

 ORNL/TM-2009/182

Perfect Reversal of Rejection Sampling
Methods for First-Passage-Time and
Similar Probability Distributions

August 2009

Prepared by
Kalyan S. Perumalla
Senior Research Staff Member

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from the
following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

ORNL/TM-2009/182

Computational Sciences and Engineering Division

PERFECT REVERSAL OF REJECTION SAMPLING METHODS FOR FIRST-PASSAGE-
TIME AND SIMILAR PROBABILITY DISTRIBUTIONS

Kalyan S. Perumalla†
Aleksandar Donev‡

Date Published: August 2009

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6283
Managed by

UT-BATTELLE, LLC
for the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

† Oak Ridge National Laboratory
‡ Lawrence Livermore National Laboratory

 iii

CONTENTS

Page
LIST OF FIGURES ... iv
ABSTRACT .. v
1. INTRODUCTION .. 1

1.1 BI-DIRECTIONAL EXECUTION .. 1
1.2 SAMPLING PROBABILITY DISTRIBUTIONS .. 1
1.3 REVERSIBLE RANDOM NUMBER GENERATORS.. 2
1.4 REJECTION SAMPLING METHOD ... 2

2. FORWARD FORMULATION .. 3
2.1 INVOCATION .. 3
2.2 SOURCE CODE ... 3

3. REVERSAL .. 5
3.1 OBSERVATIONS .. 5
3.2 SOLUTION ... 5

4. IMPLEMENTATION AND TESTING ... 7
5. SUMMARY.. 9
ACKNOWLEDGEMENTS... 10
REFERENCES ... 11

 iv

LIST OF FIGURES

Figure Page

1. Forward code ... 4
2. Reverse code ... 6
3. Probability density function plot of First Passage Time ... 7
4. The first 100 samples generated in a sequence of 10,000 calls to FPT... 8
5. The last 100 samples generated by 10,000 calls to RFPT after the run shown in Fig. 4 8

 v

ABSTRACT

We present a perfectly reversible method for bi-directional generation of samples from
computationally complex probability distributions. While the previously best-known procedures
consume memory proportional to the length of execution between changes of execution direction, here we
present a scheme to completely eliminate the memory overhead. Our solution affords two important
features, namely determinism and repeatability, across arbitrarily spaced changes of direction (and
arbitrary number of samples) along the sample stream. We illustrate the perfect reversal method with first
passage time distributions that appear in physical system models, and present its implementation and
verification in FORTRAN.

 1

1. INTRODUCTION

Here, we consider the challenge of designing a perfectly reversible solution for bi-directional
generation of samples from computationally complex probability distributions. We solve the problem of
minimizing the memory needed to move forward as well as backward, at will, in a stream of samples
generated by a rejection-based procedure used to generate samples from probability distributions. While
the best-known procedures consume memory proportional to the length of execution between changes of
execution direction, here we present a scheme to completely eliminate the memory overhead. The
scheme is perfectly reversible in the sense that the memory needed to go backwards is independent of the
sampled stream length. Our solution provides two important features needed for use in parallel programs:
determinism and repeatability, across arbitrarily spaced changes of direction (and arbitrary lengths of
sampling) along the sample stream.

Bi-directional execution of scientific codes can be used for efficient parallel execution on high
performance computing platforms. However, bi-directional execution by log-based reversal typically
incurs high memory costs. Probability distribution sampling, used in many scientific codes, is one of the
challenging components to reverse, due to the large amount of memory needed to store long traces. Here,
we examine the memory cost in the bi-directional (reversible) execution of a commonly used probability
distribution sampling method in scientific codes, namely, rejection sampling.

The rest of the document is organized as follows. In the rest of this section, the context for bi-
directional execution and the use of probability distribution sampling are described, followed by the
previously known use of reversible random number generators for reversal of simple probability
distributions. This is followed by algorithmic detail of a commonly-used method called rejection
sampling for sampling from more complex distributions. In Sect. 2, the implementation of the
(traditional) forward execution is presented, illustrated in the context of sampling First Passing Time
distributions. The perfect reversal of the forward execution is developed and presented in Sect. 3. An
actual implementation and testing of the forward and reverse codes on the computer in the FORTRAN
language is described in Sect. 4, finalized by a summary in Sect. 5.

