a constant 
factor.  In other words, no state log is accumulated as 
a result of this augmentation, but only the original 
copy of the (single) state is increased by a constant 
amount. 

prev_istate: Previous Infection State 
 (Added) Person State 

infect_ts: Infected Time 

Figure 5: State Added to Person for Reversibility 

The variables added to each person are shown in 
Figure 5.  The prev_istate is used to mark its previous 
infection state to remember a irrecoverable previous 
state, if any, in the PTTS, encountered by the person.  
The infect_ts is added to disambiguate the identity, if 
any, of event that triggered the infection of this 
person. 

dep: “Departed” Set of Persons (states) 
 (Added) Location Data Structures (LP State) 

dmap: Map from ID to Person in dep Set 

Figure 6: State Added to each Location LP for 
Reversibility 

Figure 6 shows the addition of a “departed” set to 
each location to accommodate reversibility of DE.  
This is used to “keep the person around” in case the 
departure event is rolled back.  Again, this does not 
constitute state saving by itself.  To compare, even if 
the best (incremental) state saving techniques are 
employed, two copies of person’s state would be 
generated in the incremental state log for every move 
from occupant set to departed set, bringing the total 
memory to 3 person states, compared to the two 
states in our reverse computing scheme. 

3.2. Modified Forward Event Processing 

The forward event processing is augmented as 
follows: (a) any time an infection is initiated on a 
person, its infection time is noted in the person’s state, 
(b) departing persons in DE are moved to the 
“departed set” rather than discarded (c) previous state 
of a person is noted in the corresponding SCE event 
for every state change.  Due to space limitations, the 
modified forward algorithm is not reproduced here. 

3.3. Backward Event Processing 

The reverse execution by locations is shown in 
Figure 7. 

The reversal of arrival event initiates the reversal 
of locally scheduled departure events, and undoes 
local infection state change event for the subject 
individual. 

The departure set is maintained should a DE need 
to be reversed in the future.  This is used to restore an 
optimistically departed person back into the occupant 
set. 

Since, as part of processing an SCE, the previous 
infection state is stored, it is restored in backward 
execution.  Same holds true for detecting the set of 
infected events when the arrival of an infectious 
person and/or a state change event causes one or 
more infections.  The set of infected individuals is 
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detected accurately by comparing their infection 
timestamps with the current simulation time. 

If(Event is AE) 
Backward Algorithm 

  For each person P in occ infected at now 
      Restore its states to previous in PTTS 
      Reverse its random number generator 
  End For 
  Remove AE.Person from occ 
Else If(Event is DE) 
  Locate person P in dep with identifier DE.pid 
  Remove P from dep 
  Add P to occ 
Else /*Event is SCE*/ 
  Locate person P in occ with ID SCE.pid 
  If( P is infectious) 
    For each person Q in occ infected now 
        Restore its states to previous in PTTS 
        Reverse its random number generator 
    End For 
  End If 
  Restore state of P to previous in PTTS 
  Reverse its random number generator 
End If 

Figure 7: Backward Event Processing at each LP 

3.4. Event Commit Operations 

An important effect of the use of a departure set is 
that the size of the set accumulates over simulation 
time, since all departed persons are tentatively 
retained there.  Thus, they need to be reclaimed.  This 
is easily done by periodically flushing those entries 
that contain persons whose departure time is less 
than the global virtual time.  Thus, an additional 
conditional is added to the event processing loop that 
detects this condition and the departure set is 
periodically flushed. 

3.5. Random Number Generation 

We use the well-known technique of reversible 
random number generation [19] to undo the several 
random number generation calls that appear in the 
model.  These appear in the state transition function 
for PTTS, the computation of infection probability in 
the reaction function, and the selection of time and 
destination in the mobility determination (diffusion). 

