
Efficient Simulation of Agent-Based Models on Multi-GPU
and Multi-Core Clusters

Brandon G. Aaby, Kalyan S. Perumalla and Sudip K. Seal
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

perumallaks@ornl.gov, sealsk@ornl.gov

ABSTRACT
An effective latency-hiding mechanism is presented in the
parallelization of agent-based model simulations (ABMS) with
millions of agents. The mechanism is designed to accommodate
the hierarchical organization as well as heterogeneity of current
state-of-the-art parallel computing platforms. We use it to explore
the computation vs. communication trade-off continuum available
with the deep computational and memory hierarchies of extant
platforms and present a novel analytical model of the tradeoff. We
describe our implementation and report preliminary performance
results on two distinct parallel platforms suitable for ABMS:
CUDA threads on multiple, networked graphical processing units
(GPUs), and pthreads on multi-core processors. Message Passing
Interface (MPI) is used for inter-GPU as well as inter-socket
communication on a cluster of multiple GPUs and multi-core
processors. Results indicate the benefits of our latency-hiding
scheme, delivering as much as over 100-fold improvement in
runtime for certain benchmark ABMS application scenarios with
several million agents. This speed improvement is obtained on
our system that is already two to three orders of magnitude faster
on one GPU than an equivalent CPU-based execution in a popular
simulator in Java. Thus, the overall execution of our current work
is over four orders of magnitude faster when executed on multiple
GPUs.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance – Simulation,
Operational Analysis; D.4.4 [Operating Systems]:
Communications Management – Buffering, Message Sending,
Network Communication; D.4.8 [Operating Systems]
Performance – Operational Analysis; I.6.1 [Simulation and
Modeling] General; I.6.3 [Simulation and Modeling]
Applications

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Agent-based simulation, GPU, Cluster, Threads, MPI, CUDA,
Latency hiding, Computational hierarchy, Multi-core

1. INTRODUCTION
The study of human social behavioral systems is finding renewed
interest in many applications including military, homeland

security, and socioeconomic scenario analyses. Simulation is the
most generally applied approach to studying such systems. While
computational social science has been actively studied for over
three decades, experiments in computational social science so far
have only been at small scales – a few thousands of interacting
entities [1-4]. Lately, there has been a general surge to represent
and capture detailed effects at much larger scale, such as at
population counts of cities, states, nations or even the world (106-
109) [5]. Computational aspects that were not prominent at
smaller scales are now becoming pronounced at large scales.

1.1 Computational Challenge
Emerging computational platforms are being built with
compounds of hierarchical processing elements. For example,
clusters of commodity nodes with multiple graphics cards afford
multiple levels of tightly and loosely coupled processing
elements, with a variety of memory access types and
synchronization primitives. Processor clusters, with each
processor containing many cores, are another commodity platform
that affords high performance albeit with a different type of
execution hierarchy.

Inter-element communication latencies are also varied, ranging
from nanoseconds to hundreds of microseconds. For example,
threads within a block of NVIDIA’s Common Unified Data
Architecture (CUDA) have very fast access to a shared memory
segment, whereas Message Passing Interface (MPI)-based
communication across GPU nodes typically consumes hundreds
of microseconds.

The challenge is compounded by the fact that computation within
each agent’s state update in an ABMS can be very fine-grained,
taking little more than a few microseconds. When states are
decomposed across the hierarchies, synchronization across time-
stepped updates to the partitioned states can become a significant
source of overhead.

A solution is needed to simultaneously address the challenges of
latency spectrum, hierarchical organization as well as
heterogeneity. Ideally, a single, unified, parameterized solution
would be useful that can be easily instantiated, customized, and
auto-tuned for any given, specific compound computational
platform instance. This paper presents preliminary results from
one such attempt.

1.2 Related Work
Several modeling frameworks are available for modeling and
simulating social systems such as NetLogo[1], Mason[6], Repast
J/.Net[3], Swarm [7]. SPADES [8], JAMES [9], and
HLA_AGENT [10]. Also, GPUs have been recently used for
ABMS [11, 12].

While parallel execution has not been a major focus of ABMS
toolkits in general, a few recent systems have explored
parallel/distributed implementations. These include SEAS [13]
for disaggregate and aggregate behavioral models interacting with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.

Copyright 2010 ICST, ISBN 78-963-9799-87-5.

mailto:perumallaks@ornl.gov�
mailto:sealsk@ornl.gov�

actual individuals, and a distributed agent simulator [14]. An
agent-based simulation optimized for large shared-memory
platforms is described in [15] and a parallel, Java-based agent
simulation system is described for disease propagation in [16].
The dynamics of multi-agent based simulation execution on grid
environments was analyzed in [17, 18]. By contrast, our focus is
on high-performance computing and on heterogeneous platforms,
with special emphasis on latency hiding for maximal concurrency.

The problem of performance optimizations of stencil based
computations – an area of active research for years – bears
resemblance to the parallel execution challenge of ABMS. For
example, “ghost cell expansions” (GCE) [19] was proposed for
performance improvements for a two dimensional synthetic
problem without any time evolution. Automatic parallelization of
stencil computation was reported in [20] in the context of a one
dimensional Jacobi code on a 32 node (single core) platform.
More recently, a detailed empirical study of stencil computation
optimization on several multi-core CPU based architecture (but
restricted to a single GPU) was reported in [21]. Another related
work is a framework for high-order stencil computations [22].
Although similar in some ways, stencil-based computations are
distinct from parallel agent-based simulations, as discussed next.