1.1 BI-DIRECTIONAL EXECUTION

Bi-directional execution finds use in rollback-based high performance computing, debugging, and
other areas [1-5]. However, bi-directional execution is very challenging to achieve. Naïve approaches
can quickly render bi-directional execution impractical due to the tremendous memory costs of the
execution traces needed to achieve reversibility [2, 6-11]. This problem is especially pronounced in high
performance computing, due to the dramatic increases of trace lengths that result from a very high speed
of execution. For example, a random number generator can be thrown a million times in a second, whose
reversal by log-based methods can require several megabytes of memory for each generator. The
memory cost is even more amplified when the quality of the random number generator is increased by
increasing the seed size. Thus, for enabling bi-directional computation, new memory-efficient schemes
must be developed that either minimize the overhead, or, ideally, eliminate the memory needed for
reversal. Here we focus on one of the core operations that occurs in scientific simulations, namely,
sampling of probability distributions, and provide a new scheme that eliminates the memory cost for
reversal.

1.2 SAMPLING PROBABILITY DISTRIBUTIONS

Probability distributions are routinely employed in computer models of physical systems. Pseudo-
random number streams are used to generate samples that conform to the desired probability distributions.
In computationally intensive simulations, a large number (millions to billions) of samples are drawn. For
simple distributions, the sampling procedure is given by a closed-form formula for certain distributions
(such as the Exponential distribution). In more complex distributions, such as First Passage Time (FPT)
distributions, the sampling formula is either computationally complex, or worse, may not be expressible

 2

as a closed form expression. In such complex distributions, a different sampling procedure is employed,
using an iterative approach to progressively approach the desired distribution.

1.3 REVERSIBLE RANDOM NUMBER GENERATORS

In the case of simple probability distributions, such as Exponential or Pareto distributions, closed
form inversions of their cumulative distribution functions (CDF) are known. For such distributions, it has
been shown that perfect reversibility can be achieved [2, 11-13]. This is realized by employing reversible
uniform random number generators. Reversing the sampling operation on an exponential distribution,
thus, becomes as simple as invoking the reversal of the underlying uniform random number generator
once per reversal step. The restoration of the uniform random number seed is necessary and sufficient for
reversing the sampling of the distribution. However, as we shall see, for more complex distributions for
which either the inverse of the CDF is computationally prohibitive or a closed form representation of the
inverse of the CDF is unknown, the simple reversal of random number seed once does not work.

The inversion challenge for such distributions is rooted in the fact that control flow is infused into the
sampling procedure. Such control flow information is absent in sampling simple distributions. When
control flow complexity is introduced into the method, the one-to-one correspondence between the
random number seed stream and the probability distribution sample stream gets broken.

Thus, reversal of a sample is might require an unknown number, 0in > , of reversals of updates to the
underlying random number seed. Since each sample is has a value in that may be different from other
samples, a log is apparently needed to keep track of the number of iterations performed for each sample
in the forward direction. Thus, the log is: (a) proportional to the number of samples, and (b) theoretically
unbounded in the amount of memory needed to remember each sample’s iteration count. In practice, the
theoretically unbounded nature of control flow information for each sample can be capped with a
sufficiently large integer variable. Nevertheless, the proportionality of the trace size with the sample
stream length (number of samples drawn) is the most dominant factor on memory. It is this trace length
that we reduce (in fact, eliminate) with our reversal procedure.

1.4 REJECTION SAMPLING METHOD

We will now describe the rejection sampling method of generating random samples in greater detail.
The rejection sampling method does not require the evaluation of the exact, closed-form (inverse of) the
cumulative probability distribution function (CDF). Instead, it employs a sequence of progressively
tighter upper ()k

UP x and lower ()k
LP x bounds, 0,k k≥ →∞ , to the exact (inverse) probability

distribution ()P x , such that () () ()k k
L UP x P x P x≤ ≤ . The bounds in the sequence must satisfy the

condition of being progressively tighter: 1k k
L LP P +≤ , 1k k

U UPP +≥ , and k j k j k k
U L U LP P P P+ +− < − for

some 0j > . An algorithm that is based on these observations is shown next.

Rejection-based Sampling Algorithm:

1. Outer loop: Set 0k = . Generate a sample x belonging to 0
UP , and set 0 ()Up rP x= ,

where 0 1r< ≤ is a uniform random variate.
2. Inner loop: If ()k

Up P x> then reject the trial and go back to the first step (cycle Outer loop)

3. If ()k
Lp P x≤ , then accept the trial and return x (exit Outer loop)

4. Otherwise, increment k (1k k← +) and go back to the second step (cycle Inner loop).
If the initial distribution is reasonably close to the actual distribution (i.e., 0

UP P≈) and the bounds
are reasonably tight, then the rejection or acceptance will be achieved within a small number of iterations.
 The rejection sampling technique is typically enhanced with the objective of making the first few bounds
as efficient to evaluate as possible.

 3

2. FORWARD FORMULATION

In this section, we turn to a computer program subroutine for sampling FPT distributions [14] using
the rejection sampling algorithm, and in Sect.3 develop a perfect reverse of the subroutine, followed by an
implementation and verification in Sect. 4.

2.1 INVOCATION

The envisioned usage of the sampling subroutine is as follows: A scientific simulation program that
simulates physical system models, at various moments during its execution, invokes the FPT(t)
subroutine to obtain a sample from the first passage time distribution. The sample value is returned in the
parameter t. After a sequence of (potentially scattered or intermittent) calls to FPT(), the program may
desire to go back in simulation time (in speculative/optimistic synchronization mode [2, 5, 15, 16]), and
hence would need to undo part of its sampling, resetting the position in the sample stream back by a few
samples. Thus, a sequence of calls to the reverse subroutine RFPT() (designed later in the document) is
invoked by the program. The objective is for the RFPT() calls to reverse the effects of FPT()and
restore the state of the program to the same state that was present before the invocation of the
corresponding FPT() calls.

We assume a reversible random number generator is used, by calling a subroutine called RNG().
Any suitable generator may be used, as long as a corresponding reversal subroutine called RRNG() is
available to be used in the reverse formulation in Sect. 3.

2.2 SOURCE CODE

The source code for the FPT sampling subroutine is shown on the next page. It follows the algorithm
outlined in Sect. 1.4, with the probability functions of the general algorithm customized for a First
Passage Time distribution. An additional complication in this sampling code is the use of a different set
of the lower and upper bound distributions. The choice of which set of functions to use for k

UP and k
LP is

made at runtime, based on a threshold on the generated uniform random value, qualitatively
corresponding to “long time” and “short time” spans of first passage. Using a conditional statement, the
choice is made for every candidate sample at run time to decide which functions are appropriate for that
random value.

 4

! Compute First Passage Time and return it in t
subroutine FPT(t)
 real(kind=r_wp), intent(out) :: t

 real(kind=r_wp) :: pi,tau,Fs0,Fl0,cut
 parameter(pi = 3.14159265358979323846d0)
 parameter(tau = 0.0796d0)
! Fs0 = 2*erfc(1/sqrt(16*tau))
! Fl0 = 4/pi*exp(-pi^2*tau)
 parameter(Fs0 = 0.42031187432794d0)
 parameter(Fl0 = 0.58038939207732d0)
 parameter(cut = Fs0/(Fs0+Fl0))
 real(kind=r_wp) :: r,y0,y,fi,dfi,beta
 integer k

 OuterLoop: do
 call RNG(r)
 if(r .lt. cut) then
! Short time pick
 r = r/cut
 t = 1d0/(16 * dierfc(0.5d0*r*Fs0)**2)
 y0 = 1d0/sqrt(4*pi*t**3) * exp(-0.0625d0/t)
 call RNG(r)
 y = r*y0
 fi = 0.5d0 * exp(-0.0625d0/t) / sqrt(pi*t**3)
 k = 1
 InnerLoop_ShortPick: do
 k = k+1
 dfi = (k+0.5d0)*exp(-0.25d0*(k+0.5d0)**2/t)/sqrt(pi*t**3)
 if(y .gt. fi) cycle OuterLoop !Rejection
 fi = fi - dfi
 if(y .le. fi) return !Acceptance

 k = k+1
 dfi = (k+0.5d0)*exp(-0.25d0*(k+0.5d0)**2/t)/sqrt(pi*t**3)
 if(y .le. fi) return !Acceptance
 fi = fi + dfi
 if(y .gt. fi) cycle OuterLoop !Rejection
 enddo
 else
! Long time pick
 r = (r-cut)/(1d0-cut)
 t = tau - log(r)/pi**2
 beta = pi**2 * t
 y0 = 4*pi*exp(-beta)
 call RNG(r)
 y = r*y0
 fi = 4*pi*exp(-beta)
 k = 1
 InnerLoop_LongPick: do
 k = k+2
 dfi = 4*pi*exp(-beta * k**2)
 if(y .gt. fi) cycle OuterLoop !Rejection
 fi = fi - dfi
 if(y .le. fi) return !Acceptance

 k = k+2
 dfi = 4*pi*exp(-beta * k**2)
 if(y .le. fi) return !Acceptance
 fi = fi + dfi
 if(y .gt. fi) cycle OuterLoop !Rejection
 enddo
 endif
 enddo OuterLoop
end subroutineReversal

Fig. 1. Forward code.

 5

3. REVERSAL

3.1 OBSERVATIONS

Observation 1: The only side-effects of the FPT() routine is the modification of the random number
seed. All other variables are temporary storage, and consequently, no reversal needs to be applied to
them. In other words, temporary values initially contain don’t-care values, which do not need to be
restored exactly.

Observation 2: Every call to FPT() results in invocation of RNG() exactly two times per iteration of
the outer loop. As a regular expression, the following invariant is preserved by the loop: (R1,
[R2a,R2b])+, where [x,y] denotes either x or y, R1 is RNG invoked at line 17, R2a is RNG at line 23 and
R2b is RNG at line 46.

Given that we know how to reverse an individual RNG call, the reversal problem of FPT() becomes
that of detecting how many invocations of RNG to be reversed for a given call to FPT(). The
underlying problem with perfect reversal is that the loop in the forward computation could execute any
number of iterations, greater than or equal to unity. If we “remember” exactly how many iterations of the
loop have been made in a given call to FPT(), then it is straightforward to reverse FPT(). The reversal
is simply realized by invoking the reverse version of RNG twice the number of iterations. The drawback
of this approach is that an integer variable needs to be allocated for each call to FPT(), in order to
remember the iteration count for that call. This makes the storage requirements for reversal to become
proportional to the number of FPT() calls, which can get quite large in a simulation that makes very
many calls to FPT(). For example, with millions of particles and many millions of passage time
computations, the storage requirements can become quite large. Ideally, we are interested in a reversal
that uses absolutely no storage. Such a reversal is called perfect reversal [11]. The question becomes: Is
FPT() computation perfectly reversible? Our answer to this is in fact in the positive. We will now show
how to perfectly reverse FPT() calls.

3.2 SOLUTION

We will first consider the easy part of the solution. Any single iteration of the outer loop can be
perfectly reversed simply by invoking reverse RNG() twice. This follows from observations 1 and 2.
Observation 1 helps us focus only on RNG seeds for prefect reversal. Observation 2 helps us realize that
there are exactly two RNG() calls per iteration. Thus, it is sufficient to invoke reverse RNG() two times
to restore the state perfectly across iterations. The more difficult question now becomes the problem of
discovering how many iterations were executed in the FPT() call? If we knew this count, we simply
invoke the RNG() two times per iteration, for that many iterations. That would restore the state perfectly.

The complicating factor for the loop is that, when we reverse one iteration of the loop (by invoking
inverse RNG two times), we are still not sure whether we reached the beginning of the loop of the
forward execution, or if we need to continue to reverse additional iterations of the loop. The iteration
count is not obvious. The detection of reaching the beginning iteration of the forward execution of the
loop becomes the main problem. Fortunately, one additional insight helps relieve this dilemma: any
iteration in which the “return” call is invoked (at lines 32, 36, 55 or 59) is clearly the last iteration of that
FPT() call.

Observation 3: Moreover, this termination condition depends only the state of that iteration alone, and
does not depend on state from prior iterations. We capitalize on this termination condition, by
temporarily reversing one iteration backward and seeing if the test succeeds on that previous state. If the
condition succeeds, then it implies that that iteration belonged to a previous FPT() call, and not to the
current call. On the other hand, if the test is negative (i.e., it shows that the loop does not terminate at that
iteration) it shows that the iteration belongs to the current FPT() call which is being reversed. This
termination test essentially helps us determine if we need to jump back one more iteration or if we are
done reversing the FPT() call that is being reversed. The source code for the reversal is shown on the
next page.

 6

! Reverse the effects of a call to FPT
subroutine RFPT()
 real(kind=r_wp) :: t, pi,tau,Fs0,Fl0,cut
 parameter(pi = 3.14159265358979323846d0)
 parameter(tau = 0.0796d0)
 parameter(Fs0 = 0.42031187432794d0)
 parameter(Fl0 = 0.58038939207732d0)
 parameter(cut = Fs0/(Fs0+Fl0))
 real(kind=r_wp) :: r,y0,y,fi,dfi,beta
 integer k
 OuterLoop: DO
!Reverse the most recent iteration; guaranteed to exist, since niterations>=1
 call RRNG(r)
 call RRNG(r)
!Now, see if we need to undo more iterations
!Tentatively undo one iteration backward
 call RRNG(r)
 call RRNG(r)
!Verify if this reversed iteration belongs to this call, or is last of
previous
!This is done by logically (temporarily) re-computing that iteration
 call RNG(r)
 if(r .lt. cut) then
 r = r/cut
 t = 1d0/(16 * dierfc(0.5d0*r*Fs0)**2)
 y0 = 1d0/sqrt(4*pi*t**3) * exp(-0.0625d0/t)
 call RNG(r)
 y = r*y0
 fi = 0.5d0 * exp(-0.0625d0/t) / sqrt(pi*t**3)
 k = 1
 InnerLoop_ShortPick: do
 k = k+1
 dfi = (k+0.5d0)*exp(-0.25d0*(k+0.5d0)**2/t)/sqrt(pi*t**3)
 if(y .gt. fi) cycle OuterLoop
 fi = fi - dfi
 if(y .le. fi) exit OuterLoop
 endif
 k = k+1
 dfi = (k+0.5d0)*exp(-0.25d0*(k+0.5d0)**2/t)/sqrt(pi*t**3)
 if(y .le. fi) exit OuterLoop
 fi = fi + dfi
 if(y .gt. fi) cycle OuterLoop
 enddo
 else
 r = (r-cut)/(1d0-cut)
 t = tau - log(r)/pi**2
 beta = pi**2 * t
 y0 = 4*pi*exp(-beta)
 call RNG(r)
 y = r*y0
 fi = 4*pi*exp(-beta)
 k = 1
 InnerLoop_LongPick: do
 k = k+2
 dfi = 4*pi*exp(-beta * k**2)
 if(y .gt. fi) cycle OuterLoop
 fi = fi - dfi
 if(y .le. fi) exit OuterLoop
 k = k+2
 dfi = 4*pi*exp(-beta * k**2)
 if(y .le. fi) exit OuterLoop
 fi = fi + dfi
 if(y .gt. fi) cycle OuterLoop
 enddo
 endif
 enddo OuterLoop
end subroutineImplementation and Testing

Fig. 2. Reverse code.

 7

4. IMPLEMENTATION AND TESTING

The FPT() and RFPT() subroutines were exercised in a test program in which several calls to

FPT() are invoked after which RFPT() is invoked as many times, and the results compared. The
initial sample generated by FPT() is verified to match the final sample generated by RFPT(). In a
sequence of over 10 million invocations, no precision problems are observed from round off errors or
other numerical problems. This is to be expected, since (a) the periods of the random number
generator are very long, and (b) the time computation possesses a deterministic, one-to-one mapping
from a random number seed to the computed floating point value for time.

Also, no additional memory is allocated by the subroutines during the invocations, thus
demonstrating the routines’ independence from invocation length.

Probability Density Function

0

100

200

300

400

500

600

700

800

0 0.2 0.4 0.6 0.8 1

FPT

Fr
eq

ue
nc

y

Fig. 3. Probability density function plot of First Passage Time.

Fig. 3 shows the probability density function of FPT plotted for 10,000 throws, binned in equal,
regularly-spaced intervals of size dt=0.01.

 8

Forward First Passage Time

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

1 11 21 31 41 51 61 71 81 91

Invocation i

i't
h

FP
T(

)

Fig. 4. The first 100 samples generated in a sequence of 10,000 calls to FPT.

Reverse First Passage Time

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

1 11 21 31 41 51 61 71 81 91

Invocation i

i't
h

R
FP

T(
)

Fig. 5. The last 100 samples generated by 10,000 calls to RFPT after the run shown in Fig. 4.

As an illustration of the effects of forward and reverse execution, Fig. 4 shows the first 100
samples in a sequence of 10,000 samples generated by FPT() in the forward direction. At the
end of the generation of the 10,000 samples, the sequence is reversed 10,000 times by invocation
of RFPT(). Fig. 5 shows the final 100 values generated by RFPT(). As expected, the
samples are regenerated backwards exactly in the reverse direction, and thus, the samples in Fig.
 5 form a mirror image of those in Fig. 4.

 9

5. SUMMARY

In physical system models that rely on certain distribution sampling methods, reversibility needs
to be enabled, ideally with little or no memory cost. However, reversibility properties of complex
sampling codes have been largely unexplored, making checkpointing-based methods the only reversal
alternative. Here, we examined the reversibility aspects of a class of distribution sampling routines
known as rejection sampling. We showed that, despite the apparent complexity of the code, such
codes can be perfectly inverted. We illustrated the reversal with an instance of the rejection sampling
method that is used to sample the FPT distribution. The net effect of our findings is that memory
trace is completely eliminated in enabling perfectly reversible sampling, enabling forward or
backward movement in the sampled stream with constant memory cost.

 10

ACKNOWLEDGEMENTS

This paper has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with
the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher,
by accepting the article for publication, acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of
this manuscript, or allow others to do so, for United States Government purposes.

This effort has been supported by research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

 11

REFERENCES

 1. P. Bishop, Using Reversible Computing to Achieve Fail-Safety. in ISSRE-97. 1997. IEEE
Computer Society Press.

 2. C. Carothers, K. S. Perumalla, and R. M. Fujimoto, Efficient Optimistic Parallel Simulations
using Reverse Computation. ACM Transactions on Modeling and Computer Simulation, 1999.
9(3): p. 224–253.

 3. B. Boothe, Efficient Algorithms for Bidirectional Debugging. in Programming Language Design
and Implementation. 2000. ACM Press.

 4. J. Lee, et al., Reversible Computation in Asynchronous Cellular Automata. Lecture Notes in
Computer Science, 2002. 2509: p. 220–229.

 5. Y. Tang, et al., Optimistic Simulations of Physical Systems using Reverse Computation.
SIMULATION: Transactions of The Society for Modeling and Simulation International, 2006.
82(1): p. 61–73.

 6. Y.-B. Lin and E. D. Lazowska, Reducing the State Saving Overhead for Time Warp Parallel
Simulation. 1990, Computer Science Department, University of Washington: Seattle,
Washington.

 7. A. C. Palaniswamy and P. A. Wilsey, An Analytical Comparison of Periodic Checkpointing and
Incremental State Saving, in Proceedings of the 7th Workshop on Parallel and Distributed
Simulation. 1993. p. 127–134.

 8. J. Cleary, et al., Cost of State Saving and Rollback, in Proceedings of the 8th Workshop on
Parallel and Distributed Simulation. 1994. p. 94–101.

 9. D. West and K. Panesar, Automatic Incremental State Saving, in Proceedings of the 10th
Workshop on Parallel and Distributed Simulation. 1996. p. 78–85.

10. F. Gomes, Compiler Techniques for State Saving in Parallel Discrete Event Simulation, in
Computer Science. 1996, University of Calgary, Canada.

11. K. S. Perumalla, Techniques for Efficient Parallel Simulation and their Application to Large-
scale Telecommunication Network Models, in College of Computing. 1999, Georgia Institute of
Technology: Atlanta. p. 150.

12. K. Perumalla, R. Fujimoto, and A. Ogielski, TeD - A Language for Modeling
Telecommunications Networks. Performance Evaluation Review, 1998. 25(4).

13. K. S. Perumalla and R. M. Fujimoto, Source Code Transformations for Efficient Reversibility.
1999, College of Computing, Georgia Institute of Technology: Atlanta.

14. S. Redner, A Guide to First-Passage Processes. 2001: Cambridge University Press
15. R. M. Fujimoto, Optimistic Approaches to Parallel Discrete Event Simulation. Transactions of

the Society for Computer Simulation, 1990. 7(2): p. 153–191.
16. K. S. Perumalla, µsik - A Micro-Kernel for Parallel/Distributed Simulation Systems. in Workshop

on Principles of Advanced and Distributed Simulation. 2005.

	1. INTRODUCTION
	1.1 BI-DIRECTIONAL EXECUTION
	1.2 SAMPLING PROBABILITY DISTRIBUTIONS
	1.3 REVERSIBLE RANDOM NUMBER GENERATORS
	1.4 REJECTION SAMPLING METHOD
	Fig. 1. Forward code.
	3. REVERSAL
	3.1 OBSERVATIONS

	5. SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES

