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Abstract 
A methodology and its associated algorithms are 
presented for mapping a novel, field-based vehicular 
mobility model onto graphical processing unit 
computational platform for simulating mobility in 
large-scale road networks.  Of particular focus is the 
achievement of real-time execution, on desktop 
platforms, of vehicular mobility on road networks 
comprised of millions of nodes and links, and multi-
million counts of simultaneously active vehicles.  The 
methodology is realized in a system called GARFIELD, 
whose implementation details and performance study 
are described.  The runtime characteristics of a 
prototype implementation are presented that show 
real-time performance in simulations of networks at 
the scale of a few states of the US road networks. 

1. Introduction 
1.1. Motivation 

Simulations are routinely used in emergency 
planning and management in order to make decisions 
such as whether to order an evacuation or not [1, 2]. 
The quality of decisions can greatly depend on the 
quality of insights into simulation results.  When larger 
geographical regions are considered in such decisions, 
simulations become highly computationally intensive. 
Improving the speed of large-scale simulation can help 
evaluate an increased number of alternatives, and 
improve confidence bounds, all within the short 
amount of decision time available. 

Large-scale scenarios of vehicular traffic simulation 
problems are characterized by long-range queuing 
effects, control mechanisms and other phenomena.  
While small-sized scenarios are relatively easy to 
analyze, larger scenarios need specialized treatment for 
efficient execution, especially for very large network 
sizes (millions of road intersections) and/or for heavy 
loads of vehicular traffic load.  An appealing 
computational platform in this context is a graphical 
processing unit (GPU). 

1.2. Background 
Graphical processing units have been subjected to 

general-purpose use over the past decade.  Literature 
on general-purpose computation over GPUs is 
extensive [3, 4].  However, newer methodologies and 
implementation approaches are still being discovered 
to exploit GPUs in different areas.  Although GPU-
based execution is not new, and the computational 
potential of GPUs has been known, no specific method 
has been proposed to map vehicular mobility models to 
GPUs.  Traditional CPU-based (time-stepped or event-
driven) models have remained elusive for 
straightforward application to the GPU domain. 

1.3. Contributions 
To the best of our knowledge, ours is the first work 

to apply GPU-based model execution to transportation 
network simulations.  Also, we are not aware of any 
other system or approach that has been shown to 
support queuing effects in either aggregate or semi-
aggregate models of vehicular mobility at the level of 
millions of road network nodes and links.  Ours is also 
the first to provide a novel field-based formulation of a 
vehicular traffic mobility model in a large road 
network that can be executed on a GPU.  Modeling 
dynamic re-routing is another distinguishing aspect of 
our field-based model that has never been attempted 
before at large-scale in other models and simulators. 

1.4. Related Work 
Commonly-used execution approaches span a 

continuous spectrum, between fully disaggregated, 
agent-based models, and fully abstracted, network flow 
analysis formulations.  Examples of flow analysis-
based methods include macro-simulators CORSIM [5, 
6] and OREMS [1].  Examples of disaggregated 
approaches include micro-simulators such as 
TRANSIMS [7], VISSIM [8], and SCATTER[9], 
among many others.  The literature on macro-
simulators and micro-simulators in the mobility 
domain is extensive.  The reader is referred to [1, 2, 5-
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15] as starting points.  However, field-based modeling 
is relatively new; we are not aware of any existing or 
published documentation on a field-based vehicular 
queuing simulator.  Here, we demonstrate the 
applicability of field-based mobility for efficient 
execution on GPUs. 

Another distinguishing aspect of our field-based 
formulation, compared to field-based formulations of 
other domains (such as electro-magnetic fields), is the 
ability to include additional non-linear behavioral 
details, including queuing and randomized, directed 
flows.  The additional complexity in execution that 
entails such a generalized field-based model is handled 
using a GPU-based execution approach.  The published 
methods closest to our present subject are [16, 17] in 
which crowd behavior is simulated on a GPU.  
However, they do not deal with mobility in constrained 
paths; in our road network scenarios, mobility along 
specific paths (streets and highways) needs to be 
enforced, along with queuing, which makes our model 
more complex than unconstrained motion on a plane. 

1.5. Our Approach 
To help exploit the power of the GPUs, we define a 

novel field-based formulation of vehicular mobility.  In 
a field-based formulation, the road network control is 
viewed as a spatially distributed field (analogous to 
physical fields such as magnetic field) in which 
vehicles are immersed.  These vehicles are influenced 
by the field and undergo corresponding movement.  
The field is defined in terms of vectors (directionality 
and intensity) of movement at each network node.  A 
canonical regular vector field grid scheme is defined, 
to which any arbitrary road network can be mapped. 

On a GPU, the field-based mobility model is 
executed with probabilistic transfers of vehicular 
counts between adjacent road network segments.  State 
variables of the road network, along with detailed 
information on vehicular traffic loading, are carefully 
encoded to minimize memory requirements for 
representation and manipulation during simulation.  
Thereafter, execution is mapped using traditional GPU-
based techniques for data-parallel execution. 

An early version of our prototype implementation is 
currently operational.  Preliminary results show 
scalability to a field of over 2 million network nodes, 
and 20 million represented vehicles.  Mobility can be 
described in a generalized field-based model view.  In 
evacuation simulations, for example, arbitrary fields 
can be defined to represent any evacuation control 
scheme.  Execution of our prototype implementation 
shows that results from our system are achieved in 
real-time, which is significantly faster than any 
existing vehicular mobility simulator.  Simultaneously, 

the capability with respect to network size is 
significantly increased, from tens of thousands of 
nodes of extant systems to millions of nodes in our 
new system. 

1.6. Organization 
The rest of the document is organized as follows.  

Our mobility model is described in Section 2. The 
method for mapping an arbitrary vehicular road 
network to our canonical, field-based grid is described 
in Section 3. The framework for scenario specification 
and configuration is presented in Section 4. Details of 
our system implementation and computing platform 
are given in Section 5.  Following that, an experimental 
study of scalability and performance is described in 
Section 6.  Final remarks and a discussion of future 
work are provided in Section 7. 

2. Mobility Model 
The mobility model consists of the following 

components: (1) a global routing model for choice of 
turns or hops in a trip towards destinations (2) a 
mobility model for representation of vehicles moving 
along a link, and (3) a queuing model for stalling, 
congestion and dynamic re-routing of vehicles along 
congested paths.  These three components are 
described next. 

2.1. Field-based Mobility and Routing 
In our field-based view of mobility, the directional 

vectors for movement are defined per cell on a 
specially-defined spatial grid of cells (the grid is 
described in greater detail in Section 3.1).  A vehicle 
placed at a cell is directed in its movement along the 
direction vector of the cell, independent of the 
vehicle’s historical path.  When properly defined, 
fields can be readily used to formulate evacuation 
plans.  With the addition of a dynamic-update 
capability to the field specifications, field-based 
models can be used to create other non-emergency 
activities as well.  The field is somewhat analogous to 
physical fields such as electric and magnetic fields. 

In our field-based formulation, each cell is 
categorized into either a “vertical cell” or a “horizontal 
cell.”  Vertical cells are those in which vehicles are 
constrained to move only in vertical direction in our 
specially-defined two-dimensional grid.  Horizontal 
cells are those in which vehicles move only in 
horizontal direction.  For a specific cell and a direction 
of movement, a vector of probabilities is defined as 
Vc=[vL, vR, vS, vU], where vL represents the probability 
that the vehicle turns left, vR for turning right, vS for 
proceeding straight and vU represents a probability of 



taking a U-turn, and the sum of the four probabilities 
equals unity.  Each vertical cell is assigned two such 
vectors Vc

T and Vc
B, for vehicles exiting from the top 

face and exiting from bottom face respectively.  
Similarly, each horizontal cell is assigned two vectors 
Vc

L and Vc
R, for vehicles exiting from the left face and 

from the right face respectively.  To summarize, the 
entire domain is represented as vertical and horizontal 
cells, with each cell possessing two probability vectors, 
each vector containing four probability values as vector 
components.  The probability vectors per cell 
completely define the field and determine the effects of 
the field on mobility.  Note that any of the probability 
elements can be zero, which can be used to represent 
the absence of connectivity. 

2.2. Semi-Aggregated Movement 
Vehicles are represented as an aggregate count at 

each direction in each cell.  Although the counts are 
integral at initialization, they are allowed to take on 
fractional values, as needed in the mobility model, 
during the course of the simulation.  Each cell 
maintains two counts, one for each direction: left and 
right for horizontal cells, and up and down for vertical 
cells.  Thus, two floating point numbers represent the 
number of vehicles occupying the cell in each direction 
at any given simulation moment.  Simulation follows a 
time-stepped mode of execution, each time step being 
split into two phases.  In the first phase, called the 
“split phase,” each cell determines the fraction of its 
current vehicle count that will move in each of the four 
neighbor destinations for each direction.  In other 
words, for a horizontal cell, the number of outgoing 
vehicles is computed for each of its two (left and right) 
directions, each of which computes outflow to four 
neighbors: reachable via left-, right-, straight- and u-
turns.  An upper bound on the total number of outgoing 
vehicles is determined based on the speed limit and 
link length. 

2.3. Queuing, Congestion and Rerouting 
The queuing phenomenon is modeled in terms of 

accumulation of vehicle counts at each cell.  In the 
second phase (“merge phase”) of each time step, each 
cell gathers the counts of all incoming flows and adds 
them to its current occupancy.  When a cell becomes 
full (i.e., its vehicle count reaches its capacity), its 
neighbors detect the lack of capacity in the first (split) 
phase and refrain from sending any vehicles to that 
neighbor.  Under congested operation, this results in a 
chain of blocked traffic, with cells reaching their 
capacity along a path.  Note that the probabilistic turns 
also automatically induce dynamic re-routing.  The re-
routing is automatically achieved by the fact that more 

vehicles will be available to get diverted to other 
neighbors when one neighbor becomes full. 

3. Mapping the Network Graph to a 
Texel Grid 

An important objective in our efforts is in 
determining how we could exploit the great computing 
potential of graphical processing units or of parallel 
computing platforms in general.  While the 
computational platforms are generally optimized for 
“rectangular” data structures, road networks, on the 
other hand, are graphs.  A method is needed to 
reconcile the disparity.  Our solution approach to this 
apparent mismatch is to map the road network graph to 
a rectangular data structure.  By and large, GPUs are 
very highly optimized to process rectangular data in 
the form of image textures; we exploit this fact in our 
implementation.  This approach can also be suitable for 
other parallel platforms as well. 

The mapping is performed as follows.  A canonical 
form of a rectangular grid is defined.  This canonical 
grid will be capable of capturing the structural 
elements and also provide holders for key behavioral 
parameters at a cell-level resolution.  An encoding 
scheme is then defined to represent the grid in a form 
that reduces the memory usage to minimal levels.  
Finally, an algorithm is used to map any input graph 
onto a corresponding canonical grid.  This algorithm 
generates the field, and the initial loading pattern.  
Each of these steps is described in the following sub-
sections. 

3.1. Canonical Grid Network 
As mentioned previously, the geographical region is 

decomposed and encoded as a discretization into cells.  
Each cell represents both “directions” for that point: 
vertical cells have up and down, and horizontal has left 
and right.  In our canonical encoding, vertical cells are 
represented in even-numbered rows and horizontal 
cells are represented in odd-numbered rows.  Figure 1 
illustrates the incoming connectivity for horizontal 
cells.  The outgoing connectivity for the horizontal 
cells, and the incoming/outgoing connectivity for 
vertical cells are analogously organized.  Given a cell 
(i,j), the neighbor offsets are (0, ±1 or ±2) for the 
neighbors relative to (i,j).  In the figure, the cell (i,j) in 
question is colored in pink, and the arcs are labeled L 
for left turn, R for right turn, S for straight traversal 
and U for a U-turn.  Horizontal rows are labeled H and 
vertical rows are labeled V. 



 
Figure 1: Incoming dependencies for vertical links 

3.2. Representation and Allocation of State 
The discretization of vehicular mobility model is 

realized using multiple instances of a two dimensional 
array template.  These array instances are mapped to a 
common GPU data structure called a texture whose 
elements are called texels.  We utilize textures of a 
“32-bit RGBA” (32-bit Red Green Blue Alpha) format 
in which each texel is used to represent various static 
and dynamic attributes in our simulation.  In these 
textures, each texel comprises four floating point 
values, each floating point value represented by 4 
bytes. Additionally, information about global settings 
such as the grid size and the time step of simulation are 
passed as individual parameters to the GPU processing 
routines. The following encoding methodology is used, 
whose underlying objective is to minimize the memory 
usage for representing the simulation state. 

In our current version of functionality, the 
simulation state (constants and variables) is 
represented in the model by six textures, as described 
next. 

Model constants are contained in two textures 
representing all turn probabilities for a given cell. The 
RGBA elements of the first of texture store the left and 
right turn probabilities that are computed for each grid 
point. The second texture holds straight and U-turn 
probabilities.  All the corresponding left-, right-, 

straight- and U-turn probabilities add up to unity.  
These two textures are read-only, and hence remain 
unmodified during simulation.  The rest of the textures 
are used in a read-write fashion, and they represent 
aggregate vehicle counts for both split and merge 
phases, as will be described in greater detail later.  Two 
random number seeds are also stored within the state 
texture.  These will be used and updated at every 
iteration step.  An additional encoding of these random 
values is used to distinguish between destination cells 
and normal cells.  A negative seed value indicates that 
the corresponding cell is a destination/sink cell (e.g., an 
evacuation point), and a positive seed value indicates a 
normal cell. 

A final constant value governing mobility is the 
segment (road) length. Segment length affects mobility 
in that it partially determines the maximum number of 
vehicles leaving a given intersection. To calculate the 
maximum number of outgoing vehicles at any cell 
(subsequently subjected to random distribution and 
field of evacuation constraints) we observe the 
following relation: 

Maxts = Max outflow per traffic signal= speed limit 
× time step ÷ vehicle length 

Max = Maxts × current vehicle count × vehicle 
length ÷ segment length 

The quantum of outgoing vehicles determined by 
the preceding relations helps us vary vehicle 
evacuation speed according to model size, allowing 
both flexibility and fidelity of our model. 
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3.3. Memory Size and Precision  
The dominant factor in quantifying memory usage 

is texture size. For our encoding, textures of 16 bytes 
per texel are used, with six textures in total (two 
constant textures, and one intermediate state texture, 
and two for use in the ping-pong scheme for updating 
the state). This gives N×N×96 bytes of required space 
where N is canonical texel grid size (the canonical grid 
is described in the next section).  Therefore, for a grid 
size of 2048, we consume roughly 384 MB for these 
textures. We have achieved simulation sizes of N > 
3750 (over 14 million texel grid elements).  Larger grid 
sizes can be supported with the next generation 
graphics processors, such as the NVIDIA 9000 series. 

3.4. Mapping Input Graph to Texel Grid 
The input road network graph consists of nodes that 

represent intersections, and edges that represent the 
road segment links between intersections.  The input 
also specifies two-dimensional Cartesian coordinates 
(or latitude and longitude) for every node. To map the 
input road network graph to our canonical texel grid, 
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the Cartesian coordinates of the nodes in the network 
graph are first spatially translated or shifted such that 
they all lie in the positive xy-quadrant. The smallest 
rectangle (in units of a pre-specified cell-level 
resolution) that encloses the resulting nodes is then 
computed from the Cartesian coordinates of the nodes 
in the network.  This enclosing rectangle is 
decomposed into a two-dimensional array of cells 
using the available cell-level resolution. Each cell has a 
one-to-one mapping with a texel.  Each texel is then 
marked as colored or uncolored.  If a texel has at least 
one intersection node mapped to it, then, it is marked 
as occupied.  Additionally, if at least one link passes 
through that texel, the texel is marked as occupied.  
Algorithmically, cells that are encountered by a road 
link edge E(u,v) when traversing from node u to node v 
are also marked occupied. 

With respect to the canonical texel grid, there are 
three possible orientations for any given edge, namely, 
vertical, horizontal and otherwise. For horizontal (or 
vertical) edges, all the encountered cells can be 
trivially determined.  This is achieved by simply 
marking every cell that is encountered along the 
horizontal (or vertical) direction between the two nodes 
u and v. An edge E(u,v), that is neither vertical nor 
horizontal, is viewed as a straight line on a Cartesian 
plane that passes through points (u1,u2) and (v1,v2) 
where u1 , u2 are the Cartesian coordinates of node u 
and v1 , v2 are those of node v, respectively.  Note that, 
to determine which cells are encountered along any 
edge E(u,v), it is sufficient to compute the points of 
intersection of that edge with the horizontal and 
vertical grid lines of  the cell array. Given an edge 
E(u,v), the identities of the horizontal and vertical grid 
lines that are contained within the smallest rectangle 
that encloses the two cells occupied by u and v, 
respectively, can be easily determined in constant time 
from the knowledge of the integer coordinates of the 
cells that contain u and v. The remaining task is 
therefore to determine the points of intersection of the 
vertical and horizontal grid lines contained within this 
rectangle with the edge E(u,v). It can be shown that the 
following constant time algorithm returns the point of 
intersection between a horizontal grid line L1 that pass 
through Cartesian points (x1,y1) and (x2,y2) and an edge 
E(u,v) whose end points have Cartesian coordinates 
(u1,u2) and (v1,v2): 
Algorithm: Intersection (L1(x1,y1:x2,y2), E(u1,u2:v1,v2)) 

1. b1 = (y2-y1)/(x2-x1); b2 = (v2-v1)/(u2-u1); 

2. a1 = y1–b1*x1; a2 = v1–b2*u1; 

3. return Ix = -(a1-a2)/(b1-b2), Iy = a1+b1*Ix; 

Note that for a vertical grid line whose slope is 

infinity, the above algorithm with a coordinate rotation 
accomplishes the same task. 

Each point of intersection returned by the preceding 
algorithm marks two neighboring cells as occupied, 
one on either side of the grid line with which the edge 
intersects.  For example, if the Cartesian point of 
intersection of an edge with a vertical grid line is (Ix,Iy), 
then the integer coordinates (X,Y) of the cells in the 
texel array which are marked as occupied are: (X = 
floor(Ix/s), Y = Ymax - floor(Iy/s)) and (X = floor(Ix/s)-1, 
Y = Ymax - floor(Iy/s)), where s is the side-length of each 
cell and Ymax is the total number of cells in the vertical 
direction. Similarly, if an edge intersects a horizontal 
grid line at the point (Ix,Iy), the integer coordinates 
(X,Y) of the cells in the texel array which are marked as 
occupied are: (X = floor(Ix/s), Y = Ymax - floor(Iy/s)) and 
(X = floor(Ix/s), Y = Ymax - floor(Iy/s)-1). Thus, each 
point of intersection (Ix,Iy) immediately yields the 
identities of the cells through which the edge E(u,v) 
passes. The corresponding cells are then marked 
occupied.  

Repeating this for each edge in the network graph 
marks those grid cells in the array that either contain a 
node (road intersection) or has an edge (road) passing 
through it. In this manner, the above algorithm maps 
the original road network onto the texel grid, which 
can now be viewed simply as an array of occupied or 
unoccupied texels.  If |Emax| denotes the length of the 
longest edge in the input graph, then the runtime for 
the above mapping algorithm is bounded by O(|V|+|E-
max|/s). Storage considerations are considered in a later 
section. 

4. Scenario Configuration 
In order to use a road network specified by the user 

as input to the simulator, the network is first 
preprocessed to a form suitable for field-based model 
execution.  An induced graph is generated as part of 
the preprocessing, with related grid resolution effects 
and computation of vehicular turn probabilities, as 
described next. 

4.1. Induced Graph and Its Generation 
The neighborhood of occupied cells in the texel grid 

determines an aggregated, rectangular version of the 
input road network graph.  The resultant graph of texel 
cell neighborhood is called the induced graph.  The 
induced graph approaches in equivalence the original 
input graph as the texel grid size is increased, and in a 
limit (in the worst case, not less than one vehicle 
length) reaches fully faithful and accurate 
representation (e.g., at 5m×5m resolution). 



4.2. Grid Resolution Effects 
When the input graph is mapped to the canonical 

grid, translation accuracy in the mapping scheme needs 
to be considered. Segments that are perfectly 
horizontal or vertical are induced in a way such that 
only vertical and horizontal cells are marked filled. For 
diagonal segments, increase in cell resolution makes 
our mapping eventually reach consistency with the 
road network.  The resolutions afforded by our texel 
grid mapping are shown in Table 1.  It is clear from the 
table that for smaller networks (such as Washington, 
D.C.), the cell resolution is extremely high, 
approaching that of an individual vehicle.  As the 
geographical area increases, the resolution decreases 
due to the fixed texture size; yet, the cell resolution is 
at the level of one or two city block sizes in width, 
which is sufficiently detailed for state-level 
simulations. 

Table 1: Grid and cell resolutions with a 4K×4K 
texture 

Region 
(state) 

Area 
(km2) 

Cell 
(m2) 

Washington (DC) 16×16 4×4 
Louisiana (LA) 610×210 148×148 
Tennessee (TN) 710×195 173×173 
Florida (FL) 582×721 170×170 
Texas (TX) 1,244×1270 310×310 

4.3. Computing Turn Probabilities 
At initialization, probabilities are carefully assigned 

to correspond to the road network.  Vehicles off the 
road network will be guided towards the closest road, 
i.e., probabilities of turning in any direction other than 
towards the closest road will be zero.  For all the texels 
at which there is no road, the turn probabilities can be 
assigned arbitrary values.  Alternatively, they can be 
assigned to make the vehicles flow towards the closest 
road.  For the texels on which at least one road appears, 
probabilities are assigned based on a field of vectors 
for a given evacuation strategy defined by the count of 
sinks and their specific geographical placement. 

Every unoccupied texel is assigned a zero 
probability vector. For each occupied texel, its 
probability vector is assigned by querying the 
occupancy of the six cells to the top and bottom if it is 
a vertical cell or the six cells to the left and right if it is 
a horizontal cell. The grid of probability vectors 
resulting from the above mapping of the input road 
network to the texel grid completely defines the 
mobility field. 

The input specifies a set of destination points or 
cells.  The vehicles at any cell in the canonical grid 
move towards one of its closest destination cells. 

Since, the destination cells are known, the turn 
probabilities for each cell can be generated such that 
the all traffic at that cell is routed to its closest 
destination cell(s). 

If multiple destination cells are equidistant from a 
particular cell, the turn probabilities of that cell are 
equally divided among the links that route traffic to 
those multiple destinations. If there is only a single 
closest destination cell then the link that routes traffic 
to that destination will be assigned a turn-probability of 
unity, and the turn-probabilities on all the other links 
will be assigned zero probability. 

5. Implementation and Benchmarks 
We now describe the implementation of our 

prototype system called GARFIELD (Graphical 
Agents Reacting in a Field), and the set of benchmarks 
we use to verify the correctness and evaluate the 
performance of our simulator. 

5.1. GPU-based Implementation 
Our system has been developed using the NVIDIA 

Cg Toolkit, OpenGL, and Microsoft Visual Studio 
.NET.  The hardware for GPU-based experiments is a 
recent NVIDIA GeForce 8800 GTX unit with 768MB 
of onboard memory, 128 stream processors, and a core 
clock speed of 575MHz. The CPU is an Intel Core2 
Duo 2.4 GHz processor with 4 GB memory. 

 
Figure 2: Multi-phase computation in GARFIELD. 
VD is aggregate vehicle count for a road direction 

D, R1 and R2 are random number seeds, and SD is 
the number of outgoing vehicles in direction D. 

In the GPU-based execution, evolution by one time 
step in the model equals one iteration on the GPU.  
Each GPU state update is performed in distinct phases, 
within split and merge operations (Figure 2). In the 
split phase, the number of vehicles to send to 
neighboring cells is computed, accounting for traffic 
conditions such as speed limits, signal timing delays, 
and vehicular congestion. A later phase is the merging 
of neighboring split vehicles. 
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5.2. Visualization and Customized Displays 
GARFIELD provides visualization to render the 

simulation state periodically to the screen.  Since all 
simulation state resides on the graphics card and is 
updated only by graphics kernel invocations, we 
optimize the display by rendering directly from the 
graphics memory.  The display, however, is fully 
customizable, by applying a fragment kernel that uses 
the simulation state as read-only state.  We apply a 
display kernel at the end of each iteration step to 
properly shade each texel according to the desired 
view.  The vehicular mobility animation can be 
overlaid on top of a traditional geographical map, or 
only the street occupancy can be displayed over a 
contrasting background.  Congestion can be 
highlighted in distinct color (we render congested cells 
in red).  Using the OpenGL Utility Toolkit (GLUT), 
we also allow for user interaction such as frame rate 
control and the ability to modify both display color and 
the presence of a background geographical map.  
Additionally, users can dynamically pan and zoom 
in/out the visualization at runtime. 

5.3. Benchmarks 
We exercise our system using two different types of 

benchmarks.  The first type is a set of synthetic road 
network whose size and parameters can be varied 
easily for experimentation.  The second type is a set of 
actual city- and state road networks. 

We developed synthetic networks of an N×N grid 
format whereby road segments are only either vertical 
or horizontal.  Every link of the grid is 500m long, 
with a speed limit 35 miles per hour.  Every 
intersection behaves similar to a stop sign.  Varying the 
parameter N is sufficient to vary the offered road 
network load, and consequently the simulation runtime 
performance.  Two scenarios were tested with these 
networks: 
1. Least Congestion (LC): The four corner nodes of 

the grid network constitute the evacuation points 
(sinks). 

2. Most Congestion (MC): The network node at the 
center of the grid is the only sink. 

These scenarios serve to test the performance at the 
different levels of congestion.  Consequently, they also 
represent the variations in the expected least simulation 
time and greatest simulation time. 

For actual city-scale and state-scale networks, we 
started with the freely available US Tiger road 
database, and pre-processed it to suit the input format 
of our system, which includes important information 
such as segment lengths, latitude/longitude 

information, and omits other detail that is not necessary 
in our model. 

6. Performance Study 

6.1. Synthetic Benchmark Networks 
For the synthetic benchmark scenarios, we vary the 

grid dimension N from 16 to 1024. Constants 
governing mobility for these networks are kept the 
same as those of the regional-scale benchmarks. 
Initially, each node is loaded with 10 vehicles, and we 
again continue execution until approximately 75% of 
the total vehicle count has evacuated. 

0
20
40
60
80

100
120

0 200 400 600
Grid Size (N)

R
un

 ti
m

e 
(s

ec
)

Most Congested Least Congested

 
Figure 3: Synthetic benchmark runtime 
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Figure 4: Synthetic benchmark evacuation time 

The performance of our simulator on the synthetic 
benchmarks for the LC and MC scenarios is shown in 
Figure 3 and Figure 4.  While the actual evacuation 
times are not material to our discussion here, the 
runtime performance clearly demonstrates the super-
real-time speed of the simulation.  The same 
simulation, when carried out on an optimized, state-of-
the-art micro-simulator SCATTER[18] failed after 
N=128, because of the memory needs of the number of 
links, nodes and vehicles needed to represent the 
benchmark. 



6.2. Region-scale Benchmark Networks 
We ran the geographical benchmarks for the 

simulated evacuation of approximately 75%, with an 
initial loading of 10 vehicles per network node.  In 
these benchmarks, constants governing vehicular 
movement that are of concern are: vehicle length = 
4.0m, speed limit = 13.3 m/s, and traffic signal time = 
1.0s.  It also noteworthy that, by controlling texture 
size used in the simulations, we effectively control the 
road distance represented by a single texel. This 
distance is consistently kept greater than vehicle 
length. Table 2 shows conducted benchmarks with 
both the estimate evacuation time and the simulation 
run time.  

Table 2: Performance on US networks 

  Texture 
Evac
Time

Run
Time

State Nodes Links X×X Hours Sec 
DC 9,559 14,884 1048576 35.20 54.90

LA 413,574 988,458 4194304 65.07 409.59

TN 583,484 1,335,586 3211264 157.91 353.89

FL 1,048,506 2,629,268 4194304 179.20 611.83

TX 2,073,870 5,116,492 3211264 217.60 777.65

 
It is important to note that the objective of the 

performance study is in estimating the expected 
runtimes of a state-scale scenario.  The runtime and 
evacuation times shown in Table 2 demonstrate that 
real-time or faster simulations are indeed conceivable 
for delivering first-order metrics in decision-making by 
the planning agencies. 

Figure 5 and Figure 6 are snapshots of the 
simulations for the Texas network using our 
customized display.  For a higher simulation speed, the 
animation display can be turned off.  For qualitative 
assessment purposes, however, the graphical display 
can be valuable. 

Please note that the figures are shown for 
illustration purposes only, with no specific 
correspondence to an actual evacuation scenario (we 
chose an evacuation scenario with only one 
destination/sink cell, for simple illustration purposes).  
The focus of this paper is less on the domain-specific 
study and more on the computational aspect. 
Validation is beyond the scope of this paper; we plan 
to undertake validation efforts as future work.  
However, we have verified our model to be correct in 
its working, and the images demonstrate the functional 
status of our simulator, with the ability to sustain the 
scale of one of the largest state road network sizes 

among the US states.  The simulator can be applied to 
a realistic study, in which users such as government 
agencies will specify the actual evacuation points and 
the actual initial loadings of the roads based on 
expected population distributions and evacuation plans. 

 
Figure 5: A view of an initial loading of the Texas 

state road network. 

 
Figure 6: A snapshot of a simulation of the Texas 

state road network. 

Additional scenarios can be viewed at 
www.ornl.gov/~2ip/RealSim/demo.htm. 

7. Summary and Future Work 
We presented the design of a field-based mobility 

model, and described its efficient implementation to 
exploit the computing power of graphical processing 
units.  Performance evaluation of our system shows 
real-time (or faster) execution on synthetic and real 
road network topologies.  Scalability to state-sized 
networks is observed, with some of the largest and 
densest state networks tested, including Texas and 
Florida, with millions of road intersections and links. 

Improvements are possible to the model and 
implementation.  The mobility model can be enhanced 
by incorporating greater fidelity, such as non-linear 
congestion behavioral distributions.  Geographical 
mapping potentially wastes texels due to empty (non-
road) regions in space.  For dense traffic networks, this 
is not a problem.  For sparse regions (such as 
Montana), the geographical sparsity of the street 
network can be result in significant level of wastage. 
Non-square regions also incur wasted memory space 
due to empty cells padded to make the rectangle 

http://www.ornl.gov/%7E2ip/RealSim/demo.htm


square. Recently, a newer generation of NVIDIA 
GPUs has become available. These cards, such as the 
9800 GTX, offer an increase in core clock speed while 
remaining comparable in available memory. Should the 
increase in speed of these prove to be nontrivial over 
the 8800 GTX, further benchmarks will be conducted. 
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