Studies on stencil-based computations are generally based on
constant-sized neighborhood dependencies that remain static
throughout an execution. Availability of data at neighbor locations
is guaranteed at each time step. This is not true for ABMS where
the agents are mobile. In ABMS, the region of data dependency is
not fixed and can potentially span the whole computational
domain. This results in highly non-trivial spatial and temporal
data dependencies. Consequently, the communication-
computation tradeoff strategies discussed in the stencil
computation literature do not necessarily carry over to the needs
of ABMS. Existing work on performance optimization of stencil
based computation, as detailed above, has largely been empirical
in nature [21] and focused on synthetic, reduced-dimensional
problems [19, 20].

Stencil optimization strategies have neither focused on nor
exploited the full hierarchical organization of current processor
platforms and memory architectures. We are also not aware of
work that proposed a generalized solution that applies equally
well across a variety of architectures (such as CPUs and GPUs);
our approach does apply. We are also not aware of prior work
that can apply the same template recursively at multiple levels of
computational hierarchy, with varying characteristics of memory
latencies and capacities, processor speeds, and network latencies
and bandwidths. Our focus is on developing a single solution that
can be reused despite variations in target platform characteristics
due to heterogeneity and hierarchy.

Automatic ghost zone optimization [23] also addresses latency
problems in stencil computations. However, unlike our approach,
it is not generalized to heterogeneous, deeper hierarchies of
computation and communication architectures.

1.3 Contributions
Here, we present a latency-hiding mechanism designed to exploit
and seamlessly adapt to the hierarchical organization and
heterogeneity of emerging high performance computing
platforms. We call it the “B+2R latency-hiding scheme.” It is
based on the well-known principle of computation vs.

communication tradeoff (or, the duplication of some computation
to gain some concurrency to offset communication latencies).

While being simple to articulate, it is rather complex to implement
in heterogeneous platforms. For example, while concurrency
considerations require larger cached-block sizes, memory
limitations constrain the cached block-size; this conflict of
considerations needs to be addressed in implementation carefully.
As an example, we had to address this conflict in our CUDA-
based implementation, in which traditional ping-pong approach of
read-write buffer swaps across iterations limited the size of blocks
that could be handled by each thread or block within the limits of
shared memory. Once implemented, despite implementation
complexity, however, it is relatively easy to fine tune for optimal
performance on a variety of platforms. The scheme also affords
excellent performance even in the most challenging ABMS
scenarios characterized by very fine computation granularity.

To the best of our knowledge, the work reported in this article is
among the first to execute ABMS on multiple GPUs
communicating over a network. It is based on a novel analytical
model (discussed in a latter section) that is applicable to arbitrary
levels of computational and memory hierarchy.

The analytical model proposed here reduces to previous models
on computation vs. communication tradeoff on stencil-based
computations [19] while validating, both analytically and
empirically, the degradation of the payoffs [24] with increasing
expansion levels. We also believe that this is among the first
ABMS to execute multiple regular (CPU-based) threads over
distributed memory platforms, optimized to sustain fine
granularity.

We present our preliminary findings in the context of a well-
known ABMS benchmark application as well as a complex model
of current interest in social sciences [25], to demonstrate
significant runtime improvements via latency hiding.

2. LATENCY HIDING SCHEME
2.1 Latency Problem
ABMS toolkits typically provide an interface in which agents are
organized in a grid, and agents interact with each other, typically
within some specific distance of reach in a neighborhood region.
As with other grid-based models, due to partitioning of the global
state across processors, the state of adjacent cells in the
neighborhood of some cells may be remotely located outside of
that processor. In time-stepped parallel execution of agent-based
simulations, copies of off-processor neighbor states are fetched
and used within a time step. A synchronization primitive such as
parallel barrier is used to align all processing elements after every
time step. The problem in scaling this approach is that the
communication and synchronization costs can become quite large
when hierarchical, heterogeneous computing elements are used,
resulting in large slowdowns as opposed to speedups for fine-
grained agent models. As will be seen from performance data in
later sections, the naïve approach of synchronizing after every
iteration is vastly sub-optimal. A technique is needed to offset
this cost, and hide the large inter-element latencies.

2.2 Our Solution Approach
Given a grid of agents, we can logically separate the grid into
dependent blocks allotted to independent processing elements.
These blocks clearly have data dependencies across each other as
agent state updates bordering a given block depend upon the

current state of agents in neighboring blocks. Here, we use an
approach in which sub-grids of this grid, B, can be padded on the
sides by R layers of surrounding data. These R layers of
surrounding data encapsulate remote agents to be simulated by
neighboring blocks allotted to other independent processing
elements. Computation on local agents can then be increased by
R iterations before having to re-synchronize with off-processor
cells. Since a given B+2R block captures all surrounding data for
local simulation, communication between nodes is also decreased.
The R layers induce resilience to error locally, and thus offer
latency hiding, both in terms of communication (exchanging data
fewer number of times, albeit a larger amount of data per
exchange) and synchronization (synchronizing less often, only
once every R iterations).

As a simple illustrative example, Figure 1 shows a 3×3 grid
separated into blocks to be processed by P processing elements in
two different contexts, with and without the latency hiding
scheme implemented. Block1,1 of the conventional approach
(Figure 1) simulates B×B agents with communication between
boundary agents necessary at every simulation time step. By
contrast, Block1,1 of the latency hiding scheme (Figure 2)
simulates a larger number of agents (B+2R)×(B+2R), but
requiring less frequent communication with neighboring blocks,
only once every R time steps.

 Figure 1: Traditional approach with synchronization

between every time-step
Figure 3 illustrates error propagation at successive (up to R)
simulation time steps. Error propagates inward, one layer per
iteration, but never enters the central B×B block that is mapped to
this processing element. Thus, after R iterations, a valid B×B
block remains at the center, evolved by R iterations, for
subsequent synchronization with neighboring blocks.

For a given grid split into N×N logical blocks, this scheme is
implemented homogenously across all blocks. Once again, only
after exactly R iterations is synchronization necessary. This
synchronization is the gathering or scattering of agent state
information to neighboring blocks

Data allotted to and surrounding a given block’s valid B×B, i.e.
((B+2R)2-B2), is refilled with state information from neighboring
blocks’ B×B. Subsequently, execution can continue for another R
time steps before this synchronization is required once again.

With this conceptual framework, we present a simple algorithm in
Figure 4 by which simulation continues. Referring to Figure 3, it
is necessary to only update the largest data square containing
valid, correctly-simulated agents. After i iterations, we are

required to update a square of size (B+2(R-i))×(B+2(R-i)). Note
that in this algorithm update and communicate are
implementation-specific. These will be further discussed in our
implementation and benchmarks.

 Figure 2: Our B+2R scheme for latency-hiding to

sustain multiple time-steps per synchronization

Figure 3: Error propagation at consecutive simulation

time-steps
Let Te be total number of iterations in the simulation
1 For all blocks Blockij in the given agent grid G
1.1 Let (tli, tlj) be the top left index of Blockij
1.2 Let (bri, brj) be the bottom right index of Blockij
1.3 For t=0 to Te/R
1.4 For r=R-1 down to 0
1.5 Update(tli-r, tlj-r, bri+r, brj+r)
1.6 Communicate(tli, tlj, bri, brj, r)
1.7 Barrier()

Figure 4: Generalized latency-hiding scheme
2.3 Analytical Model
Let F be the total run time for a logical block of size B. Then, F is
the sum of computation time Fc and communication time Fm for R
simulation time steps:

c mF F F≡ +

For R iterations, each subsequent iteration needs to only update
remaining valid data, as previously discussed. Thus, total
computation time is the aggregate time to update progressively
smaller blocks. Note that cf is the computation cost function for
a given block size of agents.

 B

 R
 B+2R

 R

Direction of error
propagation in R

B×B
sub-block mapped

to processing
element p

R layers of
lagging cells

Block0,0
P0,0

Block0,1
P0,1

Block0,2
P0,2

Block1,0
P1,0

Block1,1
P1,1

Block1,2
P1,2

Block2,0
P2,0

Block2,1
P2,1

Block2,2
P2,2

B+2R

R R

Block0,0
P0,0

Block0,1
P0,1

Block0,2
P0,2

Block1,0
P1,0

Block1,1
P1,1

Block1,2
P1,2

Block2,0
P2,0

Block2,1
P2,1

Block2,2
P2,2

B

(2) (2 1) (2 2) (2)c c c c cF f B R f B R f B R f B R R≡ + + + − + + − + + + −

The computational time increases as the square of the grid size.
Therefore, if a is an implementation-specific computation
constant,

1

2() (2)c c c

R

i
f x ax F f B R i

=

= ⇒ ≡ + −∑

2 3 2 2 2

1
(2) [(2 2)4 2

3 3
(2)]

R

i
a B R i a R B R B B R B

=

= + − = + + + + + +∑

Now, the communication cost required after R time steps must be
expressed separately for CPU and GPU platforms due to
configuration-specific details. For example, in the case of the
CUDA environment for GPU, block’s shared memory is flushed
immediately after kernel invocations. We represent these as

1mF
and

2mF respectively (CPU and GPU) where wf and rf are

general write and read representations for communication cost
between blocks for both CPU and GPU. Let b and c be platform-
specific communication overhead constants (typically determined
empirically). Communication cost is expressed (either read or
write) as fwr below.

()wrf y by c= +

1

22 2 2() (2)2m w rF f B fB R B R B− + −≡ − +

2

2 22 2() ()m w rF f B f B R B+ −≡ +

After some algebra, we finally obtain the final solution as a cubic
equation. For CPU-based parallelism, this is expressed as FCPU,
and for GPU-based parallelism FGPU .

3 2 2 24 2[(2 2) (2)] [8]3 3CPUF a R B R B B R B b BR c= + + + + + + + +

3 2 2 2 24 2[(2 2) (2)] []3 3 2GPUF a R B R B B R Bb cRB += + + + + + + + +

The remarkable part of this equation is the cubic nature of
dependence of the runtime on R, which indicates two traits. The
first is that data-parallel execution on all platforms shall
experience a decrease in overall execution time as R increases to
some finite integer. The second is that there will also exist an R
value at which the platform no longer favors computation over
communication; in other words, there will be a fixed R for a given
B for which optimal performance is achieved. Later, in the
performance study, we in fact observe the fall and rise of runtime
with R, as predicted by the analytical model. These inferences are
in fact in line with the observation and empirical findings in
stencil-based computations as well, although our model is more
general in nature.

2.4 Latency Parametric Range
Let us define a platform level as a computation and
communication interface in a parallel computing hierarchy. Two
examples of such a hierarchy are shown in Figure 5 and Figure 6.
The value range of R for a given block size is constrained by B at
any given level. The restriction is that, at any level, the range of R
is limited such that a given block cannot encroach upon a
neighboring block’s execution. This gives 1≤Ri≤Bi/2 for any given
level i. Furthermore, at level i, it must be enforced for correct
execution that level i+1 not update more iterations than its parent
level’s: Ri+1≤Ri.

