
 

 ORNL/TM-2009/182 
  
 
 
 
 
 
 
 
 

Perfect Reversal of Rejection Sampling 
Methods for First-Passage-Time and 
Similar Probability Distributions 
 
 
 
 
 
 
 

August 2009 
 
 
 
Prepared by  
Kalyan S. Perumalla 
Senior Research Staff Member 
 
 



 

 
 

DOCUMENT AVAILABILITY 
 
Reports produced after January 1, 1996, are generally available free via the U.S. Department of 
Energy (DOE) Information Bridge. 
 
 Web site http://www.osti.gov/bridge 
 
Reports produced before January 1, 1996, may be purchased by members of the public from the 
following source. 
 
 National Technical Information Service 
 5285 Port Royal Road 
 Springfield, VA 22161 
 Telephone 703-605-6000 (1-800-553-6847) 
 TDD 703-487-4639 
 Fax 703-605-6900 
 E-mail info@ntis.gov 
 Web site http://www.ntis.gov/support/ordernowabout.htm 
 
Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange 
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from the 
following source. 
 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN 37831 
 Telephone 865-576-8401 
 Fax 865-576-5728 
 E-mail reports@osti.gov 
 Web site http://www.osti.gov/contact.html 

 
 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

 
 



 

ORNL/TM-2009/182 
 
 
 

Computational Sciences and Engineering Division 
 
 
 
 
 
 
 

PERFECT REVERSAL OF REJECTION SAMPLING METHODS FOR FIRST-PASSAGE-
TIME AND SIMILAR PROBABILITY DISTRIBUTIONS 

 
 

Kalyan S. Perumalla† 
Aleksandar Donev‡ 

 
 
 
 
 
 
 
 
 

Date Published: August 2009 
 
 
 
 
 
 
 
 
 
 

Prepared by 
OAK RIDGE NATIONAL LABORATORY 

Oak Ridge, Tennessee 37831-6283 
Managed by 

UT-BATTELLE, LLC 
for the 

U.S. DEPARTMENT OF ENERGY 
under contract DE-AC05-00OR22725

                                                      
† Oak Ridge National Laboratory 
‡ Lawrence Livermore National Laboratory 





 

 iii

 
CONTENTS 

Page 
LIST OF FIGURES ............................................................................................................................. iv 
ABSTRACT .......................................................................................................................................... v 
1.  INTRODUCTION ............................................................................................................................ 1 

1.1  BI-DIRECTIONAL EXECUTION ............................................................................................ 1 
1.2  SAMPLING PROBABILITY DISTRIBUTIONS .................................................................... 1 
1.3  REVERSIBLE RANDOM NUMBER GENERATORS............................................................ 2 
1.4  REJECTION SAMPLING METHOD ....................................................................................... 2 

2.  FORWARD FORMULATION ........................................................................................................ 3 
2.1  INVOCATION .......................................................................................................................... 3 
2.2  SOURCE CODE ....................................................................................................................... 3 

3.  REVERSAL ........................................................................................................................ 5 
3.1  OBSERVATIONS ........................................................................................................ 5 
3.2  SOLUTION ............................................................................................................................... 5 

4.  IMPLEMENTATION AND TESTING ............................................................................. 7 
5.  SUMMARY...................................................................................................................................... 9 
ACKNOWLEDGEMENTS................................................................................................................. 10 
REFERENCES ................................................................................................................................... 11 



 

 iv

LIST OF FIGURES 
 
Figure Page 
 
1.  Forward code ................................................................................................................................... 4 
2.  Reverse code ....................................................................................................................... 6 
3.  Probability density function plot of First Passage Time ................................................................... 7 
4.  The first 100 samples generated in a sequence of 10,000 calls to FPT............................................. 8 
5.  The last 100 samples generated by 10,000 calls to RFPT after the run shown in Fig. 4 .................. 8 



 

 v

ABSTRACT 
 

We present a perfectly reversible method for bi-directional generation of samples from 
computationally complex probability distributions.  While the previously best-known procedures 
consume memory proportional to the length of execution between changes of execution direction, here we 
present a scheme to completely eliminate the memory overhead.  Our solution affords two important 
features, namely determinism and repeatability, across arbitrarily spaced changes of direction (and 
arbitrary number of samples) along the sample stream. We illustrate the perfect reversal method with first 
passage time distributions that appear in physical system models, and present its implementation and 
verification in FORTRAN.
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1. INTRODUCTION 

Here, we consider the challenge of designing a perfectly reversible solution for bi-directional 
generation of samples from computationally complex probability distributions.  We solve the problem of 
minimizing the memory needed to move forward as well as backward, at will, in a stream of samples 
generated by a rejection-based procedure used to generate samples from probability distributions.  While 
the best-known procedures consume memory proportional to the length of execution between changes of 
execution direction, here we present a scheme to completely eliminate the memory overhead.  The 
scheme is perfectly reversible in the sense that the memory needed to go backwards is independent of the 
sampled stream length.  Our solution provides two important features needed for use in parallel programs: 
determinism and repeatability, across arbitrarily spaced changes of direction (and arbitrary lengths of 
sampling) along the sample stream. 

Bi-directional execution of scientific codes can be used for efficient parallel execution on high 
performance computing platforms.  However, bi-directional execution by log-based reversal typically 
incurs high memory costs.  Probability distribution sampling, used in many scientific codes, is one of the 
challenging components to reverse, due to the large amount of memory needed to store long traces.  Here, 
we examine the memory cost in the bi-directional (reversible) execution of a commonly used probability 
distribution sampling method in scientific codes, namely, rejection sampling. 

The rest of the document is organized as follows.  In the rest of this section, the context for bi-
directional execution and the use of probability distribution sampling are described, followed by the 
previously known use of reversible random number generators for reversal of simple probability 
distributions.  This is followed by algorithmic detail of a commonly-used method called rejection 
sampling for sampling from more complex distributions.  In Sect. 2, the implementation of the 
(traditional) forward execution is presented, illustrated in the context of sampling First Passing Time 
distributions.  The perfect reversal of the forward execution is developed and presented in Sect. 3.  An 
actual implementation and testing of the forward and reverse codes on the computer in the FORTRAN 
language is described in Sect. 4, finalized by a summary in Sect. 5. 

1.1 BI-DIRECTIONAL EXECUTION 

Bi-directional execution finds use in rollback-based high performance computing, debugging, and 
other areas [1-5].  However, bi-directional execution is very challenging to achieve.  Naïve approaches 
can quickly render bi-directional execution impractical due to the tremendous memory costs of the 
execution traces needed to achieve reversibility [2, 6-11].  This problem is especially pronounced in high 
performance computing, due to the dramatic increases of trace lengths that result from a very high speed 
of execution.  For example, a random number generator can be thrown a million times in a second, whose 
reversal by log-based methods can require several megabytes of memory for each generator.  The 
memory cost is even more amplified when the quality of the random number generator is increased by 
increasing the seed size.  Thus, for enabling bi-directional computation, new memory-efficient schemes 
must be developed that either minimize the overhead, or, ideally, eliminate the memory needed for 
reversal.  Here we focus on one of the core operations that occurs in scientific simulations, namely, 
sampling of probability distributions, and provide a new scheme that eliminates the memory cost for 
reversal. 

1.2 SAMPLING PROBABILITY DISTRIBUTIONS 

Probability distributions are routinely employed in computer models of physical systems.  Pseudo-
random number streams are used to generate samples that conform to the desired probability distributions. 
In computationally intensive simulations, a large number (millions to billions) of samples are drawn.  For 
simple distributions, the sampling procedure is given by a closed-form formula for certain distributions 
(such as the Exponential distribution).  In more complex distributions, such as First Passage Time (FPT) 
distributions, the sampling formula is either computationally complex, or worse, may not be expressible 
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as a closed form expression.  In such complex distributions, a different sampling procedure is employed, 
using an iterative approach to progressively approach the desired distribution. 

1.3 REVERSIBLE RANDOM NUMBER GENERATORS 

In the case of simple probability distributions, such as Exponential or Pareto distributions, closed 
form inversions of their cumulative distribution functions (CDF) are known.  For such distributions, it has 
been shown that perfect reversibility can be achieved [2, 11-13].  This is realized by employing reversible 
uniform random number generators.  Reversing the sampling operation on an exponential distribution, 
thus, becomes as simple as invoking the reversal of the underlying uniform random number generator 
once per reversal step.  The restoration of the uniform random number seed is necessary and sufficient for 
reversing the sampling of the distribution.  However, as we shall see, for more complex distributions for 
which either the inverse of the CDF is computationally prohibitive or a closed form representation of the 
inverse of the CDF is unknown, the simple reversal of random number seed once does not work. 

The inversion challenge for such distributions is rooted in the fact that control flow is infused into the 
sampling procedure.  Such control flow information is absent in sampling simple distributions.  When 
control flow complexity is introduced into the method, the one-to-one correspondence between the 
random number seed stream and the probability distribution sample stream gets broken. 

Thus, reversal of a sample is might require an unknown number, 0in > , of reversals of updates to the 
underlying random number seed.  Since each sample is  has a value in  that may be different from other 
samples, a log is apparently needed to keep track of the number of iterations performed for each sample 
in the forward direction.  Thus, the log is: (a) proportional to the number of samples, and (b) theoretically 
unbounded in the amount of memory needed to remember each sample’s iteration count.  In practice, the 
theoretically unbounded nature of control flow information for each sample can be capped with a 
sufficiently large integer variable.  Nevertheless, the proportionality of the trace size with the sample 
stream length (number of samples drawn) is the most dominant factor on memory.  It is this trace length 
that we reduce (in fact, eliminate) with our reversal procedure. 

1.4 REJECTION SAMPLING METHOD 

We will now describe the rejection sampling method of generating random samples in greater detail.  
The rejection sampling method does not require the evaluation of the exact, closed-form (inverse of) the 
cumulative probability distribution function (CDF).  Instead, it employs a sequence of progressively 
tighter upper ( )k

UP x  and lower ( )k
LP x  bounds, 0,k k≥ →∞ , to the exact (inverse) probability 

distribution ( )P x , such that ( ) ( ) ( )k k
L UP x P x P x≤ ≤ .  The bounds in the sequence must satisfy the 

condition of being progressively tighter: 1k k
L LP P +≤ , 1k k

U UPP +≥ , and k j k j k k
U L U LP P P P+ +− < −  for 

some 0j > .  An algorithm that is based on these observations is shown next. 

Rejection-based Sampling Algorithm: 

1. Outer loop: Set 0k = .  Generate a sample x  belonging to 0
UP , and set 0 ( )Up rP x= , 

where 0 1r< ≤  is a uniform random variate. 
2. Inner loop: If ( )k

Up P x>  then reject the trial and go back to the first step (cycle Outer loop) 

3. If ( )k
Lp P x≤ , then accept the trial and return x (exit Outer loop) 

4. Otherwise, increment k  ( 1k k← + ) and go back to the second step (cycle Inner loop). 
If the initial distribution is reasonably close to the actual distribution (i.e., 0

UP P≈ ) and the bounds 
are reasonably tight, then the rejection or acceptance will be achieved within a small number of iterations. 
 The rejection sampling technique is typically enhanced with the objective of making the first few bounds 
as efficient to evaluate as possible. 
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2. FORWARD FORMULATION 
 

In this section, we turn to a computer program subroutine for sampling FPT distributions [14] using 
the rejection sampling algorithm, and in Sect.3 develop a perfect reverse of the subroutine, followed by an 
implementation and verification in Sect. 4. 
 
2.1 INVOCATION 
 

The envisioned usage of the sampling subroutine is as follows: A scientific simulation program that 
simulates physical system models, at various moments during its execution, invokes the FPT(t) 
subroutine to obtain a sample from the first passage time distribution.  The sample value is returned in the 
parameter t.  After a sequence of (potentially scattered or intermittent) calls to FPT(), the program may 
desire to go back in simulation time (in speculative/optimistic synchronization mode [2, 5, 15, 16]), and 
hence would need to undo part of its sampling, resetting the position in the sample stream back by a few 
samples.  Thus, a sequence of calls to the reverse subroutine RFPT() (designed later in the document) is 
invoked by the program.  The objective is for the RFPT() calls to reverse the effects of FPT()and 
restore the state of the program to the same state that was present before the invocation of the 
corresponding FPT() calls. 

We assume a reversible random number generator is used, by calling a subroutine called RNG().  
Any suitable generator may be used, as long as a corresponding reversal subroutine called RRNG() is 
available to be used in the reverse formulation in Sect. 3. 

 
2.2 SOURCE CODE 
 

The source code for the FPT sampling subroutine is shown on the next page.  It follows the algorithm 
outlined in Sect. 1.4, with the probability functions of the general algorithm customized for a First 
Passage Time distribution.  An additional complication in this sampling code is the use of a different set 
of the lower and upper bound distributions.  The choice of which set of functions to use for k

UP and k
LP is 

made at runtime, based on a threshold on the generated uniform random value, qualitatively 
corresponding to “long time” and “short time” spans of first passage.  Using a conditional statement, the 
choice is made for every candidate sample at run time to decide which functions are appropriate for that 
random value. 
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! Compute First Passage Time and return it in t 
subroutine FPT(t) 
   real(kind=r_wp), intent(out) :: t 
    
   real(kind=r_wp) :: pi,tau,Fs0,Fl0,cut 
   parameter(pi = 3.14159265358979323846d0) 
   parameter(tau = 0.0796d0) 
!     Fs0 = 2*erfc(1/sqrt(16*tau)) 
!     Fl0 = 4/pi*exp(-pi^2*tau) 
   parameter(Fs0 = 0.42031187432794d0) 
   parameter(Fl0 = 0.58038939207732d0) 
   parameter(cut = Fs0/(Fs0+Fl0)) 
   real(kind=r_wp) :: r,y0,y,fi,dfi,beta 
   integer k 
 
   OuterLoop: do 
      call RNG(r) 
      if(r .lt. cut) then 
!     Short time pick 
         r = r/cut 
         t = 1d0/(16 * dierfc(0.5d0*r*Fs0)**2) 
         y0 = 1d0/sqrt(4*pi*t**3) * exp(-0.0625d0/t) 
         call RNG(r) 
         y = r*y0 
         fi = 0.5d0 * exp(-0.0625d0/t) / sqrt(pi*t**3) 
         k = 1 
         InnerLoop_ShortPick: do 
            k = k+1 
            dfi = (k+0.5d0)*exp(-0.25d0*(k+0.5d0)**2/t)/sqrt(pi*t**3) 
            if(y .gt. fi) cycle OuterLoop !Rejection 
            fi = fi - dfi 
            if(y .le. fi) return !Acceptance 
 
            k = k+1 
            dfi = (k+0.5d0)*exp(-0.25d0*(k+0.5d0)**2/t)/sqrt(pi*t**3) 
            if(y .le. fi) return !Acceptance 
            fi = fi + dfi 
            if(y .gt. fi) cycle OuterLoop !Rejection 
         enddo 
      else 
!     Long time pick 
         r = (r-cut)/(1d0-cut) 
         t = tau - log(r)/pi**2 
         beta = pi**2 * t 
         y0 = 4*pi*exp(-beta) 
         call RNG(r) 
         y = r*y0 
         fi = 4*pi*exp(-beta) 
         k = 1 
         InnerLoop_LongPick: do 
            k = k+2 
            dfi = 4*pi*exp(-beta * k**2) 
            if(y .gt. fi) cycle OuterLoop !Rejection 
            fi = fi - dfi 
            if(y .le. fi) return !Acceptance 
             
            k = k+2 
            dfi = 4*pi*exp(-beta * k**2) 
            if(y .le. fi) return !Acceptance 
            fi = fi + dfi 
            if(y .gt. fi) cycle OuterLoop !Rejection 
         enddo 
      endif 
   enddo OuterLoop 
end subroutineReversal 

Fig. 1.  Forward code. 
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3.  REVERSAL 

3.1  OBSERVATIONS 

Observation 1: The only side-effects of the FPT() routine is the modification of the random number 
seed.  All other variables are temporary storage, and consequently, no reversal needs to be applied to 
them.  In other words, temporary values initially contain don’t-care values, which do not need to be 
restored exactly. 

Observation 2: Every call to FPT() results in invocation of RNG() exactly two times per iteration of 
the outer loop.  As a regular expression, the following invariant is preserved by the loop: (R1, 
[R2a,R2b])+, where [x,y] denotes either x or y, R1 is RNG invoked at line 17, R2a is RNG at line 23 and 
R2b is RNG at line 46. 

