
µπ: A Scalable and Transparent System for Simulating MPI
Programs

Kalyan S. Perumalla
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

perumallaks@ornl.gov

ABSTRACT
µπ is a scalable, transparent system for experimenting with the
execution of parallel programs on simulated computing platforms.
The level of simulated detail can be varied for application
behavior as well as for machine characteristics. Unique features
of µπ are repeatability of execution, scalability to millions of
simulated (virtual) MPI ranks, scalability to hundreds of
thousands of host (real) MPI ranks, portability of the system to a
variety of host supercomputing platforms, and the ability to
experiment with scientific applications whose source-code is
available. The set of source-code interfaces supported by µπ is
being expanded to support a wider set of applications, and MPI-
based scientific computing benchmarks are being ported. In
proof-of-concept experiments, µπ has been successfully exercised
to spawn and sustain very large-scale executions of an MPI test
program given in source code form. Low slowdowns are
observed, due to its use of purely discrete event style of
execution, and due to the scalability and efficiency of the
underlying parallel discrete event simulation engine, µsik. In the
largest runs, µπ has been executed on up to 216,000 cores of a
Cray XT5 supercomputer, successfully simulating over 27 million
virtual MPI ranks, each virtual rank containing its own thread
context, and all ranks fully synchronized by virtual time.

1. INTRODUCTION
µπ is designed to solve the following problem: Given a parallel
application Aα, estimate the characteristics it would exhibit if it
were executed on a (imaginary, simulated) machine Mα. The tool
for such experimentation, which in general is a parallel
application Aβ in its own right, is to be executed on another (real)
machine Mβ in an as-fast-as-possible manner. µπ is such an Aβ
system, which we design as a parallel discrete event simulation
(PDES) system that simulates the execution of any complex
Message Passing Interface (MPI)-based application Aα on any
user-configured imaginary machine Mα. µπ itself executes in a
scalable way on any suitable parallel cluster or supercomputing
platform Mβ such as a Cray XT5 or Blue Gene/P system.
Typically, experimentation with Aα is motivated by the desire to
observe metrics such as computation time, blocked time, memory
consumption, and network load. Additional aspects include
software engineering concerns such as uncovering software
shortcomings or other unknown behavior when the application is
executed on a larger number of processors than feasible before.

Ideally, the experiments should be (a) repeatable, (b) accurate,
and (c) fast, in that order of preference. However, when the
complexity of the application Aα and/or the machine Mα
increases, it becomes a harder endeavor to satisfy all the
preceding three criteria at once. In particular, when the targeted
number of processing elements in Mα is on the order of 105-107
(comparable to existing and emerging peta-scale and exa-scale
platforms), a specially designed scalable and efficient
experimentation system is needed to meet the goals. µπ is
designed to fill this need.
The name µπ is a Greek abbreviation for the acronym MUPI
standing for micro parallel performance investigation system.
Here, we document a snapshot of work in progress in our design,
development and usage of µπ for large-scale experimentation of
MPI-based parallel scientific codes. The focus of this report is on
documenting proof-of-concept scaling results from a prototype µπ
implementation.

1.1 Motivation
In reference [1], the need for simulating the execution of parallel
programs is well articulated, based on the fact that the average
useful lifetime of a parallel machine is 5 years, whereas that of a
parallel application (source code) is up to 20 years. There are
many additional motivating factors that are well documented in
the literature (please see the related work in Section 1.3). An
environment for debugging, testing and customizing existing
applications to new parallel hardware and software platforms
would be useful to improve the utilization of many resources.
Purely analytical approaches alone are inadequate to effectively
experiment with parallel applications, due to the increasing scale
and widening diversity of hardware platforms, middleware
systems, software interfaces, and parallel algorithms. Ideally, an
existing application would be minimally modified and simply
executed on a newly envisioned parallel system before that new
system is built. Not only can the application benefit from the
performance insights, but also the system designers can use the
observed behavior to improve the system design.
Important considerations in the design of µπ are support for
memory-constrained programs, large number of real processors,
and controlled execution of actual, unmodified codes on virtual
platforms with one to two orders of magnitude more numerous
MPI ranks than the number of cores available in real hardware.

1.2 Scaling Challenges
Scaling the simulator to very large number of processors requires
new scalable methods. Such scaling issues of the simulator have
not been as important in earlier systems either due to use of
relatively small number of processors or due to abstraction
approaches that rely on traces or execution models without having
to execute actual applications on simulated machines.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.

Copyright 2010 ICST, ISBN 78-963-9799-87-5.

mailto:perumallaks@ornl.gov�

An example of the simulator scaling challenges is in the
virtualization of the MPI_Barrier() method. When the
application invokes the barrier call, the call is trapped by the
simulator. The elapsed time for satisfaction of the barrier is
simulated, with either a user-specified or algorithm-induced total
delay. A user-specified runtime cost for barrier calls could be
used to experiment with a desired or fixed (e.g., from a design
goal) global reduction latency, or an algorithm-induced latency
could be simulated by executing an actual reduction algorithm
over a simulated (point-to-point or hardware-optimized) network.
Another challenge arises in the actual transfer of data exchanged
by the MPI ranks at runtime. In order to support unmodified code
execution, µπ must implement actual exchange of bytes across
MPI ranks initiated via MPI communication primitives such as
MPI_Send() and MPI_Recv(). In effect, the simulator acts
as the underlying network layer that performs packetization for
large message payloads, and undertakes buffering and reordering
as needed. Such concerns are absent in lower fidelity systems
that do not need to support actual data exchanges due to use of
abstractions.
Yet another challenge in multiplexing multiple virtual MPI ranks
on each core is the cost of scheduling and de-scheduling threads
within the simulator. For minimizing overall slowdown, the
simulator must be optimized to multiplex the virtual MPI ranks in
a (virtual-) time-synchronized fashion.

1.3 Related Work
µπ is focused on experimentation with very large (virtual) parallel
computing configurations, especially with hundreds of thousands
of (virtual) processor cores. We are not aware of any systems that
are able to sustain experiments at such a high level of scale.
Several related systems have been reported in the literature for
experimenting with applications on simulated machine
configurations. A selected list includes FASE [2], MPI-Sim [3],
POSE [4], PDES [5, 6], Direct Execution[7-9], optimistic
simulation [10], task graphs [11], synchronization-optimizations
[12], BigSim [13, 14], EMPOWER [15], and hybrid modeling
[16]. Full system simulators such as Wisconsin Wind Tunnel
[17], and SIMICS [18] may impose unacceptable levels of
slowdowns for the purpose of large parallel program execution,
making them difficult to use in practice for virtual machine
configurations containing 105-106 processor cores. A survey
article [1] captures the details of some of the important
performance prediction systems, including PAL, Performance
Prophet, POEMS, POSE, and RSIM. Recently, the hurdle of
simulation speed is addressed via parallel simulation for
instruction-level models [19]. Trace-based performance modeling
is another commonly-used method for experimenting with
simulated machine configurations. Most aforementioned systems
have been limited by the sizes of the parallel machines available
at their times. Almost all the systems reported so far were
exercised with fewer than 1,000 processor cores used to execute
the simulation, although much larger virtual configurations were
evaluated in experiments. Among the most prominent in scaling
the virtual configurations is the BigSim/POSE [13, 14] efforts that
reported low slowdowns in experiments of 64,000 virtual
processor simulated on 512 processors. Our work differs from all
the related work in our focus on combining the goals of executing
un-abstracted, unmodified applications with very large simulated
configurations. The work that comes closest to our goals is the
LAPSE system [7] that was designed to support Intel Paragon

applications using Intel’s communication interfaces. Our work
differs in that we focus: (a) on MPI programs, (b) on very large
numbers of MPI ranks (104-105 real, 105-107 virtual), and (c) on
using multi-threading instead of UNIX processes for virtualizing
the multiplexed identities of the application processes.

1.4 Contributions
To the best of our knowledge, ours is the first to apply process-
oriented simulation [20-22] to simulate MPI programs. We
employ multi-threading to sustain and multiplex many simulated
MPI ranks on each processor used by the parallel simulator.
Efficient, time-synchronized scheduling and de-scheduling are
realized to implement the overall virtual execution, resulting in
very efficient emulation. Our work is also among the first to
execute unmodified MPI applications on thousands of (actual)
processor cores, with one or more simulated MPI ranks per core.
The support for scalable implementation of virtual MPI
primitives (MPI calls made by the application, trapped and
supported by the simulator) is also novel. Quantitatively, µπ is
the only system to report feasibility and actual time-synchronized
execution of millions of virtual, unmodified MPI ranks. No
system reported in literature approaches this scale, even for the
simplest unmodified MPI benchmarks. The closest work is the
seminal LAPSE system of the 1990’s tested on 512 virtual tasks
on an Intel Paragon.
The factors that make µπ scale better than others are (a) better
implementation of process-oriented execution needed for
virtualizing unmodified MPI code, (b) superior efficiency of the
PDES engine helping scale to orders of magnitude larger
platforms than other MPI simulator tools in the literature, and (c)
scalable design and implementation of the Message Passing
Interface.
It is important to note that the focus of this paper is the design and
preliminary evidence of feasibility on large platforms of the
simulation tool. This article does not address validation issues.
Moreover, this paper documents work in progress; hence it does
not yet include a comprehensive performance evaluation.

2. DESIGN
Recall that the subject application Aα is to be virtually executed
on some Pα processors of the imaginary (guest) machine Mα, but
needs to execute on (typically much smaller) number of
processors Pβ of a real (host) machine Mβ. For example, if the
application is to be experimented on 100,000 processor cores, but
only 10,000 cores are available for experimentation, then the
application must be somehow “fooled” into the view that it is
executing on 100,000 cores. Since more than one virtual core is
“simulated” on each real core, timing results perceived by the
application have to be adjusted to erase the effects of
multiplexing. Message buffering and re-ordering have to be
similarly accurately recreated as they would have occurred in the
envisioned machine network, even though messages might arrive
faster or slower on the host machine compared to the envisioned
machine. The full design involves three components: (1) grafting
(2) time pacing (3) communication buffering and reordering.
Each of these components is described next.

2.1 Grafting
The grafting portion of the prediction system deals with the
software interface-related mismatch between the guest parallel
machine Mα and the host parallel machine Mβ. The original

software interface (e.g., MPI) that the application uses should be
retained, but the implementation must be changed (preferably,
transparently) to reflect the behavior of the new machine. We call
the redirection as a grafting process. There are multiple grafting
methods, each with its own merits and demerits. A source code-
based grafting method is best when the source code of the
application is available. A library redirection-based grafting
method is best to deal with application functionality that is
available only in the form of pre-built object libraries; however,
depending on the complexity of the libraries involved, the
grafting systems can involve significant amount of systems work.
A virtual machine-based grafting is possible for the highest levels
of transparency in the grafting process, but also is the most
expensive with respect to runtime cost.
In the initial version of µπ, the source code-based grafting method
is supported. Its usage and implementation are described here.
When the source code is available for the MPI application, µπ
supports grafting with the use of the header file mupi.h and
library libmupi.a that µπ supplies. In fact, this can be easily
made transparent by using installation-specific customization of
the native MPI header file and linked libraries. Similar
customization is used for MPI-based FORTRAN.
The application is compiled and linked as usual. The resulting
executable will be a µπ simulation, which executes in virtual
mode. On platforms on which µπ itself executes over MPI,
“mpirun –np 4 myprog -nvp 32” runs myprog on 32
virtual ranks, simulated by µπ on 4 real cores.
In mupi.h, the original MPI routines are redefined, via macro
substitution, to µπ calls of correspondingly identical signatures, so
that µπ can execute them on a simulated platform. The original
main routine is renamed and automatically invoked by µπ for
each virtual MPI task of the application (command line arguments
are duplicated for each virtual task invocation). µπ allocates and
creates a separate stack context for each virtual MPI task, and
maintains the full stack context between MPI calls invoked by the
task.
The MPI routines implemented, in C/C++ and FORTRAN, as of
this writing are MPI_Init(), MPI_Finalize(),
MPI_Comm_rank(), MPI_Comm_size(),
MPI_Barrier(), MPI_Send(), MPI_Recv(),
MPI_Isend(), MPI_Irecv(), MPI_Waitall(),
MPI_Wtime(). Only the MPI_COMM_WORLD communication
group is currently recognized. The set is being expanded, which
is mostly developmental in nature.

2.2 Time Pacing
Each virtual MPI rank is realized as the threaded simulation
process of µsik. As mentioned earlier, for every MPI rank, µπ
traps all MPI calls, and acts as the scheduler that ensures
execution is ordered by simulation time. An important MPI call
is the MPI_Wtime() that gives the invoking MPI rank a
snapshot of current “wall clock” time: µπ returns the simulation
time, instead of the wall clock time, making the rank
synchronized with the timelines of the rest of the simulation. Any
blocked call, such as MPI_Barrier(), MPI_Recv() or
MPI_Wait(), is realized using the “hold” primitive of process-
oriented simulation. The equivalent “hold” primitive in µsik is
the wait(WaitContext &) which is used by µπ’s trapped
MPI calls to either advance simulation time unconditionally, or

advance simulation time until a given condition is satisfied (e.g.,
message arrival).

2.3 Buffering and Reordering
Just as in a real distributed system operation, MPI message data
may arrive at various moments in time. In the simulation, the
data arrives as data events, which need to be buffered inside the
simulator until a corresponding (local) virtual MPI rank queries
and or accepts the data using an appropriate MPI call. µπ handles
all the buffering (in an assembly queue and a ready queue, for
each MPI rank), and performs reordering internally by time-stamp
order, and supplies the data as part of the appropriate MPI
invocations.

2.4 Machine Specification
The characteristics of the envisioned machine can be specified
programmatically, as an object library linked to the µπ simulation.
The library can be invoked by the user as part of an
experimentation system to suitably customize the scenario in a
series of experiments. For unsophisticated usage of µπ, a simple
machine performance model is provided (the µπ design allows for
far more sophisticated machine models). In this simplified usage,
the user can specify (via environment variables) a point-to-point
bandwidth and a point-to-point latency.

3. IMPLEMENTATION
The µπ software is written C/C++, as an application of the µsik
PDES engine [23]. Both µπ and µsik are portable to a large
number of platforms. µπ has been tested on MPI-based platforms,
including Linux, Mac OS X, Blue Gene/P, and Cray XT4/XT5.
The timing model aspect of MPI program simulation deals with
how the computing time is accounted and incorporated into the
simulation. The time consumed by computation in the application
between MPI calls must be used by the simulator to advance
simulation time once µπ is entered via an MPI call trap. The
communication time is the time spent inside MPI before returning
control back to the application. Such a framework is depicted in
Figure 1.
It is important to note that this is only a framework (interface),
and does not constrain the complexity of the timing models
(implementation) that could be employed. Any arbitrary level of
timing detail can be incorporated. Compute-time can be charged
to application with arbitrarily complex models (example: full-
system simulation of instructions on the side, cache effects,
processor speed, etc.), to the extent the user is willing to suffer the
consequent run time overhead. Similar argument holds for
network effects. Our simulation tool core is unaffected; detail can
be added or abstracted by user, depending on level of detail
needed. Thus, the framework in Figure 1 only depicts
generalized, streamlined hooks, but do not constraint the model.

Figure 1: Time accounting framework used by µπ

A simple way to use the framework is one in which the guest and
host processor architectures are identical. In this case, the

µπ

Application
Compute

MPI Call Entry MPI Call Exit

Compute

Tcomp Tcomm

computing time Tcomp can be automatically gleaned by µπ simply
based on the amount of elapsed system time between the most
recent MPI call exit and the current MPI call entry. µπ then
simulates the elapse of that amount of simulated time by using the
wait(dt) primitive of the corresponding µsik process to “hold”
dt amount of simulated time.

To simulate other processor architectures, the gleaned time can be
adjusted appropriately with a scaling correction factor (e.g., based
on ratio of clock speeds). Even more sophisticated schemes are
possible, via heterogeneous processor emulation, albeit at a
significant performance cost, but such more elaborate schemes are
also conceivable to incorporate into µπ if deemed important.
This framework can also be used to increase simulation efficiency
(without affecting the program dynamics) by simply estimating
the computation time and invoking a µπ primitive called
MPI_Elapse_time(dt) that is provided to avoid consuming
host processor’s cycles simply to simulate guest processor’s
cycles for virtual time period of dt units.

4. PERFORMANCE STUDY
A functional prototype of µπ is operational, and has been tested
on a variety of platforms. Here, we focus on simulator
performance, and relegate validation studies to another document.
The criteria of interest are how the runtime efficiency fares in
some of the most stringent (worst case) hardware scenarios. We
choose a parameterized benchmark to test the simulator
performance effects, especially uncovering the synchronization
and rank multiplexing effects.
The experiments were executed on two platforms: (1) a Cray XT4
consisting of quad-core Opteron Budapest processors and 8GB of
memory per node, with nodes connected by a SeaStart2
interconnect, and (2) a Cray XT5 with 224,256 compute cores
spanning nodes containing two hex-core AMD Opteron
processors, 16GB memory, all nodes being interconnected by a
SeaStar 2+ router.
The benchmark is a ping benchmark designed to test the
scalability of the most common and basic MPI primitives,
namely, MPI_Barrier(), MPI_Send() and MPI_Recv().
Each rank receives a message from its left neighbor and sends a
message to its right neighbor. After every receive-send pair of
operations, a barrier is invoked all ranks. The number of bytes
sent in each message is doubled after every round. The parts
challenging to the simulator are the fast simulation of the barrier
for every round, and the communication of the messages in the
correct order at every rank.
It is well-known [5, 7, 9] that lookahead [20] is one of the most
limiting factors in parallel system simulation. Here, we present
one set of results on the worst-case scenario of zero-lookahead,
and another set of results corresponding to a low, 10µs lookahead
(from inter-node latency). Inter-processor networks in both sets
also represent a high 1Gbps bandwidth for every inter-rank
message. Thus, the results here can be viewed as worst case;
hardware configurations. Larger latencies in practice can hence
be expected to be simulated even faster.

4.1 Zero Lookahead Scenarios
Two scenarios are chosen: (1) communication-intensive, in which
every MPI rank simulates 1 millisecond worth of computation and
8KB worth of data exchange with a neighbor for every epoch (2)
computation-intensive, in which every MPI rank simulates 100

milliseconds worth of computation and 1KB worth of data
exchange. Each epoch is guarded by every MPI rank invoking
MPI_Barrier().

The performance metrics of interest are the slowdown factor, the
total number of events processed, and a measure of the amount of
synchronization performed per event. The slowdown factor is the
ratio of the elapsed time taken by the simulation to the virtual
time at the end of simulation in the simulated machine. It is clear
that the smaller the slowdown factor the faster the simulation.
Also, a slowdown less than unity in fact implies speed up, in
which the simulation is performed faster than the execution on the
simulated machine. The number of events is important to observe
how much overhead the simulator induces via events for
simulating data transmission and other internals such as a tree
(butterfly) pattern-based barrier. The number of events per
synchronization (i.e., computation of a lower bound on time
stamp (LBTS) needed for parallel time-ordered execution) is an
important measure of the amount of concurrency available in the
simulation (which is directly related to lookahead). A higher
lookahead value can be expected to give larger number of events
per LBTS computation.

Figure 2: Runtime slowdown in the communication-

intensive scenario

Figure 3: Runtime slowdown in the computation-

intensive scenario
The runtime performance in terms of slowdowns (or speedups) is
shown in Figure 2 and Figure 3 for the two scenarios respectively.
The slowdown factor is plotted against the number of simulated
MPI ranks. Each line represents the ratio of the number of
simulated ranks to the number real cores used for simulation (e.g.,
the purple line represents a ratio of 2, with two virtual MPI ranks
simulated by µπ for each real core on which µπ executes).

Communication-intensive

0.1

1

10

100

1000

10000

1 10 100 1000 10000
#MPI Ranks

Sl
ow

do
wn

1 2 8 16 32

Computation-intensive

0.01

0.1

1

10

100

1000

10000

1 10 100 1000 10000

#MPI Ranks

Sl
ow

do
wn

1 2 8 16 32

As expected, the computation-intensive scenario is simulated
much faster than the communication-intensive scenario because
the computation is simply an elapse of simulation time (which is
achieved by scheduling an event into the future for each leap in
computation time), and because of the smaller number of data
events infrequently exchanged. In fact, the simulation is observed
to experience speed up on smaller numbers of MPI ranks.

Figure 4: Events processed per synchronization in the

communication-intensive scenario

Figure 5: Events processed per synchronization in the

computation-intensive scenario
Note that these are under the most stringent lookahead
constraints, namely, assuming extremely fast inter-rank network
connections in the simulated machine hardware. Slower machine
configurations experience much less simulation overhead, due to
the larger amount of concurrency permitted by inter-rank latency
distances.
The fact that it is the low lookahead (and hence higher
synchronization cost) that contributes to slowdowns on larger
configurations (e.g., 2048 MPI ranks) is discerned by observing
the number events available to process by µπ per parallel
synchronization operation. Figure 4 and Figure 5 show the
decrease in the amount of concurrency permitted by the simulated
machine, on communication-intensive and computation-intensive
scenarios respectively. Due to increasingly larger number of
staggered events across the virtual MPI ranks (hence, across µπ
real cores), zero lookahead necessitates synchronization often.
Thus, the number of synchronization operations increases and the
number of events processed per LBTS computation per core
decreases. This represents the worst case, and is easily improved
on less stringent simulated-machine specifications, such as for
most commodity networks and clusters.

4.2 Scaling Scenarios
The next set of results is designed to highlight µπ’s scalability.
The computation-intensive scenario of the previous set of results
is used and scaled on Cray XT5 with two variables: (1) number of
real cores used in the parallel simulation, and (2) the number of
virtual MPI ranks mapped to each real core.

Figure 6: Average run time cost incurred per event

Figure 7: Sub-linear trend of increase in the number of
synchronization operations with number of real cores

Figure 8: Non-linear nature of performance with
variation in number of virtual ranks per real core

Figure 6 shows the run time cost in microseconds incurred per
event. It is seen that the average increases by one less order of
magnitude than the number of cores. Performance improvement
is clearly possible; we are currently investigating this. Figure 7
shows the number of synchronization operations against the
number of real cores. An insignificant growth is observed in
synchronization operations for the simulation with the number of

Communication-intensive

0.001

0.01

0.1

1
1 10 100 1000 10000

#MPI RanksEv
en

ts
pe

r L
BT

S
pe

r R
ea

l C
or

e

1 2 8 16 32

Computation-intensive

0.001

0.01

0.1

1
1 10 100 1000 10000

#MPI RanksEv
en

ts
pe

r L
BT

S
pe

r R
ea

l C
or

e

1 2 8 16 32

10

100

1000

10000

100000

10 100 1,000 10,000 100,000 1,000,000

M
icr

os
ec

on
ds

 pe
r M

UP
I E

ve
nt

Number of Real Cores

4 8 16 64 128Virtual MPI Ranks per Real Core (VPX) =

100

1000

10 100 1,000 10,000 100,000 1,000,000

Nn
um

be
r o

f G
lo

ba
l V

irt
ua

l T
im

e C
om

pu
at

io
ns

Number of Real Cores

4 8 16 64 128Virtual MPI Ranks per Real Core (VPX) =

0

5

10

15

20

25

30

35

40

45

10,000 100,000 1,000,000 10,000,000

Fa
ct

or
 of

 Sp
ee

d G
ai

n
re

la
tiv

e t
o V

PX
=4

Number of Virtual MPI Ranks

16 64 128Virtual MPI Ranks per Real Core (VPX) =

cores, suggesting very efficient operation with respect to global
simulation synchronization of µsik even on the largest number of
real cores. Figure 8 shows a very interesting, non-linear relation
between the number of virtual MPI ranks mapped to each real
core and the number of virtual MPI ranks being simulated. While
performance is better on smaller number of cores with larger
number of ranks per core, the same is untrue on very large
number of cores. Although we are still investigating this
phenomenon in greater detail, our explanation for this is that there
is a competitive relation between two effects: (a) the shared-
memory effect of communication by virtual MPI ranks mapped to
the same cores, and (b) the complex variation in the cost of virtual
time synchronization.

5. SUMMARY AND FUTURE WORK
Investigation of execution effects of existing applications on new
parallel platforms is gaining more importance recently with the
rapidly increasing sizes of parallel computing installations. The
need to experiment with MPI codes is immediate, yet few
simulation tools exist to help execute complex parallel codes at
the scales of 104-107 MPI ranks on simulated machine
configurations. µπ is being developed towards meeting this need,
towards the ultimate goal of taking unmodified MPI applications’
source code and executing it on a simulated machine with up to
105-107 imaginary MPI ranks. Here we report work in progress in
its design and preliminary performance characteristics. The
results are very encouraging, providing acceptable levels of
slowdowns even under the most stringent simulated machine
configurations (zero lookahead). On scenarios with a virtual
network latency of 10µs, µπ sustained over 27 million virtual
ranks, and execute on up to 216,000 cores of a Cray XT5. We are
currently porting NAS benchmarks and other complex
applications to execute on large simulated computers in µπ.
Acknowledgements This paper has been authored by UT-
Battelle, LLC, under contract DE-AC05-00OR22725 with the
U.S. Department of Energy. Accordingly, the United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.
This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.
The author is grateful to Sudip Seal and Vinod Tipparaju of Oak
Ridge National Laboratory for many helpful comments and
discussions.

REFERENCES
[1] S. Pllana, et al., "Performance Modeling and Prediction of

Parallel and Distributed Computing Systems: A Survey of
the State of the Art," International Conference on Complex,
Intelligent and Software Intensive Systems, 2007.

[2] E. Grobelny, et al., "FASE: A Framework for Scalable
Performance Prediction of HPC Systems and Applications,"
Simulation, vol. 83, 2007.

[3] S. Prakash and R. Bagrodia, "MPI-Sim: Using Parallel
Simulation to Evaluate MPI Programs," in Winter Simulation
Conference, 1998.

[4] T. Wilmarth, et al., "Performance Prediction using
Simulation of Large-Scale Interconnection Networks in
POSE," in Workshop on Principles of Advanced and
Distributed Simulation, 2005.

[5] J. Liu, et al., "Performance Prediction of a Parallel
Simulator," in 13th Workshop on Parallel and Distributed
Simulation, 1999.

[6] K. S. Perumalla, et al., "Performance Prediction of Large-
scale Parallel Discrete Event Models of Physical Systems,"
in Winter Simulation Conference, 2005.

[7] P. Dickens, et al., "Parallelized Direct Execution Simulation
of Message-Passing Programs," IEEE Transactions on
Parallel and Distributed Systems, vol. 7, 1996.

[8] M. Hibler, et al., "Feedback-Directed Virtualization
Techniques for Scalable Network Experimentation,"
University of Utah, Technical Report, 2004.

[9] J. Liu, et al., "Simulation validation using direct execution of
wireless Ad-Hoc routing protocols," 18th Workshop on
Parallel and Distributed Simulation, 2004.

[10] T. Phan and R. Bagrodia, "Optimistic Simulation of Parallel
Message-Passing Applications," 15th Workshop on Parallel
and Distributed Simulation, 2001.

[11] C. Roig, et al., "Modeling Message-Passing Programs for
Static Mapping," 8th Euromicro Workshop on Parallel and
Distributed Processing, 2000.

[12] S. Prakash, et al., "Asynchronous Parallel Simulation of
Parallel Programs," IEEE Transactions on Software
Engineering, vol. 26, 2000.

[13] G. Zheng, et al., "Simulation-based Performance Prediction
for Large Parallel Machines," International journal of
Parallel Programming, vol. 33, 2005.

[14] G. Zheng, et al., "BigSim: A Parallel Simulator for
Performance Prediction of Extremely Large Parallel
Machines," International Parallel and Distributed Processing
Symposium, 2004.

[15] P. Zheng and L. M. Ni, "EMPOWER: a scalable framework
for network emulation," in International Conference on
Parallel Processing, 2002.

[16] S. Pllana, et al., "Hybrid Performance Modeling and
Prediction of Large-Scale Computing Systems,"
International Conference on Complex, Intelligent and
Software Intensive Systems, 2008.

[17] S. K. Reinhardt, et al., "The Wisconsin Wind Tunnel: Virtual
Prototyping of Parallel Computers," in SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems. vol. 21, 1993.

[18] P. S. Magnusson, et al. (2002, 2002/02/01) Simics: A Full
System Simulation Platform. IEEE Computer. pp. 50-58.

[19] E. A. Leon, et al., "Instruction-level Simulation of a Cluster
at Scale," Supercomputing, 2009.

[20] R. M. Fujimoto, Parallel and Distributed Simulation
Systems: Wiley Interscience, 2000.

[21] K. S. Perumalla and R. M. Fujimoto, "Efficient Large-Scale
Process-Oriented Parallel Simulations," in Proceedings of
the Winter Simulation Conference, ed, 1998.

[22] T. J. Schriber, Simulation Using GPSS. New York: John
Wiley & Sons, 1974.

[23] K. S. Perumalla, "µsik - A Micro-Kernel for
Parallel/Distributed Simulation Systems," in Workshop on
Principles of Advanced and Distributed Simulation, 2005.

