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ABSTRACT 
An effective latency-hiding mechanism is presented in the 
parallelization of agent-based model simulations (ABMS) with 
millions of agents. The mechanism is designed to accommodate 
the hierarchical organization as well as heterogeneity of current 
state-of-the-art parallel computing platforms. We use it to explore 
the computation vs. communication trade-off continuum available 
with the deep computational and memory hierarchies of extant 
platforms and present a novel analytical model of the tradeoff. We 
describe our implementation and report preliminary performance 
results on two distinct parallel platforms suitable for ABMS: 
CUDA threads on multiple, networked graphical processing units 
(GPUs), and pthreads on multi-core processors. Message Passing 
Interface (MPI) is used for inter-GPU as well as inter-socket 
communication on a cluster of multiple GPUs and multi-core 
processors. Results indicate the benefits of our latency-hiding 
scheme, delivering as much as over 100-fold improvement in 
runtime for certain benchmark ABMS application scenarios with 
several million agents.  This speed improvement is obtained on 
our system that is already two to three orders of magnitude faster 
on one GPU than an equivalent CPU-based execution in a popular 
simulator in Java.  Thus, the overall execution of our current work 
is over four orders of magnitude faster when executed on multiple 
GPUs. 

Categories and Subject Descriptors 
D.4.8 [Operating Systems]: Performance – Simulation, 
Operational Analysis; D.4.4 [Operating Systems]: 
Communications Management – Buffering, Message Sending, 
Network Communication; D.4.8 [Operating Systems] 
Performance – Operational Analysis; I.6.1 [Simulation and 
Modeling] General; I.6.3 [Simulation and Modeling] 
Applications 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Agent-based simulation, GPU, Cluster, Threads, MPI, CUDA, 
Latency hiding, Computational hierarchy, Multi-core 

1.  INTRODUCTION 
The study of human social behavioral systems is finding renewed 
interest in many applications including military, homeland 

security, and socioeconomic scenario analyses.  Simulation is the 
most generally applied approach to studying such systems.  While 
computational social science has been actively studied for over 
three decades, experiments in computational social science so far 
have only been at small scales – a few thousands of interacting 
entities [1-4].  Lately, there has been a general surge to represent 
and capture detailed effects at much larger scale, such as at 
population counts of cities, states, nations or even the world (106-
109) [5].  Computational aspects that were not prominent at 
smaller scales are now becoming pronounced at large scales. 

1.1  Computational Challenge 
Emerging computational platforms are being built with 
compounds of hierarchical processing elements.  For example, 
clusters of commodity nodes with multiple graphics cards afford 
multiple levels of tightly and loosely coupled processing 
elements, with a variety of memory access types and 
synchronization primitives.  Processor clusters, with each 
processor containing many cores, are another commodity platform 
that affords high performance albeit with a different type of 
execution hierarchy. 

Inter-element communication latencies are also varied, ranging 
from nanoseconds to hundreds of microseconds.  For example, 
threads within a block of NVIDIA’s Common Unified Data 
Architecture (CUDA) have very fast access to a shared memory 
segment, whereas Message Passing Interface (MPI)-based 
communication across GPU nodes typically consumes hundreds 
of microseconds. 

The challenge is compounded by the fact that computation within 
each agent’s state update in an ABMS can be very fine-grained, 
taking little more than a few microseconds.  When states are 
decomposed across the hierarchies, synchronization across time-
stepped updates to the partitioned states can become a significant 
source of overhead. 

A solution is needed to simultaneously address the challenges of 
latency spectrum, hierarchical organization as well as 
heterogeneity.  Ideally, a single, unified, parameterized solution 
would be useful that can be easily instantiated, customized, and 
auto-tuned for any given, specific compound computational 
platform instance. This paper presents preliminary results from 
one such attempt. 

1.2  Related Work 
Several modeling frameworks are available for modeling and 
simulating social systems such as NetLogo[1], Mason[6], Repast 
J/.Net[3], Swarm [7]. SPADES [8], JAMES [9], and 
HLA_AGENT [10].  Also, GPUs have been recently used for 
ABMS [11, 12]. 

While parallel execution has not been a major focus of ABMS 
toolkits in general, a few recent systems have explored 
parallel/distributed implementations.  These include SEAS [13] 
for disaggregate and aggregate behavioral models interacting with 
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actual individuals, and a distributed agent simulator [14].  An 
agent-based simulation optimized for large shared-memory 
platforms is described in [15] and a parallel, Java-based agent 
simulation system is described for disease propagation in [16]. 
The dynamics of multi-agent based simulation execution on grid 
environments was analyzed in [17, 18].  By contrast, our focus is 
on high-performance computing and on heterogeneous platforms, 
with special emphasis on latency hiding for maximal concurrency. 