Given that we know how to reverse an individual RNG call, the reversal problem of FPT() becomes 
that of detecting how many invocations of RNG to be reversed for a given call to FPT().  The 
underlying problem with perfect reversal is that the loop in the forward computation could execute any 
number of iterations, greater than or equal to unity.  If we “remember” exactly how many iterations of the 
loop have been made in a given call to FPT(), then it is straightforward to reverse FPT().  The reversal 
is simply realized by invoking the reverse version of RNG twice the number of iterations.  The drawback 
of this approach is that an integer variable needs to be allocated for each call to FPT(), in order to 
remember the iteration count for that call.  This makes the storage requirements for reversal to become 
proportional to the number of FPT() calls, which can get quite large in a simulation that makes very 
many calls to FPT().  For example, with millions of particles and many millions of passage time 
computations, the storage requirements can become quite large.  Ideally, we are interested in a reversal 
that uses absolutely no storage.  Such a reversal is called perfect reversal [11].  The question becomes: Is 
FPT() computation perfectly reversible?  Our answer to this is in fact in the positive.  We will now show 
how to perfectly reverse FPT() calls. 
 
3.2 SOLUTION 

We will first consider the easy part of the solution.  Any single iteration of the outer loop can be 
perfectly reversed simply by invoking reverse RNG() twice.  This follows from observations 1 and 2.  
Observation 1 helps us focus only on RNG seeds for prefect reversal.  Observation 2 helps us realize that 
there are exactly two RNG() calls per iteration.  Thus, it is sufficient to invoke reverse RNG() two times 
to restore the state perfectly across iterations.  The more difficult question now becomes the problem of 
discovering how many iterations were executed in the FPT() call?  If we knew this count, we simply 
invoke the RNG() two times per iteration, for that many iterations.  That would restore the state perfectly. 

The complicating factor for the loop is that, when we reverse one iteration of the loop (by invoking 
inverse RNG two times), we are still not sure whether we reached the beginning of the loop of the 
forward execution, or if we need to continue to reverse additional iterations of the loop.  The iteration 
count is not obvious.  The detection of reaching the beginning iteration of the forward execution of the 
loop becomes the main problem.  Fortunately, one additional insight helps relieve this dilemma: any 
iteration in which the “return” call is invoked (at lines 32, 36, 55 or 59) is clearly the last iteration of that 
FPT() call. 

Observation 3: Moreover, this termination condition depends only the state of that iteration alone, and 
does not depend on state from prior iterations.  We capitalize on this termination condition, by 
temporarily reversing one iteration backward and seeing if the test succeeds on that previous state.  If the 
condition succeeds, then it implies that that iteration belonged to a previous FPT() call, and not to the 
current call.  On the other hand, if the test is negative (i.e., it shows that the loop does not terminate at that 
iteration) it shows that the iteration belongs to the current FPT() call which is being reversed.  This 
termination test essentially helps us determine if we need to jump back one more iteration or if we are 
done reversing the FPT() call that is being reversed.  The source code for the reversal is shown on the 
next page.
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! Reverse the effects of a call to FPT 
subroutine RFPT() 
   real(kind=r_wp) :: t, pi,tau,Fs0,Fl0,cut 
   parameter(pi = 3.14159265358979323846d0) 
   parameter(tau = 0.0796d0) 
   parameter(Fs0 = 0.42031187432794d0) 
   parameter(Fl0 = 0.58038939207732d0) 
   parameter(cut = Fs0/(Fs0+Fl0)) 
   real(kind=r_wp) :: r,y0,y,fi,dfi,beta 
   integer k 
   OuterLoop: DO 
!Reverse the most recent iteration; guaranteed to exist, since niterations>=1 
      call RRNG(r) 
      call RRNG(r) 
!Now, see if we need to undo more iterations 
!Tentatively undo one iteration backward 
      call RRNG(r) 
      call RRNG(r) 
!Verify if this reversed iteration belongs to this call, or is last of 
previous 
!This is done by logically (temporarily) re-computing that iteration 
      call RNG(r) 
      if(r .lt. cut) then 
         r = r/cut 
         t = 1d0/(16 * dierfc(0.5d0*r*Fs0)**2) 
         y0 = 1d0/sqrt(4*pi*t**3) * exp(-0.0625d0/t) 
         call RNG(r) 
         y = r*y0 
         fi = 0.5d0 * exp(-0.0625d0/t) / sqrt(pi*t**3) 
         k = 1 
         InnerLoop_ShortPick: do 
            k = k+1 
            dfi = (k+0.5d0)*exp(-0.25d0*(k+0.5d0)**2/t)/sqrt(pi*t**3) 
            if(y .gt. fi) cycle OuterLoop 
            fi = fi - dfi 
            if(y .le. fi) exit OuterLoop 
            endif 
            k = k+1 
            dfi = (k+0.5d0)*exp(-0.25d0*(k+0.5d0)**2/t)/sqrt(pi*t**3) 
            if(y .le. fi) exit OuterLoop 
            fi = fi + dfi 
            if(y .gt. fi) cycle OuterLoop 
         enddo 
      else 
         r = (r-cut)/(1d0-cut) 
         t = tau - log(r)/pi**2 
         beta = pi**2 * t 
         y0 = 4*pi*exp(-beta) 
         call RNG(r) 
         y = r*y0 
         fi = 4*pi*exp(-beta) 
         k = 1 
         InnerLoop_LongPick: do 
            k = k+2 
            dfi = 4*pi*exp(-beta * k**2) 
            if(y .gt. fi) cycle OuterLoop 
            fi = fi - dfi 
            if(y .le. fi) exit OuterLoop 
            k = k+2 
            dfi = 4*pi*exp(-beta * k**2) 
            if(y .le. fi) exit OuterLoop 
            fi = fi + dfi 
            if(y .gt. fi) cycle OuterLoop 
         enddo 
      endif 
   enddo OuterLoop 
end subroutineImplementation and Testing 

 
Fig. 2.  Reverse code. 
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4.  IMPLEMENTATION AND TESTING 
 
The FPT() and RFPT() subroutines were exercised in a test program in which several calls to 

FPT() are invoked after which RFPT() is invoked as many times, and the results compared.  The 
initial sample generated by FPT() is verified to match the final sample generated by RFPT().  In a 
sequence of over 10 million invocations, no precision problems are observed from round off errors or 
other numerical problems.  This is to be expected, since (a) the periods of the random number 
generator are very long, and (b) the time computation possesses a deterministic, one-to-one mapping 
from a random number seed to the computed floating point value for time. 

Also, no additional memory is allocated by the subroutines during the invocations, thus 
demonstrating the routines’ independence from invocation length. 
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Fig. 3.  Probability density function plot of First Passage Time. 

Fig. 3 shows the probability density function of FPT plotted for 10,000 throws, binned in equal, 
regularly-spaced intervals of size dt=0.01. 
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Fig.  4.  The first 100 samples generated in a sequence of 10,000 calls to FPT. 
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Fig.  5.  The last 100 samples generated by 10,000 calls to RFPT after the run shown in Fig.  4. 

As an illustration of the effects of forward and reverse execution, Fig.  4 shows the first 100 
samples in a sequence of 10,000 samples generated by FPT() in the forward direction. At the 
end of the generation of the 10,000 samples, the sequence is reversed 10,000 times by invocation 
of RFPT().  Fig.  5 shows the final 100 values generated by RFPT().  As expected, the 
samples are regenerated backwards exactly in the reverse direction, and thus, the samples in Fig. 
 5 form a mirror image of those in Fig. 4. 
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5. SUMMARY 

In physical system models that rely on certain distribution sampling methods, reversibility needs 
to be enabled, ideally with little or no memory cost.  However, reversibility properties of complex 
sampling codes have been largely unexplored, making checkpointing-based methods the only reversal 
alternative.  Here, we examined the reversibility aspects of a class of distribution sampling routines 
known as rejection sampling.  We showed that, despite the apparent complexity of the code, such 
codes can be perfectly inverted.  We illustrated the reversal with an instance of the rejection sampling 
method that is used to sample the FPT distribution.  The net effect of our findings is that memory 
trace is completely eliminated in enabling perfectly reversible sampling, enabling forward or 
backward movement in the sampled stream with constant memory cost. 
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