
Introduction to Simulations Introduction to Simulations
on GPUson GPUs

Kalyan S. Perumalla, Ph.D.Kalyan S. Perumalla, Ph.D.
Senior ResearcherSenior Researcher
Oak Ridge National LaboratoryOak Ridge National Laboratory
Adjunct ProfessorAdjunct Professor
Georgia Institute of TechnologyGeorgia Institute of Technology

Tutorial
IEEE DS-RT, Singapore

Oct 25, 2009

2

Goals and Expected OutcomesGoals and Expected Outcomes
Intended for parallel simulation researchers
To familiarize with

Terminology
Essential concepts
Important considerations in GPU-based simulation

Basic concepts presented
“Make it work first, before making it work fast"

Primary focus on application-level needs and
benefits

Secondarily on computer science/novelty

Concepts presented mostly independent of
any particular system

Due to the rapidly-changing nature of GPU
hardware/systems horizon

Intended for parallel simulation researchers
To familiarize with

Terminology
Essential concepts
Important considerations in GPU-based simulation

Basic concepts presented
“Make it work first, before making it work fast"

Primary focus on application-level needs and
benefits

Secondarily on computer science/novelty

Concepts presented mostly independent of
any particular system

Due to the rapidly-changing nature of GPU
hardware/systems horizon

3

Tutorial Detail MapTutorial Detail Map

4

Tutorial Item SequenceTutorial Item Sequence
Overview and References
Part I

Introduction to GPUs
Applications
Development
Basic Concepts

Part II
Computational Considerations
Time Stepped Simulation
Discrete Event Simulation

Part III
Networked GPUs
Other uses in Simulation
Future

Overview and References
Part I

Introduction to GPUs
Applications
Development
Basic Concepts

Part II
Computational Considerations
Time Stepped Simulation
Discrete Event Simulation

Part III
Networked GPUs
Other uses in Simulation
Future

5

ScopeScope

Focus primarily on parallel simulations
Does not cover the vast GPU literature
on non-simulation applications

E.g., data analysis, stream processing,
and mathematical programming

Aimed at simulation researchers,
architects, and developers

E.g., As a quick primer, for research to
be later pursued in greater detail

Introduces core concepts, terminology,
and salient GPU features

Additional detail obtainable on the
Web, and from GPU books and
publications

Focus primarily on parallel simulations
Does not cover the vast GPU literature
on non-simulation applications

E.g., data analysis, stream processing,
and mathematical programming

Aimed at simulation researchers,
architects, and developers

E.g., As a quick primer, for research to
be later pursued in greater detail

Introduces core concepts, terminology,
and salient GPU features

Additional detail obtainable on the
Web, and from GPU books and
publications

6

Acknowledgements & DisclaimersAcknowledgements & Disclaimers

Sincere thanks to
Prof. Stephen Turner (NTU) and Prof.
Wentong Cai (NTU) for tutorial invitation at
IEEE DS-RT'09, Singapore
David Hetrick (ORNL) for institutional
support

In fond memory of my student intern
Brandon Aaby (1986-2009)

the intellectual kid who excelled in many
things, including GPU-related research

Sincere thanks to
Prof. Stephen Turner (NTU) and Prof.
Wentong Cai (NTU) for tutorial invitation at
IEEE DS-RT'09, Singapore
David Hetrick (ORNL) for institutional
support

In fond memory of my student intern
Brandon Aaby (1986-2009)

the intellectual kid who excelled in many
things, including GPU-related research

All logos and trademarks belong to their owners, used here only as names to refer to systems and products

Public-domain images used; some of the CUDA-related images are reproduced from Wikipedia

The ideas and opinions expressed in this tutorial belong solely to the author/presenter (Kalyan S.
Perumalla), and do not necessarily reflect those of the author's employer(s), sponsors, and affiliates.

All material is presented with the intention of providing information, but without any warranty of accuracy,
usefulness, completeness and/or merchantability. No warranties or liabilities of any kind are implied or
created.

Copyright (c) Kalyan S. Perumalla, 2009

All logos and trademarks belong to their owners, used here only as names to refer to systems and products

Public-domain images used; some of the CUDA-related images are reproduced from Wikipedia

The ideas and opinions expressed in this tutorial belong solely to the author/presenter (Kalyan S.
Perumalla), and do not necessarily reflect those of the author's employer(s), sponsors, and affiliates.

All material is presented with the intention of providing information, but without any warranty of accuracy,
usefulness, completeness and/or merchantability. No warranties or liabilities of any kind are implied or
created.

Copyright (c) Kalyan S. Perumalla, 2009

7

ReferencesReferences

A Few Good Starting Points
Sources of Extracts Used Here
Motivating Demonstrations

A Few Good Starting Points
Sources of Extracts Used Here
Motivating Demonstrations

8

Good Starting PointsGood Starting Points

Web – gpgpu.org
www.gpgpu.org is fairly active and contains several pointers

Book – GPU Gems 2
M. Pharr and R. Fernando, GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-
Purpose Computation: Addison Wesley Professional, 2005
http://developer.nvidia.com/object/gpu_gems_2_home.html

Publication – Brook
I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.
Houston, et al., "Brook for GPUs: Stream Computing on
Graphics Hardware," ACM Transactions on Graphics, vol. 23,
pp. 777-786, 2004

GPU Tutorial - Supercomputing'06

Web – gpgpu.org
www.gpgpu.org is fairly active and contains several pointers

Book – GPU Gems 2
M. Pharr and R. Fernando, GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-
Purpose Computation: Addison Wesley Professional, 2005
http://developer.nvidia.com/object/gpu_gems_2_home.html

Publication – Brook
I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.
Houston, et al., "Brook for GPUs: Stream Computing on
Graphics Hardware," ACM Transactions on Graphics, vol. 23,
pp. 777-786, 2004

