
GPU-based Real-Time Execution of Vehicular Mobility Models in
Large-Scale Road Network Scenarios

Kalyan S. Perumalla, Brandon G. Aaby, Srikanth B. Yoginath, Sudip K. Seal
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
perumallaks@ornl.gov, aabybg@ornl.gov, yoginathsb@ornl.gov, sealsk@ornl.gov

Abstract
A methodology and its associated algorithms are
presented for mapping a novel, field-based vehicular
mobility model onto graphical processing unit
computational platform for simulating mobility in
large-scale road networks. Of particular focus is the
achievement of real-time execution, on desktop
platforms, of vehicular mobility on road networks
comprised of millions of nodes and links, and multi-
million counts of simultaneously active vehicles. The
methodology is realized in a system called GARFIELD,
whose implementation details and performance study
are described. The runtime characteristics of a
prototype implementation are presented that show
real-time performance in simulations of networks at
the scale of a few states of the US road networks.

1. Introduction
1.1. Motivation

Simulations are routinely used in emergency
planning and management in order to make decisions
such as whether to order an evacuation or not [1, 2].
The quality of decisions can greatly depend on the
quality of insights into simulation results. When larger
geographical regions are considered in such decisions,
simulations become highly computationally intensive.
Improving the speed of large-scale simulation can help
evaluate an increased number of alternatives, and
improve confidence bounds, all within the short
amount of decision time available.

Large-scale scenarios of vehicular traffic simulation
problems are characterized by long-range queuing
effects, control mechanisms and other phenomena.
While small-sized scenarios are relatively easy to
analyze, larger scenarios need specialized treatment for
efficient execution, especially for very large network
sizes (millions of road intersections) and/or for heavy
loads of vehicular traffic load. An appealing
computational platform in this context is a graphical
processing unit (GPU).

1.2. Background
Graphical processing units have been subjected to

general-purpose use over the past decade. Literature
on general-purpose computation over GPUs is
extensive [3, 4]. However, newer methodologies and
implementation approaches are still being discovered
to exploit GPUs in different areas. Although GPU-
based execution is not new, and the computational
potential of GPUs has been known, no specific method
has been proposed to map vehicular mobility models to
GPUs. Traditional CPU-based (time-stepped or event-
driven) models have remained elusive for
straightforward application to the GPU domain.

1.3. Contributions
To the best of our knowledge, ours is the first work

to apply GPU-based model execution to transportation
network simulations. Also, we are not aware of any
other system or approach that has been shown to
support queuing effects in either aggregate or semi-
aggregate models of vehicular mobility at the level of
millions of road network nodes and links. Ours is also
the first to provide a novel field-based formulation of a
vehicular traffic mobility model in a large road
network that can be executed on a GPU. Modeling
dynamic re-routing is another distinguishing aspect of
our field-based model that has never been attempted
before at large-scale in other models and simulators.

1.4. Related Work
Commonly-used execution approaches span a

continuous spectrum, between fully disaggregated,
agent-based models, and fully abstracted, network flow
analysis formulations. Examples of flow analysis-
based methods include macro-simulators CORSIM [5,
6] and OREMS [1]. Examples of disaggregated
approaches include micro-simulators such as
TRANSIMS [7], VISSIM [8], and SCATTER[9],
among many others. The literature on macro-
simulators and micro-simulators in the mobility
domain is extensive. The reader is referred to [1, 2, 5-

mailto:perumallaks@ornl.gov
mailto:aabybg@ornl.gov
mailto:yoginathsb@ornl.gov
mailto:sealsk@ornl.gov

15] as starting points. However, field-based modeling
is relatively new; we are not aware of any existing or
published documentation on a field-based vehicular
queuing simulator. Here, we demonstrate the
applicability of field-based mobility for efficient
execution on GPUs.

Another distinguishing aspect of our field-based
formulation, compared to field-based formulations of
other domains (such as electro-magnetic fields), is the
ability to include additional non-linear behavioral
details, including queuing and randomized, directed
flows. The additional complexity in execution that
entails such a generalized field-based model is handled
using a GPU-based execution approach. The published
methods closest to our present subject are [16, 17] in
which crowd behavior is simulated on a GPU.
However, they do not deal with mobility in constrained
paths; in our road network scenarios, mobility along
specific paths (streets and highways) needs to be
enforced, along with queuing, which makes our model
more complex than unconstrained motion on a plane.

1.5. Our Approach
To help exploit the power of the GPUs, we define a

novel field-based formulation of vehicular mobility. In
a field-based formulation, the road network control is
viewed as a spatially distributed field (analogous to
physical fields such as magnetic field) in which
vehicles are immersed. These vehicles are influenced
by the field and undergo corresponding movement.
The field is defined in terms of vectors (directionality
and intensity) of movement at each network node. A
canonical regular vector field grid scheme is defined,
to which any arbitrary road network can be mapped.

On a GPU, the field-based mobility model is
executed with probabilistic transfers of vehicular
counts between adjacent road network segments. State
variables of the road network, along with detailed
information on vehicular traffic loading, are carefully
encoded to minimize memory requirements for
representation and manipulation during simulation.
Thereafter, execution is mapped using traditional GPU-
based techniques for data-parallel execution.

An early version of our prototype implementation is
currently operational. Preliminary results show
scalability to a field of over 2 million network nodes,
and 20 million represented vehicles. Mobility can be
described in a generalized field-based model view. In
evacuation simulations, for example, arbitrary fields
can be defined to represent any evacuation control
scheme. Execution of our prototype implementation
shows that results from our system are achieved in
real-time, which is significantly faster than any
existing vehicular mobility simulator. Simultaneously,

the capability with respect to network size is
significantly increased, from tens of thousands of
nodes of extant systems to millions of nodes in our
new system.

1.6. Organization
The rest of the document is organized as follows.

Our mobility model is described in Section 2. The
method for mapping an arbitrary vehicular road
network to our canonical, field-based grid is described
in Section 3. The framework for scenario specification
and configuration is presented in Section 4. Details of
our system implementation and computing platform
are given in Section 5. Following that, an experimental
study of scalability and performance is described in
Section 6. Final remarks and a discussion of future
work are provided in Section 7.

2. Mobility Model
The mobility model consists of the following

components: (1) a global routing model for choice of
turns or hops in a trip towards destinations (2) a
mobility model for representation of vehicles moving
along a link, and (3) a queuing model for stalling,
congestion and dynamic re-routing of vehicles along
congested paths. These three components are
described next.

2.1. Field-based Mobility and Routing
In our field-based view of mobility, the directional

vectors for movement are defined per cell on a
specially-defined spatial grid of cells (the grid is
described in greater detail in Section 3.1). A vehicle
placed at a cell is directed in its movement along the
direction vector of the cell, independent of the
vehicle’s historical path. When properly defined,
fields can be readily used to formulate evacuation
plans. With the addition of a dynamic-update
capability to the field specifications, field-based
models can be used to create other non-emergency
activities as well. The field is somewhat analogous to
physical fields such as electric and magnetic fields.

In our field-based formulation, each cell is
categorized into either a “vertical cell” or a “horizontal
cell.” Vertical cells are those in which vehicles are
constrained to move only in vertical direction in our
specially-defined two-dimensional grid. Horizontal
cells are those in which vehicles move only in
horizontal direction. For a specific cell and a direction
of movement, a vector of probabilities is defined as
Vc=[vL, vR, vS, vU], where vL represents the probability
that the vehicle turns left, vR for turning right, vS for
proceeding straight and vU represents a probability of

taking a U-turn, and the sum of the four probabilities
equals unity. Each vertical cell is assigned two such
vectors Vc

T and Vc
B, for vehicles exiting from the top

face and exiting from bottom face respectively.
Similarly, each horizontal cell is assigned two vectors
Vc

L and Vc
R, for vehicles exiting from the left face and

from the right face respectively. To summarize, the
entire domain is represented as vertical and horizontal
cells, with each cell possessing two probability vectors,
each vector containing four probability values as vector
components. The probability vectors per cell
completely define the field and determine the effects of
the field on mobility. Note that any of the probability
elements can be zero, which can be used to represent
the absence of connectivity.

2.2. Semi-Aggregated Movement
Vehicles are represented as an aggregate count at

each direction in each cell. Although the counts are
integral at initialization, they are allowed to take on
fractional values, as needed in the mobility model,
during the course of the simulation. Each cell
maintains two counts, one for each direction: left and
right for horizontal cells, and up and down for vertical
cells. Thus, two floating point numbers represent the
number of vehicles occupying the cell in each direction
at any given simulation moment. Simulation follows a
time-stepped mode of execution, each time step being
split into two phases. In the first phase, called the
“split phase,” each cell determines the fraction of its
current vehicle count that will move in each of the four
neighbor destinations for each direction. In other
words, for a horizontal cell, the number of outgoing
vehicles is computed for each of its two (left and right)
directions, each of which computes outflow to four
neighbors: reachable via left-, right-, straight- and u-
turns. An upper bound on the total number of outgoing
vehicles is determined based on the speed limit and
link length.

2.3. Queuing, Congestion and Rerouting
The queuing phenomenon is modeled in terms of

accumulation of vehicle counts at each cell. In the
second phase (“merge phase”) of each time step, each
cell gathers the counts of all incoming flows and adds
them to its current occupancy. When a cell becomes
full (i.e., its vehicle count reaches its capacity), its
neighbors detect the lack of capacity in the first (split)
phase and refrain from sending any vehicles to that
neighbor. Under congested operation, this results in a
chain of blocked traffic, with cells reaching their
capacity along a path. Note that the probabilistic turns
also automatically induce dynamic re-routing. The re-
routing is automatically achieved by the fact that more

vehicles will be available to get diverted to other
neighbors when one neighbor becomes full.

3. Mapping the Network Graph to a
Texel Grid

An important objective in our efforts is in
determining how we could exploit the great computing
potential of graphical processing units or of parallel
computing platforms in general. While the
computational platforms are generally optimized for
“rectangular” data structures, road networks, on the
other hand, are graphs. A method is needed to
reconcile the disparity. Our solution approach to this
apparent mismatch is to map the road network graph to
a rectangular data structure. By and large, GPUs are
very highly optimized to process rectangular data in
the form of image textures; we exploit this fact in our
implementation. This approach can also be suitable for
other parallel platforms as well.

The mapping is performed as follows. A canonical
form of a rectangular grid is defined. This canonical
grid will be capable of capturing the structural
elements and also provide holders for key behavioral
parameters at a cell-level resolution. An encoding
scheme is then defined to represent the grid in a form
that reduces the memory usage to minimal levels.
Finally, an algorithm is used to map any input graph
onto a corresponding canonical grid. This algorithm
generates the field, and the initial loading pattern.
Each of these steps is described in the following sub-
sections.

3.1. Canonical Grid Network
As mentioned previously, the geographical region is

decomposed and encoded as a discretization into cells.
Each cell represents both “directions” for that point:
vertical cells have up and down, and horizontal has left
and right. In our canonical encoding, vertical cells are
represented in even-numbered rows and horizontal
cells are represented in odd-numbered rows. Figure 1
illustrates the incoming connectivity for horizontal
cells. The outgoing connectivity for the horizontal
cells, and the incoming/outgoing connectivity for
vertical cells are analogously organized. Given a cell
(i,j), the neighbor offsets are (0, ±1 or ±2) for the
neighbors relative to (i,j). In the figure, the cell (i,j) in
question is colored in pink, and the arcs are labeled L
for left turn, R for right turn, S for straight traversal
and U for a U-turn. Horizontal rows are labeled H and
vertical rows are labeled V.

Figure 1: Incoming dependencies for vertical links

3.2. Representation and Allocation of State
The discretization of vehicular mobility model is

realized using multiple instances of a two dimensional
array template. These array instances are mapped to a
common GPU data structure called a texture whose
elements are called texels. We utilize textures of a
“32-bit RGBA” (32-bit Red Green Blue Alpha) format
in which each texel is used to represent various static
and dynamic attributes in our simulation. In these
textures, each texel comprises four floating point
values, each floating point value represented by 4
bytes. Additionally, information about global settings
such as the grid size and the time step of simulation are
passed as individual parameters to the GPU processing
routines. The following encoding methodology is used,
whose underlying objective is to minimize the memory
usage for representing the simulation state.

In our current version of functionality, the
simulation state (constants and variables) is
represented in the model by six textures, as described
next.

Model constants are contained in two textures
representing all turn probabilities for a given cell. The
RGBA elements of the first of texture store the left and
right turn probabilities that are computed for each grid
point. The second texture holds straight and U-turn
probabilities. All the corresponding left-, right-,

straight- and U-turn probabilities add up to unity.
These two textures are read-only, and hence remain
unmodified during simulation. The rest of the textures
are used in a read-write fashion, and they represent
aggregate vehicle counts for both split and merge
phases, as will be described in greater detail later. Two
random number seeds are also stored within the state
texture. These will be used and updated at every
iteration step. An additional encoding of these random
values is used to distinguish between destination cells
and normal cells. A negative seed value indicates that
the corresponding cell is a destination/sink cell (e.g., an
evacuation point), and a positive seed value indicates a
normal cell.

A final constant value governing mobility is the
segment (road) length. Segment length affects mobility
in that it partially determines the maximum number of
vehicles leaving a given intersection. To calculate the
maximum number of outgoing vehicles at any cell
(subsequently subjected to random distribution and
field of evacuation constraints) we observe the
following relation:

Maxts = Max outflow per traffic signal= speed limit
× time step ÷ vehicle length

Max = Maxts × current vehicle count × vehicle
length ÷ segment length

The quantum of outgoing vehicles determined by
the preceding relations helps us vary vehicle
evacuation speed according to model size, allowing
both flexibility and fidelity of our model.

(-2,0) (-2,+1)

V

3.3. Memory Size and Precision
The dominant factor in quantifying memory usage

is texture size. For our encoding, textures of 16 bytes
per texel are used, with six textures in total (two
constant textures, and one intermediate state texture,
and two for use in the ping-pong scheme for updating
the state). This gives N×N×96 bytes of required space
where N is canonical texel grid size (the canonical grid
is described in the next section). Therefore, for a grid
size of 2048, we consume roughly 384 MB for these
textures. We have achieved simulation sizes of N >
3750 (over 14 million texel grid elements). Larger grid
sizes can be supported with the next generation
graphics processors, such as the NVIDIA 9000 series.

3.4. Mapping Input Graph to Texel Grid
The input road network graph consists of nodes that

represent intersections, and edges that represent the
road segment links between intersections. The input
also specifies two-dimensional Cartesian coordinates
(or latitude and longitude) for every node. To map the
input road network graph to our canonical texel grid,

(-1,0)

(+1,0)

 S

(-1,+1)

(+2,0)

(+1,+1)

(0,+1)

(+2,+1)

R

L H

U V U

V

H

 L

R

the Cartesian coordinates of the nodes in the network
graph are first spatially translated or shifted such that
they all lie in the positive xy-quadrant. The smallest
rectangle (in units of a pre-specified cell-level
resolution) that encloses the resulting nodes is then
computed from the Cartesian coordinates of the nodes
in the network. This enclosing rectangle is
decomposed into a two-dimensional array of cells
using the available cell-level resolution. Each cell has a
one-to-one mapping with a texel. Each texel is then
marked as colored or uncolored. If a texel has at least
one intersection node mapped to it, then, it is marked
as occupied. Additionally, if at least one link passes
through that texel, the texel is marked as occupied.
Algorithmically, cells that are encountered by a road
link edge E(u,v) when traversing from node u to node v
are also marked occupied.

With respect to the canonical texel grid, there are
three possible orientations for any given edge, namely,
vertical, horizontal and otherwise. For horizontal (or
vertical) edges, all the encountered cells can be
trivially determined. This is achieved by simply
marking every cell that is encountered along the
horizontal (or vertical) direction between the two nodes
u and v. An edge E(u,v), that is neither vertical nor
horizontal, is viewed as a straight line on a Cartesian
plane that passes through points (u1,u2) and (v1,v2)
where u1 , u2 are the Cartesian coordinates of node u
and v1 , v2 are those of node v, respectively. Note that,
to determine which cells are encountered along any
edge E(u,v), it is sufficient to compute the points of
intersection of that edge with the horizontal and
vertical grid lines of the cell array. Given an edge
E(u,v), the identities of the horizontal and vertical grid
lines that are contained within the smallest rectangle
that encloses the two cells occupied by u and v,
respectively, can be easily determined in constant time
from the knowledge of the integer coordinates of the
cells that contain u and v. The remaining task is
therefore to determine the points of intersection of the
vertical and horizontal grid lines contained within this
rectangle with the edge E(u,v). It can be shown that the
following constant time algorithm returns the point of
intersection between a horizontal grid line L1 that pass
through Cartesian points (x1,y1) and (x2,y2) and an edge
E(u,v) whose end points have Cartesian coordinates
(u1,u2) and (v1,v2):
Algorithm: Intersection (L1(x1,y1:x2,y2), E(u1,u2:v1,v2))

1. b1 = (y2-y1)/(x2-x1); b2 = (v2-v1)/(u2-u1);

2. a1 = y1–b1*x1; a2 = v1–b2*u1;

3. return Ix = -(a1-a2)/(b1-b2), Iy = a1+b1*Ix;

Note that for a vertical grid line whose slope is

infinity, the above algorithm with a coordinate rotation
accomplishes the same task.

Each point of intersection returned by the preceding
algorithm marks two neighboring cells as occupied,
one on either side of the grid line with which the edge
intersects. For example, if the Cartesian point of
intersection of an edge with a vertical grid line is (Ix,Iy),
then the integer coordinates (X,Y) of the cells in the
texel array which are marked as occupied are: (X =
floor(Ix/s), Y = Ymax - floor(Iy/s)) and (X = floor(Ix/s)-1,
Y = Ymax - floor(Iy/s)), where s is the side-length of each
cell and Ymax is the total number of cells in the vertical
direction. Similarly, if an edge intersects a horizontal
grid line at the point (Ix,Iy), the integer coordinates
(X,Y) of the cells in the texel array which are marked as
occupied are: (X = floor(Ix/s), Y = Ymax - floor(Iy/s)) and
(X = floor(Ix/s), Y = Ymax - floor(Iy/s)-1). Thus, each
point of intersection (Ix,Iy) immediately yields the
identities of the cells through which the edge E(u,v)
passes. The corresponding cells are then marked
occupied.

Repeating this for each edge in the network graph
marks those grid cells in the array that either contain a
node (road intersection) or has an edge (road) passing
through it. In this manner, the above algorithm maps
the original road network onto the texel grid, which
can now be viewed simply as an array of occupied or
unoccupied texels. If |Emax| denotes the length of the
longest edge in the input graph, then the runtime for
the above mapping algorithm is bounded by O(|V|+|E-
max|/s). Storage considerations are considered in a later
section.

4. Scenario Configuration
In order to use a road network specified by the user

as input to the simulator, the network is first
preprocessed to a form suitable for field-based model
execution. An induced graph is generated as part of
the preprocessing, with related grid resolution effects
and computation of vehicular turn probabilities, as
described next.

4.1. Induced Graph and Its Generation
The neighborhood of occupied cells in the texel grid

determines an aggregated, rectangular version of the
input road network graph. The resultant graph of texel
cell neighborhood is called the induced graph. The
induced graph approaches in equivalence the original
input graph as the texel grid size is increased, and in a
limit (in the worst case, not less than one vehicle
length) reaches fully faithful and accurate
representation (e.g., at 5m×5m resolution).

4.2. Grid Resolution Effects
When the input graph is mapped to the canonical

grid, translation accuracy in the mapping scheme needs
to be considered. Segments that are perfectly
horizontal or vertical are induced in a way such that
only vertical and horizontal cells are marked filled. For
diagonal segments, increase in cell resolution makes
our mapping eventually reach consistency with the
road network. The resolutions afforded by our texel
grid mapping are shown in Table 1. It is clear from the
table that for smaller networks (such as Washington,
D.C.), the cell resolution is extremely high,
approaching that of an individual vehicle. As the
geographical area increases, the resolution decreases
due to the fixed texture size; yet, the cell resolution is
at the level of one or two city block sizes in width,
which is sufficiently detailed for state-level
simulations.

Table 1: Grid and cell resolutions with a 4K×4K
texture

Region
(state)

Area
(km2)

Cell
(m2)

Washington (DC) 16×16 4×4
Louisiana (LA) 610×210 148×148
Tennessee (TN) 710×195 173×173
Florida (FL) 582×721 170×170
Texas (TX) 1,244×1270 310×310

4.3. Computing Turn Probabilities
At initialization, probabilities are carefully assigned

to correspond to the road network. Vehicles off the
road network will be guided towards the closest road,
i.e., probabilities of turning in any direction other than
towards the closest road will be zero. For all the texels
at which there is no road, the turn probabilities can be
assigned arbitrary values. Alternatively, they can be
assigned to make the vehicles flow towards the closest
road. For the texels on which at least one road appears,
probabilities are assigned based on a field of vectors
for a given evacuation strategy defined by the count of
sinks and their specific geographical placement.

Every unoccupied texel is assigned a zero
probability vector. For each occupied texel, its
probability vector is assigned by querying the
occupancy of the six cells to the top and bottom if it is
a vertical cell or the six cells to the left and right if it is
a horizontal cell. The grid of probability vectors
resulting from the above mapping of the input road
network to the texel grid completely defines the
mobility field.

The input specifies a set of destination points or
cells. The vehicles at any cell in the canonical grid
move towards one of its closest destination cells.

Since, the destination cells are known, the turn
probabilities for each cell can be generated such that
the all traffic at that cell is routed to its closest
destination cell(s).

If multiple destination cells are equidistant from a
particular cell, the turn probabilities of that cell are
equally divided among the links that route traffic to
those multiple destinations. If there is only a single
closest destination cell then the link that routes traffic
to that destination will be assigned a turn-probability of
unity, and the turn-probabilities on all the other links
will be assigned zero probability.

5. Implementation and Benchmarks
We now describe the implementation of our

prototype system called GARFIELD (Graphical
Agents Reacting in a Field), and the set of benchmarks
we use to verify the correctness and evaluate the
performance of our simulator.

5.1. GPU-based Implementation
Our system has been developed using the NVIDIA

Cg Toolkit, OpenGL, and Microsoft Visual Studio
.NET. The hardware for GPU-based experiments is a
recent NVIDIA GeForce 8800 GTX unit with 768MB
of onboard memory, 128 stream processors, and a core
clock speed of 575MHz. The CPU is an Intel Core2
Duo 2.4 GHz processor with 4 GB memory.

Figure 2: Multi-phase computation in GARFIELD.
VD is aggregate vehicle count for a road direction

D, R1 and R2 are random number seeds, and SD is
the number of outgoing vehicles in direction D.

In the GPU-based execution, evolution by one time
step in the model equals one iteration on the GPU.
Each GPU state update is performed in distinct phases,
within split and merge operations (Figure 2). In the
split phase, the number of vehicles to send to
neighboring cells is computed, accounting for traffic
conditions such as speed limits, signal timing delays,
and vehicular congestion. A later phase is the merging
of neighboring split vehicles.

VL R1 VR R2

Split L/R

Split S/U

Vehicle
Counts Display Merge

Turn Probabilities

Global Constants

SL SL SR SR SL SL SR SR

5.2. Visualization and Customized Displays
GARFIELD provides visualization to render the

simulation state periodically to the screen. Since all
simulation state resides on the graphics card and is
updated only by graphics kernel invocations, we
optimize the display by rendering directly from the
graphics memory. The display, however, is fully
customizable, by applying a fragment kernel that uses
the simulation state as read-only state. We apply a
display kernel at the end of each iteration step to
properly shade each texel according to the desired
view. The vehicular mobility animation can be
overlaid on top of a traditional geographical map, or
only the street occupancy can be displayed over a
contrasting background. Congestion can be
highlighted in distinct color (we render congested cells
in red). Using the OpenGL Utility Toolkit (GLUT),
we also allow for user interaction such as frame rate
control and the ability to modify both display color and
the presence of a background geographical map.
Additionally, users can dynamically pan and zoom
in/out the visualization at runtime.

5.3. Benchmarks
We exercise our system using two different types of

benchmarks. The first type is a set of synthetic road
network whose size and parameters can be varied
easily for experimentation. The second type is a set of
actual city- and state road networks.

We developed synthetic networks of an N×N grid
format whereby road segments are only either vertical
or horizontal. Every link of the grid is 500m long,
with a speed limit 35 miles per hour. Every
intersection behaves similar to a stop sign. Varying the
parameter N is sufficient to vary the offered road
network load, and consequently the simulation runtime
performance. Two scenarios were tested with these
networks:
1. Least Congestion (LC): The four corner nodes of

the grid network constitute the evacuation points
(sinks).

2. Most Congestion (MC): The network node at the
center of the grid is the only sink.

These scenarios serve to test the performance at the
different levels of congestion. Consequently, they also
represent the variations in the expected least simulation
time and greatest simulation time.

For actual city-scale and state-scale networks, we
started with the freely available US Tiger road
database, and pre-processed it to suit the input format
of our system, which includes important information
such as segment lengths, latitude/longitude

information, and omits other detail that is not necessary
in our model.

6. Performance Study

6.1. Synthetic Benchmark Networks
For the synthetic benchmark scenarios, we vary the

grid dimension N from 16 to 1024. Constants
governing mobility for these networks are kept the
same as those of the regional-scale benchmarks.
Initially, each node is loaded with 10 vehicles, and we
again continue execution until approximately 75% of
the total vehicle count has evacuated.

0
20
40
60
80

100
120

0 200 400 600
Grid Size (N)

R
un

 ti
m

e
(s

ec
)

Most Congested Least Congested

Figure 3: Synthetic benchmark runtime

0

0.5

1

1.5

2

2.5

0 200 400 600
Grid Size (N)

Ev
ac

ua
tio

n
tim

e
(h

ou
r)

Most Congested Least Congested

Figure 4: Synthetic benchmark evacuation time

The performance of our simulator on the synthetic
benchmarks for the LC and MC scenarios is shown in
Figure 3 and Figure 4. While the actual evacuation
times are not material to our discussion here, the
runtime performance clearly demonstrates the super-
real-time speed of the simulation. The same
simulation, when carried out on an optimized, state-of-
the-art micro-simulator SCATTER[18] failed after
N=128, because of the memory needs of the number of
links, nodes and vehicles needed to represent the
benchmark.

6.2. Region-scale Benchmark Networks
We ran the geographical benchmarks for the

simulated evacuation of approximately 75%, with an
initial loading of 10 vehicles per network node. In
these benchmarks, constants governing vehicular
movement that are of concern are: vehicle length =
4.0m, speed limit = 13.3 m/s, and traffic signal time =
1.0s. It also noteworthy that, by controlling texture
size used in the simulations, we effectively control the
road distance represented by a single texel. This
distance is consistently kept greater than vehicle
length. Table 2 shows conducted benchmarks with
both the estimate evacuation time and the simulation
run time.

Table 2: Performance on US networks

 Texture
Evac
Time

Run
Time

State Nodes Links X×X Hours Sec
DC 9,559 14,884 1048576 35.20 54.90

LA 413,574 988,458 4194304 65.07 409.59

TN 583,484 1,335,586 3211264 157.91 353.89

FL 1,048,506 2,629,268 4194304 179.20 611.83

TX 2,073,870 5,116,492 3211264 217.60 777.65

It is important to note that the objective of the

performance study is in estimating the expected
runtimes of a state-scale scenario. The runtime and
evacuation times shown in Table 2 demonstrate that
real-time or faster simulations are indeed conceivable
for delivering first-order metrics in decision-making by
the planning agencies.

Figure 5 and Figure 6 are snapshots of the
simulations for the Texas network using our
customized display. For a higher simulation speed, the
animation display can be turned off. For qualitative
assessment purposes, however, the graphical display
can be valuable.

Please note that the figures are shown for
illustration purposes only, with no specific
correspondence to an actual evacuation scenario (we
chose an evacuation scenario with only one
destination/sink cell, for simple illustration purposes).
The focus of this paper is less on the domain-specific
study and more on the computational aspect.
Validation is beyond the scope of this paper; we plan
to undertake validation efforts as future work.
However, we have verified our model to be correct in
its working, and the images demonstrate the functional
status of our simulator, with the ability to sustain the
scale of one of the largest state road network sizes

among the US states. The simulator can be applied to
a realistic study, in which users such as government
agencies will specify the actual evacuation points and
the actual initial loadings of the roads based on
expected population distributions and evacuation plans.

Figure 5: A view of an initial loading of the Texas

state road network.

Figure 6: A snapshot of a simulation of the Texas

state road network.

Additional scenarios can be viewed at
www.ornl.gov/~2ip/RealSim/demo.htm.

7. Summary and Future Work
We presented the design of a field-based mobility

model, and described its efficient implementation to
exploit the computing power of graphical processing
units. Performance evaluation of our system shows
real-time (or faster) execution on synthetic and real
road network topologies. Scalability to state-sized
networks is observed, with some of the largest and
densest state networks tested, including Texas and
Florida, with millions of road intersections and links.

Improvements are possible to the model and
implementation. The mobility model can be enhanced
by incorporating greater fidelity, such as non-linear
congestion behavioral distributions. Geographical
mapping potentially wastes texels due to empty (non-
road) regions in space. For dense traffic networks, this
is not a problem. For sparse regions (such as
Montana), the geographical sparsity of the street
network can be result in significant level of wastage.
Non-square regions also incur wasted memory space
due to empty cells padded to make the rectangle

http://www.ornl.gov/%7E2ip/RealSim/demo.htm

square. Recently, a newer generation of NVIDIA
GPUs has become available. These cards, such as the
9800 GTX, offer an increase in core clock speed while
remaining comparable in available memory. Should the
increase in speed of these prove to be nontrivial over
the 8800 GTX, further benchmarks will be conducted.

Acknowledgements
This paper has been authored by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the U.S.
Department of Energy. Accordingly, the United States
Government retains and the publisher, by accepting the
article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others
to do so, for United States Government purposes.

References

[1] O. Franzese and L. Han, "A Methodology for the

Assessment of Traffic Management Strategies
for Large-scale Emergency Evacuations," in 11th
Annual Meeting of ITS America, Miami, FL,
USA, 2001.

[2] B. Bhaduri, C. Liu, and O. Franzese, "Oak Ridge
Evacuation Modeling System (OREMS): A PC-
Based Computer Tool for Emergency
Evacuation Planning," in Symposium on GIS for
Transportation, 2006.

[3] GPGPU, "General Purpose Computation Using
Graphics Hardware," 2005.

[4] M. Pharr and R. Fernando, GPU Gems 2:
Programming Techniques for High-Performance
Graphics and General-Purpose Computation:
Addison Wesley Professional, 2005.

[5] ITT Systems & Sciences Corporation, "CORSIM
User's Manual, Version 1.04," Federal Highway
Administration, U.S. Department of
Transportation 1998.

[6] P. D. Prevedouros and Y. Wang, "Simulation of
Large G=Freeway and Arterial Network with
CORSIM, INTEGRATION, and WATSIM,"
Transportation Research Record, pp. 197-207,
1999.

[7] L. Smith, R. Beckman, D. Anson, K. Nagel, and
M. E. Williams, "TRANSIMS: Transportation
Analysis and Simulation System," in
Proceedings of the Fifth National Conference on
Transportation Planning Methods Seattle,

Washington: Transportation Research Board,
1995.

[8] I. Innovative Transportation Concepts, "VISSIM
Simulation Tool," 2001.

[9] K. S. Perumalla, "A Systems Approach to
Scalable Transportation Network Modeling," in
Winter Simulation Conference, Monterey, CA,
2006.

[10] S. Taori and A. Rathi, "Comparison of NETSIM,
NETFLO I, and NETFLO II Traffic Simulation
Models for Fixed-Time Signal Control,"
Transportation Research Record, pp. 20-30,
1996.

[11] M. Fellendorf, T. Schwerdtfeger, and H.-J.
Stauss, "DYNEMO, A Mesoscopic Traffic Flow
Model to Analyze ATT Measures,"
Transportation Planning Methods, 1996.

[12] N. H. Gartner and C. Stamatiadis, "Integration of
Dynamic Traffic Assignment with Real-Time
Traffic Adaptive Control System,"
Transportation Research Record, pp. 150-156,
1998.

[13] D. Bernstein and T. L. Friesz, "Analytical
Dynamic Traffic Assignment Models," in
Handbook of Transportation Modeling
Amsterdam, Netherlands: Elsevier Science
Publishers, 2000, pp. 181-195.

[14] Q. Yang, H. N. Koutsopoulos, and M. E. Ben-
Akiva, "Simulation Laboratory for Evaluating
Dynamic Traffic Management Systems,"
Transportation Research Record, pp. 122-130,
2000.

[15] K. Meister, M. Balmer, K. W. Axhausen, and K.
Nagel, "A Comprehensive Scheduler for a
Large-scale Multi-agent Transportation
Simulation," in International Conference on
Travel Behaviour Research, Kyoto, Japan, 2006.

[16] N. Courty and S. R. Musse, "Simulation of Large
Crowds in Emergency Situations Including
Gaseous Phenomena," in IEEE Computer
Graphics International, New York, USA, 2005,
pp. 206-212.

[17] C. Reynolds, "Big Fast Crowds on PS3." vol.
2006: Sony Computer Entertainment, 2006.

[18] S. B. Yoginath and K. S. Perumalla, "Reversible
Discrete Event Formulation and Optimistic
Parallel Execution of Vehicular Traffic Models,"
International Journal of Simulation and Process
Modeling, vol. To Appear, 2008.

	Abstract
	1. Introduction
	1.1. Motivation
	1.2. Background
	1.3. Contributions
	1.4. Related Work
	1.5. Our Approach
	1.6. Organization

	2. Mobility Model
	2.1. Field-based Mobility and Routing
	2.2. Semi-Aggregated Movement
	2.3. Queuing, Congestion and Rerouting

	3. Mapping the Network Graph to a Texel Grid
	3.1. Canonical Grid Network
	3.2. Representation and Allocation of State
	3.3. Memory Size and Precision
	3.4. Mapping Input Graph to Texel Grid

	4. Scenario Configuration
	4.1. Induced Graph and Its Generation
	4.2. Grid Resolution Effects
	4.3. Computing Turn Probabilities

	5. Implementation and Benchmarks
	5.1. GPU-based Implementation
	5.2. Visualization and Customized Displays
	5.3. Benchmarks

	6. Performance Study
	6.1. Synthetic Benchmark Networks
	6.2. Region-scale Benchmark Networks

	7. Summary and Future Work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