4. Analysis of State Memory Size 

To decide on the type of undo method to employ 
for restoring the state of a location upon a rollback, we 
analyze the theoretical memory needs by some of the 

well-known methods.  We examine some of the 
popular methods that use state-saving, reverse 
computation or a combination.  Table 2 lists the 
average memory needs for each approach: Copy 
State Saving (CSS), Incremental State Saving (ISS), 
Reverse Computation with some State Saving 
(RC+SS), and Pure Reverse Computation (PRC). 

The parameters used in the analysis are: μocc is 
the average number of occupants (persons) at a 
location when an event of a specific type is executed, 
μinf is the average number of infections initiated at a 
location by an arrival of a person who newly turned 
infectious, R is the memory size of each person’s 
state, G is the memory size of each random number 
generator seed, D is the memory size needed to 
represent a state in the PTTS, TS is the memory size 
occupied by a timestamp value. 

Table 2: Average memory size for rollback per 
event using state saving, reverse computation or 

combination 

Event 
Type 

CSS ISS RC+ISS PRC 

Arrival 
μocc×R μinf×(G+D) μinf×(TS+D) 0 

Infection 
State 
Change 

μocc×R G+D D 0 

Departure 
μocc×R [ε..2R] 0 0 

Let us consider the easiest to analyze, namely, 
CSS.  The memory cost for CSS is straightforward: 
before executing any event, the entire state of the LP 
is saved.  The state size of each location is equal to 
the sum of state sizes of all resident persons in the 
location’s occupant set.  Given that the average 
number of persons in the occupant set is μocc, the size 
is μocc×R which remains the same for all events. 

The next improved method is the well-known ISS 
that saves a copy of only the portions of the state that 
is modified during event execution.  For an arrival 
event, the state modifications include the set of 
resident persons that are infected by an infectious 
arrival.  Each resident person who is newly infected by 
an infectious arrival generates a new random number 
to determine its next state in the PTTS and then 
updates its new infection (PTTS) state.  Thus, each 
infected resident incurs an incremental update to its 
state of size G+D, giving a total incremental state cost 
of μinf×(G+D) per arrival.  A change in infection (PTTS) 
state performed by an SCE type of event inflicts a 
similar incremental cost of (G+D) for a resident.  A 
departure event moves the person from occupant set 
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to the departed set, giving a memory cost of anywhere 
between ε and 2R, depending on how the sets are 
implemented.  A highly optimized implementation may 
incur a cost of only a small number ε of bits by 
reorganizing a small number of pointers, while a naïve 
implementation may delete the state from the 
occupant set and write new data in the departed set, 
giving a cost of 2R to undo such a move. 

The combination of reverse computation and state 
saving as employed in our scheme incurs reduced 
costs for all three events.  Upon infection of any 
person by an infectious arrival, the previous state of 
that person is saved along with the timestamp of the 
infection, giving a total of μinf×(TS+D) per arrival event.  
Reversibility of random number generator [19] 
obviates the memory cost of saving the seed.  
Similarly, an infection change event only incurs the 
cost of saving the previous infection state.  A 
departure event simply moves the person from 
occupant set to departed set, which is perfectly 
reversible, thereby incurring zero memory cost. 

It is very important to note that the memory cost 
associated with infectious arrivals as well as that for 
infection state change (SCE) events can be entirely 
avoided with pure reverse computation.  This can be 
achieved by temporarily reversing the random number 
generator stream sufficiently far in the past to 
disambiguate the previous state from which the 
current state was reached.  Note that this is always 
possible with all PTTS machines in which recovered 
states do not loop back to the (uninfected) initial state.  
However, due to the higher run time cost and software 
implementation complexity associated with the 
computation needed to avoid the memory for perfect 
reversibility of infection change events, the RC+ISS 
method serves as a good trade-off between memory 
and run time costs. 

Note also that, in realistic scenarios, the number 
of arrival and departure events (AE and DE) is 
significantly larger than infection state change events 
(SCE).  In the same scenarios, average number of 
infections μinf is also extremely low, tending to zero.  In 
such cases, the memory cost of RC+ISS 
asymptotically becomes negligible.  Due to these 
considerations, we chose the RC+ISS approach to 
support state restoration upon rollback.  It is indeed 
conceivable for another implementation to exclusively 
use ISS; however, its memory cost would be 
necessarily bounded on the lower side by that of 
RC+ISS, as seen in Table 2. 

5. Implementation and Benchmarks 

The application was developed in C++ on top of a 
simulation engine that supports the concepts of logical 
processes (LPs), events for exchanging time-stamped 

messages among logical processes and virtual time-
synchronized delivery of events to LPs. The engine 
avoids all use of collective communication calls and 
implements a variant of global virtual time 
synchronization that is purely asynchronous in nature. 
It avoids blocking in all places and is built with 
scalable reduction algorithms that are realized in user-
space using point-to-point, non-blocking 
communications. 

5.1. Comparison to Traditional Models 

Traditional epidemiological models, such as the 
SIR model and several such variants, are based on 
simplified views of the population under study.  In the 
SIR model, each member of the population 
progresses from being in a susceptible (S) state to an 
infectious (I) state and finally to a recovered (R) state. 
The total number of individuals in each of the states is 
a time-dependent function. Typically, S(t), I(t) and R(t) 
are related to each other through coupled differential 
equations, under the aggregate constraint that 
S(t)+I(t)+R(t)=N which preserves the total population 
size. The dynamics evolve through predefined 
infection and recovery rates that connect the S and I 
states, and the I and R states, respectively. Contrary 
to such aggregate models, the dynamics of the 
reaction-diffusion based model adopted in this paper 
(borrowed from recent literature [2]) evolve through 
probabilistic functions. The reaction and diffusion 
dynamics are governed by probabilistic timed state 
transitions and the probability function given by 
Equation. 1. 

 
Figure 8: Verification of propagation dynamics in a 

scenario (with one location per region, one 
individual per location) that approximates the 
high-fidelity model with traditional aggregate 

models such as SIR 

It is important, however, for a higher fidelity model 
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to be able to duplicate the dynamics of the traditional 
aggregate models in scenarios that represent 
aggregate dynamics.  A verification of such a 
capability, to duplicate the logistic curve generally 
followed by aggregate model dynamics, is performed 
on our system.  In Figure 8, the cumulative number of 
infections in a population size of 1000 individuals is 
plotted using the parameter set [a a a] (see Section 
5.3) with an initial population distribution of only one 
individual per location. 

Note that, in practice, epidemiological outbreak 
simulations of interest are rarely simulated to the point 
where such large fractions of population are infected.  
This verification of dynamics following the logistic 
curve is only performed as one of the tests to assure 
the implementation’s correctness properties. 

5.2. Hardware and Software Platforms 

The simulations were run on Cray XT4, Cray XT5 
and Blue Gene/P (BG/P) machines at the National 
Center for Computational Sciences (www.nccs.gov). 
The XT4 contains 7,832 compute nodes, each node 
containing a quad-core 2.1 GHz AMD Opteron 
processor with 8 GB of memory. The nodes are 
connected via a high-bandwidth SeaStar interconnect. 
Internally, the MPI implementation is based on Cray’s 
implementation of Portals 3.3 messaging interface. At 
the time when experiments were run on the XT5, it 
contained 36,864 quad core AMD Opteron Budapest 
processors with 2GB of memory per core. The nodes 
are connected by a SeaStar-II interconnect.  The Blue 
Gene/P that was used is a 27 TF system consisting of 
2048 850 MHz IBM quad core 450d PowerPC 
processors and 2GB of memory per node. 

5.3. Benchmark Scenario Description 

The performance of the application is studied with 
respect to changes in: (a) population distribution (b) 
reaction-diffusion parameters and (c) mobility 
parameters. Several combinations of the above model 
parameters were tested. A few of these scenarios are 
described next. 

Population: Two different population distributions, 
labeled by I and II, were explored. For the same total 
population, the number of individuals per location (LP) 
in distribution I is one order of magnitude higher than 
in distribution II. 

Reaction-Diffusion: Three different assignments 
of the reaction parameters are used, each, labeled a, 
b and c, were chosen.  Two mobility distributions are 
chosen, labeled a and b. Their qualitative descriptions 
are provided in Table 3, and their actual numeric 
values are listed in Table 4. 

Scenarios: The experimental scenarios, thus, are 
represented by a cross product of the population 
distribution, reaction parameters, and diffusion 
parameters.  For example, a scenario is completely 
determined by the choice of the population set 
(number of locations per region, and initial number of 
persons per location), the choice of set for intra-
person reaction parameters (set a or b or c), the 
choice of inter-person reaction parameters (set a, b or 
c), and the choice of diffusion parameters (set a or 
b)..For any population set, we define the scenario by 
the tuple 1, 2,R R D

 
where { , }1 ,aR b c∈ ,

2 { , , }R a b c∈ , and { , }D a b∈ . 
 

Table 3: Qualitative description of the sets of 
parameters chosen for our experiments 

Type Tag Set a Set b 
Reaction 
(intra-person) 

R1 Level I Level II 

Reaction 
(inter-person) 

R2 Infectivity is 
greater than  
susceptibility 

Susceptibility is 
greater than 
infectivity 

Diffusion 
(mobility) 

D High Low 

 

Table 4: Parameter sets used in the scenarios 
simulated in run-time performance experiments 
Reaction (R1) Set 

a 
Set 
b 

Set 
c 

Normal-Uninfected-Latent 0.9 0.5 0.1 
Normal-Latent-Infectious 1.0 1.0 1.0 
Normal-Infectious-Recovered 1.0 1.0 1.0 
Normal-Uninfected-Incubating 0.1 0.5 0.9 
Normal-Incubating-Asympt 1.0 1.0 1.0 
Normal-Asympt-Recovered 1.0 1.0 1.0 
Normal-Recovered-Recovered 1.0 1.0 1.0 
Vaccinated-Uninfected-Recovered 0.5 0.5 0.2 
Vaccinated-Uninfected-Latent 0.2 0.3 0.4 
Vaccinated-Latent-Infectious 1.0 1.0 1.0 
Vaccinated-Infectious-Recovered 1.0 1.0 1.0 
Vaccinated-Uninfected-Incubating 0.3 0.2 0.4 
Vaccinated-Incubating-Asympt 1.0 1.0 1.0 
Vaccinated-Asympt-Recovered 1.0 1.0 1.0 
Vaccinated-Recovered-Recovered 1.0 1.0 1.0 
Reaction (R2) Set 

a 
Set 
b 

Set 
c 

Infectivity 1.0 0.5 1.0 
Susceptibility 0.5 1.0 0.5 
Transmissibility 5e-4 5e-4 5e-4 
Diffusion (D) Set 

a 
Set 
b 

 

Locality (%) 75 90  
Lookahead (hr) 0.3 0.5  
Mean stay time (hr) 8.0 5.0  
Mean local travel time (hr) 0.5 1.0  
Mean remote travel time (hr) 8.0 12  

http://www.nccs.gov/�
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The intra-person reaction parameters define the 
infection characteristics of each individual.  The inter-
person reaction parameters are used to define the 
aggregate constants that define the reaction 
according to Equation 1.  The diffusion parameters 
define the mobility characteristics that directly 
influence the types and intensity of mixing among 
individuals across locations and regions, thereby 
affecting their opportunities for infection. 

The values chosen are only representative for the 
range of runtime dynamics we desire to exercise, 
since the infection and mobility dynamics have 
noticeable bearing on the run-time performance. 

6. Performance Study 

We now present the performance study based on 
the experiments with the benchmark scenarios on 
Blue Gene/P and Cray XT4/XT5 platforms. 