The problem of performance optimizations of stencil based 
computations – an area of active research for years – bears 
resemblance to the parallel execution challenge of ABMS. For 
example, “ghost cell expansions” (GCE) [19] was proposed for 
performance improvements for a two dimensional synthetic 
problem without any time evolution. Automatic parallelization of 
stencil computation was reported in [20] in the context of a one 
dimensional Jacobi code on a 32 node (single core) platform. 
More recently, a detailed empirical study of stencil computation 
optimization on several multi-core CPU based architecture (but 
restricted to a single GPU) was reported in [21]. Another related 
work is a framework for high-order stencil computations [22].  
Although similar in some ways, stencil-based computations are 
distinct from parallel agent-based simulations, as discussed next. 

Studies on stencil-based computations are generally based on 
constant-sized neighborhood dependencies that remain static 
throughout an execution. Availability of data at neighbor locations 
is guaranteed at each time step. This is not true for ABMS where 
the agents are mobile. In ABMS, the region of data dependency is 
not fixed and can potentially span the whole computational 
domain. This results in highly non-trivial spatial and temporal 
data dependencies. Consequently, the communication-
computation tradeoff strategies discussed in the stencil 
computation literature do not necessarily carry over to the needs 
of ABMS. Existing work on performance optimization of stencil 
based computation, as detailed above, has largely been empirical 
in nature [21] and focused on synthetic, reduced-dimensional 
problems [19, 20]. 

Stencil optimization strategies have neither focused on nor 
exploited the full hierarchical organization of current processor 
platforms and memory architectures.  We are also not aware of 
work that proposed a generalized solution that applies equally 
well across a variety of architectures (such as CPUs and GPUs); 
our approach does apply.  We are also not aware of prior work 
that can apply the same template recursively at multiple levels of 
computational hierarchy, with varying characteristics of memory 
latencies and capacities, processor speeds, and network latencies 
and bandwidths.  Our focus is on developing a single solution that 
can be reused despite variations in target platform characteristics 
due to heterogeneity and hierarchy. 

Automatic ghost zone optimization [23] also addresses latency 
problems in stencil computations.  However, unlike our approach, 
it is not generalized to heterogeneous, deeper hierarchies of 
computation and communication architectures. 

1.3  Contributions 
Here, we present a latency-hiding mechanism designed to exploit 
and seamlessly adapt to the hierarchical organization and 
heterogeneity of emerging high performance computing 
platforms. We call it the “B+2R latency-hiding scheme.”  It is 
based on the well-known principle of computation vs. 

communication tradeoff (or, the duplication of some computation 
to gain some concurrency to offset communication latencies). 

While being simple to articulate, it is rather complex to implement 
in heterogeneous platforms. For example, while concurrency 
considerations require larger cached-block sizes, memory 
limitations constrain the cached block-size; this conflict of 
considerations needs to be addressed in implementation carefully.  
As an example, we had to address this conflict in our CUDA-
based implementation, in which traditional ping-pong approach of 
read-write buffer swaps across iterations limited the size of blocks 
that could be handled by each thread or block within the limits of 
shared memory.  Once implemented, despite implementation 
complexity, however, it is relatively easy to fine tune for optimal 
performance on a variety of platforms.  The scheme also affords 
excellent performance even in the most challenging ABMS 
scenarios characterized by very fine computation granularity. 

To the best of our knowledge, the work reported in this article is 
among the first to execute ABMS on multiple GPUs 
communicating over a network. It is based on a novel analytical 
model (discussed in a latter section) that is applicable to arbitrary 
levels of computational and memory hierarchy. 

The analytical model proposed here reduces to previous models 
on computation vs. communication tradeoff on stencil-based 
computations [19] while validating, both analytically and 
empirically, the degradation of the payoffs [24] with increasing 
expansion levels.  We also believe that this is among the first 
ABMS to execute multiple regular (CPU-based) threads over 
distributed memory platforms, optimized to sustain fine 
granularity. 

We present our preliminary findings in the context of a well-
known ABMS benchmark application as well as a complex model 
of current interest in social sciences [25], to demonstrate 
significant runtime improvements via latency hiding. 

2.  LATENCY HIDING SCHEME 
2.1  Latency Problem 
ABMS toolkits typically provide an interface in which agents are 
organized in a grid, and agents interact with each other, typically 
within some specific distance of reach in a neighborhood region.  
As with other grid-based models, due to partitioning of the global 
state across processors, the state of adjacent cells in the 
neighborhood of some cells may be remotely located outside of 
that processor.  In time-stepped parallel execution of agent-based 
simulations, copies of off-processor neighbor states are fetched 
and used within a time step.  A synchronization primitive such as 
parallel barrier is used to align all processing elements after every 
time step.  The problem in scaling this approach is that the 
communication and synchronization costs can become quite large 
when hierarchical, heterogeneous computing elements are used, 
resulting in large slowdowns as opposed to speedups for fine-
grained agent models.  As will be seen from performance data in 
later sections, the naïve approach of synchronizing after every 
iteration is vastly sub-optimal.  A technique is needed to offset 
this cost, and hide the large inter-element latencies. 

