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Goals and Expected OutcomesGoals and Expected Outcomes
Intended for parallel simulation researchers
To familiarize with

Terminology
Essential concepts
Important considerations in GPU-based simulation

Basic concepts presented
“Make it work first, before making it work fast"

Primary focus on application-level needs and 
benefits

Secondarily on computer science/novelty

Concepts presented mostly independent of 
any particular system

Due to the rapidly-changing nature of GPU 
hardware/systems horizon
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ScopeScope

Focus primarily on parallel simulations
Does not cover the vast GPU literature 
on non-simulation applications

E.g., data analysis, stream processing, 
and mathematical programming

Aimed at simulation researchers, 
architects, and developers

E.g., As a quick primer, for research to 
be later pursued in greater detail

Introduces core concepts, terminology, 
and salient GPU features

Additional detail obtainable on the 
Web, and from GPU books and 
publications
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Good Starting PointsGood Starting Points
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www.gpgpu.org is fairly active and contains several pointers 

Book – GPU Gems 2
M. Pharr and R. Fernando, GPU Gems 2: Programming 
Techniques for High-Performance Graphics and General-
Purpose Computation: Addison Wesley Professional, 2005
http://developer.nvidia.com/object/gpu_gems_2_home.html
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I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. 
Houston, et al., "Brook for GPUs: Stream Computing on 
Graphics Hardware," ACM Transactions on Graphics, vol. 23, 
pp. 777-786, 2004
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Perumalla, K. S. B. Aaby, S. Yoginath, and S. Seal (2009). 
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EvolutionEvolution

Graphics as Computation
SIMD Execution
Add-on vs. Packaged
Co-Processor vs. 
Processor

Graphics as Computation
SIMD Execution
Add-on vs. Packaged
Co-Processor vs. 
Processor
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Graphics as ComputationGraphics as Computation

Programmable graphics primitives

E.g., pixel shading such as bump 
mapping and patterned texture mapping
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Computation on GPUs (PreComputation on GPUs (Pre--CUDA)CUDA)

Mapping computational concepts to graphics
Array   => Texture
Kernel => Fragment Program
Feedback => Copy To Texture (Read Pixels w/  FBO)
Data Stream => Draw Graphic

Mapping computational concepts to graphics
Array   => Texture
Kernel => Fragment Program
Feedback => Copy To Texture (Read Pixels w/  FBO)
Data Stream => Draw Graphic

Array[16] =
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  

Texture[4][4]
GPU (Cg language) code:
float  main(.......): COLOR 
{
half neighborAVG    =   (

( h4texRECT(MoodState, texCoord + half2( 0,-1)).x) +
( h4texRECT(MoodState, texCoord + half2(-1, 0)).x) +
( h4texRECT(MoodState, texCoord + half2( 0, 1)).x) +
( h4texRECT(MoodState, texCoord + half2( 1, 0)).x) +
( h4texRECT(MoodState, texCoord + half2(-1,-1)).x) +
( h4texRECT(MoodState, texCoord + half2(-1, 1)).x) +
( h4texRECT(MoodState, texCoord + half2( 1, 1)).x) +
( h4texRECT(MoodState, texCoord + half2( 1,-1)).x)

)*0.125;
return neighborAVG;
}

Usual CPU (C language) code
for (int i=0; i<N; i += 4)
{
if(!(0> (i -texSize*4 -

 

4) || (i + (texSize*4)) > N))
{
....................
float AVG  = (
dataY[i

 

-

 

(texSize*4) -

 

4] + 
dataY[i

 

-

 

(texSize*4)] + 
dataY[i

 

-

 

(texSize*4) + 4] +
dataY[i-4] +
dataY[i+4] + 
dataY[i+ (texSize*4) -

 

4] + 
dataY[i

 

+ (texSize*4)] +
dataY[i

 

+ (texSize*4) + 4]
)*0.125;
dataY[i] =AVG;
}

}

CPU

Fragment Processor

Texture Memory
Read Pixels

Copy to 
Texture
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SIMD ExecutionSIMD Execution

Single Instruction Multiple Data 
(SIMD) is a style of parallel 
execution 
Identical operation A is 
executed on multiple 
processors simultaneously
Each operation A[p] on 
processor p operates on a 
distinct data set M[p]
Conceptually, the operation 
A is complete only when all 
processors complete their 
operation A[p] on M[p]
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distinct data set M[p]
Conceptually, the operation 
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operation A[p] on M[p]
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SIMD Execution (continued)SIMD Execution (continued)
Excellent paradigm for processing 
large data sets

For items that are mostly independent 
from each other yet undergo identical 
processing

However, important implications 
to bear in mind

If A[p] takes different amount of time 
depending on M[p], then the time to 
complete A is the maximum time among 
all A[p]

If M[p1] and M[p2] overlap for some 
processors p1 and p2, then (a) results 
may be undefined, depending on read-
write hazards, and (b) A[p1] and A[p2]
may be serialized, thereby decreasing 
performance

Excellent paradigm for processing 
large data sets

For items that are mostly independent 
from each other yet undergo identical 
processing
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If A[p] takes different amount of time 
depending on M[p], then the time to 
complete A is the maximum time among 
all A[p]

If M[p1] and M[p2] overlap for some 
processors p1 and p2, then (a) results 
may be undefined, depending on read-
write hazards, and (b) A[p1] and A[p2]
may be serialized, thereby decreasing 
performance
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AddAdd--on vs. Packaged: To Get Startedon vs. Packaged: To Get Started

GPU-based systems can be built by adding a 
programmable GPU to a system

User can enhance a conventional CPU-based system
User needs to customize installation (software, drivers, etc.)
E.g., purchase NVIDIA GTX 300, install to a high-end desktop

GPU-based systems can be built by adding a 
programmable GPU to a system

User can enhance a conventional CPU-based system
User needs to customize installation (software, drivers, etc.)
E.g., purchase NVIDIA GTX 300, install to a high-end desktop

Alternatively, complete, customized systems available
Properly packaged with the best chipsets, cooling & power 
supplies, drivers, software, and development environments
Often, better value for price, if high-end configuration needed
E.g., NVIDIA Tesla

Alternatively, complete, customized systems available
Properly packaged with the best chipsets, cooling & power 
supplies, drivers, software, and development environments
Often, better value for price, if high-end configuration needed
E.g., NVIDIA Tesla
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CoCo--Processor vs. ProcessorProcessor vs. Processor

Tail wagging the dog?
Conventional CPU-processor and GPU co-processor relation
In some applications, GPU may be the main workhorse

GPU may have to be viewed as semi-equal to CPU
Trends indicate they will merge (see “Future”)

Tail wagging the dog?
Conventional CPU-processor and GPU co-processor relation
In some applications, GPU may be the main workhorse

GPU may have to be viewed as semi-equal to CPU
Trends indicate they will merge (see “Future”)

Note, GPUs are similar to other co-processors
Network co-processors
Physics co-processors

However, GPUs have one major advantage
Mass consumer market: end-users, multi-media, and gaming industries

Note, GPUs are similar to other coNote, GPUs are similar to other co--processorsprocessors
Network coNetwork co--processorsprocessors
Physics coPhysics co--processorsprocessors

However, GPUs have one major advantageHowever, GPUs have one major advantage
Mass consumer market: endMass consumer market: end--users, multiusers, multi--media, and gaming industriesmedia, and gaming industries
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Instantiations Instantiations –– A Few Popular A Few Popular 
ExamplesExamples

Commercial Offerings
IBM Cell Processor
NVIDIA GeForce, GTX
NVIDIA Tesla

Supercomputing Scale
LANL RoadRunner

Commercial Offerings
IBM Cell Processor
NVIDIA GeForce, GTX
NVIDIA Tesla

Supercomputing Scale
LANL RoadRunner
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IBM Cell ProcessorIBM Cell Processor

Highly successful, path-blazing chip
Large market use

Entertainment systems
Gaming systems (Sony playstation)

Highly successful, pathHighly successful, path--blazing chipblazing chip
Large market useLarge market use

Entertainment systemsEntertainment systems
Gaming systems (Sony Gaming systems (Sony playstationplaystation))
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NVIDIA GeForce, GTXNVIDIA GeForce, GTX

Original GeForce 6000, 7000, 8000, 
and 9000 series

Latest GTX 295

Upcoming GTX 300

Original GeForce 6000, 7000, 8000, Original GeForce 6000, 7000, 8000, 
and 9000 seriesand 9000 series

Latest GTX 295Latest GTX 295

Upcoming GTX 300Upcoming GTX 300

Affordable, off-the-shelf
Power-hungry!

Double PCI-e power connections

Heat generating
Special cooling needs
E.g., liquid-cooled gaming systems

Affordable, off-the-shelf
Power-hungry!

Double PCI-e power connections

Heat generating
Special cooling needs
E.g., liquid-cooled gaming systems
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NVIDIA TeslaNVIDIA Tesla

An example of a packaged solution

Single seamless, finely-tuned 
system with multiple GPUs and 
software environment

"Tera-FLOP under your desk"

An example of a packaged solutionAn example of a packaged solution

Single seamless, finelySingle seamless, finely--tuned tuned 
system with multiple GPUs and system with multiple GPUs and 
software environmentsoftware environment

""TeraTera--FLOP under your desk"FLOP under your desk"
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LANL LANL RoadRunnerRoadRunner

Peta-FLOP supercomputer at the Los 
Alamos National Laboratory

System based on IBM Cell processor 
(and AMD Opteron) architecture

Topped the supercomputing charts in 
2008

SIMD co-processor execution realized 
in the extreme

A few niche applications

E.g., Molecular Dynamics

PetaPeta--FLOP supercomputer at the Los FLOP supercomputer at the Los 
Alamos National LaboratoryAlamos National Laboratory

System based on IBM Cell processor System based on IBM Cell processor 
(and AMD Opteron) architecture(and AMD Opteron) architecture

Topped the supercomputing charts in Topped the supercomputing charts in 
20082008

SIMD coSIMD co--processor execution realized processor execution realized 
in the extremein the extreme

A few niche applicationsA few niche applications

E.g., Molecular DynamicsE.g., Molecular Dynamics
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Basic GPUBasic GPU--based Algorithmsbased Algorithms

Sorting, Reduction
Linear Algebra
Stencil Computation
Fast Fourier Transforms
Computational Geometry
…

Sorting, Reduction
Linear Algebra
Stencil Computation
Fast Fourier Transforms
Computational Geometry
…
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Sorting, ReductionSorting, Reduction

Much of the early GPGPU work
Focused on effective sorting and 
reduction on GPUs

Well understood implementation
Sequence of cumulative 
optimizations for best performance

Different realizations
Early implementations in Brook 
(e.g., reduce keyword)
Later architecture-aware, efficient 
realizations in CUDA

Essentially based on recursive, 
data-parallel formulations

Much of the early GPGPU work
Focused on effective sorting and 
reduction on GPUs

Well understood implementation
Sequence of cumulative 
optimizations for best performance

Different realizations
Early implementations in Brook 
(e.g., reduce keyword)
Later architecture-aware, efficient 
realizations in CUDA

Essentially based on recursive, 
data-parallel formulations

Reduction operation is an important 
building block

Any commutative, associative operator 
applied on multiple data (array)

E.g., Min, Max, Sum

Quick data-parallel sweep after 
independent data-parallel operations

In discrete-event simulation on GPUs, 
essential for min-time computation

Support exists for very fast, highly 
optimized implementations

Language-level, or library-based

Reduction operation is an important 
building block

Any commutative, associative operator 
applied on multiple data (array)

E.g., Min, Max, Sum

Quick data-parallel sweep after 
independent data-parallel operations

In discrete-event simulation on GPUs, 
essential for min-time computation

Support exists for very fast, highly 
optimized implementations

Language-level, or library-based

Reductions very useful in debugging 
large simulations

E.g., Verify conservation of persons 
(live+dead), or flux (heat), etc.

Reductions very useful in debugging 
large simulations

E.g., Verify conservation of persons 
(live+dead), or flux (heat), etc.



27

Linear AlgebraLinear Algebra

Examples

E. S. Larsen and D. McAllister, "Fast Matrix Multiplies using Graphics Hardware," in 
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, 2001

Jens Kruger, "Linear Algebra on GPUs," in ACM SIGGRAPH 2005 Courses, 2005.

ExamplesExamples

E. S. Larsen and D. McAllister, "Fast Matrix Multiplies using GrE. S. Larsen and D. McAllister, "Fast Matrix Multiplies using Graphics Hardware," in aphics Hardware," in 
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, 2Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, 2001001

Jens Kruger, "Linear Algebra on GPUs," in ACM SIGGRAPH 2005 CourJens Kruger, "Linear Algebra on GPUs," in ACM SIGGRAPH 2005 Courses, 2005.ses, 2005.

Benefits
Good use of co-processor and additional memory
Useful when single precision (32-bit) arithmetic is 
sufficient
Mixed-precision linear algebra possible by combining 
GPU and CPU

Benefits
Good use of co-processor and additional memory
Useful when single precision (32-bit) arithmetic is 
sufficient
Mixed-precision linear algebra possible by combining 
GPU and CPU
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Stencil ComputationStencil Computation

Much of physical (mesh/cell-based) models 
computation built on “stencils”

E.g., fluid dynamics simulations, FDTD

Highly suited for GPUs
Great locality, read-only neighborhood, 
immense data-parallelism

Performance gains from historic design
Optimizations for textures and 
programmable surfaces

Much of physical (mesh/cell-based) models 
computation built on “stencils”

E.g., fluid dynamics simulations, FDTD

Highly suited for GPUs
Great locality, read-only neighborhood, 
immense data-parallelism

Performance gains from historic design
Optimizations for textures and 
programmable surfaces

Very useful in agent-based simulation on GPUs

Stencil for neighborhood-based state updates

But, additional functionality needed (for 
birth/death, mobility)

Very useful in agentVery useful in agent--based simulation on GPUsbased simulation on GPUs

Stencil for neighborhoodStencil for neighborhood--based state updatesbased state updates

But, additional functionality needed (for But, additional functionality needed (for 
birth/death, mobility)birth/death, mobility)
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Fast Fourier TransformsFast Fourier Transforms

2-D and 3-D FFT Computations
Much attention recently on highly 
optimized FFT using SIMD 
architectures
Most action is in maximizing the 
use of available bandwidth

2-D and 3-D FFT Computations
Much attention recently on highly 
optimized FFT using SIMD 
architectures
Most action is in maximizing the 
use of available bandwidth

Examples: Two publications in Proceedings of Supercomputing'08
Remark: Power-of-2 vs. Non-power-of-2 performance can be quite different

Examples: Two publications in Proceedings of Supercomputing'08Examples: Two publications in Proceedings of Supercomputing'08
Remark: PowerRemark: Power--ofof--2 vs. Non2 vs. Non--powerpower--ofof--2 performance can be quite different2 performance can be quite different
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Computational GeometryComputational Geometry

Exploiting certain hardware 
features of GPUs

E.g., depth-based culling

For speeding up 
computational geometry 
problems

E.g, Vornoi diagrams, and 
distance fields

Exploiting certain hardware 
features of GPUs

E.g., depth-based culling

For speeding up 
computational geometry 
problems

E.g, Vornoi diagrams, and 
distance fields
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SoftwareSoftware

OpenGL, Cg
Brook, CUDA, Stream

OpenGL, Cg
Brook, CUDA, Stream
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OpenGL, CgOpenGL, Cg

Combination of OpenGL 
(Open Graphics Language) 
and Cg (C for graphics)
Re-used for general-purpose 
computation on GPUs

Combination of OpenGL 
(Open Graphics Language) 
and Cg (C for graphics)
Re-used for general-purpose 
computation on GPUs
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Example of Cg Kernel CodeExample of Cg Kernel Code

Game of Life Cg Kernel

“C like” Language

Kernel executed on all 
texture RGBA texels

half4  Phase1Kernel
(

half2 texCoord

 

: TEXCOORD0,
uniform half4       globalConstants,
uniform samplerRECT

 

stateTex,
uniform samplerRECT

 

constantsTex,
uniform samplerRECT

 

scratchTex,
uniform samplerRECT

 

constantsTex2,
uniform samplerRECT

 

scratchTex2
) : COLOR
{

half4 OUT = h4texRECT(stateTex, texCoord);
half surCount

 

= (
( h4texRECT(stateTex, texCoord

 

+ half2( 0,-1)).x) +
( h4texRECT(stateTex, texCoord

 

+ half2(-1, 0)).x) +
( h4texRECT(stateTex, texCoord

 

+ half2( 0, 1)).x) +
( h4texRECT(stateTex, texCoord

 

+ half2( 1, 0)).x) +
( h4texRECT(stateTex, texCoord

 

+ half2(-1,-1)).x) +
( h4texRECT(stateTex, texCoord

 

+ half2(-1, 1)).x) +
( h4texRECT(stateTex, texCoord

 

+ half2( 1, 1)).x) +
( h4texRECT(stateTex, texCoord

 

+ half2( 1,-1)).x)
);

OUT.y

 

= surCount;
OUT.z

 

= OUT.x;
OUT.x

 

= (OUT.x) ?   (surCount

 

<= 1 || surCount

 

>= 4) ? 0.0 : OUT.x):((surCount

 

== 3 ) ? 1.0 : OUT.x);

return OUT;
}

Kernel arguments
-Textures and constants

Computation
-Query Moore neighborhood for live cells

Return value
-Ternary 
operator
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Brook, CUDA, StreamBrook, CUDA, Stream

Brook language from Stanford served 
as trailblazer

Automatically generated code for 
combinations of compiled and interpreted 
execution on GPU

Supported multiple runtime interfaces for 
GPU (DirectX, OpenGL, Emulated)

CUDA generalized more, enhanced, 
abstracted, and standardized several 
of Brook's features
Other stream processing languages 
and runtimes appeared (and largely 
disappeared!)

Brook language from Stanford served 
as trailblazer

Automatically generated code for 
combinations of compiled and interpreted 
execution on GPU

Supported multiple runtime interfaces for 
GPU (DirectX, OpenGL, Emulated)

CUDA generalized more, enhanced, 
abstracted, and standardized several 
of Brook's features
Other stream processing languages 
and runtimes appeared (and largely 
disappeared!)
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NVIDIA CUDANVIDIA CUDA

NVIDIA’s successor to Cg and GPGPU research
Compute Unified Device Architecture (CUDA)

“C like” in syntax and structure
Allows asynchronous gather/scatter unlike Cg
Provides relatively low-level access
• On-chip “shared” memory and registers for fast reads/writes as well as 

constant texture memory and off-chip global memory 

Exposes notion of concurrent threads in “thread blocks”
Multi-GPU support

NVIDIA’s successor to Cg and GPGPU research
Compute Unified Device Architecture (CUDA)

“C like” in syntax and structure
Allows asynchronous gather/scatter unlike Cg
Provides relatively low-level access
• On-chip “shared” memory and registers for fast reads/writes as well as 

constant texture memory and off-chip global memory

Exposes notion of concurrent threads in “thread blocks”
Multi-GPU support
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NVIDIA CUDA Installation OutlineNVIDIA CUDA Installation Outline

Requires NVIDIA 8 series card or newer, e.g. 8800GTX
Download appropriate driver (includes CUDA support)
Install CUDA Toolkit and SDK 
http://www.nvidia.com/object/cuda_get.html

All projects in Microsoft Visual Studio format (Windows)
Makefiles and examples included for *nix

32-bit and 64-bit architecture support
New projects can be built off of template project included in 
the SDK

Requires NVIDIA 8 series card or newer, e.g. 8800GTX
Download appropriate driver (includes CUDA support)
Install CUDA Toolkit and SDK 
http://www.nvidia.com/object/cuda_get.html

All projects in Microsoft Visual Studio format (Windows)
Makefiles and examples included for *nix

32-bit and 64-bit architecture support
New projects can be built off of template project included in 
the SDK

http://www.nvidia.com/object/cuda_get.html


37

ApplicationsApplications

Benefits for Parallel Simulations
Common GPU Applications
Non-Traditional GPU Applications

Benefits for Parallel Simulations
Common GPU Applications
Non-Traditional GPU Applications
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BenefitsBenefits 
(in Context of Parallel Simulations)(in Context of Parallel Simulations)

Real-time Execution
Computation “Close to Visualization”
Cheaper High-Performance

Real-time Execution
Computation “Close to Visualization”
Cheaper High-Performance
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RealReal--time Executiontime Execution

Analogous to what digital signal processing did for 
their applications (image/speech processing)
Fast execution, approaching many “frames per second”
Interactive visual simulations possible

Freeing CPU for user interface and customization activities
Example: Real-time or faster execution of vehicular transport 
simulations on large networks

Applications can be run on end-user, low-end machines

Analogous to what digital signal processing did for 
their applications (image/speech processing)
Fast execution, approaching many “frames per second”
Interactive visual simulations possible

Freeing CPU for user interface and customization activities
Example: Real-time or faster execution of vehicular transport 
simulations on large networks

Applications can be run on end-user, low-end machines
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Computation Computation ““Close to VisualizationClose to Visualization””
A natural benefit: computation done closest to display
Little data transfer overhead (from simulation memory 
to display frame buffer) compared to CPU-based 
simulation
Post-processing for customized visualization and 
animation naturally possible

A natural benefit: computation done closest to display
Little data transfer overhead (from simulation memory 
to display frame buffer) compared to CPU-based 
simulation
Post-processing for customized visualization and 
animation naturally possible

CPUCPU

GPUGPU DisplayDisplayMemoryMemory
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Cheaper HighCheaper High--PerformancePerformance

Much literature debates the performance to cost ratio
Majority believes GPU is cheaper than CPU

But this may change
Or is already changing (E.g., multi-core processors)

Much of the ratio difference due to market economics 
than fundamental technical reasons
For niche (highly data-parallel) applications, GPU is 
certainly better

Cheaper by up to 1 order, faster by up to 2 orders, in some 
demonstrations

Much literature debates the performance to cost ratio
Majority believes GPU is cheaper than CPU

But this may change
Or is already changing (E.g., multi-core processors)

Much of the ratio difference due to market economics 
than fundamental technical reasons
For niche (highly data-parallel) applications, GPU is 
certainly better

Cheaper by up to 1 order, faster by up to 2 orders, in some 
demonstrations
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Common GPU ApplicationsCommon GPU Applications

Too many to list!
Applications to GPUs have proliferated in past ~7 years
You name X, you’ll find “X on GPUs” in the literature

Too many to list!
Applications to GPUs have proliferated in past ~7 years
You name X, you’ll find “X on GPUs” in the literature
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NonNon--Traditional GPU ApplicationsTraditional GPU Applications

Agent Based Simulations
Transportation 
Simulations
Network Simulation

Agent Based Simulations
Transportation 
Simulations
Network Simulation
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Agent Based SimulationsAgent Based Simulations

Examples:
K. S. Perumalla and B. Aaby, "Data 
Parallel Execution Challenges and 
Runtime Performance of Agent 
Simulations on GPUs," in Agent-
Directed Simulation Symposium, 2008
R. D'Souza, M. Lysenko, and K. 
Rehmani, "SugarScape on Steroids: 
Simulating Over a Million Agents at 
Interactive Rates," in AGENT 
Conference on Complex Interaction and 
Social Emergence, 2007

Examples:
K. S. Perumalla and B. Aaby, "Data 
Parallel Execution Challenges and 
Runtime Performance of Agent 
Simulations on GPUs," in Agent-
Directed Simulation Symposium, 2008
R. D'Souza, M. Lysenko, and K. 
Rehmani, "SugarScape on Steroids: 
Simulating Over a Million Agents at 
Interactive Rates," in AGENT 
Conference on Complex Interaction and 
Social Emergence, 2007
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Transportation SimulationsTransportation Simulations

Example:
K. S. Perumalla, B. G. Aaby, S. 
B. Yoginath, and S. K. Seal, 
"GPU-based Real-Time 
Execution of Vehicular Mobility 
Models in Large-Scale Road 
Network Scenarios," in 
Principles of Advanced and 
Distributed Simulation, 2009

Example:
K. S. Perumalla, B. G. Aaby, S. 
B. Yoginath, and S. K. Seal, 
"GPU-based Real-Time 
Execution of Vehicular Mobility 
Models in Large-Scale Road 
Network Scenarios," in 
Principles of Advanced and 
Distributed Simulation, 2009



46

Network SimulationNetwork Simulation

Example:
Z. Xu and R. Bagrodia, "GPU-Accelerated Evaluation Platform for High 
Fidelity Network Modeling," in Principles of Advanced and Distributed 
Simulation, 2007

Example:
Z. Xu and R. Bagrodia, "GPU-Accelerated Evaluation Platform for High 
Fidelity Network Modeling," in Principles of Advanced and Distributed 
Simulation, 2007
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DevelopmentDevelopment

Debugging
Testing
Performance Tuning

Debugging
Testing
Performance Tuning
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Basic ConceptsBasic Concepts

Execution Contexts and 
Kernel Functions
Inter-Memory Data 
Transfers
Launching GPU Threads
Synchronization, 
Coordination, Termination

Execution Contexts and 
Kernel Functions
Inter-Memory Data 
Transfers
Launching GPU Threads
Synchronization, 
Coordination, Termination
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CPU

GPU (SIMD)

Execution Contexts and Kernel Execution Contexts and Kernel 
FunctionsFunctions

Main()
{
K<<<N,M>>>(params)
}

__global__ K(params)
{

…H()…
}
__device__ H(params)
{

…
}

__global__ K(params)
{

…H()…
}
__device__ H(params)
{

…
}

…

Kernel functions typically tagged with qualifier keywords by the user (e.g., __global__ or __kernel__)

Kernel functions execute within the GPU context

Kernel functions typically tagged with qualifier keywords by the user (e.g., __global__ or __kernel__)

Kernel functions execute within the GPU context

Each invocation of 
the kernel function 
(in this example, 
K()) starts a 
“thread” on each 
SIMD unit

Threads may be 
organized as 
“blocks”; each 
thread thus has a 
block identifier and 
thread identifier
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Software vs. Hardware Views Software vs. Hardware Views 
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Software vs. Hardware Views Software vs. Hardware Views 
GPU Languages and APIs
E.g., CUDA

Blocks and Threads
Memory Types
Kernels and variable types 
and qualifiers

GPU Languages and APIsGPU Languages and APIs
E.g., CUDAE.g., CUDA

Blocks and ThreadsBlocks and Threads
Memory TypesMemory Types
Kernels and variable types Kernels and variable types 
and qualifiersand qualifiers

GPU Chips
E.g., GTX 200 & 300 series

Thread Processing Clusters
Streaming Multi-processors
Streaming Processors
Register files, DPUs, SFUs, 
Memory

GPU Chips
E.g., GTX 200 & 300 series

Thread Processing Clusters
Streaming Multi-processors
Streaming Processors
Register files, DPUs, SFUs, 
Memory

Contrast to CPU
E.g., Intel & AMD CPUs

Symmetric SM Multiprocessor sockets

Mult-core processors

Registers, ALUs, L1/2/3 Caches

Contrast to CPUContrast to CPU
E.g., Intel & AMD CPUsE.g., Intel & AMD CPUs

Symmetric SM Multiprocessor socketsSymmetric SM Multiprocessor sockets

MultMult--core processorscore processors

Registers, Registers, ALUsALUs, L1/2/3 Caches, L1/2/3 Caches

Contrast to CPU
E.g., C/C++

Processes, threads

Process-memory, shared memory

Stacks, heaps, function frames

Contrast to CPUContrast to CPU
E.g., C/C++E.g., C/C++

Processes, threadsProcesses, threads

ProcessProcess--memory, shared memorymemory, shared memory

Stacks, heaps, function framesStacks, heaps, function frames
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InterInter--Memory Data TransfersMemory Data Transfers

A fact of life in almost all current GPU systems
Many different notions and types of memory used

Data transfer is one of the most taxing issues
More later, on this issue

A fact of life in almost all current GPU systems
Many different notions and types of memory used

Data transfer is one of the most taxing issues
More later, on this issue
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Launching GPU ThreadsLaunching GPU Threads

Host initiates “launch” of 
many SIMD threads
Threads get “scheduled” in 
batches on GPU hardware
CUDA claims extremely 
efficient thread-launch 
implementation

Insignificant cost even for 
launching millions of CUDA 
(SIMD) threads at once

Host initiates “launch” of 
many SIMD threads
Threads get “scheduled” in 
batches on GPU hardware
CUDA claims extremely 
efficient thread-launch 
implementation

Insignificant cost even for 
launching millions of CUDA 
(SIMD) threads at once
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Synchronization, Coordination, Synchronization, Coordination, 
TerminationTermination

CPU-GPU synchronization
Multi-GPU coordination
Intra-GPU, inter-block synchronization
Intra-block synchronization
CPU-side termination

CPU-GPU synchronization
Multi-GPU coordination
Intra-GPU, inter-block synchronization
Intra-block synchronization
CPU-side termination



Part IIPart II

Important Computational 
Considerations
Time-stepped, Discrete-
Event, and Hybrid 
Simulations
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Computational ConsiderationsComputational Considerations

Memory Hierarchy
Scheduling
Synchronization
SIMD Constraints
Numerical Effects
Platform Limitations

Memory Hierarchy
Scheduling
Synchronization
SIMD Constraints
Numerical Effects
Platform Limitations
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Memory HierarchyMemory Hierarchy

CPU Memory vs. GPU 
Memory
GPU Memory Types
Bank Conflicts, 
Bandwidth

CPU Memory vs. GPU 
Memory
GPU Memory Types
Bank Conflicts, 
Bandwidth
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CPU Memory vs. GPU MemoryCPU Memory vs. GPU Memory

Almost all GPU systems so far are co-processor-style 
architectures

A traditional CPU augmented by one or more GPUs

In the fastest GPU systems, CPU memory is distinct from GPU 
memory

For least CPU-GPU synchronization, and
For the best VLSI layout of memory + processors on GPU

For the next 3-4 years (in my opinion), main-memory vs. GPU-
memory distinction is a necessary evil

Until future architectures change this, with “heterogeneous multi-cores”

Almost all GPU systems so far are co-processor-style 
architectures

A traditional CPU augmented by one or more GPUs

In the fastest GPU systems, CPU memory is distinct from GPU 
memory

For least CPU-GPU synchronization, and
For the best VLSI layout of memory + processors on GPU

For the next 3-4 years (in my opinion), main-memory vs. GPU-
memory distinction is a necessary evil

Until future architectures change this, with “heterogeneous multi-cores”
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GPU Memory TypesGPU Memory Types

GPU memory may come in 
several flavors

Registers
Local Memory
Shared Memory
Constant Memory
Global Memory
Texture Memory

An important challenge is 
organizing the application to 
make most effective use of 
hierarchy

GPU memory may come in 
several flavors

Registers
Local Memory
Shared Memory
Constant Memory
Global Memory
Texture Memory

An important challenge is 
organizing the application to 
make most effective use of 
hierarchy
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GPU Memory Types (NVIDIA)GPU Memory Types (NVIDIA)

Memory Type Speed Scope Lifetime Size
Registers Fastest (4 cycles) Thread Kernel
Shared Memory Very fast (4 -? cycles) Block Thread
Global Memory 100x slower (400- cycles) Device Process
Local Memory 150x slower (600 cycles) Block Thread
Texture Memory Fast (10s of cycles) Device Process
Constant Memory Fairly fast (read-only) Device Process
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Bank Conflicts, BandwidthBank Conflicts, Bandwidth
“Bank conflicts" a direct implication of SIMD 
execution accessing multiple memory banks

Suppose an operation A is executed in parallel on 
multiple SIMD processors
Let the instance of A on processor p be denoted 
by A[p], accessing a memory location M[A[p]]
hosted on memory bank B[A[p]]
If all B[A[p]] are distinct from each other, then, no 
bank conflict occurs
If any two or more B[A[p]] are same, those 
memory accesses get serialized on that bank

Performance may degrade by a factor of W
If worst conflict has W processors accessing the 
same bank
Because all other processors have to stall for W
units of memory access time (compared to 1 unit 
without conflicts)

“Bank conflicts" a direct implication of SIMD 
execution accessing multiple memory banks

Suppose an operation A is executed in parallel on 
multiple SIMD processors
Let the instance of A on processor p be denoted 
by A[p], accessing a memory location M[A[p]]
hosted on memory bank B[A[p]]
If all B[A[p]] are distinct from each other, then, no 
bank conflict occurs
If any two or more B[A[p]] are same, those 
memory accesses get serialized on that bank

Performance may degrade by a factor of W
If worst conflict has W processors accessing the 
same bank
Because all other processors have to stall for W
units of memory access time (compared to 1 unit 
without conflicts)

SIMD 
Processors

Memory 
banks

No conflicts (1-1)

No conflicts (permutation)

Bank conflicts
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SchedulingScheduling

Thread Launch Cost
Thread-Count Effects

Thread Launch Cost
Thread-Count Effects
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Thread Launch CostThread Launch Cost

Amortize thread launch cost
Although launch may be low-cost

Perform more operations within 
one kernel invocation (thread)

Aggregate functionality that does 
not require global synchronization
Use local (block-level) 
synchronization if/as necessary

Amortize thread launch cost
Although launch may be low-cost

Perform more operations within 
one kernel invocation (thread)

Aggregate functionality that does 
not require global synchronization
Use local (block-level) 
synchronization if/as necessary
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ThreadThread--Count EffectsCount Effects

Threads are launched in batches 
to the stream processors

Fragment Processors and/or Vertex 
Processors of yesteryear GPUs
Batches are called Warps in CUDA

Each batch should contain 
sufficient threads to fill the 
number SIMD processing units 
on the GPU

High efficiency is achieved by 
asynchronous memory servicing, 
large Warp counts
Large number of blocks needed to 
overlap memory-fill latencies

Threads are launched in batches 
to the stream processors

Fragment Processors and/or Vertex 
Processors of yesteryear GPUs
Batches are called Warps in CUDA

Each batch should contain 
sufficient threads to fill the 
number SIMD processing units 
on the GPU

High efficiency is achieved by 
asynchronous memory servicing, 
large Warp counts
Large number of blocks needed to 
overlap memory-fill latencies



65

SynchronizationSynchronization

CPU-GPU Coordination
Intra-GPU Thread Coordination

CPU-GPU Coordination
Intra-GPU Thread Coordination
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CPUCPU--GPU CoordinationGPU Coordination

Flush GPU pipelines
Need to stall until GPU threads done

Otherwise, memory is in inconsistent state

Flush GPU pipelines
Need to stall until GPU threads done

Otherwise, memory is in inconsistent state
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IntraIntra--GPU Thread CoordinationGPU Thread Coordination

Threads need to coordinate on GPU 
across steps
CUDA only provides intra-block 
synchronization, but no inter-block 
synchronization

Often intra-block synchronization is useful 
in simulations, but difficult to implement 
efficiently

Threads need to coordinate on GPU 
across steps
CUDA only provides intra-block 
synchronization, but no inter-block 
synchronization

Often intra-block synchronization is useful 
in simulations, but difficult to implement 
efficiently
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SIMD ConstraintsSIMD Constraints

Conditional Statements
Looping
Random Number 
Generation
Bias and SIMD Conflict
Modeling Challenge

Conditional Statements
Looping
Random Number 
Generation
Bias and SIMD Conflict
Modeling Challenge
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Conditional StatementsConditional Statements

SIMD brings a natural challenge with conditional statements
The way in which the true and false branches of a conditional 
statement are executed by all GPU processors

Since data is different across processors, some processors P(true) may 
evaluate the condition to be true and the others P(false) find it false

SIMD needs all processors to execute same block of instructions
Hence all processors must execute the true branch first, during which only 
P(true) will execute the true branch, and P(false) will execute a no-op
Next, all P(false) execute the false branch, while P(true) execute a no-op

If most of the time P(true) or P(false) are empty, then 
performance is unaffected

E.g., when all processors evaluate the same truth value
Total time equals time for the chosen branch
Otherwise, total time taken is the sum of times for both branches together!

SIMD brings a natural challenge with conditional statements
The way in which the true and false branches of a conditional 
statement are executed by all GPU processors

Since data is different across processors, some processors P(true) may 
evaluate the condition to be true and the others P(false) find it false

SIMD needs all processors to execute same block of instructions
Hence all processors must execute the true branch first, during which only 
P(true) will execute the true branch, and P(false) will execute a no-op
Next, all P(false) execute the false branch, while P(true) execute a no-op

If most of the time P(true) or P(false) are empty, then 
performance is unaffected

E.g., when all processors evaluate the same truth value
Total time equals time for the chosen branch
Otherwise, total time taken is the sum of times for both branches together!



70

Data Values

SIMD Execution Sequence

Conditional Statements (continued)Conditional Statements (continued)

In general, best to minimize conditional statements in kernels
This can be done by invoking different kernels from the CPU itself, by 
carefully partitioning the data sets a priori

In general, best to minimize conditional statements in kernels
This can be done by invoking different kernels from the CPU itself, by 
carefully partitioning the data sets a priori

p=processor ID
If( B[p] )
{

DoTrue();
}
Else
{

DoFalse();
}

p=processor ID
If( B[p] )
{

DoTrue();
}
Else
{

DoFalse();
}

p=1
B[1]=True

p=1
B[1]=True

p=2
B[2]=True

p=2
B[2]=True

p=3
B[3]=False

p=3
B[3]=False

p=4
B[4]=True

p=4
B[4]=True

DoTrue() DoTrue() DoTrue()NoOp

NoOp NoOp NoOpDoTrue()
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LoopingLooping

Looping may be realized on CPU or GPU:
The loop in CPU calls a GPU kernel multiple times, once per CPU iteration
The CPU makes a single kernel call; a loop within the kernel performs the 
iterations on the GPU

In the first (CPU-loop), kernel invocation cost is incurred for 
every iteration (thread launch cost)

But all kernels are naturally synchronized after every iteration

In the second (GPU-loop), only one kernel invocation is involved
Saves thread launch cost for every iteration

But kernels need synchronization operation after every iteration

Not always possible (e.g, _syncthreads() is block-specific in CUDA)

Looping may be realized on CPU or GPU:
The loop in CPU calls a GPU kernel multiple times, once per CPU iteration
The CPU makes a single kernel call; a loop within the kernel performs the 
iterations on the GPU

In the first (CPU-loop), kernel invocation cost is incurred for 
every iteration (thread launch cost)

But all kernels are naturally synchronized after every iteration

In the second (GPU-loop), only one kernel invocation is involved
Saves thread launch cost for every iteration

But kernels need synchronization operation after every iteration

Not always possible (e.g, _syncthreads() is block-specific in CUDA)
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Random Number GenerationRandom Number Generation

Data parallelism implies one random number generator (RNG) 
per data/entity element
Small memory sizes implies small working set for RNG
Simple linear congruential generators may be sufficient for some
(agent-based models)
Mersienne Twister available in CUDA, but performance 
implications unclear on large agent models

Data parallelism implies one random number generator (RNG) 
per data/entity element
Small memory sizes implies small working set for RNG
Simple linear congruential generators may be sufficient for some
(agent-based models)
Mersienne Twister available in CUDA, but performance 
implications unclear on large agent models
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Bias and SIMD ConflictBias and SIMD Conflict

Data parallelism presents some fundamental conflicts
Data parallelism vs. Model specification
E.g., Segregation model

Certain ad-hoc schemes are possible, but can interfere with 
model needs

RUN DEMO

Data parallelism presents some fundamental conflicts
Data parallelism vs. Model specification
E.g., Segregation model

Certain ad-hoc schemes are possible, but can interfere with 
model needs

RUN DEMO

SEG
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BiBi--Partite Mapping Challenge (Data Parallel)Partite Mapping Challenge (Data Parallel)

Appears in ABM for modeling

Exclusion

Information propagation

Appears in ABM for modeling

Exclusion

Information propagation

Examples

Move

Infect

Spawn

Problem: Naïve approaches are inadequate
Priority-based schemes result in artificial bias

Semaphore-based schemes incur runtime overheads
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Randomized BiRandomized Bi--Partite: AlgorithmPartite: Algorithm

Pass 1: For each agent Aij
If Aij is a source

Do nothing
Else (Aij is a destination)

Within the neighborhood of vision v,
Randomly select a source

S (tentative)
Pass 2: For each agent Aij

If Aij is a source
Within the neighborhood of vision v,
Find the number of destination agents
who have picked Aij as their source

If the number is exactly equal to 1
Mark self as mapped to that
Unique destination

Else (Aij is a destination)
If this agent has a source selected

S(tentative)
Examine the neighborhood of S to

verify that Aij is the only
destination that selected S

If Aij is unique in selection of S
Mark self as mapped to that S



76

Modeling ChallengeModeling Challenge

Major challenge in moving from current CPU models to GPU
Often reformulation of model is required

E.g., field-based model for transportation

For maximum efficiency, irregular topologies must be converted 
to rectangular structures "somehow"

Major challenge in moving from current CPU models to GPU
Often reformulation of model is required

E.g., field-based model for transportation

For maximum efficiency, irregular topologies must be converted 
to rectangular structures "somehow"
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Major Hurdle: Computation ParadigmsMajor Hurdle: Computation Paradigms

CPU = Random memory access
GPGPU = Streams-based paradigm
GPU = Highly data-parallel (SIMD) paradigm

CPU = Random memory access
GPGPU = Streams-based paradigm
GPU = Highly data-parallel (SIMD) paradigm
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Fallout for DESFallout for DES

In general, unclear how to map LPs and events to 
GPGPU framework

Can’t update LP in isolation
Can’t execute “single event” individually

Stream LP states?
Stream events?  Only simultaneous ones?  Lookahead-
based window?  Multiple events/LP?

In general, unclear how to map LPs and events to 
GPGPU framework

Can’t update LP in isolation
Can’t execute “single event” individually

Stream LP states?
Stream events?  Only simultaneous ones?  Lookahead-
based window?  Multiple events/LP?
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Numerical EffectsNumerical Effects

Numerical Precision
Accuracy - Visual vs. Analytical

Numerical Precision
Accuracy - Visual vs. Analytical
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Numerical PrecisionNumerical Precision
In GPU evolution, numerical precision has been low, but has 
been improving
Newest NVIDIA processors have begun supporting double 
precision floating point

One double precision unit (DPU) per SM
64-bit arithmetic, from previous limitation of 32-bit arithmetic

Some limitations still exist, to be carefully considered
Examples

Double precision units are fewer than single precision units
In kernel invocations, silent conversion may happen
(double precision actual arguments from CPU to single precision formal 
arguments on GPU)

In GPU evolution, numerical precision has been low, but has 
been improving
Newest NVIDIA processors have begun supporting double 
precision floating point

One double precision unit (DPU) per SM
64-bit arithmetic, from previous limitation of 32-bit arithmetic

Some limitations still exist, to be carefully considered
Examples

Double precision units are fewer than single precision units
In kernel invocations, silent conversion may happen
(double precision actual arguments from CPU to single precision formal 
arguments on GPU)
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Accuracy Accuracy -- Visual vs. AnalyticalVisual vs. Analytical
GPU hardware is historically geared towards visual consumption

Floating point effects are not same as found on CPUs

Imprecision is less pronounced on latest generation of hardware
But lower precision data types usable in GPU languages

Special function units (SFU) have different algorithms
Different precision than CPU-equivalents for transcendental 
functions

GPU hardware is historically geared towards visual consumption
Floating point effects are not same as found on CPUs

Imprecision is less pronounced on latest generation of hardware
But lower precision data types usable in GPU languages

Special function units (SFU) have different algorithms
Different precision than CPU-equivalents for transcendental 
functions

For precision effects comparisons often need to account 
for imprecision, esp. in our simulations. For example, 
if( x == 1 ) {}

should be realized as
const float eps=1e-5; 
if( 1-eps < x && x < 1+eps ) {} 

For precision effects comparisons often need to account For precision effects comparisons often need to account 
for imprecision, esp. in our simulations. For example,for imprecision, esp. in our simulations. For example,
if( x == 1 ) {}if( x == 1 ) {}

should be realized asshould be realized as
const float const float epseps=1e=1e--5;5; 
if( 1if( 1--eps < x && x < 1+eps ) {}eps < x && x < 1+eps ) {}
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Platform LimitationsPlatform Limitations

Recursion
Thread Stack Sizes
Thread Pause/Resume

Recursion
Thread Stack Sizes
Thread Pause/Resume
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RecursionRecursion

Recursion occurs when a function (kernel) F invokes 
itself in a chain of function (kernel) invocations

Direct recursion example: F() { ... if() { ... F(); ... } ... }
Indirect recursion example: F() { ... G(); ...} G() { ... F(); ... }

Few GPU systems support recursion in GPU threads 
(kernels)
Most in fact "flatten" or "inline" the function call graph

E.g., via static analysis of function call chain
Perform memory allocation to fit the chain, all in the compiler
Hence, currently, only call chains of DAGs (directed acyclic 
graphs) or trees

Recursion occurs when a function (kernel) F invokes 
itself in a chain of function (kernel) invocations

Direct recursion example: F() { ... if() { ... F(); ... } ... }
Indirect recursion example: F() { ... G(); ...} G() { ... F(); ... }

Few GPU systems support recursion in GPU threads 
(kernels)
Most in fact "flatten" or "inline" the function call graph

E.g., via static analysis of function call chain
Perform memory allocation to fit the chain, all in the compiler
Hence, currently, only call chains of DAGs (directed acyclic 
graphs) or trees
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Thread Stack SizesThread Stack Sizes

Thread stack size are statically determined
Maximum stack size may be severely limited by the memory 
available on GPU

Typically to a few dozen kilo bytes per thread

For best efficiency and safety, may be best to avoid very long 
function (kernel) call-chains

Unlike in current day CPU-based software

Thread stack size are statically determined
Maximum stack size may be severely limited by the memory 
available on GPU

Typically to a few dozen kilo bytes per thread

For best efficiency and safety, may be best to avoid very long 
function (kernel) call-chains

Unlike in current day CPU-based software



85

Thread Pause/ResumeThread Pause/Resume

GPU threads are fully in-lined function call graphs
In almost all current GPU systems
Little support for pause/resume semantics of CPU-based threads

Major distinction to bear in mind while moving from CPU-based 
simulations to GPU-based simulation systems

Process-oriented simulations difficult to realize on GPUs

GPU threads are fully in-lined function call graphs
In almost all current GPU systems
Little support for pause/resume semantics of CPU-based threads

Major distinction to bear in mind while moving from CPU-based 
simulations to GPU-based simulation systems

Process-oriented simulations difficult to realize on GPUs
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Time Stepped & Discrete Event Time Stepped & Discrete Event 
SimulationSimulation

Time Stepped Simulation
Typical Usage Template
Time Advance on CPU
Time Advance on GPU

Time Stepped Simulation
Typical Usage Template
Time Advance on CPU
Time Advance on GPU

Discrete Event Simulation
Data parallel execution (SIMD) implies traditional event 
loop does not make sense
Cannot implement discrete event time leaps with 
conventional algorithm(s)
Need to revisit the application program interface (API), 
and refine it for GPUs

Discrete Event Simulation
Data parallel execution (SIMD) implies traditional event 
loop does not make sense
Cannot implement discrete event time leaps with 
conventional algorithm(s)
Need to revisit the application program interface (API), 
and refine it for GPUs
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SolutionsSolutions

Algorithms
Operation
Example and 
Performance Study

Algorithms
Operation
Example and 
Performance Study
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TS and DES: Example ApplicationTS and DES: Example Application

Simulation of Diffusion Processes
E.g., heat, dye, mood, disease, …

2-D scenario
Spatial grid along x, y axes

Study performance of time-stepped and discrete-event 
execution on CPU & GPGPU

Simulation of Diffusion Processes
E.g., heat, dye, mood, disease, …

2-D scenario
Spatial grid along x, y axes

Study performance of time-stepped and discrete-event 
execution on CPU & GPGPU
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TimeTime--stepped Approachstepped Approach

Advance simulation time in fixed increments, Δt 
Update entire grid state every Δt

Maps very easily to stream processing of GPGPUs

Advance simulation time in fixed increments, Δt 
Update entire grid state every Δt

Maps very easily to stream processing of GPGPUs
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Mapping Time Stepped Update to GPGPUMapping Time Stepped Update to GPGPU

FP

FP

FP

FP

Texture Memory

FP=Fragment Processor

Qij
n Qij

n+1
Q[i][j] = f( Q[i][j], 

Q[i-1][j], Q[i+1][j], 
Q[i][j+1], Q[i][j-1] ) 

Note: No read/write hazards

Q[i][j] = f( Q[i][j], 
Q[i-1][j], Q[i+1][j], 
Q[i][j+1], Q[i][j-1] )

Note: No read/write hazards

• Most existing GPGPU simulations are time-stepped!

• Shown to be much faster on GPGPU than on CPU



91

Experiment PlatformsExperiment Platforms

CPU: Centrino 2.1GHz, 2GB
GPU: NVIDIA GeForce 6800 Go, 256MB,

16 Fragment processors
CPU: Microsoft VC++ v7
GPU: Brook stream compiler,

DirectX 9 runtime

CPU: Centrino 2.1GHz, 2GB
GPU: NVIDIA GeForce 6800 Go, 256MB,

16 Fragment processors
CPU: Microsoft VC++ v7
GPU: Brook stream compiler,

DirectX 9 runtime
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TimeTime--stepped Performance on GPGPUstepped Performance on GPGPU
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• Performance relative to time-stepped code on CPU

• 2x implies TS on GPGPU is twice as fast as on CPU

Large caches of CPU help 
on small grid sizes

Streaming, 2-D caching and 
asynchronous memory 
operations of GPGPU help 
on large grid sizes
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But is it a fair comparison?But is it a fair comparison?

Time-stepped simulation on CPU is not the fastest 
method

Other methods exist
E.g., discrete event formulation

Time-stepped may favor GPGPU
Asynchronous memory operations, etc.

Let us compare with DES on CPU…

Time-stepped simulation on CPU is not the fastest 
method

Other methods exist
E.g., discrete event formulation

Time-stepped may favor GPGPU
Asynchronous memory operations, etc.

Let us compare with DES on CPU…
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Discrete Event Approach on CPUDiscrete Event Approach on CPU

Advance simulation time in variable increments
Each grid element is advanced independently

Solve for Δt, for a given resolution of Q (state space)

Maps to event list based simulation

Advance simulation time in variable increments
Each grid element is advanced independently

Solve for Δt, for a given resolution of Q (state space)

Maps to event list based simulation
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DiscreteDiscrete--Event Performance on CPUEvent Performance on CPU

• Performance relative to time-stepped code on CPU

• Clearly DES is much faster than TS

Little gain over TS

- Tight coupling across grid

High gain over TS

- Needless computation 
eliminated on larger grids
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How can we apply similar approach to How can we apply similar approach to 
GPGPU?GPGPU?

DES-style event list infeasible on GPGPU
Data parallel execution

But global reductions are very fast
Fast logarithmic reduction algorithms

Can reap the benefits of larger time advances
Without event lists, but with global advances

DES-style event list infeasible on GPGPU
Data parallel execution

But global reductions are very fast
Fast logarithmic reduction algorithms

Can reap the benefits of larger time advances
Without event lists, but with global advances
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Hybrid ApproachHybrid Approach
Compute upper bound on Δt for each element

Solve for Δt, for a given resolution of Q (state space)

Advance time by minimum Δt, update all elements
Maps to GPGPUs very well!

Compute upper bound on Δt for each element
Solve for Δt, for a given resolution of Q (state space)

Advance time by minimum Δt, update all elements
Maps to GPGPUs very well!
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CPU-Hybrid GPU-Hybrid
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CPU-Hybrid GPU-Hybrid

Hybrid Performance on GPGPU & CPUHybrid Performance on GPGPU & CPU

• Performance relative to time-stepped code on CPU

CPU much faster due to very 
large cache

- Small grid fits in cache!

High gain on larger grids

- Faster time advances 
enabled by hybrid execution
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Performance Study ResultPerformance Study Result

Performance gain from DES-style execution can be 
reaped on GPGPU as well

Using proper adaptation of DES to hybrid

GPGPU can give several fold improvement over CPU 
performance on plain TS as well as DES (hybrid)

GPU-Hybrid is 17× relative to TS-CPU!

Performance gain from DES-style execution can be 
reaped on GPGPU as well

Using proper adaptation of DES to hybrid

GPGPU can give several fold improvement over CPU 
performance on plain TS as well as DES (hybrid)

GPU-Hybrid is 17× relative to TS-CPU!
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Networked GPUs
Other Types of GPU Usage 
in Simulations
Future Developments and 
Outlook

Networked GPUs
Other Types of GPU Usage 
in Simulations
Future Developments and 
Outlook
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Networked GPUsNetworked GPUs

Hardware System
CUDA+MPI
Latency Challenge
B+2R Algorithm
Performance

Hardware System
CUDA+MPI
Latency Challenge
B+2R Algorithm
Performance
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Hierarchical GPU System HardwareHierarchical GPU System Hardware

Multi-Node 

Node (Multi-GPU)

GPU

Block ........ 

........Thread 

........
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Analogous Networked MultiAnalogous Networked Multi--core core 
Hardware SystemHardware System

 

Multi-Socket

Multi-Core 

Thread 

Multi-Node

........

........
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CUDA+MPICUDA+MPI

An economical cluster solution
Affordable GPUs, each providing one-node CUDA
MPI on giga-bit Ethernet provides inter-node communication

Memory speed-constrained system
Inter-memory transfers can dominate runtime
Runtime overhead can be severe

Need a way to tie CUDA and MPI
Algorithmic solution needed to overcome latency challenge

An economical cluster solution
Affordable GPUs, each providing one-node CUDA
MPI on giga-bit Ethernet provides inter-node communication

Memory speed-constrained system
Inter-memory transfers can dominate runtime
Runtime overhead can be severe

Need a way to tie CUDA and MPI
Algorithmic solution needed to overcome latency challenge
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Latency ChallengeLatency Challenge

High latency between GPU and CPU memories
CUDA inter-memory data transfer primitives

Very high latency across CPU memories
MPI communication for data transfers

Naïve method gives very poor computation to 
communication ratio

Slow-downs instead of speedups across distributed GPUs

High latency between GPU and CPU memories
CUDA inter-memory data transfer primitives

Very high latency across CPU memories
MPI communication for data transfers

Naïve method gives very poor computation to 
communication ratio

Slow-downs instead of speedups across distributed GPUs
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Example: Conventional MethodExample: Conventional Method
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Our B+2R MethodOur B+2R Method
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B+2R AlgorithmB+2R Algorithm
Let Te be total number of iterations in the simulation 
1 For all blocks Blockij in the given agent grid G 
1.1 Let (tli, tlj) be the top left index of Blockij 
1.2 Let (bri, brj) be the bottom right index of Blockij 
1.3 For t=0 to Te/R 
1.4 For r=R-1 down to 0 
1.5  Update( tli-r, tlj-r, bri+r, brj+r ) 
1.6 Communicate( tli, tlj, bri, brj, r ) 
1.7 Barrier()  

B

R 
B+2R 

R

Direction of error 
propagation in R 

B×B 
sub-block mapped 

to processing 
element p 

R layers of 
lagging cells 



109

B+2R Implementation within CUDAB+2R Implementation within CUDA

 

Split into b×b 
logical blocks 

Global memory 

.…

Shared memory 
per block 

B+2R 

b×b blocks 
R state updates 

R state updates 
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PerformancePerformance
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Other Types of GPU Usage in Other Types of GPU Usage in 
SimulationsSimulations

LOS Computation and 
Collision Detection
Numerical Integration
Linear Algebra

LOS Computation and 
Collision Detection
Numerical Integration
Linear Algebra
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LOS Computation and Collision LOS Computation and Collision 
DetectionDetection

Expensive computation such as line-of-sight (LOS) 
determination, and collision detection delegated to GPU
Highly data-parallel computation well-suited for SIMD 
architecture of GPUs
Examples

M. Verdesca, J. Munro, M. Hoffman, M. Bauer, and D. Manocha, 
"Using Graphics Processor Units to Accelerate OneSAF: A Case 
Study in Technology Transition," in Interservice/Industry Training, 
Simulation and Education Conference (IITSEC), 2005
Gress A., Guthe M., Klein R., "GPU-based Collision Detection for 
Deformable Parameterized Surfaces," in Computer Graphics 
Forum, 2006

Expensive computation such as line-of-sight (LOS) 
determination, and collision detection delegated to GPU
Highly data-parallel computation well-suited for SIMD 
architecture of GPUs
Examples

M. Verdesca, J. Munro, M. Hoffman, M. Bauer, and D. Manocha, 
"Using Graphics Processor Units to Accelerate OneSAF: A Case 
Study in Technology Transition," in Interservice/Industry Training, 
Simulation and Education Conference (IITSEC), 2005
Gress A., Guthe M., Klein R., "GPU-based Collision Detection for 
Deformable Parameterized Surfaces," in Computer Graphics 
Forum, 2006
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Numerical IntegrationNumerical Integration

Small memory foot-print, small time-step integrators are best suited 
for GPU platform

Example:
J. Gao, E. Ford, and J. Peters, "Parallel Integration of Planetary 
Systems on GPUs," in Proceedings of the 46th Annual Southeast 
Regional Conference on XX, 2008

Small memory foot-print, small time-step integrators are best suited 
for GPU platform

Example:
J. Gao, E. Ford, and J. Peters, "Parallel Integration of Planetary 
Systems on GPUs," in Proceedings of the 46th Annual Southeast 
Regional Conference on XX, 2008

Computation of forces in N-body problems may be viewed as direct 
numerical integration, performed on the GPUs
Integration can be off-loaded to the GPU as co-processor.
Dead-reckoning of entities (by integration schemes) in semi-
automated forces, for example, can be off-loaded to the GPUs (no 
citation yet!)

Computation of forces in N-body problems may be viewed as direct 
numerical integration, performed on the GPUs
Integration can be off-loaded to the GPU as co-processor.
Dead-reckoning of entities (by integration schemes) in semi-
automated forces, for example, can be off-loaded to the GPUs (no 
citation yet!)
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Linear AlgebraLinear Algebra

Matrix operations (multiplication or inversion) occur commonly inside 
a simulation, as part of simulation state updates.
Examples

Matrix operations within a state update of an entity (within a multi-scale, multi-
resolution simulation method)
Matrix operations across the entire simulation state (entire domain of a 
simulation using implicit methods)
These can be delegated to GPU as co-processors.

Matrix operations (multiplication or inversion) occur commonly inside 
a simulation, as part of simulation state updates.
Examples

Matrix operations within a state update of an entity (within a multi-scale, multi-
resolution simulation method)
Matrix operations across the entire simulation state (entire domain of a 
simulation using implicit methods)
These can be delegated to GPU as co-processors.

The speed of lower precision may be exploited.
Lower-precision arithmetic may be sufficient in some applications.
Single-precision or mixed-precision linear algebra is another key 
motivation for using GPUs for linear algebra

The speed of lower precision may be exploited.
Lower-precision arithmetic may be sufficient in some applications.
Single-precision or mixed-precision linear algebra is another key 
motivation for using GPUs for linear algebra
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Future Developments and OutlookFuture Developments and Outlook

OpenCL
Nexus, CUDA-C++, MSVC
Fermi/GTX300
Heterogeneous Cores
GPU-based 
Supercomputing
Packaged and 
Customized Solutions

OpenCL
Nexus, CUDA-C++, MSVC
Fermi/GTX300
Heterogeneous Cores
GPU-based 
Supercomputing
Packaged and 
Customized Solutions



116

OpenCLOpenCL

Open Computing Language
Device-independent programming (ideally!)
Apple-led effort
Gaining industry support
We may expect NVIDIA, Microsoft, IBM, Intel, AMD, and 
others to support it

Open Computing Language
Device-independent programming (ideally!)
Apple-led effort
Gaining industry support
We may expect NVIDIA, Microsoft, IBM, Intel, AMD, and 
others to support it
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Nexus, CUDANexus, CUDA--C++, MSVCC++, MSVC

New, “developer-friendly” environment from NVIDIA
Integration with Microsoft Visual Studio
Moving from C to C++ (CUDA already had some C++)

New, “developer-friendly” environment from NVIDIA
Integration with Microsoft Visual Studio
Moving from C to C++ (CUDA already had some C++)
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Fermi/GTX300Fermi/GTX300

Very recent offerings in the market
Among the most powerful commodity, off-the-shelf 
GPU-based systems

Very recent offerings in the market
Among the most powerful commodity, off-the-shelf 
GPU-based systems
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Heterogeneous CoresHeterogeneous Cores

Multi-cores all on die, but cores differ in functionality 
and capabilities
Many types of cores into one system

This is probably the medium- to long-term trend
Little distinction between current processor and co-
processor
Customizable and/or packaged multi-cores

Multi-cores all on die, but cores differ in functionality 
and capabilities
Many types of cores into one system

This is probably the medium- to long-term trend
Little distinction between current processor and co-
processor
Customizable and/or packaged multi-cores
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GPUGPU--based Supercomputingbased Supercomputing

Roadrunner-trend may continue
May not necessarily be based on IBM Cell processor

Already NVIDIA (Fermi)-based high-performance 
configurations being installed

One at ORNL/Georgia Tech led by Jeffrey Vetter

Roadrunner-trend may continue
May not necessarily be based on IBM Cell processor

Already NVIDIA (Fermi)-based high-performance 
configurations being installed

One at ORNL/Georgia Tech led by Jeffrey Vetter
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Packaged and Customized SolutionsPackaged and Customized Solutions

E.g., Mobile platforms, financial markets, data mining
E.g., Solutions marketed by Mercury Systems

E.g., Mobile platforms, financial markets, data mining
E.g., Solutions marketed by Mercury Systems



Thank you!Thank you!

Questions?

Slides will be made available 
online at www.ornl.gov/~2ip

http://www.ornl.gov/~2ip
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