The majority of runs to cover the benchmark 
scenarios have been executed on the 8,192-core 
BG/P.  Due to allocation limits on computing time, a 
smaller number of scenarios were executed on the 
larger 32,768-core Cray XT4, and only a single 
scenario was executed on the largest Cray XT5 that 
has over 200,000 cores. 

The parallel speedup obtained on BG/P is shown 
for different scenarios in Figure 9, Figure 10, Figure 
11, and Figure 12.  Rollback statistics for a few of the 
representative runs on the BG/P are shown in Figure 
13.  Parallel speedups for BG/P in these figures are 
plotted with respect to a baseline execution on 128 
cores which is the smallest number of processor cores 
on the BG/P platform that can be used for any parallel 
execution. The speedup on 128 cores is, accordingly, 
defined as the baseline speedup with 100% efficiency.  

Note that, in the largest configurations executed 
on the BG/P, over 800 million individuals are 
represented (1000 person/location, 10 
locations/region, 8192 regions).  This is a stress test 
on the hardware capacity of the system, and hence, 
as seen in Figure 12, only a few configurations of 
reaction and diffusion parameters were successful at 
the largest population sizes on the BG/P.  Blue Gene 
systems of higher scale are available elsewhere, 
which we intend to access in the future to test scaling 
beyond 8,192 cores on the Blue Gene architecture. 

 
Figure 9: Parallel speedup on BG/P with 100 

persons/location, 10 locations/region 

 

 
Figure 10: Parallel speedup on BG/P with 1000 

persons/location, 10 locations/region 

The results from the Cray XT4 are shown in 
Figure 14 and Figure 15.  The largest Cray XT5 
results are shown in Figure 16. 
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Figure 11: Parallel speedup on BG/P with 100 

persons/location, 100 locations/region 

 
Figure 12: Parallel speedup on BG/P with 1000 

persons/location, 100 locations/region 

 
Figure 13: Rollback Efficiency on BG/P 

6.1. Analysis 

One of the effects of population distribution on the 
parallel performance can be observed in the results 
obtained on BG/P.  They show the relative speedup 
for different population sets on processor counts 
varying from 128 to 8192 on the BG/P architecture. 

The probability that an individual chooses a 
destination location that is resident on a remote region 
is the same as that of choosing one that is locally 
available, As a result, region boundaries are crossed 
more often when there are less destination locations 
available locally. Since regions are mapped to 
processors, the resulting communication overhead 
increases as the number of locally available locations 
decreases. This effect is evident in the BG/P results, 
which indicate the degradation of parallel performance 
in going from 100 to 10 locations per region for the 
same total population. 

Degradation of speedup observed at the full 
system scale of 8,192 cores of the BG/P can be 
attributed to operating system jitter that is well known 
to be detrimental to parallel performance at the full 
scale of any system. Significant speedup 
improvements are expected on the same number of 
cores but on a larger system; this is in fact evidenced 
by the fact that the same scenarios deliver good 
speedup on the larger XT4 platform. 

Experiments were carried out on the Cray XT4 
with simulation runs carried out on up to 16,384 
processors. In Figure 14, only the diffusion parameter 
set is varied while in Figure 15 only the mobility 
parameter set is varied. For the same parameter set 
[a a b], the parallel performance is seen to improve in 
Figure 15 with an increase in the number of locations 
that are locally available, as explained above. This is 
not the case, however, for the scenario with 
parameter set [a a a] (see Figure 15). This highlights 
the competing effects of mobility of individuals within a 
population and the distribution of the individuals within 
it. 

Figure 13 indicates that for a variety of reaction-
diffusion and mobility conditions, the rollback 
efficiency of the optimistic parallel simulation remains 
under control (well under 10% for all tested 
scenarios). Finally, Figure 16 demonstrates the 
scalability of the simulation to 65,536 processors on a 
Cray XT5 platform with 10,000× speedup. 

As can be seen from the BG/P runs, runtime 
performance of the parallel simulation is not only 
dependent on the hardware characteristics of the 
computing platform but also closely related to the 
scenario that is being simulated. For example, the 
observed speedup on 1,024 cores approximately 
varies between 700 and 2500 with scenarios 
containing 1000 persons/location and 10 
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locations/region (see Figure 10). Nearly 60% 
efficiency is observed on 8,192 processors for the 
scenario [a c b] with 1000 persons/location and 10 
locations/region.  Super-linear speedup can be 
observed in a few instances, such as, scenario [a c b] 
on both 1,024 and 4,096 cores, and scenario [a b a] 
on 1,024 cores, both with 1000 persons/location and 
10 locations/region. One of the main reasons for such 
variance in the speedups for the same problem size 
and core-count is that the phenomenological 
dynamics can differ significantly from one scenario to 
another. For example, scenarios with smaller values 
of the locality parameter result in fewer events that 
require crossing processor boundaries, which, in turn, 
delivers better parallel speedup due to reduced inter-
processor communication. On the other hand, well 
known hardware artifacts such as caching effects and 
network dynamics often artificially magnify speedups, 
like the few instances of super-linear speedups 
observed. 

 
Figure 14: Speedup on Cray XT4 for population set 

I 

 
Figure 15: Speedup on Cray XT4 for population set 

II, with the same total population as in Figure 14 

 
Figure 16: Speedup on Cray XT5 

6.2. Performance Effects due to Population Unit 

To better understand the parallel performance of 
our discrete event simulation on different population 
distributions, independent of the complex parameter 
space spanned by the tuple 1, 2,R R D , we compare 
the observed simulation runtimes on two population 
distributions: one with 1000 persons/location and 10 
locations/region and another with 100 
persons/location and 100 locations/region.  The total 
population size of 10000 persons/region is the same 
in both cases. For each such comparison, the set of 
parameters spanned by the tuple 1, 2,R R D  is kept 
unchanged.  In Figure 17, two population distributions 
for the same total population size is chosen with [a a 
b].  Similarly, in Figure 18, the population distribution 
is varied while keeping the settings at [a c a]. 

A close look at the plots reveals a rather curious 
and counter-intuitive observation. For any given 
scenario, it can be seen that the performance due to a 
population distribution with 100 persons/location and 
100 locations/region is significantly better than one 
due to a population distribution with 1000 
persons/location and 10 locations/region. 
Qualitatively, this translates to the observation that, 
the finer the population distribution, the better the 
performance.  Conventionally, simulating a less 
aggregated population distribution (city level 
aggregation in a country wide simulation) is generally 
expected to take longer than a more aggregated 
population distribution (state level aggregation in a  
country wide simulation). The observed performance 
is to the contrary, conveying an exactly opposite 
runtime behavior. 
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Figure 17: Simulation run time for two different 
decompositions (100 persons/location with 100 

locations/region, and 1000 persons/location with 
10 locations/region) of the same total population 
of 10,000 persons/region, for reaction-diffusion 

settings of [a a b] 

 
Figure 18: Simulation run time for two different 
decompositions (100 persons/location with 100 

locations/region, and 1000 persons/location with 
10 locations/region) of the same total population 
of 10,000 persons/region for reaction-diffusion 

settings of [a c a] 

A more careful examination of this counter-
intuitive observation reveals that this is due to the fact 
that, with increased number of locations per region 
(that is, lesser aggregation), the choice of destinations 
that are local to a processor increases (number of 
destinations on remote processors decreases). This 
results in lesser communication overhead and better 

runtime. Added to this is also the fact that the time for 
evaluating the reaction function in Equation 1 grows 
linearly with the aggregation unit, making finer 
population units more efficient in run time.  This 
counter intuitive effect seems to indicate that it is more 
favorable to simulate higher fidelity (less aggregate) 
reaction-diffusion based epidemiological models on 
hierarchical distribution of population.  In other words, 
it is more efficient to simulate the natural 
decomposition of US population into towns and cities 
than at more aggregated units of counties or states. 

7. Summary and Ongoing Work 

A discrete event formulation, its reverse-
computation-based parallel execution, and a 
performance study of a robust implementation have 
been presented here for simulating epidemiological 
outbreaks at high fidelity at the scale of multiple 
millions of individuals.  The focus of this article was 
more on the computational aspects, as opposed to the 
use of the simulation for domain science in epidemic 
simulations.  Scalability of the overall system to very 
large parallel computing platforms has been 
demonstrated, with the largest being executed on 
65,536 processor cores. An important outcome of this 
work is evidence that PDES technology has now 
reached a milestone at which very large epidemic 
simulations can be realized with significant speedup 
(over 104×) using large parallel computing platforms. 

We are currently incorporating additional modeling 
concepts, namely, resource constraints, and critical 
thresholds, whose significance was recently 
suggested [7].  Also being incorporated are 
prevention, mitigation and intervention mechanisms 
and their effects.  We are also investigating the 
performance differences between optimistic and 
conservative execution for the epidemic models.  
Similar performance comparison of interest is an 
empirical performance study to compare the 
performance between copy state saving and 
incremental state saving in comparison to the reverse 
computation reported here.  In addition, we are 
pursuing the use of real-life, interconnectivity graphs 
(e.g., social and transportation networks) for diffusion, 
along with customization of the system for sponsor 
agencies and collaborating institutions. 

Verification and validation are naturally required 
before the simulation can be readily employed in 
actual scenarios.  We have performed a verification 
exercise as reported in Section 5.  Validation is a 
more intensive effort that can be performed using 
genuine, historical data in terms of reaction and 
diffusion parameters used in the model.  The validity 
of the reaction equation is inherited from its reported 
use in [2] for analyses in government agencies.  Since 

0

10

20

30

40

50

60

128 512 1024 4096

W
al

l C
lo

ck
 T

m
e 

(S
ec

)

Number of Processor Cores

100-100 1000-10

0

50

100

150

200

250

300

350

128 512 1024 4096

W
al

l C
lo

ck
 T

im
e 

(S
ec

)

Number of Processor Cores

100-100 1000-10



Perumalla and Seal 

Volume 00, Number 0    SIMULATION     14 

the diffusion network supported in our model can be 
an arbitrary inter-location mobility network, a 
validation exercise can be performed by choosing the 
appropriate probability distributions from US Census 
Bureau and Bureau of Transportation Statistics for 
sampling the inter-location travel times [20].  The 
resultant infection and recovery rates can be whetted 
by domain (epidemiological) experts.  Follow-on work 
is needed to exercise the entire simulation system by 
domain experts, to explore effective usage of the 
scale and speed offered by the system within bonafide 
solution processes for proactive, reactive and post-
facto operations of epidemic outbreaks. 
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Appendix 

A visualization system of the μsik simulator is used to provide animation capabilities for visualizing the runtime 
dynamics of the simulation, providing highly interactive graphical interface at large event volumes (millions of 
events).  Visualization is enabled for the epidemic simulation to support large-scale scenarios including millions of 
individuals instantiated in each run.  To illustrate the operational and functional aspects of the system as a whole, 
a few representative snapshots of the animation are shown next. 

Figure 19 shows a portion of the event communication pattern among locations (LPs) in a sample simulation 
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of 10 regions with 10 locations per region and 1000 persons per location (giving a total of 100,000 persons in the 
scenario). Figure 20 shows a snapshot of the distribution of the persons (dwelling in or in transit) across locations 
and regions. 

 
Figure 19: A snapshot of event communication pattern in a sample scenario.  LPs are displayed along the 

vertical axis, while their simulation timelines progress horizontally from left to right.  Arrival events are 
drawn in green, departure events in purple. 

 
Figure 20: A set of snapshots in an animation of a simple scenario, shown with color-coded infection 

states of each person.  For simplicity of display, a small scenario is shown, with 35 regions, 20 locations 
per region, and 100 individuals per location. 