2.2  Our Solution Approach 
Given a grid of agents, we can logically separate the grid into 
dependent blocks allotted to independent processing elements. 
These blocks clearly have data dependencies across each other as 
agent state updates bordering a given block depend upon the 



current state of agents in neighboring blocks. Here, we use an 
approach in which sub-grids of this grid, B, can be padded on the 
sides by R layers of surrounding data. These R layers of 
surrounding data encapsulate remote agents to be simulated by 
neighboring blocks allotted to other independent processing 
elements.  Computation on local agents can then be increased by 
R iterations before having to re-synchronize with off-processor 
cells. Since a given B+2R block captures all surrounding data for 
local simulation, communication between nodes is also decreased.  
The R layers induce resilience to error locally, and thus offer 
latency hiding, both in terms of communication (exchanging data 
fewer number of times, albeit a larger amount of data per 
exchange) and synchronization (synchronizing less often, only 
once every R iterations). 

As a simple illustrative example,  Figure 1 shows a 3×3 grid 
separated into blocks to be processed by P processing elements in 
two different contexts, with and without the latency hiding 
scheme implemented. Block1,1 of the conventional approach 
(Figure 1) simulates B×B agents with communication between 
boundary agents necessary at every simulation time step. By 
contrast, Block1,1 of the latency hiding scheme (Figure 2) 
simulates a larger number of agents (B+2R)×(B+2R), but 
requiring less frequent communication with neighboring blocks, 
only once every R time steps. 

 
 Figure 1: Traditional approach with synchronization 

between every time-step 
Figure 3 illustrates error propagation at successive (up to R) 
simulation time steps. Error propagates inward, one layer per 
iteration, but never enters the central B×B block that is mapped to 
this processing element.  Thus, after R iterations, a valid B×B 
block remains at the center, evolved by R iterations, for 
subsequent synchronization with neighboring blocks. 

For a given grid split into N×N logical blocks, this scheme is 
implemented homogenously across all blocks. Once again, only 
after exactly R iterations is synchronization necessary. This 
synchronization is the gathering or scattering of agent state 
information to neighboring blocks 

Data allotted to and surrounding a given block’s valid B×B, i.e. 
((B+2R)2-B2 ), is refilled with state information from neighboring 
blocks’ B×B. Subsequently, execution can continue for another R 
time steps before this synchronization is required once again. 

With this conceptual framework, we present a simple algorithm in 
Figure 4 by which simulation continues. Referring to Figure 3, it 
is necessary to only update the largest data square containing 
valid, correctly-simulated agents. After i iterations, we are 

required to update a square of size (B+2(R-i))×(B+2(R-i)). Note 
that in this algorithm update and communicate are 
implementation-specific. These will be further discussed in our 
implementation and benchmarks. 

 

 
 Figure 2: Our B+2R scheme for latency-hiding to 

sustain multiple time-steps per synchronization 

 
Figure 3: Error propagation at consecutive simulation 

time-steps 
Let Te be total number of iterations in the simulation 
1 For all blocks Blockij in the given agent grid G 
1.1 Let (tli, tlj) be the top left index of Blockij 
1.2 Let (bri, brj) be the bottom right index of Blockij 
1.3 For t=0 to Te/R 
1.4 For r=R-1 down to 0 
1.5  Update( tli-r, tlj-r, bri+r, brj+r ) 
1.6 Communicate( tli, tlj, bri, brj, r ) 
1.7 Barrier() 

Figure 4: Generalized latency-hiding scheme 
2.3  Analytical Model 
Let F be the total run time for a logical block of size B.  Then, F is 
the sum of computation time Fc and communication time Fm for R 
simulation time steps: 

c mF F F≡ +  

For R iterations, each subsequent iteration needs to only update 
remaining valid data, as previously discussed. Thus, total 
computation time is the aggregate time to update progressively 
smaller blocks. Note that cf  is the computation cost function for 
a given block size of agents. 
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The computational time increases as the square of the grid size. 
Therefore, if a is an implementation-specific computation 
constant, 

1

2( ) ( 2 )c c c

R

i
f x ax F f B R i

=

= ⇒ ≡ + −∑  

2 3 2 2 2

1
( 2 ) [ (2 2)4 2
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=
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Now, the communication cost required after R time steps must be 
expressed separately for CPU and GPU platforms due to 
configuration-specific details. For example, in the case of the 
CUDA environment for GPU, block’s shared memory is flushed 
immediately after kernel invocations. We represent these as

1mF
and

2mF respectively (CPU and GPU) where wf and rf  are 

general write and read representations for communication cost 
between blocks for both CPU and GPU. Let b and c be platform-
specific communication overhead constants (typically determined 
empirically). Communication cost is expressed (either read or 
write) as fwr below. 

( )wrf y by c= +  

1

22 2 2( ) (2 )2m w rF f B fB R B R B− + −≡ − +  

2

2 22 2( ) ( )m w rF f B f B R B+ −≡ +  

After some algebra, we finally obtain the final solution as a cubic 
equation.  For CPU-based parallelism, this is expressed as FCPU, 
and for GPU-based parallelism FGPU . 

3 2 2 24 2[ (2 2) ( 2 ) ] [8 ]3 3CPUF a R B R B B R B b BR c= + + + + + + + +  

3 2 2 2 24 2[ (2 2) ( 2 ) ] [ ]3 3 2GPUF a R B R B B R Bb cRB += + + + + + + + +  

The remarkable part of this equation is the cubic nature of 
dependence of the runtime on R, which indicates two traits. The 
first is that data-parallel execution on all platforms shall 
experience a decrease in overall execution time as R increases to 
some finite integer. The second is that there will also exist an R 
value at which the platform no longer favors computation over 
communication; in other words, there will be a fixed R for a given 
B for which optimal performance is achieved. Later, in the 
performance study, we in fact observe the fall and rise of runtime 
with R, as predicted by the analytical model.  These inferences are 
in fact in line with the observation and empirical findings in 
stencil-based computations as well, although our model is more 
general in nature. 

2.4  Latency Parametric Range 
Let us define a platform level as a computation and 
communication interface in a parallel computing hierarchy.  Two 
examples of such a hierarchy are shown in Figure 5 and Figure 6.  
The value range of R for a given block size is constrained by B at 
any given level.  The restriction is that, at any level, the range of R 
is limited such that a given block cannot encroach upon a 
neighboring block’s execution. This gives 1≤Ri≤Bi/2 for any given 
level i. Furthermore, at level i, it must be enforced for correct 
execution that level i+1 not update more iterations than its parent 
level’s: Ri+1≤Ri. 

2.5  Mobility and Neighborhood Reach > 1 
Mobility of agents in the grid is modeled by copying the state of 
the agent from the source grid cell to the destination grid cell to 
which the agent moves.  The selection of the destination is usually 
based on vacancy determination procedures combined with some 
randomization.  The reach within the neighborhood of an agent is 
the extents to/by which the influence of the agents actions 
extends.  Both the neighborhood reach as well as the mobility 
aspects share the notion of bounding box of influence of some D 
cells around a given grid cell.  Both of these aspects are easily 
accommodated by the B+2R scheme with one constraint on R, 
namely, R must be a integral multiple of the neighborhood reach 
or mobility extent D.  This constraint accommodates all local state 
update functions as well as remote movement functions. 

Thus, the scheme is generalized, and can support “stencils” that 
reach more than one cell in any direction, and it is not limited to a 
neighborhood of one cell away. 

3.  ALGORITHMIC IMPLEMENTATION 
FRAMEWORK 

We have implemented this scheme in two hierarchical parallel 
processing platforms that are the most commonly available.  The 
first is the multi-GPU platform and the second is the multi-core 
platform.  The null hypothesis is that communication and/or 
synchronization costs are high on these platforms, and that these 
costs can be hidden by using our latency hiding scheme. We will 
first discuss the implementation frameworks for both platforms, 
followed by performance studies on both.  

3.1  Implementation on Hierarchical Multi-
GPU, Multi-core Platforms 

At the lowest level in a multi-CPU multi-GPU configuration are 
GPU threads (e.g., NVIDIA’s CUDA threads). Even at this 
granularity, the B+2R scheme can be implemented at multiple 
levels: the CUDA block level and the CUDA thread level. A 
given thread can operate over a block of data in shared memory. 
Assigning threads to a 2-D space of B+2R allows for R correct 
iterations before communication between threads. At the block 
level, we once again overlap computation to avoid unnecessary 
communication between blocks. This follows for multi-GPU 
configurations whereby synchronization occurs via successive 
kernel calls. Once again, a large domain can be split up across 
GPUs for computation while employing this latency tolerant 
scheme across networked nodes.  Further up the tree the 
methodology is still useful. 

At the level of each core in a multi-core platform, we can exercise 
speed improvements by latency-hiding. This logically continues to 
the socket level such that a given node can employ these 
techniques at every computational level providing latency 
tolerance over the entire data domain. 

These hierarchical configurations illustrated in Figure 5 and 
Figure 6. 

Prior to implementing the scheme on GPUs on multiple nodes, we 
first investigate the implementation of the scheme on a single 
GPU. Once we establish a sound framework by which GPU 
exhibits this latency hiding scheme, we use MPI for inter-node 
GPU communication. This will be discussed in the performance 
study. 



 
Figure 5: Multi-node, multi-core hierarchy 

 

 

 
Figure 6: Multi-node, multi-GPU hierarchy 

3.2  Latency Hiding per GPU 
3.2.1 Block Level 
The simplest implementation on the GPU is remaining one level 
higher from the deepest in the hierarchy, the CUDA block level. 
In this configuration, a physical dataset is split into b×b blocks 
containing an equal number of threads. Then, each agent is 
mapped to a single thread. This affords a simple one-to-one 
mapping at the thread level within the CUDA kernel. Maximum 
concurrency is therefore determined by physical block size. 

 
Figure 7: GPU block-level latency-hiding workflow 

Simulation data provided either by a parent level or initialized on 
the GPU is linearly stored in CUDA global memory. 
Subsequently, the computation kernel is invoked global 
iterations/R times. Within this kernel, blocks are allotted 
(B+2R)×(B+2R) shared memory for computation. Following a 
read from global memory and successive thread synchronization, 
each thread updates its assigned agent and synchronizes with 
other threads R times before a write back of size B×B to global 
memory ensuring correct execution. This organization is depicted 
in Figure 7 

3.2.2 Block to Thread Level 
The second way in which we implement latency hiding is by 
letting the block level be a logical intermediary for latency hiding 
at the thread level. Given the workflow in Figure 7, we append 
latency hiding on the thread level by further dividing block shared 
memory into logically smaller thread blocks. Bb is the block size 
mapped to CUDA blocks and Rb is the corresponding padding 
layer width for each such block.  In this scenario, threads 
contrastingly operate over multiple data. Kernel invocations still 
serve as block level synchronization; however, individual threads 
access a third physical data structure for inter-thread 
communication. 

 

Figure 8: Thread-level latency-hiding workflow 
Let Rt be the value of R used at the thread level.  Within the 
CUDA kernel, an initial copy from global memory into block 
shared memory is succeeded by a copy from block shared 
memory to thread shared memory. Note that if Rt > 1, it is 
required that the total amount of thread shared memory per 
CUDA block exceeds the amount of block shared memory.  As a 
result, we encounter current GPU hardware limitations preventing 
full hierarchical latency hiding. Importantly, we have exercised 
the ability to implement the latency hiding scheme even at the 
lowest hierarchical level. Figure 8 illustrates this extension. 

3.3  Multi-Core Multi-GPU Implementation 
with MPI 

On top of the implementation for latency hiding on a single GPU, 
we build the remaining framework around this for both multi-
GPU and, also substitute the CUDA thread implementation with a 
pthreads-based CPU thread implementation for multi-core 
configurations.  Both the multi-GPU and multi-core frameworks 
utilize MPI for inter-node communication. 

On a cluster of nodes, a socket allocates memory according to its 
subsection of the whole computation domain. For instance, if the 
whole computation size is 1024×1024 agents and 4 nodes of a 
cluster are utilized, each node would accordingly allocate memory 
for 256×256 agents. From here, we either execute the simulation 
via a single GPU by passing this memory to GPU global memory, 
or we execute on the CPU by using POSIX pthreads. After RCPU 
or RGPU iterations, we post non-blocking MPI_Irecvs and 
MPI_Isends to tasks according to their logical 2D rank. Each node 
then repopulates its ((B+2R)2-B2) data, and execution continues. 
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3.4  CUDA Restrictions and Memory 
Considerations 

The current state of GPU hardware and software configurations 
imposes some restrictions on the flexibility of our scheme at both 
the block and thread levels The two most important factors 
limiting maximum concurrency not present in recent CPU cluster 
configurations are the number of threads per block, and the 
maximum amount of memory that can be allocated on a per block 
basis. For the 8800 GTX GPU, the maximum number of threads 
per block can be as large as 512. However, given that we are 
operating on a logically 2-dimensional grid, this number is 
reduced to the smallest square less than 512, 484. Thus, we can 
operate with at most 22×22 threads per block. For our block level 
implementation, this was a limiting factor unexpressed in CPU 
implementations. 

Implementation of the scheme down to the thread level, however, 
presented the largest barrier. It is known that operations in the 
shared memory space of a GPU are much faster than operations 
on the global address space. For maximal computational speed, 
therefore, we attempt to perform most computation on shared 
memory. Referring back to Figure 8 and prior discussion, we 
observe that extra shared memory is required for thread level 
implementation. Here, we now qualify this restriction. 

For a physical data grid split into blocks of size Bb with block 
level reach Rb, each CUDA block requires (Bb+2Rb) 2 bytes of 
shared memory. In addition, for thread blocks of size Bt with 
thread level reach Rt and t2 threads per block, we require 
t2(Bt+2Rt)2 bytes of shared memory. Finally, typically employed 
methods for intra-block computation require separate read and 
write memory spaces. In other words, it is common to “ping-
pong” computation between two memory spaces. If we employed 
this configuration (requiring another t2(Bt+2Rt)2 bytes of shared 
memory) we would have minimal concurrency (number of threads 
per block less than or equal to 4) and a maximum thread reach, Rt, 
of 2. This would not be sufficient enough to investigate latency 
hiding at the thread level. We therefore implemented a method by 
which typical ping-pong fashion is not required, discussed in the 
next section. After this optimization, the number of threads could 
be increased up to 16 threads per block, giving a maximum Rt of 
4. 

3.5  Minimizing Memory Requirements 
In shared memory units, a larger value of R results in increased 
concurrency, since the communication cost is negligible within 
the shared memory unit.  However, increasing R also increases the 
amount of additional memory used for latency hiding.  Thus, it is 
important to find ways to minimize the memory usage while still 
increasing R. 

Such as problem arises in a CUDA-based implementation, in 
which the shared memory size is limited, and hence must be 
carefully organized for the threads to perform their concurrent 
computation.  Traditional update schemes employ a read buffer 
and a write buffer for evolving an N×N grid, requiring 2N2 
memory variables.  Instead, if an in place update scheme exists, it 
can be used to avoid another copy of the entire grid.  We 
developed such an in-place update scheme, as shown in Figure 9, 
and used it to reduce the memory needs, and consequently 
increase the concurrency afforded by the latency hiding scheme, 
which reduces the temporary storage from N2 down to N+1. 

Given a 2D grid of cells for parallel update, we can use (N+1)×V 
registers for complete state update instead of using N×N extra 
registers. This method is depicted in Figure 9 where white cells 
are “to be updated” and yellow are already updated. These 
updates occur in linear fashion and we store data as needed in 
additional registers. 

 
Figure 9: Memory minimization for thread-level 

computation.  Blue cells are temporary registers, yellow 
are already updated, white are to be updated, and 

orange is currently being updated 

4.  EXPERIMENTATION PLATFORM 
4.1  Hardware 
GPU and CPU experiments have been run on the National Center 
for Computational Science (NCCS) LENS cluster. The platform 
was suitable because, as a data analysis cluster, not only were we 
able to access multi-node and multi-core functionality employed 
on many clusters, but it also afforded the use of recent NVIDIA 
8800 GTX (2 per node) GPUs. Each offers 768MB of onboard 
memory, 128 stream processors, and a core clock speed of 
575MHz. In regard to CPU experiments, each node contains four 
quad-core 2.3 GHz AMD Opteron processors with 64 GB of 
memory. 

4.2  Software 
For our single and multi-GPU runs, we use the NVIDIA Toolkit 
and SDK (nvcc compiler). Concurrent execution on the multi-
CPU level is obtained through POSIX pthreads (16 per node with 
16 cores per node). Finally, inter-node communication is handled 
through MPI (Open MPI specifically). All runs were conducted on 
a 64-bit Linux cluster. 

5.  APPLICATIONS AND SCENARIOS 
With the goal to reduce communication latency at the cost of 
increased computation, we choose scenarios that are fine- to 
medium-grained in computation. The first benchmark is a 
relatively well known model, namely, John Conway’s Game of 
Life.  The second is a recent, more complex model, called 
Leadership. The details of both models are discussed next. 

5.1  Game of Life 
The Game of Life (GOL) is a scenario in which a 2-dimensional 
spatial grid of cells is initially marked dead or alive. At each 
simulation time step, cells gather information from surrounding 
neighbors and make a Boolean choice. Cells that are occupied and 
surrounded by two or three neighbors remain occupied, otherwise, 
remove themselves from the grid. Unpopulated cells with exactly 
three neighbors become occupied. 
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Figure 10. Snapshots of grid for Game of Life: empty 

cells are in black; live cells are blue; recently-dead cells 
are red; green just became alive. 

5.2  Leadership 
The Leadership (LDR) model (developed as part of a US DARPA 
project) in , is a computationally involved model in which each 
agent computes an objective function for every iteration. In the 
model, reproduced below, each agent maximizes its utility in 
order to decide on the best behavior to adopt at any moment in the 
simulation: 

{ 1,0,1}Order O= ∈ −  
{ 1,0,1}Behavior B= ∈ −  
{ 1,0,1}Propensity P= ∈ −  
| |

2
O BLoyalty L λ −

= =  

(1 )previous lLambda Mλ λ δ δ= = − +  

| |
2

O BCoercion C R −
= =  

| |
2

P BIdealogy I −
= =  

2 2 21 l c iUtility U w L w C w I= = − − −  

Given an order O, of interest is the variation of behavior B that is 
chosen by each individual to maximize the individual’s utility U. 
Lambda’s time dependence induces variation of B over time. 
When Ml is defined as the mean loyalty of neighbors, the variation 
of B is less interesting, as lambda follows some sort of a diffusion 
process which can be expected to converge to an overall average 
across all individuals. To accommodate some dynamics, we make 
one change, namely, Ml is defined as the maximum loyalty, 
instead of mean loyalty, among neighbors. The rationale behind 
this variation is that the neighbor with the largest loyalty, even if 
there is only one, potentially has an overbearing influence on all 
its neighbors. Our implementation is initialized with constants: 
O=1, R=0.25, Wl=0.33, Wc=0.33, Wi=0.34, and δ=0.01. P is 
uniformly randomized across the population. 

6.  PERFORMANCE STUDY 
In our performance study, we use “improvement level” as the 
metric to observe the decrease in run time that our latency-hiding 
provides over traditional technique with no latency-hiding.  This 
is given by the following equation. 

(%) 100no latency hiding

latency hiding

RunTime
Improvement Level

RunTime
= ×

Note that an improvement level L=100% implies that the run 
times with and without latency hiding are the same, and any level 
L>100% implies a reduction in run time of latency hiding over 
that of no latency hiding by a factor of L/100. 

  
(a) Initial behavior map 
divided along a country 

border; loyal behaviors are 
below the diagonal (blue) 

(b) Behavior smoothens after 
a few time steps, but neutral 

behaviors emerge along 
diagonal 

  
(c) Fluctuations and growth of 

neutral behavior outward 
from the diagonal is observed 

(d) Neutrality waves are 
regenerated despite 
intermediate ebbs 

Figure 11: A simulation of the leadership model: blue 
shows loyalty to leadership, green shows neutrality and 
blue shows anti-order stance.  Sustained waves to/away 

from neutrality indicate prolonged “unrest” 
 
6.1  Single GPU 
To initially conduct our performance study, we benchmarked the 
GOL scenario on a single GPU on a single node of the LENS 
cluster. For both block- and thread-level schemes, we ran a range 
of agent populations, with multiple R values, and varying number 
of threads per block, T. Observed phenomena are generally static 
for varying populations, i.e. the only observed performance 
difference as population increases is expected and observed 
runtime increase. All benchmarks presented in this subsection are 
for approximately one million agents, and simulated for 256 
global iterations. This equates to 256/R kernel invocations for 
varying R. 

6.1.1 Thread Level Latency Hiding 
We started by investigating latency hiding at the deepest 
hierarchical level, the CUDA thread level, followed by 
empirically uncovering both the nature of the latency hiding 
scheme at this level and restrictions inherent to the GPU CUDA 
architecture.  At the thread level, for a fixed number of threads (T2 
threads in operation for a given T), in line with our hypothesis, we 
observe a decrease in runtime as R increases from 1 (essentially 
no latency hiding) to 2. We also see communication cost decrease 
with increasing R as expected. As R increases beyond 2, however, 
execution time increases and levels off. This indicates multiple 
phenomena. For the GPU architecture, at R=2, we quickly reach 
the point at which trading communication for computation affords 
speedup. Also, we would expect that as R is increased, 
computation cost would eventually overtake the reduced 
communication cost, resulting in an increase in runtime with no 
upper bound.  Given our restrictions on shared memory and the 
ability of the GPU to quickly perform arithmetic, we do not 
observe this expected increase. At R=2 with 4 threads per block 
(2x2) in operation, we observe the most efficient execution. 
Finally, after measuring synchronization cost amongst GPU block 



threads, we find it to be negligible in comparison to either 
memory reads/writes or computation. Thus, the additional 
overhead incurred by implementing thread-level latency hiding 
does not afford additional speedup. 

6.1.2 Block Level Latency Hiding 
At the block level, we see communication cost decrease and 
overall runtime decrease up to a given R (see Figure 12). We also 
notice, importantly, the stark contrast between overall runtime 
when comparing block and thread level latency hiding. As 
previously stated, the increased overhead incurred by 
implementation of the scheme at the thread level hinders 
performance. This manifests itself as an order of magnitude 
difference. We therefore conclude that thread level 
implementation is not useful for optimal speedup, and for our 
subsequent benchmarks on multiple nodes of the LENS cluster, 
we implement the scheme only at the block level. 

 
Figure 12: Improvement of GPU block level latency-
hiding compared to traditional (no latency-hiding) 

With this initial single GPU study, we turn to our benchmarks of 
both the GOL and LDR models on a larger, multi-GPU and multi-
CPU scale (16 nodes of the LENS cluster). The first set of these 
benchmarks, discussed next, uses a single GPU on each of the 16 
nodes. 

6.2  Multi-Node, One-GPU per Node 
We ported the single GPU latency hiding scheme to one 
hierarchically higher level on the LENS cluster of GPUs. Within 
this new framework, we effectively increase maximum number of 
agents simulated on a single GPU (approximately 16 million in 
our studies) multiplied by 16 (nodes). 

Both the LDR and GOL scenarios were benchmarked. Once 
again, because of shared memory limitations, we here present data 
for each GPU simulating approximately 1 million agents. These 
benchmarks are represented in Figure 13 and Figure 14 
respectively. 

The speedup bars clearly highlight the dramatic gains afforded by 
the latency hiding scheme when multiple GPUs are used across 
MPI.  It is evident here that communication latency hiding 
represented by Rm (for the parameter R at the MPI/node-level) is 
the dominant factor in speedup for both scenarios. As expected, 
inter-node communication is much more expensive with respect to 
wall time. Also we observe strong performance benefits when 
applying this scheme across nodes (up to two orders of magnitude 
on GOL). 

 
Figure 13:  Improvement of latency-hiding compared to 
no latency-hiding for GOL simulated on 16 GPUs of the 

LENS cluster 
 

 
Figure 14: Improvement of latency-hiding compared to 
no latency-hiding for LDR simulated on 16 GPUs of the 

LENS cluster 
With this relatively small dataset, however, we do not observe the 
point at which computation catches up with communication. A 
key hypothesis is that there will be a fixed point at which this 
tradeoff becomes unfavorable to runtime, i.e., we no longer 
benefit from the scheme. This will be discussed in the next 
section. 

6.3  Multi-Node Multi-Core 
Not constrained by the memory configurations of the 8800 GTX 
GPU, on multi-core platform, we are able to scale simulation size 
to over 109 agents. In similar fashion to GPU benchmarks, we test 
both the LDR and GOL models. These are represented in Figure 
15 and Figure 16.  Most notable in this configuration is large 
scalability of our scheme. Similar to multi-GPU execution, 
latency hiding at the MPI level is most dominant factor in model 
speedup.  In Figure 17 we observe the point at which the 
communication vs. computation continuum no longer affords 
increased speedup. For R>256 at the MPI task level, computation 
costs finally offset communication costs. This was predicted via 
the analytical model, and is now quantified. 
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Figure 15: Improvement of latency-hiding compared to 

no latency-hiding (Rt=1) when GOL is simulated on 
multi-core multi-node platform 

 
Figure 16: Improvement of latency-hiding compared to 

no latency-hiding (Rt=2) when LDR is simulated on 
multi-core multi-node platform 

 

 
Figure 17: Improvement of latency-hiding compared to 

no latency-hiding; shows reduction in runtime with 
increasing R, reducing by more than half in the best 
case before extra computation costs more than gains 

from decreased communication 

7.  SUMMARY AND FUTURE WORK 
We presented a way to scale ABMS on extant multi-CPU and 
multi-GPU systems while retaining both model fidelity and high 
execution speed of fine to medium granularity models. We are 
able to scale these simulations to over one billion agents, to aid in 
exploration of emergent phenomena in certain agent models.  We 
have also presented a flexible way to exploit emerging computing 
resources. Here, we are able to utilize up to 256 CPU-cores and/or 
16 GPUs concurrently. 

With our preliminary implementation and performance study, on 
multi-CPU architectures, we have shown large decreases in 
runtime by trading communication for computation. This same 
method, when applied to multi-GPU systems, allows for speed 
increases of over two orders of magnitude. This is all achieved 
through a single, unified, parameterized model, applicable on 
multiple architectures. Importantly; the method can be used on 
many hierarchical computational levels and their combinations, 
from CUDA threads to inter-node communication. 

It is important to note that the B+2R speedups are relative to no 
latency hiding scheme, and that the no latency hiding schemes are 
already highly optimized for a single (non-networked) GPU.  Our 
earlier work [11] on a single GPU already demonstrated three 
orders of magnitude faster agent simulations on a single GPU.  
Thus, actual (absolute) speedups of our current multi-GPU work 
when compared to a CPU-based implementation are over 30×, and 
speedups compared to existing CPU-based systems in Java are 
over 1000×.  In the best case (Figure 13), the speedup of our 
scheme over the existing straightforward scheme is over 150×, 
which represents over four orders of magnitude improvement over 
existing Java-based agent simulations. 

This leaves many areas for future work. One of the limitations in 
our implementation was coding separately for each platform. 
Ideally, it would be useful to have a seamless interface for all 
platform levels. OpenCL is one current technology designed to do 
this, our future experiments in latency hiding may investigate this 
technology. Another desirable feature is to dynamically and 
automatically tune R for each level.  This would decrease trial and 
error methods for finding the most suitable R.  Also, with newer 
GPU configurations, levels of performance and scale could be 
expected to increase.  Finally, incorporation of additional ABM-
specific features such as agent mobility and large agent 
neighborhoods will be investigated. 
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