GPU Tutorial - Supercomputing'06

http://www.gpgpu.org/
http://developer.nvidia.com/object/gpu_gems_2_home.html

9

Sources of Extracts Used HereSources of Extracts Used Here
DES on GPUs - PADS'06

Perumalla, K. S. (2006). “Discrete Event Execution
Alternatives on GPGPUs.” Int’l Workshop on Principles
of Advanced and Distributed Simulation

ABMS on GPUs - ADS'08
Perumalla, K. S. and B. Aaby (2008). “Data Parallel
Execution Challenges and Runtime Performance of
Agent Simulations on GPUs.” Agent-Directed Simulation
Symposium (Spring Simulation Multi-Conference)
Best Paper Award Winner

Road Mobility on GPUs - PADS'09
Perumalla, K. S. B. Aaby, S. Yoginath, and S. Seal (2009).
“GPU-based Real-Time Execution of Vehicular Mobility
Models in Large-Scale Road Network Scenarios.” Int’l
Workshop on Principles of Advanced and Distributed
Simulation

CUDA+MPI on GPUs - ORNL'09
Aaby, B., and K. S. Perumalla (2009). “Parallel Agent-
Based Simulations on Clusters of Multi-GPUs and Multi-
Core Processors.” Oak Ridge National Laboratory

DES on GPUs - PADS'06
Perumalla, K. S. (2006). “Discrete Event Execution
Alternatives on GPGPUs.” Int’l Workshop on Principles
of Advanced and Distributed Simulation

ABMS on GPUs - ADS'08
Perumalla, K. S. and B. Aaby (2008). “Data Parallel
Execution Challenges and Runtime Performance of
Agent Simulations on GPUs.” Agent-Directed Simulation
Symposium (Spring Simulation Multi-Conference)
Best Paper Award Winner

Road Mobility on GPUs - PADS'09
Perumalla, K. S. B. Aaby, S. Yoginath, and S. Seal (2009).
“GPU-based Real-Time Execution of Vehicular Mobility
Models in Large-Scale Road Network Scenarios.” Int’l
Workshop on Principles of Advanced and Distributed
Simulation

CUDA+MPI on GPUs - ORNL'09
Aaby, B., and K. S. Perumalla (2009). “Parallel Agent-
Based Simulations on Clusters of Multi-GPUs and Multi-
Core Processors.” Oak Ridge National Laboratory

10

Motivating DemonstrationsMotivating Demonstrations

ABMS
Game Of Life
Afghan Leadership

Field-based Vehicular
Mobility

Florida State

ABMS
Game Of Life
Afghan Leadership

Field-based Vehicular
Mobility

Florida State

GOL LDR

FL EVAC

Part IPart I

Introduction
Applications
Basic Concepts

12

IntroductionIntroduction

Evolution
Instantiations
Basic GPU-based
Algorithms
Software

Evolution
Instantiations
Basic GPU-based
Algorithms
Software

13

EvolutionEvolution

Graphics as Computation
SIMD Execution
Add-on vs. Packaged
Co-Processor vs.
Processor

Graphics as Computation
SIMD Execution
Add-on vs. Packaged
Co-Processor vs.
Processor

14

Graphics as ComputationGraphics as Computation

Programmable graphics primitives

E.g., pixel shading such as bump
mapping and patterned texture mapping

15

Computation on GPUs (PreComputation on GPUs (Pre--CUDA)CUDA)

Mapping computational concepts to graphics
Array => Texture
Kernel => Fragment Program
Feedback => Copy To Texture (Read Pixels w/ FBO)
Data Stream => Draw Graphic

Mapping computational concepts to graphics
Array => Texture
Kernel => Fragment Program
Feedback => Copy To Texture (Read Pixels w/ FBO)
Data Stream => Draw Graphic

Array[16] =
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Texture[4][4]
GPU (Cg language) code:
float main(.......): COLOR
{
half neighborAVG = (

(h4texRECT(MoodState, texCoord + half2(0,-1)).x) +
(h4texRECT(MoodState, texCoord + half2(-1, 0)).x) +
(h4texRECT(MoodState, texCoord + half2(0, 1)).x) +
(h4texRECT(MoodState, texCoord + half2(1, 0)).x) +
(h4texRECT(MoodState, texCoord + half2(-1,-1)).x) +
(h4texRECT(MoodState, texCoord + half2(-1, 1)).x) +
(h4texRECT(MoodState, texCoord + half2(1, 1)).x) +
(h4texRECT(MoodState, texCoord + half2(1,-1)).x)

)*0.125;
return neighborAVG;
}

Usual CPU (C language) code
for (int i=0; i<N; i += 4)
{
if(!(0> (i -texSize*4 -

4) || (i + (texSize*4)) > N))
{
....................
float AVG = (
dataY[i

-

(texSize*4) -

4] +
dataY[i

-

(texSize*4)] +
dataY[i

-

(texSize*4) + 4] +
dataY[i-4] +
dataY[i+4] +
dataY[i+ (texSize*4) -

4] +
dataY[i

+ (texSize*4)] +
dataY[i

+ (texSize*4) + 4]
)*0.125;
dataY[i] =AVG;
}

}

CPU

Fragment Processor

Texture Memory
Read Pixels

Copy to
Texture

16

SIMD ExecutionSIMD Execution

Single Instruction Multiple Data
(SIMD) is a style of parallel
execution
Identical operation A is
executed on multiple
processors simultaneously
Each operation A[p] on
processor p operates on a
distinct data set M[p]
Conceptually, the operation
A is complete only when all
processors complete their
operation A[p] on M[p]

Single Instruction Multiple Data
(SIMD) is a style of parallel
execution
Identical operation A is
executed on multiple
processors simultaneously
Each operation A[p] on
processor p operates on a
distinct data set M[p]
Conceptually, the operation
A is complete only when all
processors complete their
operation A[p] on M[p]

17

SIMD Execution (continued)SIMD Execution (continued)
Excellent paradigm for processing
large data sets

For items that are mostly independent
from each other yet undergo identical
processing

However, important implications
to bear in mind

If A[p] takes different amount of time
depending on M[p], then the time to
complete A is the maximum time among
all A[p]

If M[p1] and M[p2] overlap for some
processors p1 and p2, then (a) results
may be undefined, depending on read-
write hazards, and (b) A[p1] and A[p2]
may be serialized, thereby decreasing
performance

Excellent paradigm for processing
large data sets

For items that are mostly independent
from each other yet undergo identical
processing

However, important implications
to bear in mind

If A[p] takes different amount of time
depending on M[p], then the time to
complete A is the maximum time among
all A[p]

If M[p1] and M[p2] overlap for some
processors p1 and p2, then (a) results
may be undefined, depending on read-
write hazards, and (b) A[p1] and A[p2]
may be serialized, thereby decreasing
performance

18

AddAdd--on vs. Packaged: To Get Startedon vs. Packaged: To Get Started

GPU-based systems can be built by adding a
programmable GPU to a system

User can enhance a conventional CPU-based system
User needs to customize installation (software, drivers, etc.)
E.g., purchase NVIDIA GTX 300, install to a high-end desktop

GPU-based systems can be built by adding a
programmable GPU to a system

User can enhance a conventional CPU-based system
User needs to customize installation (software, drivers, etc.)
E.g., purchase NVIDIA GTX 300, install to a high-end desktop

Alternatively, complete, customized systems available
Properly packaged with the best chipsets, cooling & power
supplies, drivers, software, and development environments
Often, better value for price, if high-end configuration needed
E.g., NVIDIA Tesla

Alternatively, complete, customized systems available
Properly packaged with the best chipsets, cooling & power
supplies, drivers, software, and development environments
Often, better value for price, if high-end configuration needed
E.g., NVIDIA Tesla

19

CoCo--Processor vs. ProcessorProcessor vs. Processor

Tail wagging the dog?
Conventional CPU-processor and GPU co-processor relation
In some applications, GPU may be the main workhorse

GPU may have to be viewed as semi-equal to CPU
Trends indicate they will merge (see “Future”)

Tail wagging the dog?
Conventional CPU-processor and GPU co-processor relation
In some applications, GPU may be the main workhorse

GPU may have to be viewed as semi-equal to CPU
Trends indicate they will merge (see “Future”)

Note, GPUs are similar to other co-processors
Network co-processors
Physics co-processors

However, GPUs have one major advantage
Mass consumer market: end-users, multi-media, and gaming industries

Note, GPUs are similar to other coNote, GPUs are similar to other co--processorsprocessors
Network coNetwork co--processorsprocessors
Physics coPhysics co--processorsprocessors

However, GPUs have one major advantageHowever, GPUs have one major advantage
Mass consumer market: endMass consumer market: end--users, multiusers, multi--media, and gaming industriesmedia, and gaming industries

20

Instantiations Instantiations –– A Few Popular A Few Popular
ExamplesExamples

Commercial Offerings
IBM Cell Processor
NVIDIA GeForce, GTX
NVIDIA Tesla

Supercomputing Scale
LANL RoadRunner

Commercial Offerings
IBM Cell Processor
NVIDIA GeForce, GTX
NVIDIA Tesla

Supercomputing Scale
LANL RoadRunner

21

IBM Cell ProcessorIBM Cell Processor

Highly successful, path-blazing chip
Large market use

Entertainment systems
Gaming systems (Sony playstation)

Highly successful, pathHighly successful, path--blazing chipblazing chip
Large market useLarge market use

Entertainment systemsEntertainment systems
Gaming systems (Sony Gaming systems (Sony playstationplaystation))

22

NVIDIA GeForce, GTXNVIDIA GeForce, GTX

Original GeForce 6000, 7000, 8000,
and 9000 series

Latest GTX 295

Upcoming GTX 300

Original GeForce 6000, 7000, 8000, Original GeForce 6000, 7000, 8000,
and 9000 seriesand 9000 series

Latest GTX 295Latest GTX 295

Upcoming GTX 300Upcoming GTX 300

Affordable, off-the-shelf
Power-hungry!

Double PCI-e power connections

Heat generating
Special cooling needs
E.g., liquid-cooled gaming systems

Affordable, off-the-shelf
Power-hungry!

Double PCI-e power connections

Heat generating
Special cooling needs
E.g., liquid-cooled gaming systems

23

NVIDIA TeslaNVIDIA Tesla

An example of a packaged solution

Single seamless, finely-tuned
system with multiple GPUs and
software environment

"Tera-FLOP under your desk"

An example of a packaged solutionAn example of a packaged solution

Single seamless, finelySingle seamless, finely--tuned tuned
system with multiple GPUs and system with multiple GPUs and
software environmentsoftware environment

""TeraTera--FLOP under your desk"FLOP under your desk"

24

LANL LANL RoadRunnerRoadRunner

Peta-FLOP supercomputer at the Los
Alamos National Laboratory

System based on IBM Cell processor
(and AMD Opteron) architecture

Topped the supercomputing charts in
2008

SIMD co-processor execution realized
in the extreme

A few niche applications

E.g., Molecular Dynamics

PetaPeta--FLOP supercomputer at the Los FLOP supercomputer at the Los
Alamos National LaboratoryAlamos National Laboratory

System based on IBM Cell processor System based on IBM Cell processor
(and AMD Opteron) architecture(and AMD Opteron) architecture

Topped the supercomputing charts in Topped the supercomputing charts in
20082008

SIMD coSIMD co--processor execution realized processor execution realized
in the extremein the extreme