2.5 Mobility and Neighborhood Reach > 1
Mobility of agents in the grid is modeled by copying the state of
the agent from the source grid cell to the destination grid cell to
which the agent moves. The selection of the destination is usually
based on vacancy determination procedures combined with some
randomization. The reach within the neighborhood of an agent is
the extents to/by which the influence of the agents actions
extends. Both the neighborhood reach as well as the mobility
aspects share the notion of bounding box of influence of some D
cells around a given grid cell. Both of these aspects are easily
accommodated by the B+2R scheme with one constraint on R,
namely, R must be a integral multiple of the neighborhood reach
or mobility extent D. This constraint accommodates all local state
update functions as well as remote movement functions.

Thus, the scheme is generalized, and can support “stencils” that
reach more than one cell in any direction, and it is not limited to a
neighborhood of one cell away.

3. ALGORITHMIC IMPLEMENTATION
FRAMEWORK

We have implemented this scheme in two hierarchical parallel
processing platforms that are the most commonly available. The
first is the multi-GPU platform and the second is the multi-core
platform. The null hypothesis is that communication and/or
synchronization costs are high on these platforms, and that these
costs can be hidden by using our latency hiding scheme. We will
first discuss the implementation frameworks for both platforms,
followed by performance studies on both.

3.1 Implementation on Hierarchical Multi-
GPU, Multi-core Platforms

At the lowest level in a multi-CPU multi-GPU configuration are
GPU threads (e.g., NVIDIA’s CUDA threads). Even at this
granularity, the B+2R scheme can be implemented at multiple
levels: the CUDA block level and the CUDA thread level. A
given thread can operate over a block of data in shared memory.
Assigning threads to a 2-D space of B+2R allows for R correct
iterations before communication between threads. At the block
level, we once again overlap computation to avoid unnecessary
communication between blocks. This follows for multi-GPU
configurations whereby synchronization occurs via successive
kernel calls. Once again, a large domain can be split up across
GPUs for computation while employing this latency tolerant
scheme across networked nodes. Further up the tree the
methodology is still useful.

At the level of each core in a multi-core platform, we can exercise
speed improvements by latency-hiding. This logically continues to
the socket level such that a given node can employ these
techniques at every computational level providing latency
tolerance over the entire data domain.

These hierarchical configurations illustrated in Figure 5 and
Figure 6.

Prior to implementing the scheme on GPUs on multiple nodes, we
first investigate the implementation of the scheme on a single
GPU. Once we establish a sound framework by which GPU
exhibits this latency hiding scheme, we use MPI for inter-node
GPU communication. This will be discussed in the performance
study.

Figure 5: Multi-node, multi-core hierarchy

Figure 6: Multi-node, multi-GPU hierarchy

3.2 Latency Hiding per GPU
3.2.1 Block Level
The simplest implementation on the GPU is remaining one level
higher from the deepest in the hierarchy, the CUDA block level.
In this configuration, a physical dataset is split into b×b blocks
containing an equal number of threads. Then, each agent is
mapped to a single thread. This affords a simple one-to-one
mapping at the thread level within the CUDA kernel. Maximum
concurrency is therefore determined by physical block size.

Figure 7: GPU block-level latency-hiding workflow

Simulation data provided either by a parent level or initialized on
the GPU is linearly stored in CUDA global memory.
Subsequently, the computation kernel is invoked global
iterations/R times. Within this kernel, blocks are allotted
(B+2R)×(B+2R) shared memory for computation. Following a
read from global memory and successive thread synchronization,
each thread updates its assigned agent and synchronizes with
other threads R times before a write back of size B×B to global
memory ensuring correct execution. This organization is depicted
in Figure 7

3.2.2 Block to Thread Level
The second way in which we implement latency hiding is by
letting the block level be a logical intermediary for latency hiding
at the thread level. Given the workflow in Figure 7, we append
latency hiding on the thread level by further dividing block shared
memory into logically smaller thread blocks. Bb is the block size
mapped to CUDA blocks and Rb is the corresponding padding
layer width for each such block. In this scenario, threads
contrastingly operate over multiple data. Kernel invocations still
serve as block level synchronization; however, individual threads
access a third physical data structure for inter-thread
communication.

Figure 8: Thread-level latency-hiding workflow
Let Rt be the value of R used at the thread level. Within the
CUDA kernel, an initial copy from global memory into block
shared memory is succeeded by a copy from block shared
memory to thread shared memory. Note that if Rt > 1, it is
required that the total amount of thread shared memory per
CUDA block exceeds the amount of block shared memory. As a
result, we encounter current GPU hardware limitations preventing
full hierarchical latency hiding. Importantly, we have exercised
the ability to implement the latency hiding scheme even at the
lowest hierarchical level. Figure 8 illustrates this extension.

3.3 Multi-Core Multi-GPU Implementation
with MPI

On top of the implementation for latency hiding on a single GPU,
we build the remaining framework around this for both multi-
GPU and, also substitute the CUDA thread implementation with a
pthreads-based CPU thread implementation for multi-core
configurations. Both the multi-GPU and multi-core frameworks
utilize MPI for inter-node communication.

On a cluster of nodes, a socket allocates memory according to its
subsection of the whole computation domain. For instance, if the
whole computation size is 1024×1024 agents and 4 nodes of a
cluster are utilized, each node would accordingly allocate memory
for 256×256 agents. From here, we either execute the simulation
via a single GPU by passing this memory to GPU global memory,
or we execute on the CPU by using POSIX pthreads. After RCPU
or RGPU iterations, we post non-blocking MPI_Irecvs and
MPI_Isends to tasks according to their logical 2D rank. Each node
then repopulates its ((B+2R)2-B2) data, and execution continues.

Bb+2Rb Split into t×t
logical thread blocks

Total block shared
memory

.…

Additional shared
memory

per thread

Bt+2Rt

t×t Thread blocks
Rt State updates

Rt State updates

Split into b×b
logical blocks

Global memory

.…

Shared memory
per block

B+2R

b×b blocks
R state updates

R state updates

Multi-Node

Node (Multi-GPU)

GPU

Block

........ Thread

........

Multi-Socket

Multi-Core

Thread

Multi-Node

........

........

3.4 CUDA Restrictions and Memory
Considerations

The current state of GPU hardware and software configurations
imposes some restrictions on the flexibility of our scheme at both
the block and thread levels The two most important factors
limiting maximum concurrency not present in recent CPU cluster
configurations are the number of threads per block, and the
maximum amount of memory that can be allocated on a per block
basis. For the 8800 GTX GPU, the maximum number of threads
per block can be as large as 512. However, given that we are
operating on a logically 2-dimensional grid, this number is
reduced to the smallest square less than 512, 484. Thus, we can
operate with at most 22×22 threads per block. For our block level
implementation, this was a limiting factor unexpressed in CPU
implementations.

Implementation of the scheme down to the thread level, however,
presented the largest barrier. It is known that operations in the
shared memory space of a GPU are much faster than operations
on the global address space. For maximal computational speed,
therefore, we attempt to perform most computation on shared
memory. Referring back to Figure 8 and prior discussion, we
observe that extra shared memory is required for thread level
implementation. Here, we now qualify this restriction.

For a physical data grid split into blocks of size Bb with block
level reach Rb, each CUDA block requires (Bb+2Rb) 2 bytes of
shared memory. In addition, for thread blocks of size Bt with
thread level reach Rt and t2 threads per block, we require
t2(Bt+2Rt)2 bytes of shared memory. Finally, typically employed
methods for intra-block computation require separate read and
write memory spaces. In other words, it is common to “ping-
pong” computation between two memory spaces. If we employed
this configuration (requiring another t2(Bt+2Rt)2 bytes of shared
memory) we would have minimal concurrency (number of threads
per block less than or equal to 4) and a maximum thread reach, Rt,
of 2. This would not be sufficient enough to investigate latency
hiding at the thread level. We therefore implemented a method by
which typical ping-pong fashion is not required, discussed in the
next section. After this optimization, the number of threads could
be increased up to 16 threads per block, giving a maximum Rt of
4.

3.5 Minimizing Memory Requirements
In shared memory units, a larger value of R results in increased
concurrency, since the communication cost is negligible within
the shared memory unit. However, increasing R also increases the
amount of additional memory used for latency hiding. Thus, it is
important to find ways to minimize the memory usage while still
increasing R.

Such as problem arises in a CUDA-based implementation, in
which the shared memory size is limited, and hence must be
carefully organized for the threads to perform their concurrent
computation. Traditional update schemes employ a read buffer
and a write buffer for evolving an N×N grid, requiring 2N2
memory variables. Instead, if an in place update scheme exists, it
can be used to avoid another copy of the entire grid. We
developed such an in-place update scheme, as shown in Figure 9,
and used it to reduce the memory needs, and consequently
increase the concurrency afforded by the latency hiding scheme,
which reduces the temporary storage from N2 down to N+1.

Given a 2D grid of cells for parallel update, we can use (N+1)×V
registers for complete state update instead of using N×N extra
registers. This method is depicted in Figure 9 where white cells
are “to be updated” and yellow are already updated. These
updates occur in linear fashion and we store data as needed in
additional registers.

Figure 9: Memory minimization for thread-level

computation. Blue cells are temporary registers, yellow
are already updated, white are to be updated, and

orange is currently being updated

4. EXPERIMENTATION PLATFORM
4.1 Hardware
GPU and CPU experiments have been run on the National Center
for Computational Science (NCCS) LENS cluster. The platform
was suitable because, as a data analysis cluster, not only were we
able to access multi-node and multi-core functionality employed
on many clusters, but it also afforded the use of recent NVIDIA
8800 GTX (2 per node) GPUs. Each offers 768MB of onboard
memory, 128 stream processors, and a core clock speed of
575MHz. In regard to CPU experiments, each node contains four
quad-core 2.3 GHz AMD Opteron processors with 64 GB of
memory.

4.2 Software
For our single and multi-GPU runs, we use the NVIDIA Toolkit
and SDK (nvcc compiler). Concurrent execution on the multi-
CPU level is obtained through POSIX pthreads (16 per node with
16 cores per node). Finally, inter-node communication is handled
through MPI (Open MPI specifically). All runs were conducted on
a 64-bit Linux cluster.

5. APPLICATIONS AND SCENARIOS
With the goal to reduce communication latency at the cost of
increased computation, we choose scenarios that are fine- to
medium-grained in computation. The first benchmark is a
relatively well known model, namely, John Conway’s Game of
Life. The second is a recent, more complex model, called
Leadership. The details of both models are discussed next.

5.1 Game of Life
The Game of Life (GOL) is a scenario in which a 2-dimensional
spatial grid of cells is initially marked dead or alive. At each
simulation time step, cells gather information from surrounding
neighbors and make a Boolean choice. Cells that are occupied and
surrounded by two or three neighbors remain occupied, otherwise,
remove themselves from the grid. Unpopulated cells with exactly
three neighbors become occupied.

N

(3, 0)

(1, 0)

(0, 0)

(2, 0)

(3, 1)

(1, 1)

(0, 1)

(2, 1)

(3, 3)

(1, 3)

(0, 3)

(2, 3)

(3, 2)

(1, 2)

(0, 2)

(2, 2)

0 1 3 2

L

Value
(1,0)

Value
(0,0) Value

(0,1) Value
(0,2) Value

(0,3)

Figure 10. Snapshots of grid for Game of Life: empty

cells are in black; live cells are blue; recently-dead cells
are red; green just became alive.

5.2 Leadership
The Leadership (LDR) model (developed as part of a US DARPA
project) in , is a computationally involved model in which each
agent computes an objective function for every iteration. In the
model, reproduced below, each agent maximizes its utility in
order to decide on the best behavior to adopt at any moment in the
simulation:

{ 1,0,1}Order O= ∈ −
{ 1,0,1}Behavior B= ∈ −
{ 1,0,1}Propensity P= ∈ −
| |

2
O BLoyalty L λ −

= =

(1)previous lLambda Mλ λ δ δ= = − +

| |
2

O BCoercion C R −
= =

| |
2

P BIdealogy I −
= =

2 2 21 l c iUtility U w L w C w I= = − − −

Given an order O, of interest is the variation of behavior B that is
chosen by each individual to maximize the individual’s utility U.
Lambda’s time dependence induces variation of B over time.
When Ml is defined as the mean loyalty of neighbors, the variation
of B is less interesting, as lambda follows some sort of a diffusion
process which can be expected to converge to an overall average
across all individuals. To accommodate some dynamics, we make
one change, namely, Ml is defined as the maximum loyalty,
instead of mean loyalty, among neighbors. The rationale behind
this variation is that the neighbor with the largest loyalty, even if
there is only one, potentially has an overbearing influence on all
its neighbors. Our implementation is initialized with constants:
O=1, R=0.25, Wl=0.33, Wc=0.33, Wi=0.34, and δ=0.01. P is
uniformly randomized across the population.

6. PERFORMANCE STUDY
In our performance study, we use “improvement level” as the
metric to observe the decrease in run time that our latency-hiding
provides over traditional technique with no latency-hiding. This
is given by the following equation.

(%) 100no latency hiding

latency hiding

RunTime
Improvement Level

RunTime
= ×

Note that an improvement level L=100% implies that the run
times with and without latency hiding are the same, and any level
L>100% implies a reduction in run time of latency hiding over
that of no latency hiding by a factor of L/100.

(a) Initial behavior map
divided along a country

border; loyal behaviors are
below the diagonal (blue)

(b) Behavior smoothens after
a few time steps, but neutral

behaviors emerge along
diagonal

(c) Fluctuations and growth of

neutral behavior outward
from the diagonal is observed

(d) Neutrality waves are
regenerated despite
intermediate ebbs

Figure 11: A simulation of the leadership model: blue
shows loyalty to leadership, green shows neutrality and
blue shows anti-order stance. Sustained waves to/away

from neutrality indicate prolonged “unrest”

6.1 Single GPU
To initially conduct our performance study, we benchmarked the
GOL scenario on a single GPU on a single node of the LENS
cluster. For both block- and thread-level schemes, we ran a range
of agent populations, with multiple R values, and varying number
of threads per block, T. Observed phenomena are generally static
for varying populations, i.e. the only observed performance
difference as population increases is expected and observed
runtime increase. All benchmarks presented in this subsection are
for approximately one million agents, and simulated for 256
global iterations. This equates to 256/R kernel invocations for
varying R.

6.1.1 Thread Level Latency Hiding
We started by investigating latency hiding at the deepest
hierarchical level, the CUDA thread level, followed by
empirically uncovering both the nature of the latency hiding
scheme at this level and restrictions inherent to the GPU CUDA
architecture. At the thread level, for a fixed number of threads (T2
threads in operation for a given T), in line with our hypothesis, we
observe a decrease in runtime as R increases from 1 (essentially
no latency hiding) to 2. We also see communication cost decrease
with increasing R as expected. As R increases beyond 2, however,
execution time increases and levels off. This indicates multiple
phenomena. For the GPU architecture, at R=2, we quickly reach
the point at which trading communication for computation affords
speedup. Also, we would expect that as R is increased,
computation cost would eventually overtake the reduced
communication cost, resulting in an increase in runtime with no
upper bound. Given our restrictions on shared memory and the
ability of the GPU to quickly perform arithmetic, we do not
observe this expected increase. At R=2 with 4 threads per block
(2x2) in operation, we observe the most efficient execution.
Finally, after measuring synchronization cost amongst GPU block

threads, we find it to be negligible in comparison to either
memory reads/writes or computation. Thus, the additional
overhead incurred by implementing thread-level latency hiding
does not afford additional speedup.

6.1.2 Block Level Latency Hiding
At the block level, we see communication cost decrease and
overall runtime decrease up to a given R (see Figure 12). We also
notice, importantly, the stark contrast between overall runtime
when comparing block and thread level latency hiding. As
previously stated, the increased overhead incurred by
implementation of the scheme at the thread level hinders
performance. This manifests itself as an order of magnitude
difference. We therefore conclude that thread level
implementation is not useful for optimal speedup, and for our
subsequent benchmarks on multiple nodes of the LENS cluster,
we implement the scheme only at the block level.

Figure 12: Improvement of GPU block level latency-
hiding compared to traditional (no latency-hiding)

With this initial single GPU study, we turn to our benchmarks of
both the GOL and LDR models on a larger, multi-GPU and multi-
CPU scale (16 nodes of the LENS cluster). The first set of these
benchmarks, discussed next, uses a single GPU on each of the 16
nodes.

6.2 Multi-Node, One-GPU per Node
We ported the single GPU latency hiding scheme to one
hierarchically higher level on the LENS cluster of GPUs. Within
this new framework, we effectively increase maximum number of
agents simulated on a single GPU (approximately 16 million in
our studies) multiplied by 16 (nodes).

Both the LDR and GOL scenarios were benchmarked. Once
again, because of shared memory limitations, we here present data
for each GPU simulating approximately 1 million agents. These
benchmarks are represented in Figure 13 and Figure 14
respectively.

The speedup bars clearly highlight the dramatic gains afforded by
the latency hiding scheme when multiple GPUs are used across
MPI. It is evident here that communication latency hiding
represented by Rm (for the parameter R at the MPI/node-level) is
the dominant factor in speedup for both scenarios. As expected,
inter-node communication is much more expensive with respect to
wall time. Also we observe strong performance benefits when
applying this scheme across nodes (up to two orders of magnitude
on GOL).

Figure 13: Improvement of latency-hiding compared to
no latency-hiding for GOL simulated on 16 GPUs of the

LENS cluster

Figure 14: Improvement of latency-hiding compared to
no latency-hiding for LDR simulated on 16 GPUs of the

LENS cluster
With this relatively small dataset, however, we do not observe the
point at which computation catches up with communication. A
key hypothesis is that there will be a fixed point at which this
tradeoff becomes unfavorable to runtime, i.e., we no longer
benefit from the scheme. This will be discussed in the next
section.

6.3 Multi-Node Multi-Core
Not constrained by the memory configurations of the 8800 GTX
GPU, on multi-core platform, we are able to scale simulation size
to over 109 agents. In similar fashion to GPU benchmarks, we test
both the LDR and GOL models. These are represented in Figure
15 and Figure 16. Most notable in this configuration is large
scalability of our scheme. Similar to multi-GPU execution,
latency hiding at the MPI level is most dominant factor in model
speedup. In Figure 17 we observe the point at which the
communication vs. computation continuum no longer affords
increased speedup. For R>256 at the MPI task level, computation
costs finally offset communication costs. This was predicted via
the analytical model, and is now quantified.

0%
50%

100%
150%
200%
250%
300%

T=4 T=8 T=16

Im
pr

ov
em

en
t L

ev
el

Number of Threads Per Side

GPU Block Level Latency Hiding - 1 mil
Agents

Rt=1 Rt=2 Rt=4

0%
2000%
4000%
6000%
8000%

10000%
12000%

1 2 4 8

Im
pr

ov
em

en
t L

ev
el

MPI Level R (Rm)

Multi-Node GPU GOL - 16 mil Agents

Rt=1 Rt=2 Rt=4

0%
500%

1000%
1500%
2000%
2500%
3000%
3500%

2 4 8Im
pr

ov
em

en
t L

ev
el

MPI Level R (Rm)

Multi-Node GPU LDR - 16 mil Agents

Rt=2 Rt=4 Rt=8

Figure 15: Improvement of latency-hiding compared to

no latency-hiding (Rt=1) when GOL is simulated on
multi-core multi-node platform

Figure 16: Improvement of latency-hiding compared to

no latency-hiding (Rt=2) when LDR is simulated on
multi-core multi-node platform

Figure 17: Improvement of latency-hiding compared to

no latency-hiding; shows reduction in runtime with
increasing R, reducing by more than half in the best
case before extra computation costs more than gains

from decreased communication

7. SUMMARY AND FUTURE WORK
We presented a way to scale ABMS on extant multi-CPU and
multi-GPU systems while retaining both model fidelity and high
execution speed of fine to medium granularity models. We are
able to scale these simulations to over one billion agents, to aid in
exploration of emergent phenomena in certain agent models. We
have also presented a flexible way to exploit emerging computing
resources. Here, we are able to utilize up to 256 CPU-cores and/or
16 GPUs concurrently.

With our preliminary implementation and performance study, on
multi-CPU architectures, we have shown large decreases in
runtime by trading communication for computation. This same
method, when applied to multi-GPU systems, allows for speed
increases of over two orders of magnitude. This is all achieved
through a single, unified, parameterized model, applicable on
multiple architectures. Importantly; the method can be used on
many hierarchical computational levels and their combinations,
from CUDA threads to inter-node communication.

It is important to note that the B+2R speedups are relative to no
latency hiding scheme, and that the no latency hiding schemes are
already highly optimized for a single (non-networked) GPU. Our
earlier work [11] on a single GPU already demonstrated three
orders of magnitude faster agent simulations on a single GPU.
Thus, actual (absolute) speedups of our current multi-GPU work
when compared to a CPU-based implementation are over 30×, and
speedups compared to existing CPU-based systems in Java are
over 1000×. In the best case (Figure 13), the speedup of our
scheme over the existing straightforward scheme is over 150×,
which represents over four orders of magnitude improvement over
existing Java-based agent simulations.

This leaves many areas for future work. One of the limitations in
our implementation was coding separately for each platform.
Ideally, it would be useful to have a seamless interface for all
platform levels. OpenCL is one current technology designed to do
this, our future experiments in latency hiding may investigate this
technology. Another desirable feature is to dynamically and
automatically tune R for each level. This would decrease trial and
error methods for finding the most suitable R. Also, with newer
GPU configurations, levels of performance and scale could be
expected to increase. Finally, incorporation of additional ABM-
specific features such as agent mobility and large agent
neighborhoods will be investigated.

ACKNOWLEDGEMENTS
This paper has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the U.S. Department of Energy.
Accordingly, the United States Government retains and the
publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for
United States Government purposes.

This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

0%

50%

100%

150%

200%

250%

1 2 3 4

Im
pr

ov
em

en
t L

ev
el

MPI Level R (Rm)

Multi-Node CPU GOL - 1 bil Agents

Rt=1 Rt=2 Rt=4

0%

20%

40%

60%

80%

100%

120%

140%

2 4 8Im
pr

ov
em

en
t L

ev
el

MPI Level R (Rm)

Multi-Node CPU LDR - 1 bil Agents

Rt=2 Rt=4

0%

50%

100%

150%

200%

250%

1 10 10
0

10
00

10
00

0

Im
pr

ov
em

en
t L

ev
el

MPI Level R (Rm)

Multi-Node CPU GOL - 1 bil Agents

REFERENCES
[1] U. Wilensky, "NetLogo," ed. Evanston, IL: Center for

Connected Learning and Computer-Based Modeling,
Northwestern University, 1999.

[2] J. Epstein, "Modeling Civil Violence: An Agent-based
Computational Approach," PNAS, vol. 99, pp. 7243-7250,
2002/05/14 2002.

[3] M. J. North, et al., "Experiences Creating Three
Implementations of the Repast Agent Modeling Toolkit,"
ACM Transactions on Modeling and Computer Simulation,
vol. 16, pp. 1-25, 2006/01/01 2006.

[4] M. J. North and C. M. Macal, Managing Business
Complexity: Discovering Strategic Solutions with Agent-
Based Modeling and Simulation: Oxford University Press,
2007.

[5] DARPA. (2009, US Defense Advanced Research Projects
Agency - Technologies for the Applications of Social
Computing (TASC) [Web]. Available:
http://www.darpa.mil/ipto/solicit/baa/RFI-SN-09-20_PIP.pdf

[6] S. Luke, et al., "MASON: A New Multi-Agent Simulation
Toolkit," in SwarmFest Workshop, 2004.

[7] B. Walter, et al., "UAV Swarm Control: Calculating Digital
Phermone Fields with the GPU," in Interservice/Industry
Training, Simulation and Education Conference (IITSEC),
Orlando, FL, 2005.

[8] P. Riley, "SPADES: A System for Parallel-Agent, Discrete-
Event Simulation," AI Magazine, vol. 24, 2009.

[9] A. M. Uhrmacher and K. Gugler, "Distributed, parallel
simulation of multiple, deliberative agents," Proceedings of
the fourteenth workshop on Parallel and distributed
simulation, Bologna, Italy, 2000.

[10] M. Lees, et al., "Distributed simulation of agent-based
systems with HLA," ACM Trans. Model. Comput. Simul.,
vol. 17, p. 11, 2007.

[11] K. S. Perumalla and B. Aaby, "Data Parallel Execution
Challenges and Runtime Performance of Agent Simulations
on GPUs," Agent-Directed Simulation Symposium, 2008.

[12] R. D'Souza, et al., "SugarScape on Steroids: Simulating Over
a Million Agents at Interactive Rates," AGENT 2007
Conference on Complex Interaction and Social Emergence,
Evanston, IL, 2007.

[13] A. Chaturvedi, et al., "Bridging Kinetic and Non-kinetic
Interactions over Time and Space Continua," in

Interservice/Industry Training, Simulation and Education
Conference, Orlando, FL, USA, 2005.

[14] M. Hybinette, et al., "A Design for a Scalable Agent-based
Simulation System using a Distributed Discrete Event
Infrastructure," Winter Simulation Conference, 2006.

[15] J. Parker, "A Flexible, Large-scale, Distributed Agent-based
Epidemic Model," Winter Simulation Conference,
Piscataway, NJ, 2007.

[16] R. C. Armstrong, et al., "Parallel Computing in Enterprise
Modeling," Sandia National Laboratory, Techincal Report
SAND2008-6172, 2008/08/01 2008.

[17] M. Dawit, "Performance Optimization for Multi-agent Based
Simulation in Grid Environments," IEEE International
Symposium on Cluster Computing and the Grid, 2008.

[18] M. Ripeanu, et al., "Cactus Application: Performance
Predictions in Grid Environments," ed, 2001, pp. 807-816.

[19] C. Ding and Y. He, "A Ghost Cell Expansion Method for
Reducing Communications in Solving PDE Problems,"
Supercomputing, 2001.

[20] S. Krishnamoorthy, et al., "Effective Automatic
Parallelization of Stencil Computations," Programming
Languages Design and Implementation (PLDI), San Diego,
California, USA, 2007.

[21] K. Datta, et al., "Stencil Computation Optimization and
Auto-tuning on State-of-the-Art Multicore Architectures,"
Supercomputing, Austin, Texas, 2008.

[22] H. Dursun, et al., "A Multilevel Parallelization Framework
for High-Order Stencil Computations," in Lecture Notes in
Computer Science. vol. 5704/2009, ed: Springer Berlin /
Heidelberg, 2009, pp. 642-653.

[23] J. Meng and K. Skadron, "Performance Modeling and
Automatic Ghost Zone Optimization for Iterative Stencil
Loops on GPUs," 23rd international Conference on
Supercomputing, Yorktown Heights, NY, USA, 2009.

[24] Z. C. Rojas and M. Hoemmen. (2004, Communication
Savings with Ghost Cell Expansion for Domain
Decompositions of Finite Difference Grids [Project Report].
Available: http://www.cs.berkeley.edu/~ejr/GSI/cs267-
s04/final-projects/mhoemmen-rojas/report.pdf

[25] P. Brecke, et al., "Actionable Capability for Social and
Economic Systems (ACSES)," Seedling Project - Defense
Advanced Research Projects Agency, Project
Report2008/05/01 2008.

http://www.darpa.mil/ipto/solicit/baa/RFI-SN-09-20_PIP.pdf�
http://www.cs.berkeley.edu/~ejr/GSI/cs267-s04/final-projects/mhoemmen-rojas/report.pdf�
http://www.cs.berkeley.edu/~ejr/GSI/cs267-s04/final-projects/mhoemmen-rojas/report.pdf�

