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ABSTRACT 
µπ is a scalable, transparent system for experimenting with the 
execution of parallel programs on simulated computing platforms.  
The level of simulated detail can be varied for application 
behavior as well as for machine characteristics.  Unique features 
of µπ are repeatability of execution, scalability to millions of 
simulated (virtual) MPI ranks, scalability to hundreds of 
thousands of host (real) MPI ranks, portability of the system to a 
variety of host supercomputing platforms, and the ability to 
experiment with scientific applications whose source-code is 
available.  The set of source-code interfaces supported by µπ is 
being expanded to support a wider set of applications, and MPI-
based scientific computing benchmarks are being ported.  In 
proof-of-concept experiments, µπ has been successfully exercised 
to spawn and sustain very large-scale executions of an MPI test 
program given in source code form.  Low slowdowns are 
observed, due to its use of purely discrete event style of 
execution, and due to the scalability and efficiency of the 
underlying parallel discrete event simulation engine, µsik.  In the 
largest runs, µπ has been executed on up to 216,000 cores of a 
Cray XT5 supercomputer, successfully simulating over 27 million 
virtual MPI ranks, each virtual rank containing its own thread 
context, and all ranks fully synchronized by virtual time. 

1.  INTRODUCTION 
µπ is designed to solve the following problem: Given a parallel 
application Aα, estimate the characteristics it would exhibit if it 
were executed on a (imaginary, simulated) machine Mα.  The tool 
for such experimentation, which in general is a parallel 
application Aβ in its own right, is to be executed on another (real) 
machine Mβ in an as-fast-as-possible manner.  µπ is such an Aβ 
system, which we design as a parallel discrete event simulation 
(PDES) system that simulates the execution of any complex 
Message Passing Interface (MPI)-based application Aα on any 
user-configured imaginary machine Mα.  µπ itself executes in a 
scalable way on any suitable parallel cluster or supercomputing 
platform Mβ such as a Cray XT5 or Blue Gene/P system. 
Typically, experimentation with Aα is motivated by the desire to 
observe metrics such as computation time, blocked time, memory 
consumption, and network load.  Additional aspects include 
software engineering concerns such as uncovering software 
shortcomings or other unknown behavior when the application is 
executed on a larger number of processors than feasible before. 

Ideally, the experiments should be (a) repeatable, (b) accurate, 
and (c) fast, in that order of preference.  However, when the 
complexity of the application Aα and/or the machine Mα 
increases, it becomes a harder endeavor to satisfy all the 
preceding three criteria at once.  In particular, when the targeted 
number of processing elements in Mα is on the order of 105-107 
(comparable to existing and emerging peta-scale and exa-scale 
platforms), a specially designed scalable and efficient 
experimentation system is needed to meet the goals.  µπ is 
designed to fill this need. 
The name µπ is a Greek abbreviation for the acronym MUPI 
standing for micro parallel performance investigation system. 
Here, we document a snapshot of work in progress in our design, 
development and usage of µπ for large-scale experimentation of 
MPI-based parallel scientific codes.  The focus of this report is on 
documenting proof-of-concept scaling results from a prototype µπ 
implementation. 

1.1  Motivation 
In reference [1], the need for simulating the execution of parallel 
programs is well articulated, based on the fact that the average 
useful lifetime of a parallel machine is 5 years, whereas that of a 
parallel application (source code) is up to 20 years.  There are 
many additional motivating factors that are well documented in 
the literature (please see the related work in Section 1.3 ).  An 
environment for debugging, testing and customizing existing 
applications to new parallel hardware and software platforms 
would be useful to improve the utilization of many resources.  
Purely analytical approaches alone are inadequate to effectively 
experiment with parallel applications, due to the increasing scale 
and widening diversity of hardware platforms, middleware 
systems, software interfaces, and parallel algorithms.  Ideally, an 
existing application would be minimally modified and simply 
executed on a newly envisioned parallel system before that new 
system is built.  Not only can the application benefit from the 
performance insights, but also the system designers can use the 
observed behavior to improve the system design. 
Important considerations in the design of µπ are support for 
memory-constrained programs, large number of real processors, 
and controlled execution of actual, unmodified codes on virtual 
platforms with one to two orders of magnitude more numerous 
MPI ranks than the number of cores available in real hardware. 

1.2  Scaling Challenges 
Scaling the simulator to very large number of processors requires 
new scalable methods.  Such scaling issues of the simulator have 
not been as important in earlier systems either due to use of 
relatively small number of processors or due to abstraction 
approaches that rely on traces or execution models without having 
to execute actual applications on simulated machines. 
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An example of the simulator scaling challenges is in the 
virtualization of the MPI_Barrier() method.  When the 
application invokes the barrier call, the call is trapped by the 
simulator.  The elapsed time for satisfaction of the barrier is 
simulated, with either a user-specified or algorithm-induced total 
delay.  A user-specified runtime cost for barrier calls could be 
used to experiment with a desired or fixed (e.g., from a design 
goal) global reduction latency, or an algorithm-induced latency 
could be simulated by executing an actual reduction algorithm 
over a simulated (point-to-point or hardware-optimized) network. 
Another challenge arises in the actual transfer of data exchanged 
by the MPI ranks at runtime.  In order to support unmodified code 
execution, µπ must implement actual exchange of bytes across 
MPI ranks initiated via MPI communication primitives such as 
MPI_Send() and MPI_Recv().  In effect, the simulator acts 
as the underlying network layer that performs packetization for 
large message payloads, and undertakes buffering and reordering 
as needed.  Such concerns are absent in lower fidelity systems 
that do not need to support actual data exchanges due to use of 
abstractions. 
Yet another challenge in multiplexing multiple virtual MPI ranks 
on each core is the cost of scheduling and de-scheduling threads 
within the simulator.  For minimizing overall slowdown, the 
simulator must be optimized to multiplex the virtual MPI ranks in 
a (virtual-) time-synchronized fashion. 

1.3  Related Work 
µπ is focused on experimentation with very large (virtual) parallel 
computing configurations, especially with hundreds of thousands 
of (virtual) processor cores.  We are not aware of any systems that 
are able to sustain experiments at such a high level of scale. 
Several related systems have been reported in the literature for 
experimenting with applications on simulated machine 
configurations.  A selected list includes FASE [2], MPI-Sim [3], 
POSE [4], PDES [5, 6], Direct Execution[7-9], optimistic 
simulation [10], task graphs [11], synchronization-optimizations 
[12], BigSim [13, 14], EMPOWER [15], and hybrid modeling 
[16].  Full system simulators such as Wisconsin Wind Tunnel 
[17], and SIMICS [18] may impose unacceptable levels of 
slowdowns for the purpose of large parallel program execution, 
making them difficult to use in practice for virtual machine 
configurations containing 105-106 processor cores.  A survey 
article [1] captures the details of some of the important 
performance prediction systems, including PAL, Performance 
Prophet, POEMS, POSE, and RSIM.  Recently, the hurdle of 
simulation speed is addressed via parallel simulation for 
instruction-level models [19].  Trace-based performance modeling 
is another commonly-used method for experimenting with 
simulated machine configurations.  Most aforementioned systems 
have been limited by the sizes of the parallel machines available 
at their times.  Almost all the systems reported so far were 
exercised with fewer than 1,000 processor cores used to execute 
the simulation, although much larger virtual configurations were 
evaluated in experiments.  Among the most prominent in scaling 
the virtual configurations is the BigSim/POSE [13, 14] efforts that 
reported low slowdowns in experiments of 64,000 virtual 
processor simulated on 512 processors.  Our work differs from all 
the related work in our focus on combining the goals of executing 
un-abstracted, unmodified applications with very large simulated 
configurations.  The work that comes closest to our goals is the 
LAPSE system [7] that was designed to support Intel Paragon 

applications using Intel’s communication interfaces.  Our work 
differs in that we focus: (a) on MPI programs, (b) on very large 
numbers of MPI ranks (104-105 real, 105-107 virtual), and (c) on 
using multi-threading instead of UNIX processes for virtualizing 
the multiplexed identities of the application processes. 

1.4  Contributions 
To the best of our knowledge, ours is the first to apply process-
oriented simulation [20-22] to simulate MPI programs.  We 
employ multi-threading to sustain and multiplex many simulated 
MPI ranks on each processor used by the parallel simulator.  
Efficient, time-synchronized scheduling and de-scheduling are 
realized to implement the overall virtual execution, resulting in 
very efficient emulation.  Our work is also among the first to 
execute unmodified MPI applications on thousands of (actual) 
processor cores, with one or more simulated MPI ranks per core.  
The support for scalable implementation of virtual MPI 
primitives (MPI calls made by the application, trapped and 
supported by the simulator) is also novel.  Quantitatively, µπ is 
the only system to report feasibility and actual time-synchronized 
execution of millions of virtual, unmodified MPI ranks.  No 
system reported in literature approaches this scale, even for the 
simplest unmodified MPI benchmarks.  The closest work is the 
seminal LAPSE system of the 1990’s tested on 512 virtual tasks 
on an Intel Paragon. 
The factors that make µπ scale better than others are (a) better 
implementation of process-oriented execution needed for 
virtualizing unmodified MPI code, (b) superior efficiency of the 
PDES engine helping scale to orders of magnitude larger 
platforms than other MPI simulator tools in the literature, and (c) 
scalable design and implementation of the Message Passing 
Interface. 
It is important to note that the focus of this paper is the design and 
preliminary evidence of feasibility on large platforms of the 
simulation tool.  This article does not address validation issues.  
Moreover, this paper documents work in progress; hence it does 
not yet include a comprehensive performance evaluation. 

2.  DESIGN 
Recall that the subject application Aα is to be virtually executed 
on some Pα processors of the imaginary (guest) machine Mα, but 
needs to execute on (typically much smaller) number of 
processors Pβ of a real (host) machine Mβ.  For example, if the 
application is to be experimented on 100,000 processor cores, but 
only 10,000 cores are available for experimentation, then the 
application must be somehow “fooled” into the view that it is 
executing on 100,000 cores.  Since more than one virtual core is 
“simulated” on each real core, timing results perceived by the 
application have to be adjusted to erase the effects of 
multiplexing.  Message buffering and re-ordering have to be 
similarly accurately recreated as they would have occurred in the 
envisioned machine network, even though messages might arrive 
faster or slower on the host machine compared to the envisioned 
machine.  The full design involves three components: (1) grafting 
(2) time pacing (3) communication buffering and reordering.  
Each of these components is described next. 

2.1  Grafting 
The grafting portion of the prediction system deals with the 
software interface-related mismatch between the guest parallel 
machine Mα and the host parallel machine Mβ.  The original 



software interface (e.g., MPI) that the application uses should be 
retained, but the implementation must be changed (preferably, 
transparently) to reflect the behavior of the new machine.  We call 
the redirection as a grafting process.  There are multiple grafting 
methods, each with its own merits and demerits.  A source code-
based grafting method is best when the source code of the 
application is available.  A library redirection-based grafting 
method is best to deal with application functionality that is 
available only in the form of pre-built object libraries; however, 
depending on the complexity of the libraries involved, the 
grafting systems can involve significant amount of systems work.  
A virtual machine-based grafting is possible for the highest levels 
of transparency in the grafting process, but also is the most 
expensive with respect to runtime cost. 
In the initial version of µπ, the source code-based grafting method 
is supported.  Its usage and implementation are described here.  
When the source code is available for the MPI application, µπ 
supports grafting with the use of the header file mupi.h and 
library libmupi.a that µπ supplies.  In fact, this can be easily 
made transparent by using installation-specific customization of 
the native MPI header file and linked libraries.  Similar 
customization is used for MPI-based FORTRAN. 
The application is compiled and linked as usual.  The resulting 
executable will be a µπ simulation, which executes in virtual 
mode.  On platforms on which µπ itself executes over MPI, 
“mpirun –np 4 myprog -nvp 32” runs myprog on 32 
virtual ranks, simulated by µπ on 4 real cores. 
In mupi.h, the original MPI routines are redefined, via macro 
substitution, to µπ calls of correspondingly identical signatures, so 
that µπ can execute them on a simulated platform.  The original 
main routine is renamed and automatically invoked by µπ for 
each virtual MPI task of the application (command line arguments 
are duplicated for each virtual task invocation).  µπ allocates and 
creates a separate stack context for each virtual MPI task, and 
maintains the full stack context between MPI calls invoked by the 
task. 
The MPI routines implemented, in C/C++ and FORTRAN, as of 
this writing are MPI_Init(), MPI_Finalize(), 
MPI_Comm_rank(), MPI_Comm_size(), 
MPI_Barrier(), MPI_Send(), MPI_Recv(), 
MPI_Isend(), MPI_Irecv(), MPI_Waitall(), 
MPI_Wtime().  Only the MPI_COMM_WORLD communication 
group is currently recognized.  The set is being expanded, which 
is mostly developmental in nature. 

2.2  Time Pacing 
Each virtual MPI rank is realized as the threaded simulation 
process of µsik.  As mentioned earlier, for every MPI rank, µπ 
traps all MPI calls, and acts as the scheduler that ensures 
execution is ordered by simulation time.  An important MPI call 
is the MPI_Wtime() that gives the invoking MPI rank a 
snapshot of current “wall clock” time: µπ returns the simulation 
time, instead of the wall clock time, making the rank 
synchronized with the timelines of the rest of the simulation.  Any 
blocked call, such as MPI_Barrier(), MPI_Recv() or 
MPI_Wait(), is realized using the “hold” primitive of process-
oriented simulation.  The equivalent “hold” primitive in µsik is 
the wait(WaitContext &) which is used by µπ’s trapped 
MPI calls to either advance simulation time unconditionally, or 

advance simulation time until a given condition is satisfied (e.g., 
message arrival). 

2.3  Buffering and Reordering 
Just as in a real distributed system operation, MPI message data 
may arrive at various moments in time.  In the simulation, the 
data arrives as data events, which need to be buffered inside the 
simulator until a corresponding (local) virtual MPI rank queries 
and or accepts the data using an appropriate MPI call.  µπ handles 
all the buffering (in an assembly queue and a ready queue, for 
each MPI rank), and performs reordering internally by time-stamp 
order, and supplies the data as part of the appropriate MPI 
invocations. 

2.4  Machine Specification 
The characteristics of the envisioned machine can be specified 
programmatically, as an object library linked to the µπ simulation.  
The library can be invoked by the user as part of an 
experimentation system to suitably customize the scenario in a 
series of experiments.  For unsophisticated usage of µπ, a simple 
machine performance model is provided (the µπ design allows for 
far more sophisticated machine models).  In this simplified usage, 
the user can specify (via environment variables) a point-to-point 
bandwidth and a point-to-point latency. 

3.  IMPLEMENTATION 
The µπ software is written C/C++, as an application of the µsik 
PDES engine [23].  Both µπ and µsik are portable to a large 
number of platforms.  µπ has been tested on MPI-based platforms, 
including Linux, Mac OS X, Blue Gene/P, and Cray XT4/XT5. 
The timing model aspect of MPI program simulation deals with 
how the computing time is accounted and incorporated into the 
simulation.  The time consumed by computation in the application 
between MPI calls must be used by the simulator to advance 
simulation time once µπ is entered via an MPI call trap.  The 
communication time is the time spent inside MPI before returning 
control back to the application.  Such a framework is depicted in 
Figure 1. 
It is important to note that this is only a framework (interface), 
and does not constrain the complexity of the timing models 
(implementation) that could be employed.  Any arbitrary level of 
timing detail can be incorporated.  Compute-time can be charged 
to application with arbitrarily complex models (example: full-
system simulation of instructions on the side, cache effects, 
processor speed, etc.), to the extent the user is willing to suffer the 
consequent run time overhead.  Similar argument holds for 
network effects.  Our simulation tool core is unaffected; detail can 
be added or abstracted by user, depending on level of detail 
needed.  Thus, the framework in Figure 1 only depicts 
generalized, streamlined hooks, but do not constraint the model. 

 
Figure 1: Time accounting framework used by µπ 

A simple way to use the framework is one in which the guest and 
host processor architectures are identical.  In this case, the 
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computing time Tcomp can be automatically gleaned by µπ simply 
based on the amount of elapsed system time between the most 
recent MPI call exit and the current MPI call entry.  µπ then 
simulates the elapse of that amount of simulated time by using the 
wait(dt) primitive of the corresponding µsik process to “hold” 
dt amount of simulated time. 

To simulate other processor architectures, the gleaned time can be 
adjusted appropriately with a scaling correction factor (e.g., based 
on ratio of clock speeds).  Even more sophisticated schemes are 
possible, via heterogeneous processor emulation, albeit at a 
significant performance cost, but such more elaborate schemes are 
also conceivable to incorporate into µπ if deemed important. 
This framework can also be used to increase simulation efficiency 
(without affecting the program dynamics) by simply estimating 
the computation time and invoking a µπ primitive called 
MPI_Elapse_time(dt) that is provided to avoid consuming 
host processor’s cycles simply to simulate guest processor’s 
cycles for virtual time period of dt units. 

4.  PERFORMANCE STUDY 
A functional prototype of µπ is operational, and has been tested 
on a variety of platforms.  Here, we focus on simulator 
performance, and relegate validation studies to another document.  
The criteria of interest are how the runtime efficiency fares in 
some of the most stringent (worst case) hardware scenarios.  We 
choose a parameterized benchmark to test the simulator 
performance effects, especially uncovering the synchronization 
and rank multiplexing effects. 
The experiments were executed on two platforms: (1) a Cray XT4 
consisting of quad-core Opteron Budapest processors and 8GB of 
memory per node, with nodes connected by a SeaStart2 
interconnect, and (2) a Cray XT5 with 224,256 compute cores 
spanning nodes containing two hex-core AMD Opteron 
processors, 16GB memory, all nodes being interconnected by a 
SeaStar 2+ router. 
The benchmark is a ping benchmark designed to test the 
scalability of the most common and basic MPI primitives, 
namely, MPI_Barrier(), MPI_Send() and MPI_Recv().  
Each rank receives a message from its left neighbor and sends a 
message to its right neighbor.  After every receive-send pair of 
operations, a barrier is invoked all ranks.  The number of bytes 
sent in each message is doubled after every round.  The parts 
challenging to the simulator are the fast simulation of the barrier 
for every round, and the communication of the messages in the 
correct order at every rank. 
It is well-known [5, 7, 9] that lookahead [20] is one of the most 
limiting factors in parallel system simulation.  Here, we present 
one set of results on the worst-case scenario of zero-lookahead, 
and another set of results corresponding to a low, 10µs lookahead 
(from inter-node latency).  Inter-processor networks in both sets 
also represent a high 1Gbps bandwidth for every inter-rank 
message.  Thus, the results here can be viewed as worst case; 
hardware configurations.  Larger latencies in practice can hence 
be expected to be simulated even faster. 

4.1  Zero Lookahead Scenarios 
Two scenarios are chosen: (1) communication-intensive, in which 
every MPI rank simulates 1 millisecond worth of computation and 
8KB worth of data exchange with a neighbor for every epoch (2) 
computation-intensive, in which every MPI rank simulates 100 

milliseconds worth of computation and 1KB worth of data 
exchange.  Each epoch is guarded by every MPI rank invoking 
MPI_Barrier(). 

The performance metrics of interest are the slowdown factor, the 
total number of events processed, and a measure of the amount of 
synchronization performed per event.  The slowdown factor is the 
ratio of the elapsed time taken by the simulation to the virtual 
time at the end of simulation in the simulated machine.  It is clear 
that the smaller the slowdown factor the faster the simulation.  
Also, a slowdown less than unity in fact implies speed up, in 
which the simulation is performed faster than the execution on the 
simulated machine.  The number of events is important to observe 
how much overhead the simulator induces via events for 
simulating data transmission and other internals such as a tree 
(butterfly) pattern-based barrier.  The number of events per 
synchronization (i.e., computation of a lower bound on time 
stamp (LBTS) needed for parallel time-ordered execution) is an 
important measure of the amount of concurrency available in the 
simulation (which is directly related to lookahead).  A higher 
lookahead value can be expected to give larger number of events 
per LBTS computation. 

 
Figure 2: Runtime slowdown in the communication-

intensive scenario 

 
Figure 3: Runtime slowdown in the computation-

intensive scenario 
The runtime performance in terms of slowdowns (or speedups) is 
shown in Figure 2 and Figure 3 for the two scenarios respectively.  
The slowdown factor is plotted against the number of simulated 
MPI ranks.  Each line represents the ratio of the number of 
simulated ranks to the number real cores used for simulation (e.g., 
the purple line represents a ratio of 2, with two virtual MPI ranks 
simulated by µπ for each real core on which µπ executes). 
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As expected, the computation-intensive scenario is simulated 
much faster than the communication-intensive scenario because 
the computation is simply an elapse of simulation time (which is 
achieved by scheduling an event into the future for each leap in 
computation time), and because of the smaller number of data 
events infrequently exchanged.  In fact, the simulation is observed 
to experience speed up on smaller numbers of MPI ranks. 

 
Figure 4: Events processed per synchronization in the 

communication-intensive scenario 

 
Figure 5: Events processed per synchronization in the 

computation-intensive scenario 
Note that these are under the most stringent lookahead 
constraints, namely, assuming extremely fast inter-rank network 
connections in the simulated machine hardware.  Slower machine 
configurations experience much less simulation overhead, due to 
the larger amount of concurrency permitted by inter-rank latency 
distances. 
The fact that it is the low lookahead (and hence higher 
synchronization cost) that contributes to slowdowns on larger 
configurations (e.g., 2048 MPI ranks) is discerned by observing 
the number events available to process by µπ per parallel 
synchronization operation.  Figure 4 and Figure 5 show the 
decrease in the amount of concurrency permitted by the simulated 
machine, on communication-intensive and computation-intensive 
scenarios respectively.  Due to increasingly larger number of 
staggered events across the virtual MPI ranks (hence, across µπ 
real cores), zero lookahead necessitates synchronization often.  
Thus, the number of synchronization operations increases and the 
number of events processed per LBTS computation per core 
decreases.  This represents the worst case, and is easily improved 
on less stringent simulated-machine specifications, such as for 
most commodity networks and clusters. 

4.2  Scaling Scenarios 
The next set of results is designed to highlight µπ’s scalability.  
The computation-intensive scenario of the previous set of results 
is used and scaled on Cray XT5 with two variables: (1) number of 
real cores used in the parallel simulation, and (2) the number of 
virtual MPI ranks mapped to each real core. 

 
Figure 6: Average run time cost incurred per event 

 
Figure 7: Sub-linear trend of increase in the number of 
synchronization operations with number of real cores 

 
Figure 8: Non-linear nature of performance with 
variation in number of virtual ranks per real core 

Figure 6 shows the run time cost in microseconds incurred per 
event.  It is seen that the average increases by one less order of 
magnitude than the number of cores.  Performance improvement 
is clearly possible; we are currently investigating this.  Figure 7 
shows the number of synchronization operations against the 
number of real cores.  An insignificant growth is observed in 
synchronization operations for the simulation with the number of 
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cores, suggesting very efficient operation with respect to global 
simulation synchronization of µsik even on the largest number of 
real cores.  Figure 8 shows a very interesting, non-linear relation 
between the number of virtual MPI ranks mapped to each real 
core and the number of virtual MPI ranks being simulated.  While 
performance is better on smaller number of cores with larger 
number of ranks per core, the same is untrue on very large 
number of cores.  Although we are still investigating this 
phenomenon in greater detail, our explanation for this is that there 
is a competitive relation between two effects: (a) the shared-
memory effect of communication by virtual MPI ranks mapped to 
the same cores, and (b) the complex variation in the cost of virtual 
time synchronization. 

5.  SUMMARY AND FUTURE WORK 
Investigation of execution effects of existing applications on new 
parallel platforms is gaining more importance recently with the 
rapidly increasing sizes of parallel computing installations.  The 
need to experiment with MPI codes is immediate, yet few 
simulation tools exist to help execute complex parallel codes at 
the scales of 104-107 MPI ranks on simulated machine 
configurations.  µπ is being developed towards meeting this need, 
towards the ultimate goal of taking unmodified MPI applications’ 
source code and executing it on a simulated machine with up to 
105-107 imaginary MPI ranks.  Here we report work in progress in 
its design and preliminary performance characteristics.  The 
results are very encouraging, providing acceptable levels of 
slowdowns even under the most stringent simulated machine 
configurations (zero lookahead).  On scenarios with a virtual 
network latency of 10µs, µπ sustained over 27 million virtual 
ranks, and execute on up to 216,000 cores of a Cray XT5.  We are 
currently porting NAS benchmarks and other complex 
applications to execute on large simulated computers in µπ. 
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