

Discrete Event Modeling and Massively Parallel Execution of
Epidemic Outbreak Phenomena
Kalyan S. Perumalla and Sudip K. Seal
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
perumallaks@ornl.gov, sealsk@ornl.gov

In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback
effects and the significant role of transients in the dynamics make simulation the only
effective method for proactive, reactive or post-facto analysis. The spatial scale, runtime
speed, and behavioral detail needed in detailed simulations of epidemic outbreaks cannot be
supported by sequential or small-scale parallel execution, making it necessary to use large-
scale parallel processing. Here, an optimistic parallel execution of a new discrete event
formulation of a reaction-diffusion simulation model of epidemic propagation is presented to
facilitate dramatic increase in the fidelity and speed by which epidemiological simulations can
be performed. Rollback support needed during optimistic parallel execution is achieved by
combining reverse computation with a small amount of incremental state saving. Parallel
speedup of over 5,500 and other runtime performance metrics of the system are observed
with weak-scaling execution on a small (8,192-core) Blue Gene / P system, while scalability
with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray
XT5 system. Scenarios representing large population sizes, with mobility and detailed state
evolution modeled at the level of each individual, exceeding several hundreds of millions of
individuals in the largest cases, are successfully exercised to verify model scalability.

Keywords: Discrete Event, Epidemiology, High Performance Computing, Reverse
Computation

1. Introduction

1.1. Motivation

The significance of gaining better insights into the
dynamics of large-scale epidemics is well known. The
enormity of epidemic outbreak effects and the world-
wide attention to controlling them are common
knowledge, often appearing in daily news. In addition
to the non-technical factors that come into play in the
process of effectively dealing with epidemics, an
important technical aspect continues to be elusive and
remains to be explored, namely, gaining a good
understanding of epidemic dynamics and the ways
and means by which various contributing factors affect
the propagation phenomena. Public health planners
and policy makers use epidemiological simulations to
study a variety of factors that influence epidemic
dynamics within a population. For example, recently,
Gojovic et al [1] reported the use of such simulations
to demonstrate the effect of timely delivery of
vaccinations on the attack rate of H1N1.

Aside from analytical models based on
simplifications, simulation continues to be an

important tool. In contrast to numerical integration-
based analysis of analytical (differential equation-
based) epidemic models, simulation often provides
flexibility in incorporating many factors. Large spatial
scales and high behavioral detail contribute to the
challenge of sustaining simulations of epidemic
propagation dynamics at the scale of cities, states,
and countries. Certain epidemics with global spans
may even serve to motivate simulations at world-
scale.

Ideally, epidemiological models should be detailed
enough to capture realistic models of the underlying
phenomena and produce actionable insights.
Realistic models tend to be very complex and the
associated parameter space very large. In turn, this
implies that the resulting computational problem
becomes very large and unsuitable for sequential
execution.

Decisions and policies are typically based on
statistical inferences from results of multiple
simulation runs that attempt to explore the model's
associated parameter space as exhaustively as
possible. This requires very fast turnaround times for
each run so that enough statistics can be gathered
within a reasonable duration of wall clock time to base

SIMULATION, Vol. 00, Issue 0, Month 2011, xxx-yyy
© 2010 The Society for Modeling and Simulation
International DOI: 10.11111/1111 (to appear in 2011)

mailto:perumallaks@ornl.gov�
mailto:sealsk@ornl.gov�

Perumalla and Seal

Volume 00, Number 0 SIMULATION 2

actionable decisions on. In light of the above, the
need for parallel execution of such epidemiological
models becomes evident and, not surprisingly, large
scale computational epidemiology has become an
area of active research in recent years (see Section
1.4), particularly, in an era when larger and more
powerful parallel platforms are becoming increasingly
common. Scalable algorithms are therefore imperative
for large scale realistic epidemiological simulations
that can exploit the computing resources offered by
today's state-of-the-art parallel platforms..

1.2. Simulation Technology Focus

The focus of this article is on advancing the state-
of-the-art in simulation technology to enable a
dramatic leap in the population size,
phenomenological process complexity (or model
fidelity), and runtime speed for next generation
epidemic outbreak simulations. A greater emphasis is
on advancing the simulation science and applying
parallel computing methodologies than on exploring
the domain science. Our goal is to enable domain
experts in epidemiology to be armed with new, more
powerful simulators to help advance the science of
epidemics analysis. Specifically, we present a
simulation development and scaling effort, based on a
novel reversible parallel discrete event formulation, of
a large class of epidemics that can be modeled using
reaction-diffusion dynamics. We focus on the
computational problem of sustaining simulations of
large-scale epidemic propagation scenarios, and
examine the performance effects of implementation
on very large computational platforms containing 103-
105 processor cores.

We develop a new parallel discrete event
formulation of the reaction-diffusion model that is
directly motivated by the one reported in [2], while
retaining the power and flexibility afforded by their
individual models, which are nearly agent-based in
modeling power (with parameters tunable down to
each individual). We apply optimistic parallel
execution techniques with a view to accommodating
the low-lookahead conditions that may be present in
certain scenarios. For rollback, we employ a
combination of state saving and reverse computation.
For scalability, we utilize supercomputing platforms to
increase the speed of simulation of large-scale
scenarios. The goals of our effort are not only to
provide Parallel Discrete Event Simulation (PDES)
alternatives to the currently best-known results that
are non-PDES-based, but also to achieve new levels
of scale (hundreds of millions of individuals) simulated
on many thousands of processor cores.

1.3. Contributions

This article makes multiple contributions. First,
our new, PDES-based formulation of reaction-
diffusion models, (presented in greater detail later in
the article), is unique in that host mobility, intra-host
state evolution, and inter-host reactions are all
modeled in full, discrete event fashion. The time-
scales are completely decoupled from each other, and
do not require any a priori determination of a time step
and/or a minimum time increment, unlike prior
formulation in [2]. Our model also enhances the
mobility model of [2] by introducing arbitrary travel
time delays across locations. In the context of
optimistic simulation, our reversible model for
epidemics is unique. In terms of scalability, the
results reported here constitute the most scalable
PDES execution of epidemic models. Also, to the
best of our knowledge, the largest run of the
simulation scenario on 65,536 processor cores of
Cray XT5 reported in Section 4 is the largest
processor-count to date of any non-trivial PDES
application reported in the literature.

1.4. Related Work

The epidemic modeling literature is vast, from
classical differential equations that appeared in the
1920s for aggregate phenomena such as critical
thresholds and herd immunity, to articles appearing as
recently as 2009 on phenomena such as emergence
of critical thresholds on a variety of small-world and
scale-free social networks [3-7]. In the past few years,
agent-based simulations were used by the National
Institutes of Health's Models of Infectious Disease
Agent Study (MIDAS) group to shape avian flu
policy[8, 9]. Other methodologies such as patch
models, distance-transmission models and multi-
group models are discussed in [10]. A new class of
reaction-diffusion based disaggregate models [11, 12]
has emerged in the past few years, to facilitate
planning by federal agencies (DHS, DoD and NIH).

Although historically, epidemic simulations are
sequentially executed, parallel simulation has been
used in the late nineties and mid 2000’s to
accommodate increasingly larger sizes of epidemic
networks, and also speed up the execution to meet
real-time constraints. Within parallel simulations,
time-stepped approaches have been used to execute
certain complex models at large-scale. The SPaSM
simulator [13] is an example of such a scalable
framework that has been successfully used for
analyzing very large scenarios, including certain
country-scale pandemic flu propagation analyses. In
scenarios involving highly varying time-scales and
non-uniform inter-person interaction structures,

Perumalla and Seal

Volume 00, Number 0 SIMULATION 3

however, discrete event simulation can offer faster
advances in simulation time. On the other hand,
parallel discrete event simulation offers its own
challenges: the need to reformulate the dynamics in
terms of discrete events, and the need to reduce
runtime overheads to make it possible to scale
execution to large numbers of processors. The most
closely related work is an algorithm in [14] that uses a
“correction method” on state updates that are
processed out of order. However, it is not formulated
in traditional PDES concepts of logical processes,
events, and rollbacks, and hence hard to compare
with PDES techniques that are more generally
applicable. It is restricted to shared memory
machines, and has been used to simulate millions of
light-weight Java-base agents, exploiting a simplified
state machine of individual’s infection states, and
hence does not generalize to more complex
scenarios, models, and experimentation platforms.

A city-scale small-pox spread simulation was
reported in [15], with the focus more on
interoperability of simulator modules, less on
scalability and efficiency. Other, peripherally related,
work includes Monte Carlo simulation models (e.g.,
[16]).

Systems such as EpiSimdemics, EpiSims, and
EpiFast from Virginia Tech [2, 17] have advanced the
state of the art in epidemics analyses greatly in the
past few years. We have been directly motivated by
their article in Supercomputing 2008 [2] that reported
scalability of execution on up to 512 processor cores,
encountering certain synchronization problems
beyond that scale. An enhanced version of their work
to include models of exogenous interventions [17] also
scales to about 250 processors.

Our current work borrows their reaction-diffusion
model, but explores an alternative execution method
distinct from their parallelization approach that can be
roughly classified as functional parallelism. We apply
the latest PDES methodologies to explore the
potential of PDES executions to well beyond a
thousand processor cores. This article is an extended
version of our earlier conference paper [18], expanded
in terms of model detail, cost analysis and
performance results.

1.5. Organization

The rest of the document is organized as follows.
The forward model is described in Section 2. The
reverse model is described in Section 3. An analysis
of average memory size with state saving and reverse
computation is presented in Section 4. The
implementation of the system, the characteristics of
the experimentation platform, and the specification of
the benchmarks are described in Section 5, followed

by a detailed performance study in Section 6. The
article is summarized and ongoing work identified in
Section 7.

2. Forward Execution Model

The model and the details of the reaction-diffusion
system are described in this section, along with their
discrete event execution formulation.

2.1. Model based on Reaction-Diffusion

A large class of epidemics may be modeled using
a combination of reaction and diffusion processes.
The reactions arise as a result of inter-entity
interactions, (e.g., physical proximity for influenza).
The dynamic chances for interactions arise as a result
of mobility of the entities (e.g., meetings and other co-
located activities). Geographical diffusion of entities
facilitates chances for interactions among varying
sample sets of entities.

Figure 1: Abstraction of System for Epidemic

Propagation

Figure 1 shows a schematic for the reaction-
diffusion abstraction on a system of individuals.
Interaction points called “locations” demarcate the
extents of interaction that individuals within that
location incur during the time they are present at that
location. Multiple locations are contained within a
region. An arbitrary diffusion network may be defined
among locations within a region. Similarly, an
arbitrary diffusion network may be defined among
regions. The diffusion network can be dynamic in
nature; in other words, the connectivity graph may be

Perumalla and Seal

Volume 00, Number 0 SIMULATION 4

changed at the modeler’s/user’s will at runtime, as
needed by any specific scenario being modeled.
Latencies of activities (interaction and/or mobility)
along the links of the network may be arbitrarily
specified.

Reaction-diffusion based models typically consist
of: (a) a set of interacting entities, such as humans,
(b) a network graph that represents the interaction
structure of the population under study, (c) a reaction
process, called within-host progression, that models
the evolution of the disease within an individual entity
in the population, and (d) a diffusion process, called
between-host transmission, that models the
transmission of the disease between individual
entities. Other sub-models may be added to
accommodate additional aspects such as resource
limitations on all processes.

A reaction function defines the infection behavior
of co-located individuals (probability of an uninfected
entity getting infected, or, alternatively, an infectious
individual infecting other susceptible population).

The within-host progression of the infection is
modeled by a probabilistic timed transition system
(PTTS) which is a finite state machine with
probabilistic, timed state transitions. A PTTS reflects
the reaction that changes the state of an individual
within the population. We use the PTTS framework of
[2] unmodified.

The reaction function also includes the
determination of the probability of transmission within
the group of individuals at any location. For an
individual i, the between-host transmission is modeled
by the probability function ip , borrowed unmodified
from [2] and reproduced here for convenience:

(1)
1

r i
r R

t N ln rs

ip e
ρ

∈
−∑

= − (1)

In the preceding equation, τ is the duration of
exposure, R is the set of infectivities of the infected
individuals, Nr is the number of infectious individuals
with infectivity r, si is the susceptibility of i and ρ is the
transmissibility which is a disease specific property.
The rationale and additional detail on these variables
are documented in [2].

The underlying social network consists of the
following entities defined hierarchically as: (a)
individual person (b) location: a set of individuals (c)
region: a set of locations and (d) domain: a set of
regions. The scale of the system depends on the
definitions that we associate with the above entities.
For example, a state level simulation can associate
locations with office buildings or shopping malls,
regions can be associated with subdivisions, towns or

cities and the state itself as a group of regions which
represents the computational domain over a state-
level social network. Similarly, a country-level
simulation can be appropriately redefined.

In summary, the system consists of (a) individual
entities each with its own characteristics, (b) locations
that hold individuals for periods of time, (c) regions
that represent a set of logically related locations, who
have a diffusion network among themselves, (d) a
reaction function that specifies the probabilities of
infections over time within a location, and (e) a two-
level diffusion function that takes an individual from a
location-region pair to another location-region pair.

In a simplified network, the following parameters
may be defined: (i) infected probability: percentage of
population infected at time t=0 (ii) vaccinated
probability: percentage of population vaccinated at
time t=0 (iii) mean stay time: average time that an
individual stays within a location (iv) mean .local travel
time: average time taken by an individual to travel
between two locations within a region (v) mean
remote travel time: average time taken by an
individual to travel between locations across two
regions and (vi) locality probability: probability that an
individual stays within a region.

2.2. Relation to Real World Entities

The abstraction can be used to model activity at
multiple spatial scales. If the number of persons per
location is Sl and the number of locations per region is
Lr, then, the following table illustrates the rough scales
of population for which epidemic outbreaks could be
analyzed using this model.

Table 1: Example Scales of Systems

Sl Lr Scenario
10 100 Small community

100 100 Small town
1000 100 Small city
1000 1000 Large city

10000 100 Rural state

The model is sufficiently flexible to accommodate
intra-city and inter-city trips (work, stores, homes,
schools), and varying levels of exposure times for
reactions. In the largest case, one can envision
modeling inter-country transport (ship, air), in
combination with intra-country (inter-state) diffusion
(car, air). A visualization of a motivating example
scenario is shown in the appendix, using a mapping of
the modeling units (locations and regions) to a few
cities and states of the USA. Trip statistics obtained
from the Bureau of Transportation Statistics are
typically utilized to initialize the network structure and

Perumalla and Seal

Volume 00, Number 0 SIMULATION 5

time distributions.

2.3. Modeling Operations and Policies

The same abstract model is in fact sufficiently
powerful to model complex operations and policies.
For example, curfews can be modeled by using an
outgoing probability of unity and incoming probability
of zero for the location corresponding to the curfew
(e.g., a public park). Similarly, an outgoing probability
of zero and incoming probability of unity may be used
in the diffusion network to model quarantined
locations (e.g., a school or hospital).

Analogously, it is possible to incorporate
vaccination production delays (manufacturing
latencies, vehicular transportation times) by setting or
varying diffusion network latencies accordingly.

2.4. Our Discrete Event Model

As mentioned previously, we employ a purely
discrete event style of evolution for all aspects of the
model. Each location is mapped to a single logical
process (LP). A number of locations (specified by the
user at runtime) constitute a region, and each region
is mapped to a processor. The location LP processes
three types of events, namely: (a) Arrival Event (AE)
(b) State Change Event (SCE) and (c) Departure
Event (DE). Each individual person in a location is
assigned a globally unique integer identity to
distinguish it within the entire population. A
customized PTTS (specifiable by the user on an
individual-basis at initialization) is used to model the
within-host progression of the infection. The state
composition of each person and each location (LP)
are given in Figure 2 and Figure 3 respectively.

ptype: Person Type and/or Traits
Person State

pid: Global Identifier
seed: RNG Seed
istate: Infection State

Figure 2: State Encapsulated by every Person

occ: Occupant Set of Persons (Person States)
Location Data Structures (LP State)

omap: Map from ID to Person in occ Set
gptts: Default PTTS across local occupants

Figure 3: Data Structures within each Location LP

If(Event is AE)
Forward Algorithm

 Insert AE.Person into Occupant Set
 Incorporate AE.Person’s random seed locally
 dt=Randomized depart time of AE.Person
 Schedule DE for AE.Person at now+dt
 If(AE.Person turned infectious between
 now and its departure time at source)
 Progress infection state of AE.Person
 (schedule SCE for AE.Person)
 End If
 Compute Equation 1 (reaction function)
 Determine new infections due to Equation 1
 For each person P in occ newly infected now
 Progress infection state of P by PTTS
 (retract previous SCE of P and
 schedule a new SCE for P)
 End For
Else If(Event is DE)
 Locate person P in occ with identifier DE.pid
 Remove P from occ
 Determine destination L (diffusion function)
 If P has local pending SCE, note residual δt
 Determine travel time dt (diffusion function)
 Schedule AE for P to L at now+dt
Else /*Event is SCE*/
 Locate person P in occ with ID SCE.pid
 Progress infection state of P by PTTS
 (schedule SCE for P)
 If(P just turned infectious)
 Compute Equation 1 (reaction function)
 Determine new infections due to Eqn 1
 For each person Q in occ newly infected
 Progress infection state of Q by PTTS
 (retract previous SCE of Q and
 schedule a new SCE for Q)
 End For
 End If
End If

Figure 4: Forward Event Processing at each LP

The forward execution algorithm is shown in
Figure 4. When an individual arrives, an AE is
triggered in that location. As part of processing an AE,
the incoming person is inserted into an occupant set.
If the incoming individual arrives in an infectious state,
its transmission within the local population is
computed using Eqn (1). If it is uninfected, then its
within-host progression is computed using the PTTS.
The incoming person’s departure is scheduled based
on the parameter mean stay time. The individual’s
next departure time is computed, and departure event
DE is scheduled by the location to itself as reminder to
eject the individual from the location’s state at that

Perumalla and Seal

Volume 00, Number 0 SIMULATION 6

time. At the time the departure event is processed, a
destination location (either local to the region or in
another region across processors) is selected, the
travel time computed, and the state of the person
corresponding to the moment of departure at the
source location is packed into the event and sent.

The processing of a DE marks the exit of that
person from its current location. The outgoing
individual is removed from the occupant set and an
AE is scheduled at the destination location.

When an individual P within a location changes its
state of infection, an SCE is triggered. The infection
state of P is then evolved using its PTTS. If the final
state is infectious, then its effect on the rest of the
occupants within the location is computed using
Equation 1.

A couple of important nuances must be
considered for correctness: (a) a person turning
infectious while in transit must initiate infections as
appropriate on arrival at destination, and (b) random
number stream continuity must be maintained across
processors when persons cross processors. The first
nuance is taken into account by noting the residual
time of infection dormancy in AE so that the receiving
location can verify the special condition and act
accordingly (special case trapped in Forward
Algorithm by the first conditional in processing AE).
The latter nuance is handled by shipping in AE the
random number generator seed of that person along
with the person’s state. The receiving processor
restarts its random number stream accurately at the
received starting seed for that person.

3. Reverse Execution Model

We now turn to the reverse execution handlers
that make use of the information generated in the
modified forward execution to undo forward operation.

3.1. Modified LP Data Structures

Since the original forward-only model is not
reversible as is, a few variables need to be added to
achieve reversibility. Note that this does not imply the
use of state-saving; it only implies the increase of
sequential processing memory need by a constant
factor. In other words, no state log is accumulated as
a result of this augmentation, but only the original
copy of the (single) state is increased by a constant
amount.

prev_istate: Previous Infection State
 (Added) Person State

infect_ts: Infected Time

Figure 5: State Added to Person for Reversibility

The variables added to each person are shown in
Figure 5. The prev_istate is used to mark its previous
infection state to remember a irrecoverable previous
state, if any, in the PTTS, encountered by the person.
The infect_ts is added to disambiguate the identity, if
any, of event that triggered the infection of this
person.

dep: “Departed” Set of Persons (states)
 (Added) Location Data Structures (LP State)

dmap: Map from ID to Person in dep Set

Figure 6: State Added to each Location LP for
Reversibility

Figure 6 shows the addition of a “departed” set to
each location to accommodate reversibility of DE.
This is used to “keep the person around” in case the
departure event is rolled back. Again, this does not
constitute state saving by itself. To compare, even if
the best (incremental) state saving techniques are
employed, two copies of person’s state would be
generated in the incremental state log for every move
from occupant set to departed set, bringing the total
memory to 3 person states, compared to the two
states in our reverse computing scheme.

3.2. Modified Forward Event Processing

The forward event processing is augmented as
follows: (a) any time an infection is initiated on a
person, its infection time is noted in the person’s state,
(b) departing persons in DE are moved to the
“departed set” rather than discarded (c) previous state
of a person is noted in the corresponding SCE event
for every state change. Due to space limitations, the
modified forward algorithm is not reproduced here.

3.3. Backward Event Processing

The reverse execution by locations is shown in
Figure 7.

The reversal of arrival event initiates the reversal
of locally scheduled departure events, and undoes
local infection state change event for the subject
individual.

The departure set is maintained should a DE need
to be reversed in the future. This is used to restore an
optimistically departed person back into the occupant
set.

Since, as part of processing an SCE, the previous
infection state is stored, it is restored in backward
execution. Same holds true for detecting the set of
infected events when the arrival of an infectious
person and/or a state change event causes one or
more infections. The set of infected individuals is

Perumalla and Seal

Volume 00, Number 0 SIMULATION 7

detected accurately by comparing their infection
timestamps with the current simulation time.

If(Event is AE)
Backward Algorithm

 For each person P in occ infected at now
 Restore its states to previous in PTTS
 Reverse its random number generator
 End For
 Remove AE.Person from occ
Else If(Event is DE)
 Locate person P in dep with identifier DE.pid
 Remove P from dep
 Add P to occ
Else /*Event is SCE*/
 Locate person P in occ with ID SCE.pid
 If(P is infectious)
 For each person Q in occ infected now
 Restore its states to previous in PTTS
 Reverse its random number generator
 End For
 End If
 Restore state of P to previous in PTTS
 Reverse its random number generator
End If

Figure 7: Backward Event Processing at each LP

3.4. Event Commit Operations

An important effect of the use of a departure set is
that the size of the set accumulates over simulation
time, since all departed persons are tentatively
retained there. Thus, they need to be reclaimed. This
is easily done by periodically flushing those entries
that contain persons whose departure time is less
than the global virtual time. Thus, an additional
conditional is added to the event processing loop that
detects this condition and the departure set is
periodically flushed.

3.5. Random Number Generation

We use the well-known technique of reversible
random number generation [19] to undo the several
random number generation calls that appear in the
model. These appear in the state transition function
for PTTS, the computation of infection probability in
the reaction function, and the selection of time and
destination in the mobility determination (diffusion).

4. Analysis of State Memory Size

To decide on the type of undo method to employ
for restoring the state of a location upon a rollback, we
analyze the theoretical memory needs by some of the

well-known methods. We examine some of the
popular methods that use state-saving, reverse
computation or a combination. Table 2 lists the
average memory needs for each approach: Copy
State Saving (CSS), Incremental State Saving (ISS),
Reverse Computation with some State Saving
(RC+SS), and Pure Reverse Computation (PRC).

The parameters used in the analysis are: μocc is
the average number of occupants (persons) at a
location when an event of a specific type is executed,
μinf is the average number of infections initiated at a
location by an arrival of a person who newly turned
infectious, R is the memory size of each person’s
state, G is the memory size of each random number
generator seed, D is the memory size needed to
represent a state in the PTTS, TS is the memory size
occupied by a timestamp value.

Table 2: Average memory size for rollback per
event using state saving, reverse computation or

combination

Event
Type

CSS ISS RC+ISS PRC

Arrival
μocc×R μinf×(G+D) μinf×(TS+D) 0

Infection
State
Change

μocc×R G+D D 0

Departure
μocc×R [ε..2R] 0 0

Let us consider the easiest to analyze, namely,
CSS. The memory cost for CSS is straightforward:
before executing any event, the entire state of the LP
is saved. The state size of each location is equal to
the sum of state sizes of all resident persons in the
location’s occupant set. Given that the average
number of persons in the occupant set is μocc, the size
is μocc×R which remains the same for all events.

The next improved method is the well-known ISS
that saves a copy of only the portions of the state that
is modified during event execution. For an arrival
event, the state modifications include the set of
resident persons that are infected by an infectious
arrival. Each resident person who is newly infected by
an infectious arrival generates a new random number
to determine its next state in the PTTS and then
updates its new infection (PTTS) state. Thus, each
infected resident incurs an incremental update to its
state of size G+D, giving a total incremental state cost
of μinf×(G+D) per arrival. A change in infection (PTTS)
state performed by an SCE type of event inflicts a
similar incremental cost of (G+D) for a resident. A
departure event moves the person from occupant set

Perumalla and Seal

Volume 00, Number 0 SIMULATION 8

to the departed set, giving a memory cost of anywhere
between ε and 2R, depending on how the sets are
implemented. A highly optimized implementation may
incur a cost of only a small number ε of bits by
reorganizing a small number of pointers, while a naïve
implementation may delete the state from the
occupant set and write new data in the departed set,
giving a cost of 2R to undo such a move.

The combination of reverse computation and state
saving as employed in our scheme incurs reduced
costs for all three events. Upon infection of any
person by an infectious arrival, the previous state of
that person is saved along with the timestamp of the
infection, giving a total of μinf×(TS+D) per arrival event.
Reversibility of random number generator [19]
obviates the memory cost of saving the seed.
Similarly, an infection change event only incurs the
cost of saving the previous infection state. A
departure event simply moves the person from
occupant set to departed set, which is perfectly
reversible, thereby incurring zero memory cost.

It is very important to note that the memory cost
associated with infectious arrivals as well as that for
infection state change (SCE) events can be entirely
avoided with pure reverse computation. This can be
achieved by temporarily reversing the random number
generator stream sufficiently far in the past to
disambiguate the previous state from which the
current state was reached. Note that this is always
possible with all PTTS machines in which recovered
states do not loop back to the (uninfected) initial state.
However, due to the higher run time cost and software
implementation complexity associated with the
computation needed to avoid the memory for perfect
reversibility of infection change events, the RC+ISS
method serves as a good trade-off between memory
and run time costs.

Note also that, in realistic scenarios, the number
of arrival and departure events (AE and DE) is
significantly larger than infection state change events
(SCE). In the same scenarios, average number of
infections μinf is also extremely low, tending to zero. In
such cases, the memory cost of RC+ISS
asymptotically becomes negligible. Due to these
considerations, we chose the RC+ISS approach to
support state restoration upon rollback. It is indeed
conceivable for another implementation to exclusively
use ISS; however, its memory cost would be
necessarily bounded on the lower side by that of
RC+ISS, as seen in Table 2.

5. Implementation and Benchmarks

The application was developed in C++ on top of a
simulation engine that supports the concepts of logical
processes (LPs), events for exchanging time-stamped

messages among logical processes and virtual time-
synchronized delivery of events to LPs. The engine
avoids all use of collective communication calls and
implements a variant of global virtual time
synchronization that is purely asynchronous in nature.
It avoids blocking in all places and is built with
scalable reduction algorithms that are realized in user-
space using point-to-point, non-blocking
communications.

5.1. Comparison to Traditional Models

Traditional epidemiological models, such as the
SIR model and several such variants, are based on
simplified views of the population under study. In the
SIR model, each member of the population
progresses from being in a susceptible (S) state to an
infectious (I) state and finally to a recovered (R) state.
The total number of individuals in each of the states is
a time-dependent function. Typically, S(t), I(t) and R(t)
are related to each other through coupled differential
equations, under the aggregate constraint that
S(t)+I(t)+R(t)=N which preserves the total population
size. The dynamics evolve through predefined
infection and recovery rates that connect the S and I
states, and the I and R states, respectively. Contrary
to such aggregate models, the dynamics of the
reaction-diffusion based model adopted in this paper
(borrowed from recent literature [2]) evolve through
probabilistic functions. The reaction and diffusion
dynamics are governed by probabilistic timed state
transitions and the probability function given by
Equation. 1.

Figure 8: Verification of propagation dynamics in a

scenario (with one location per region, one
individual per location) that approximates the
high-fidelity model with traditional aggregate

models such as SIR

It is important, however, for a higher fidelity model

0

200

400

600

800

1000

0 500 1000 1500 2000

Cu
m

ul
at

iv
e

In
fe

ct
io

ns

Simulation Time (hrs)

Perumalla and Seal

Volume 00, Number 0 SIMULATION 9

to be able to duplicate the dynamics of the traditional
aggregate models in scenarios that represent
aggregate dynamics. A verification of such a
capability, to duplicate the logistic curve generally
followed by aggregate model dynamics, is performed
on our system. In Figure 8, the cumulative number of
infections in a population size of 1000 individuals is
plotted using the parameter set [a a a] (see Section
5.3) with an initial population distribution of only one
individual per location.

Note that, in practice, epidemiological outbreak
simulations of interest are rarely simulated to the point
where such large fractions of population are infected.
This verification of dynamics following the logistic
curve is only performed as one of the tests to assure
the implementation’s correctness properties.

5.2. Hardware and Software Platforms

The simulations were run on Cray XT4, Cray XT5
and Blue Gene/P (BG/P) machines at the National
Center for Computational Sciences (www.nccs.gov).
The XT4 contains 7,832 compute nodes, each node
containing a quad-core 2.1 GHz AMD Opteron
processor with 8 GB of memory. The nodes are
connected via a high-bandwidth SeaStar interconnect.
Internally, the MPI implementation is based on Cray’s
implementation of Portals 3.3 messaging interface. At
the time when experiments were run on the XT5, it
contained 36,864 quad core AMD Opteron Budapest
processors with 2GB of memory per core. The nodes
are connected by a SeaStar-II interconnect. The Blue
Gene/P that was used is a 27 TF system consisting of
2048 850 MHz IBM quad core 450d PowerPC
processors and 2GB of memory per node.

5.3. Benchmark Scenario Description

The performance of the application is studied with
respect to changes in: (a) population distribution (b)
reaction-diffusion parameters and (c) mobility
parameters. Several combinations of the above model
parameters were tested. A few of these scenarios are
described next.

Population: Two different population distributions,
labeled by I and II, were explored. For the same total
population, the number of individuals per location (LP)
in distribution I is one order of magnitude higher than
in distribution II.

Reaction-Diffusion: Three different assignments
of the reaction parameters are used, each, labeled a,
b and c, were chosen. Two mobility distributions are
chosen, labeled a and b. Their qualitative descriptions
are provided in Table 3, and their actual numeric
values are listed in Table 4.

Scenarios: The experimental scenarios, thus, are
represented by a cross product of the population
distribution, reaction parameters, and diffusion
parameters. For example, a scenario is completely
determined by the choice of the population set
(number of locations per region, and initial number of
persons per location), the choice of set for intra-
person reaction parameters (set a or b or c), the
choice of inter-person reaction parameters (set a, b or
c), and the choice of diffusion parameters (set a or
b)..For any population set, we define the scenario by
the tuple 1, 2,R R D

where { , }1 ,aR b c∈ ,

2 { , , }R a b c∈ , and { , }D a b∈ .

Table 3: Qualitative description of the sets of
parameters chosen for our experiments

Type Tag Set a Set b
Reaction
(intra-person)

R1 Level I Level II

Reaction
(inter-person)

R2 Infectivity is
greater than
susceptibility

Susceptibility is
greater than
infectivity

Diffusion
(mobility)

D High Low

Table 4: Parameter sets used in the scenarios
simulated in run-time performance experiments
Reaction (R1) Set

a
Set
b

Set
c

Normal-Uninfected-Latent 0.9 0.5 0.1
Normal-Latent-Infectious 1.0 1.0 1.0
Normal-Infectious-Recovered 1.0 1.0 1.0
Normal-Uninfected-Incubating 0.1 0.5 0.9
Normal-Incubating-Asympt 1.0 1.0 1.0
Normal-Asympt-Recovered 1.0 1.0 1.0
Normal-Recovered-Recovered 1.0 1.0 1.0
Vaccinated-Uninfected-Recovered 0.5 0.5 0.2
Vaccinated-Uninfected-Latent 0.2 0.3 0.4
Vaccinated-Latent-Infectious 1.0 1.0 1.0
Vaccinated-Infectious-Recovered 1.0 1.0 1.0
Vaccinated-Uninfected-Incubating 0.3 0.2 0.4
Vaccinated-Incubating-Asympt 1.0 1.0 1.0
Vaccinated-Asympt-Recovered 1.0 1.0 1.0
Vaccinated-Recovered-Recovered 1.0 1.0 1.0
Reaction (R2) Set

a
Set
b

Set
c

Infectivity 1.0 0.5 1.0
Susceptibility 0.5 1.0 0.5
Transmissibility 5e-4 5e-4 5e-4
Diffusion (D) Set

a
Set
b

Locality (%) 75 90
Lookahead (hr) 0.3 0.5
Mean stay time (hr) 8.0 5.0
Mean local travel time (hr) 0.5 1.0
Mean remote travel time (hr) 8.0 12

http://www.nccs.gov/�

Perumalla and Seal

Volume 00, Number 0 SIMULATION 10

The intra-person reaction parameters define the
infection characteristics of each individual. The inter-
person reaction parameters are used to define the
aggregate constants that define the reaction
according to Equation 1. The diffusion parameters
define the mobility characteristics that directly
influence the types and intensity of mixing among
individuals across locations and regions, thereby
affecting their opportunities for infection.

The values chosen are only representative for the
range of runtime dynamics we desire to exercise,
since the infection and mobility dynamics have
noticeable bearing on the run-time performance.

6. Performance Study

We now present the performance study based on
the experiments with the benchmark scenarios on
Blue Gene/P and Cray XT4/XT5 platforms.

The majority of runs to cover the benchmark
scenarios have been executed on the 8,192-core
BG/P. Due to allocation limits on computing time, a
smaller number of scenarios were executed on the
larger 32,768-core Cray XT4, and only a single
scenario was executed on the largest Cray XT5 that
has over 200,000 cores.

The parallel speedup obtained on BG/P is shown
for different scenarios in Figure 9, Figure 10, Figure
11, and Figure 12. Rollback statistics for a few of the
representative runs on the BG/P are shown in Figure
13. Parallel speedups for BG/P in these figures are
plotted with respect to a baseline execution on 128
cores which is the smallest number of processor cores
on the BG/P platform that can be used for any parallel
execution. The speedup on 128 cores is, accordingly,
defined as the baseline speedup with 100% efficiency.

Note that, in the largest configurations executed
on the BG/P, over 800 million individuals are
represented (1000 person/location, 10
locations/region, 8192 regions). This is a stress test
on the hardware capacity of the system, and hence,
as seen in Figure 12, only a few configurations of
reaction and diffusion parameters were successful at
the largest population sizes on the BG/P. Blue Gene
systems of higher scale are available elsewhere,
which we intend to access in the future to test scaling
beyond 8,192 cores on the Blue Gene architecture.

Figure 9: Parallel speedup on BG/P with 100

persons/location, 10 locations/region

Figure 10: Parallel speedup on BG/P with 1000

persons/location, 10 locations/region

The results from the Cray XT4 are shown in
Figure 14 and Figure 15. The largest Cray XT5
results are shown in Figure 16.

1

10

100

1000

10000

128 1024 4096 8192

Pa
ra

lle
l W

ea
k

Sp
ee

du
p

Number of Processor Cores

a a a a a b a b a a b b a c a a c b

1

10

100

1000

10000

128 1024 4096 8192

Pa
ra

lle
l W

ea
k

Sp
ee

du
p

Number of Processor Cores

a a a a a b a b a a b b a c a a c b

Perumalla and Seal

Volume 00, Number 0 SIMULATION 11

Figure 11: Parallel speedup on BG/P with 100

persons/location, 100 locations/region

Figure 12: Parallel speedup on BG/P with 1000

persons/location, 100 locations/region

Figure 13: Rollback Efficiency on BG/P

6.1. Analysis

One of the effects of population distribution on the
parallel performance can be observed in the results
obtained on BG/P. They show the relative speedup
for different population sets on processor counts
varying from 128 to 8192 on the BG/P architecture.

The probability that an individual chooses a
destination location that is resident on a remote region
is the same as that of choosing one that is locally
available, As a result, region boundaries are crossed
more often when there are less destination locations
available locally. Since regions are mapped to
processors, the resulting communication overhead
increases as the number of locally available locations
decreases. This effect is evident in the BG/P results,
which indicate the degradation of parallel performance
in going from 100 to 10 locations per region for the
same total population.

Degradation of speedup observed at the full
system scale of 8,192 cores of the BG/P can be
attributed to operating system jitter that is well known
to be detrimental to parallel performance at the full
scale of any system. Significant speedup
improvements are expected on the same number of
cores but on a larger system; this is in fact evidenced
by the fact that the same scenarios deliver good
speedup on the larger XT4 platform.

Experiments were carried out on the Cray XT4
with simulation runs carried out on up to 16,384
processors. In Figure 14, only the diffusion parameter
set is varied while in Figure 15 only the mobility
parameter set is varied. For the same parameter set
[a a b], the parallel performance is seen to improve in
Figure 15 with an increase in the number of locations
that are locally available, as explained above. This is
not the case, however, for the scenario with
parameter set [a a a] (see Figure 15). This highlights
the competing effects of mobility of individuals within a
population and the distribution of the individuals within
it.

Figure 13 indicates that for a variety of reaction-
diffusion and mobility conditions, the rollback
efficiency of the optimistic parallel simulation remains
under control (well under 10% for all tested
scenarios). Finally, Figure 16 demonstrates the
scalability of the simulation to 65,536 processors on a
Cray XT5 platform with 10,000× speedup.

As can be seen from the BG/P runs, runtime
performance of the parallel simulation is not only
dependent on the hardware characteristics of the
computing platform but also closely related to the
scenario that is being simulated. For example, the
observed speedup on 1,024 cores approximately
varies between 700 and 2500 with scenarios
containing 1000 persons/location and 10

1

10

100

1000

10000

128 1024 4096 8192

Pa
ra

lle
l W

ea
k

Sp
ee

du
p

Number of Processor Cores
a a a a a b a b a a b b a c a

1

10

100

1000

10000

128 1024 4096 8192

Pa
ra

lle
l W

ea
k

Sp
ee

du
p

Number of Processor Cores
a a a a a b a b b a c a a c b

Perumalla and Seal

Volume 00, Number 0 SIMULATION 12

locations/region (see Figure 10). Nearly 60%
efficiency is observed on 8,192 processors for the
scenario [a c b] with 1000 persons/location and 10
locations/region. Super-linear speedup can be
observed in a few instances, such as, scenario [a c b]
on both 1,024 and 4,096 cores, and scenario [a b a]
on 1,024 cores, both with 1000 persons/location and
10 locations/region. One of the main reasons for such
variance in the speedups for the same problem size
and core-count is that the phenomenological
dynamics can differ significantly from one scenario to
another. For example, scenarios with smaller values
of the locality parameter result in fewer events that
require crossing processor boundaries, which, in turn,
delivers better parallel speedup due to reduced inter-
processor communication. On the other hand, well
known hardware artifacts such as caching effects and
network dynamics often artificially magnify speedups,
like the few instances of super-linear speedups
observed.

Figure 14: Speedup on Cray XT4 for population set

I

Figure 15: Speedup on Cray XT4 for population set

II, with the same total population as in Figure 14

Figure 16: Speedup on Cray XT5

6.2. Performance Effects due to Population Unit

To better understand the parallel performance of
our discrete event simulation on different population
distributions, independent of the complex parameter
space spanned by the tuple 1, 2,R R D , we compare
the observed simulation runtimes on two population
distributions: one with 1000 persons/location and 10
locations/region and another with 100
persons/location and 100 locations/region. The total
population size of 10000 persons/region is the same
in both cases. For each such comparison, the set of
parameters spanned by the tuple 1, 2,R R D is kept
unchanged. In Figure 17, two population distributions
for the same total population size is chosen with [a a
b]. Similarly, in Figure 18, the population distribution
is varied while keeping the settings at [a c a].

A close look at the plots reveals a rather curious
and counter-intuitive observation. For any given
scenario, it can be seen that the performance due to a
population distribution with 100 persons/location and
100 locations/region is significantly better than one
due to a population distribution with 1000
persons/location and 10 locations/region.
Qualitatively, this translates to the observation that,
the finer the population distribution, the better the
performance. Conventionally, simulating a less
aggregated population distribution (city level
aggregation in a country wide simulation) is generally
expected to take longer than a more aggregated
population distribution (state level aggregation in a
country wide simulation). The observed performance
is to the contrary, conveying an exactly opposite
runtime behavior.

Perumalla and Seal

Volume 00, Number 0 SIMULATION 13

Figure 17: Simulation run time for two different
decompositions (100 persons/location with 100

locations/region, and 1000 persons/location with
10 locations/region) of the same total population
of 10,000 persons/region, for reaction-diffusion

settings of [a a b]

Figure 18: Simulation run time for two different
decompositions (100 persons/location with 100

locations/region, and 1000 persons/location with
10 locations/region) of the same total population
of 10,000 persons/region for reaction-diffusion

settings of [a c a]

A more careful examination of this counter-
intuitive observation reveals that this is due to the fact
that, with increased number of locations per region
(that is, lesser aggregation), the choice of destinations
that are local to a processor increases (number of
destinations on remote processors decreases). This
results in lesser communication overhead and better

runtime. Added to this is also the fact that the time for
evaluating the reaction function in Equation 1 grows
linearly with the aggregation unit, making finer
population units more efficient in run time. This
counter intuitive effect seems to indicate that it is more
favorable to simulate higher fidelity (less aggregate)
reaction-diffusion based epidemiological models on
hierarchical distribution of population. In other words,
it is more efficient to simulate the natural
decomposition of US population into towns and cities
than at more aggregated units of counties or states.

7. Summary and Ongoing Work

A discrete event formulation, its reverse-
computation-based parallel execution, and a
performance study of a robust implementation have
been presented here for simulating epidemiological
outbreaks at high fidelity at the scale of multiple
millions of individuals. The focus of this article was
more on the computational aspects, as opposed to the
use of the simulation for domain science in epidemic
simulations. Scalability of the overall system to very
large parallel computing platforms has been
demonstrated, with the largest being executed on
65,536 processor cores. An important outcome of this
work is evidence that PDES technology has now
reached a milestone at which very large epidemic
simulations can be realized with significant speedup
(over 104×) using large parallel computing platforms.

We are currently incorporating additional modeling
concepts, namely, resource constraints, and critical
thresholds, whose significance was recently
suggested [7]. Also being incorporated are
prevention, mitigation and intervention mechanisms
and their effects. We are also investigating the
performance differences between optimistic and
conservative execution for the epidemic models.
Similar performance comparison of interest is an
empirical performance study to compare the
performance between copy state saving and
incremental state saving in comparison to the reverse
computation reported here. In addition, we are
pursuing the use of real-life, interconnectivity graphs
(e.g., social and transportation networks) for diffusion,
along with customization of the system for sponsor
agencies and collaborating institutions.

Verification and validation are naturally required
before the simulation can be readily employed in
actual scenarios. We have performed a verification
exercise as reported in Section 5. Validation is a
more intensive effort that can be performed using
genuine, historical data in terms of reaction and
diffusion parameters used in the model. The validity
of the reaction equation is inherited from its reported
use in [2] for analyses in government agencies. Since

0

10

20

30

40

50

60

128 512 1024 4096

W
al

l C
lo

ck
 T

m
e

(S
ec

)

Number of Processor Cores

100-100 1000-10

0

50

100

150

200

250

300

350

128 512 1024 4096

W
al

l C
lo

ck
 T

im
e

(S
ec

)

Number of Processor Cores

100-100 1000-10

Perumalla and Seal

Volume 00, Number 0 SIMULATION 14

the diffusion network supported in our model can be
an arbitrary inter-location mobility network, a
validation exercise can be performed by choosing the
appropriate probability distributions from US Census
Bureau and Bureau of Transportation Statistics for
sampling the inter-location travel times [20]. The
resultant infection and recovery rates can be whetted
by domain (epidemiological) experts. Follow-on work
is needed to exercise the entire simulation system by
domain experts, to explore effective usage of the
scale and speed offered by the system within bonafide
solution processes for proactive, reactive and post-
facto operations of epidemic outbreaks.

Acknowledgements

This paper has been authored by UT-Battelle,
LLC, under contract DE-AC05-00OR22725 with the
U.S. Department of Energy. Accordingly, the United
States Government retains and the publisher, by
accepting the article for publication, acknowledges
that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this
manuscript, or allow others to do so, for United States
Government purposes.

References
[1] M. Z. Gojovic, B. Sander, D. Fisman, M. D. Krahn, and C. T. Bauch,

"Modelling Mitigation Strategies for Pandemic (H1N1) 2009," CMAJ,
Vol. 181, No. 10, pp. 673-680, 2009.

[2] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng, and M. V.
Marathe, "EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,"
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
Austin, Texas, 2008.

[3] M. Barthelemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani,
"Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-
Free Networks," Phys. Rev. Lett., Vol. 92, No. 17, p. 178701, 2004.

[4] R. Pastor-Satorras and A. Vespignani, "Epidemic Dynamics in Finite
Size Scale-free Networks," Phys. Rev. E, Vol. 65, No. 3, p. 035108,
2002.

[5] R. Pastor-Satorras and A. Vespignani, "Epidemic Spreading in Scale-
Free Networks," Phys. Rev. Lett., Vol. 86, No. 14, pp. 3200-3203,
2001.

[6] D. J. Watts and S. H. Strogatz, "Collective Dynamics of 'Small-world'
Networks," Nature, Vol. 393, No. pp. 440-442, 1998.

[7] C.-Y. Huang, Y.-S. Tsai, C.-T. Sun, J.-L. Hsieh, and C.-Y. Cheng,
"Influences of Resource Limitations and Transmission Costs on

Epidemic Simulations and Critical Thresholds in Scale-Free
Networks," SIMULATION, Vol. 85, No. 3, pp. 205-219, 2009.

[8] J. Epstein, "Modelling to Contain Pandemics," Nature, Vol. 460, No.
p. 687, 2009.

[9] G. V. Bobashev, D. M. Goedecke, F. Yu, and J. Epstein, "A Hybrid
Epidemic Model: Combining The Advantages of Agent-based and
Equation-based Approaches," in Proc. of the Winter Simulation
Conference, ed, 2007.

[10] S. Riley, "Large-scale Spatial-Transmission Models of Infectious
Disease," Science, Vol. 316, No. pp. 1298-1301, 2007.

[11] S. Eubank, H. Guclu, and M. V. Marathe, "Modeling Disease
Outbreaks in Realistic Urban Social Networks," Nature,, Vol. 429, No.
6988, pp. 180-184, 2004.

[12] M. E. Halloran, N. M. Ferguson, S. Eubank, I. M. Longini, D. A. T.
Cummings, B. Lewis, S. F. Xu, C. Fraser, A. Vullikanti, T. C.
Germann, D. Wagener, R. Beckman, K. Kadau, C. Barrett, C. A.
Macken, D. S. Burke, and P. Cooley, "Modeling targeted layered
containment of an influenza pandemic in the United States,"
Proceedings of the National Academy of Sciences of the United
States of America, Vol. 105, No. 12, pp. 4639-4644, Mar 25 2008.

[13] T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken,
"Mitigation strategies for pandemic influenza in the United States,"
Proceedings of the National Academy of Sciences of the United
States of America, Vol. 103, No. 15, pp. 5935-5940, April 11, 2006
2006.

[14] J. Parker, "A Flexible, Large-scale, Distributed Agent-based Epidemic
Model," Winter Simulation Conference, Piscataway, NJ, 2007.

[15] J. M. Linebarger, M. E. Goldsby, D. Fellig, M. F. Hawley, P. C.
Moore, and T. J. Sa, "Smallpox over San Diego: Joint Real-Time
Federations of Distributed Simulations and Simulation Users under a
Common Scenario," Proceedings of the 21st International Workshop
on Principles of Advanced and Distributed Simulation, 2007.

[16] D. W. Bauer and M. Mohtashemi, "An application of parallel Monte
Carlo modeling for real-time disease surveillance," in Simulation
Conference, 2008. WSC 2008. Winter, 2008, pp. 1029-1037.

[17] K. R. Bisset, J. Chen, X. Feng, V. S. A. Kumar, and M. V. Marathe,
"EpiFast: A Fast Algorithm for Large Scale Realistic Epidemic
Simulations on Distributed Memory Systems," in Proc. of Int'l. Conf.
of Supercomputing, ed, 2009, pp. 430-439.

[18] K. S. Perumalla and S. K. Seal, "Reversible Parallel Discrete Event
Execution of Large-scale Epidemic Outbreak Models,"
IEEE/ACM/SCS International Workshop on Principles of Advanced
and Distributed Simulation, Atlanta, GA, USA, 2010.

[19] C. Carothers, K. S. Perumalla, and R. M. Fujimoto, "Efficient
Optimistic Parallel Simulations using Reverse Computation," ACM
Transactions on Modeling and Computer Simulation, Vol. 9, No. 3,
pp. 224-253, 1999/07/01 1999.

[20] K. S. Perumalla and B. Bhaduri, "On Accounting for the Interplay of
Kinetic and Non-kinetic Aspects in Population Mobility Models," in
European Modeling and Simulation Symposium, Spain, 2006.

Appendix

A visualization system of the μsik simulator is used to provide animation capabilities for visualizing the runtime
dynamics of the simulation, providing highly interactive graphical interface at large event volumes (millions of
events). Visualization is enabled for the epidemic simulation to support large-scale scenarios including millions of
individuals instantiated in each run. To illustrate the operational and functional aspects of the system as a whole,
a few representative snapshots of the animation are shown next.

Figure 19 shows a portion of the event communication pattern among locations (LPs) in a sample simulation

Perumalla and Seal

Volume 00, Number 0 SIMULATION 15

of 10 regions with 10 locations per region and 1000 persons per location (giving a total of 100,000 persons in the
scenario). Figure 20 shows a snapshot of the distribution of the persons (dwelling in or in transit) across locations
and regions.

Figure 19: A snapshot of event communication pattern in a sample scenario. LPs are displayed along the

vertical axis, while their simulation timelines progress horizontally from left to right. Arrival events are
drawn in green, departure events in purple.

Figure 20: A set of snapshots in an animation of a simple scenario, shown with color-coded infection

states of each person. For simplicity of display, a small scenario is shown, with 35 regions, 20 locations
per region, and 100 individuals per location.