A few niche applicationsA few niche applications

E.g., Molecular DynamicsE.g., Molecular Dynamics

25

Basic GPUBasic GPU--based Algorithmsbased Algorithms

Sorting, Reduction
Linear Algebra
Stencil Computation
Fast Fourier Transforms
Computational Geometry
…

Sorting, Reduction
Linear Algebra
Stencil Computation
Fast Fourier Transforms
Computational Geometry
…

26

Sorting, ReductionSorting, Reduction

Much of the early GPGPU work
Focused on effective sorting and
reduction on GPUs

Well understood implementation
Sequence of cumulative
optimizations for best performance

Different realizations
Early implementations in Brook
(e.g., reduce keyword)
Later architecture-aware, efficient
realizations in CUDA

Essentially based on recursive,
data-parallel formulations

Much of the early GPGPU work
Focused on effective sorting and
reduction on GPUs

Well understood implementation
Sequence of cumulative
optimizations for best performance

Different realizations
Early implementations in Brook
(e.g., reduce keyword)
Later architecture-aware, efficient
realizations in CUDA

Essentially based on recursive,
data-parallel formulations

Reduction operation is an important
building block

Any commutative, associative operator
applied on multiple data (array)

E.g., Min, Max, Sum

Quick data-parallel sweep after
independent data-parallel operations

In discrete-event simulation on GPUs,
essential for min-time computation

Support exists for very fast, highly
optimized implementations

Language-level, or library-based

Reduction operation is an important
building block

Any commutative, associative operator
applied on multiple data (array)

E.g., Min, Max, Sum

Quick data-parallel sweep after
independent data-parallel operations

In discrete-event simulation on GPUs,
essential for min-time computation

Support exists for very fast, highly
optimized implementations

Language-level, or library-based

Reductions very useful in debugging
large simulations

E.g., Verify conservation of persons
(live+dead), or flux (heat), etc.

Reductions very useful in debugging
large simulations

E.g., Verify conservation of persons
(live+dead), or flux (heat), etc.

27

Linear AlgebraLinear Algebra

Examples

E. S. Larsen and D. McAllister, "Fast Matrix Multiplies using Graphics Hardware," in
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, 2001

Jens Kruger, "Linear Algebra on GPUs," in ACM SIGGRAPH 2005 Courses, 2005.

ExamplesExamples

E. S. Larsen and D. McAllister, "Fast Matrix Multiplies using GrE. S. Larsen and D. McAllister, "Fast Matrix Multiplies using Graphics Hardware," in aphics Hardware," in
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, 2Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, 2001001

Jens Kruger, "Linear Algebra on GPUs," in ACM SIGGRAPH 2005 CourJens Kruger, "Linear Algebra on GPUs," in ACM SIGGRAPH 2005 Courses, 2005.ses, 2005.

Benefits
Good use of co-processor and additional memory
Useful when single precision (32-bit) arithmetic is
sufficient
Mixed-precision linear algebra possible by combining
GPU and CPU

Benefits
Good use of co-processor and additional memory
Useful when single precision (32-bit) arithmetic is
sufficient
Mixed-precision linear algebra possible by combining
GPU and CPU

28

Stencil ComputationStencil Computation

Much of physical (mesh/cell-based) models
computation built on “stencils”

E.g., fluid dynamics simulations, FDTD

Highly suited for GPUs
Great locality, read-only neighborhood,
immense data-parallelism

Performance gains from historic design
Optimizations for textures and
programmable surfaces

Much of physical (mesh/cell-based) models
computation built on “stencils”

E.g., fluid dynamics simulations, FDTD

Highly suited for GPUs
Great locality, read-only neighborhood,
immense data-parallelism

Performance gains from historic design
Optimizations for textures and
programmable surfaces

Very useful in agent-based simulation on GPUs

Stencil for neighborhood-based state updates

But, additional functionality needed (for
birth/death, mobility)

Very useful in agentVery useful in agent--based simulation on GPUsbased simulation on GPUs

Stencil for neighborhoodStencil for neighborhood--based state updatesbased state updates

But, additional functionality needed (for But, additional functionality needed (for
birth/death, mobility)birth/death, mobility)

29

Fast Fourier TransformsFast Fourier Transforms

2-D and 3-D FFT Computations
Much attention recently on highly
optimized FFT using SIMD
architectures
Most action is in maximizing the
use of available bandwidth

2-D and 3-D FFT Computations
Much attention recently on highly
optimized FFT using SIMD
architectures
Most action is in maximizing the
use of available bandwidth

Examples: Two publications in Proceedings of Supercomputing'08
Remark: Power-of-2 vs. Non-power-of-2 performance can be quite different

Examples: Two publications in Proceedings of Supercomputing'08Examples: Two publications in Proceedings of Supercomputing'08
Remark: PowerRemark: Power--ofof--2 vs. Non2 vs. Non--powerpower--ofof--2 performance can be quite different2 performance can be quite different

30

Computational GeometryComputational Geometry

Exploiting certain hardware
features of GPUs

E.g., depth-based culling

For speeding up
computational geometry
problems

E.g, Vornoi diagrams, and
distance fields

Exploiting certain hardware
features of GPUs

E.g., depth-based culling

For speeding up
computational geometry
problems

E.g, Vornoi diagrams, and
distance fields

31

SoftwareSoftware

OpenGL, Cg
Brook, CUDA, Stream

OpenGL, Cg
Brook, CUDA, Stream

32

OpenGL, CgOpenGL, Cg

Combination of OpenGL
(Open Graphics Language)
and Cg (C for graphics)
Re-used for general-purpose
computation on GPUs

Combination of OpenGL
(Open Graphics Language)
and Cg (C for graphics)
Re-used for general-purpose
computation on GPUs

33

Example of Cg Kernel CodeExample of Cg Kernel Code

Game of Life Cg Kernel

“C like” Language

Kernel executed on all
texture RGBA texels

half4 Phase1Kernel
(

half2 texCoord

: TEXCOORD0,
uniform half4 globalConstants,
uniform samplerRECT

stateTex,
uniform samplerRECT

constantsTex,
uniform samplerRECT

scratchTex,
uniform samplerRECT

constantsTex2,
uniform samplerRECT

scratchTex2
) : COLOR
{

half4 OUT = h4texRECT(stateTex, texCoord);
half surCount

= (
(h4texRECT(stateTex, texCoord

+ half2(0,-1)).x) +
(h4texRECT(stateTex, texCoord

+ half2(-1, 0)).x) +
(h4texRECT(stateTex, texCoord

+ half2(0, 1)).x) +
(h4texRECT(stateTex, texCoord

+ half2(1, 0)).x) +
(h4texRECT(stateTex, texCoord

+ half2(-1,-1)).x) +
(h4texRECT(stateTex, texCoord

+ half2(-1, 1)).x) +
(h4texRECT(stateTex, texCoord

+ half2(1, 1)).x) +
(h4texRECT(stateTex, texCoord

+ half2(1,-1)).x)
);

OUT.y

= surCount;
OUT.z

= OUT.x;
OUT.x

= (OUT.x) ? (surCount

<= 1 || surCount

>= 4) ? 0.0 : OUT.x):((surCount

== 3) ? 1.0 : OUT.x);

return OUT;
}

Kernel arguments
-Textures and constants

Computation
-Query Moore neighborhood for live cells

Return value
-Ternary
operator

34

Brook, CUDA, StreamBrook, CUDA, Stream

Brook language from Stanford served
as trailblazer

Automatically generated code for
combinations of compiled and interpreted
execution on GPU

Supported multiple runtime interfaces for
GPU (DirectX, OpenGL, Emulated)

CUDA generalized more, enhanced,
abstracted, and standardized several
of Brook's features
Other stream processing languages
and runtimes appeared (and largely
disappeared!)

Brook language from Stanford served
as trailblazer

Automatically generated code for
combinations of compiled and interpreted
execution on GPU

Supported multiple runtime interfaces for
GPU (DirectX, OpenGL, Emulated)

CUDA generalized more, enhanced,
abstracted, and standardized several
of Brook's features
Other stream processing languages
and runtimes appeared (and largely
disappeared!)

35

NVIDIA CUDANVIDIA CUDA

NVIDIA’s successor to Cg and GPGPU research
Compute Unified Device Architecture (CUDA)

“C like” in syntax and structure
Allows asynchronous gather/scatter unlike Cg
Provides relatively low-level access
• On-chip “shared” memory and registers for fast reads/writes as well as

constant texture memory and off-chip global memory

Exposes notion of concurrent threads in “thread blocks”
Multi-GPU support

NVIDIA’s successor to Cg and GPGPU research
Compute Unified Device Architecture (CUDA)

“C like” in syntax and structure
Allows asynchronous gather/scatter unlike Cg
Provides relatively low-level access
• On-chip “shared” memory and registers for fast reads/writes as well as

constant texture memory and off-chip global memory

Exposes notion of concurrent threads in “thread blocks”
Multi-GPU support

36

NVIDIA CUDA Installation OutlineNVIDIA CUDA Installation Outline

Requires NVIDIA 8 series card or newer, e.g. 8800GTX
Download appropriate driver (includes CUDA support)
Install CUDA Toolkit and SDK
http://www.nvidia.com/object/cuda_get.html

All projects in Microsoft Visual Studio format (Windows)
Makefiles and examples included for *nix

32-bit and 64-bit architecture support
New projects can be built off of template project included in
the SDK

Requires NVIDIA 8 series card or newer, e.g. 8800GTX
Download appropriate driver (includes CUDA support)
Install CUDA Toolkit and SDK
http://www.nvidia.com/object/cuda_get.html

All projects in Microsoft Visual Studio format (Windows)
Makefiles and examples included for *nix

32-bit and 64-bit architecture support
New projects can be built off of template project included in
the SDK

http://www.nvidia.com/object/cuda_get.html

37

ApplicationsApplications

Benefits for Parallel Simulations
Common GPU Applications
Non-Traditional GPU Applications

Benefits for Parallel Simulations
Common GPU Applications
Non-Traditional GPU Applications

38

BenefitsBenefits
(in Context of Parallel Simulations)(in Context of Parallel Simulations)

Real-time Execution
Computation “Close to Visualization”
Cheaper High-Performance

Real-time Execution
Computation “Close to Visualization”
Cheaper High-Performance

39

RealReal--time Executiontime Execution

Analogous to what digital signal processing did for
their applications (image/speech processing)
Fast execution, approaching many “frames per second”
Interactive visual simulations possible

Freeing CPU for user interface and customization activities
Example: Real-time or faster execution of vehicular transport
simulations on large networks

Applications can be run on end-user, low-end machines

Analogous to what digital signal processing did for
their applications (image/speech processing)
Fast execution, approaching many “frames per second”
Interactive visual simulations possible

Freeing CPU for user interface and customization activities
Example: Real-time or faster execution of vehicular transport
simulations on large networks

Applications can be run on end-user, low-end machines

40

Computation Computation ““Close to VisualizationClose to Visualization””
A natural benefit: computation done closest to display
Little data transfer overhead (from simulation memory
to display frame buffer) compared to CPU-based
simulation
Post-processing for customized visualization and
animation naturally possible

A natural benefit: computation done closest to display
Little data transfer overhead (from simulation memory
to display frame buffer) compared to CPU-based
simulation
Post-processing for customized visualization and
animation naturally possible

CPUCPU

GPUGPU DisplayDisplayMemoryMemory

41

Cheaper HighCheaper High--PerformancePerformance

Much literature debates the performance to cost ratio
Majority believes GPU is cheaper than CPU

But this may change
Or is already changing (E.g., multi-core processors)

Much of the ratio difference due to market economics
than fundamental technical reasons
For niche (highly data-parallel) applications, GPU is
certainly better

Cheaper by up to 1 order, faster by up to 2 orders, in some
demonstrations

Much literature debates the performance to cost ratio
Majority believes GPU is cheaper than CPU

But this may change
Or is already changing (E.g., multi-core processors)

Much of the ratio difference due to market economics
than fundamental technical reasons
For niche (highly data-parallel) applications, GPU is
certainly better

Cheaper by up to 1 order, faster by up to 2 orders, in some
demonstrations

42

Common GPU ApplicationsCommon GPU Applications

Too many to list!
Applications to GPUs have proliferated in past ~7 years
You name X, you’ll find “X on GPUs” in the literature

Too many to list!
Applications to GPUs have proliferated in past ~7 years
You name X, you’ll find “X on GPUs” in the literature

43

NonNon--Traditional GPU ApplicationsTraditional GPU Applications

Agent Based Simulations
Transportation
Simulations
Network Simulation

Agent Based Simulations
Transportation
Simulations
Network Simulation

44

Agent Based SimulationsAgent Based Simulations

Examples:
K. S. Perumalla and B. Aaby, "Data
Parallel Execution Challenges and
Runtime Performance of Agent
Simulations on GPUs," in Agent-
Directed Simulation Symposium, 2008
R. D'Souza, M. Lysenko, and K.
Rehmani, "SugarScape on Steroids:
Simulating Over a Million Agents at
Interactive Rates," in AGENT
Conference on Complex Interaction and
Social Emergence, 2007

Examples:
K. S. Perumalla and B. Aaby, "Data
Parallel Execution Challenges and
Runtime Performance of Agent
Simulations on GPUs," in Agent-
Directed Simulation Symposium, 2008
R. D'Souza, M. Lysenko, and K.
Rehmani, "SugarScape on Steroids:
Simulating Over a Million Agents at
Interactive Rates," in AGENT
Conference on Complex Interaction and
Social Emergence, 2007

45

Transportation SimulationsTransportation Simulations

Example:
K. S. Perumalla, B. G. Aaby, S.
B. Yoginath, and S. K. Seal,
"GPU-based Real-Time
Execution of Vehicular Mobility
Models in Large-Scale Road
Network Scenarios," in
Principles of Advanced and
Distributed Simulation, 2009

Example:
K. S. Perumalla, B. G. Aaby, S.
B. Yoginath, and S. K. Seal,
"GPU-based Real-Time
Execution of Vehicular Mobility
Models in Large-Scale Road
Network Scenarios," in
Principles of Advanced and
Distributed Simulation, 2009

46

Network SimulationNetwork Simulation

Example:
Z. Xu and R. Bagrodia, "GPU-Accelerated Evaluation Platform for High
Fidelity Network Modeling," in Principles of Advanced and Distributed
Simulation, 2007

Example:
Z. Xu and R. Bagrodia, "GPU-Accelerated Evaluation Platform for High
Fidelity Network Modeling," in Principles of Advanced and Distributed
Simulation, 2007

47

DevelopmentDevelopment

Debugging
Testing
Performance Tuning

Debugging
Testing
Performance Tuning

48

Basic ConceptsBasic Concepts

Execution Contexts and
Kernel Functions
Inter-Memory Data
Transfers
Launching GPU Threads
Synchronization,
Coordination, Termination

Execution Contexts and
Kernel Functions
Inter-Memory Data
Transfers
Launching GPU Threads
Synchronization,
Coordination, Termination

49

CPU

GPU (SIMD)

Execution Contexts and Kernel Execution Contexts and Kernel
FunctionsFunctions

Main()
{
K<<<N,M>>>(params)
}

__global__ K(params)
{

…H()…
}
__device__ H(params)
{

…
}

__global__ K(params)
{

…H()…
}
__device__ H(params)
{

…
}

…

Kernel functions typically tagged with qualifier keywords by the user (e.g., __global__ or __kernel__)

Kernel functions execute within the GPU context

Kernel functions typically tagged with qualifier keywords by the user (e.g., __global__ or __kernel__)

Kernel functions execute within the GPU context

Each invocation of
the kernel function
(in this example,
K()) starts a
“thread” on each
SIMD unit

Threads may be
organized as
“blocks”; each
thread thus has a
block identifier and
thread identifier

50

Software vs. Hardware Views Software vs. Hardware Views

51

Software vs. Hardware Views Software vs. Hardware Views
GPU Languages and APIs
E.g., CUDA

Blocks and Threads
Memory Types
Kernels and variable types
and qualifiers

GPU Languages and APIsGPU Languages and APIs
E.g., CUDAE.g., CUDA

Blocks and ThreadsBlocks and Threads
Memory TypesMemory Types
Kernels and variable types Kernels and variable types
and qualifiersand qualifiers

GPU Chips
E.g., GTX 200 & 300 series

Thread Processing Clusters
Streaming Multi-processors
Streaming Processors
Register files, DPUs, SFUs,
Memory

GPU Chips
E.g., GTX 200 & 300 series

Thread Processing Clusters
Streaming Multi-processors
Streaming Processors
Register files, DPUs, SFUs,
Memory

Contrast to CPU
E.g., Intel & AMD CPUs

Symmetric SM Multiprocessor sockets

Mult-core processors

Registers, ALUs, L1/2/3 Caches

Contrast to CPUContrast to CPU
E.g., Intel & AMD CPUsE.g., Intel & AMD CPUs

Symmetric SM Multiprocessor socketsSymmetric SM Multiprocessor sockets

MultMult--core processorscore processors

Registers, Registers, ALUsALUs, L1/2/3 Caches, L1/2/3 Caches

Contrast to CPU
E.g., C/C++

Processes, threads

Process-memory, shared memory

Stacks, heaps, function frames

Contrast to CPUContrast to CPU
E.g., C/C++E.g., C/C++

Processes, threadsProcesses, threads

ProcessProcess--memory, shared memorymemory, shared memory

Stacks, heaps, function framesStacks, heaps, function frames

52

InterInter--Memory Data TransfersMemory Data Transfers

A fact of life in almost all current GPU systems
Many different notions and types of memory used

Data transfer is one of the most taxing issues
More later, on this issue

A fact of life in almost all current GPU systems
Many different notions and types of memory used

Data transfer is one of the most taxing issues
More later, on this issue

53

Launching GPU ThreadsLaunching GPU Threads

Host initiates “launch” of
many SIMD threads
Threads get “scheduled” in
batches on GPU hardware
CUDA claims extremely
efficient thread-launch
implementation

Insignificant cost even for
launching millions of CUDA
(SIMD) threads at once

Host initiates “launch” of
many SIMD threads
Threads get “scheduled” in
batches on GPU hardware
CUDA claims extremely
efficient thread-launch
implementation

Insignificant cost even for
launching millions of CUDA
(SIMD) threads at once

54

Synchronization, Coordination, Synchronization, Coordination,
TerminationTermination

CPU-GPU synchronization
Multi-GPU coordination
Intra-GPU, inter-block synchronization
Intra-block synchronization
CPU-side termination

CPU-GPU synchronization
Multi-GPU coordination
Intra-GPU, inter-block synchronization
Intra-block synchronization
CPU-side termination

Part IIPart II

Important Computational
Considerations
Time-stepped, Discrete-
Event, and Hybrid
Simulations

56

Computational ConsiderationsComputational Considerations

Memory Hierarchy
Scheduling
Synchronization
SIMD Constraints
Numerical Effects
Platform Limitations

Memory Hierarchy
Scheduling
Synchronization
SIMD Constraints
Numerical Effects
Platform Limitations

57

Memory HierarchyMemory Hierarchy

CPU Memory vs. GPU
Memory
GPU Memory Types
Bank Conflicts,
Bandwidth

CPU Memory vs. GPU
Memory
GPU Memory Types
Bank Conflicts,
Bandwidth

58

CPU Memory vs. GPU MemoryCPU Memory vs. GPU Memory

Almost all GPU systems so far are co-processor-style
architectures

A traditional CPU augmented by one or more GPUs

In the fastest GPU systems, CPU memory is distinct from GPU
memory

For least CPU-GPU synchronization, and
For the best VLSI layout of memory + processors on GPU

For the next 3-4 years (in my opinion), main-memory vs. GPU-
memory distinction is a necessary evil

Until future architectures change this, with “heterogeneous multi-cores”

Almost all GPU systems so far are co-processor-style
architectures

A traditional CPU augmented by one or more GPUs

In the fastest GPU systems, CPU memory is distinct from GPU
memory

For least CPU-GPU synchronization, and
For the best VLSI layout of memory + processors on GPU

For the next 3-4 years (in my opinion), main-memory vs. GPU-
memory distinction is a necessary evil

Until future architectures change this, with “heterogeneous multi-cores”

59

GPU Memory TypesGPU Memory Types

GPU memory may come in
several flavors

Registers
Local Memory
Shared Memory
Constant Memory
Global Memory
Texture Memory

An important challenge is
organizing the application to
make most effective use of
hierarchy

GPU memory may come in
several flavors

Registers
Local Memory
Shared Memory
Constant Memory
Global Memory
Texture Memory

An important challenge is
organizing the application to
make most effective use of
hierarchy

60

GPU Memory Types (NVIDIA)GPU Memory Types (NVIDIA)

Memory Type Speed Scope Lifetime Size
Registers Fastest (4 cycles) Thread Kernel
Shared Memory Very fast (4 -? cycles) Block Thread
Global Memory 100x slower (400- cycles) Device Process
Local Memory 150x slower (600 cycles) Block Thread
Texture Memory Fast (10s of cycles) Device Process
Constant Memory Fairly fast (read-only) Device Process

61

Bank Conflicts, BandwidthBank Conflicts, Bandwidth
“Bank conflicts" a direct implication of SIMD
execution accessing multiple memory banks

Suppose an operation A is executed in parallel on
multiple SIMD processors
Let the instance of A on processor p be denoted
by A[p], accessing a memory location M[A[p]]
hosted on memory bank B[A[p]]
If all B[A[p]] are distinct from each other, then, no
bank conflict occurs
If any two or more B[A[p]] are same, those
memory accesses get serialized on that bank

Performance may degrade by a factor of W
If worst conflict has W processors accessing the
same bank
Because all other processors have to stall for W
units of memory access time (compared to 1 unit
without conflicts)

“Bank conflicts" a direct implication of SIMD
execution accessing multiple memory banks

Suppose an operation A is executed in parallel on
multiple SIMD processors
Let the instance of A on processor p be denoted
by A[p], accessing a memory location M[A[p]]
hosted on memory bank B[A[p]]
If all B[A[p]] are distinct from each other, then, no
bank conflict occurs
If any two or more B[A[p]] are same, those
memory accesses get serialized on that bank

Performance may degrade by a factor of W
If worst conflict has W processors accessing the
same bank
Because all other processors have to stall for W
units of memory access time (compared to 1 unit
without conflicts)

SIMD
Processors

Memory
banks

No conflicts (1-1)

No conflicts (permutation)

Bank conflicts

62

SchedulingScheduling

Thread Launch Cost
Thread-Count Effects

Thread Launch Cost
Thread-Count Effects

63

Thread Launch CostThread Launch Cost

Amortize thread launch cost
Although launch may be low-cost

Perform more operations within
one kernel invocation (thread)

Aggregate functionality that does
not require global synchronization
Use local (block-level)
synchronization if/as necessary

Amortize thread launch cost
Although launch may be low-cost

Perform more operations within
one kernel invocation (thread)

Aggregate functionality that does
not require global synchronization
Use local (block-level)
synchronization if/as necessary

64

ThreadThread--Count EffectsCount Effects

Threads are launched in batches
to the stream processors

Fragment Processors and/or Vertex
Processors of yesteryear GPUs
Batches are called Warps in CUDA

Each batch should contain
sufficient threads to fill the
number SIMD processing units
on the GPU

High efficiency is achieved by
asynchronous memory servicing,
large Warp counts
Large number of blocks needed to
overlap memory-fill latencies

Threads are launched in batches
to the stream processors

Fragment Processors and/or Vertex
Processors of yesteryear GPUs
Batches are called Warps in CUDA

Each batch should contain
sufficient threads to fill the
number SIMD processing units
on the GPU

High efficiency is achieved by
asynchronous memory servicing,
large Warp counts
Large number of blocks needed to
overlap memory-fill latencies

65

SynchronizationSynchronization

CPU-GPU Coordination
Intra-GPU Thread Coordination

CPU-GPU Coordination
Intra-GPU Thread Coordination

66

CPUCPU--GPU CoordinationGPU Coordination

Flush GPU pipelines
Need to stall until GPU threads done

Otherwise, memory is in inconsistent state

Flush GPU pipelines
Need to stall until GPU threads done

Otherwise, memory is in inconsistent state

67

IntraIntra--GPU Thread CoordinationGPU Thread Coordination

Threads need to coordinate on GPU
across steps
CUDA only provides intra-block
synchronization, but no inter-block
synchronization

Often intra-block synchronization is useful
in simulations, but difficult to implement
efficiently

Threads need to coordinate on GPU
across steps
CUDA only provides intra-block
synchronization, but no inter-block
synchronization

Often intra-block synchronization is useful
in simulations, but difficult to implement
efficiently

68

SIMD ConstraintsSIMD Constraints

Conditional Statements
Looping
Random Number
Generation
Bias and SIMD Conflict
Modeling Challenge

Conditional Statements
Looping
Random Number
Generation
Bias and SIMD Conflict
Modeling Challenge

69

Conditional StatementsConditional Statements

SIMD brings a natural challenge with conditional statements
The way in which the true and false branches of a conditional
statement are executed by all GPU processors

Since data is different across processors, some processors P(true) may
evaluate the condition to be true and the others P(false) find it false

SIMD needs all processors to execute same block of instructions
Hence all processors must execute the true branch first, during which only
P(true) will execute the true branch, and P(false) will execute a no-op
Next, all P(false) execute the false branch, while P(true) execute a no-op

If most of the time P(true) or P(false) are empty, then
performance is unaffected

E.g., when all processors evaluate the same truth value
Total time equals time for the chosen branch
Otherwise, total time taken is the sum of times for both branches together!

SIMD brings a natural challenge with conditional statements
The way in which the true and false branches of a conditional
statement are executed by all GPU processors

Since data is different across processors, some processors P(true) may
evaluate the condition to be true and the others P(false) find it false

SIMD needs all processors to execute same block of instructions
Hence all processors must execute the true branch first, during which only
P(true) will execute the true branch, and P(false) will execute a no-op
Next, all P(false) execute the false branch, while P(true) execute a no-op

If most of the time P(true) or P(false) are empty, then
performance is unaffected

E.g., when all processors evaluate the same truth value
Total time equals time for the chosen branch
Otherwise, total time taken is the sum of times for both branches together!

70

Data Values

SIMD Execution Sequence

Conditional Statements (continued)Conditional Statements (continued)

In general, best to minimize conditional statements in kernels
This can be done by invoking different kernels from the CPU itself, by
carefully partitioning the data sets a priori

In general, best to minimize conditional statements in kernels
This can be done by invoking different kernels from the CPU itself, by
carefully partitioning the data sets a priori

p=processor ID
If(B[p])
{

DoTrue();
}
Else
{

DoFalse();
}

p=processor ID
If(B[p])
{

DoTrue();
}
Else
{

DoFalse();
}

p=1
B[1]=True

p=1
B[1]=True

p=2
B[2]=True

p=2
B[2]=True

p=3
B[3]=False

p=3
B[3]=False

p=4
B[4]=True

p=4
B[4]=True

DoTrue() DoTrue() DoTrue()NoOp

NoOp NoOp NoOpDoTrue()

71

LoopingLooping

Looping may be realized on CPU or GPU:
The loop in CPU calls a GPU kernel multiple times, once per CPU iteration
The CPU makes a single kernel call; a loop within the kernel performs the
iterations on the GPU

In the first (CPU-loop), kernel invocation cost is incurred for
every iteration (thread launch cost)

But all kernels are naturally synchronized after every iteration

In the second (GPU-loop), only one kernel invocation is involved
Saves thread launch cost for every iteration

But kernels need synchronization operation after every iteration

Not always possible (e.g, _syncthreads() is block-specific in CUDA)

Looping may be realized on CPU or GPU:
The loop in CPU calls a GPU kernel multiple times, once per CPU iteration
The CPU makes a single kernel call; a loop within the kernel performs the
iterations on the GPU

In the first (CPU-loop), kernel invocation cost is incurred for
every iteration (thread launch cost)

But all kernels are naturally synchronized after every iteration

In the second (GPU-loop), only one kernel invocation is involved
Saves thread launch cost for every iteration

But kernels need synchronization operation after every iteration

Not always possible (e.g, _syncthreads() is block-specific in CUDA)

72

Random Number GenerationRandom Number Generation

Data parallelism implies one random number generator (RNG)
per data/entity element
Small memory sizes implies small working set for RNG
Simple linear congruential generators may be sufficient for some
(agent-based models)
Mersienne Twister available in CUDA, but performance
implications unclear on large agent models

Data parallelism implies one random number generator (RNG)
per data/entity element
Small memory sizes implies small working set for RNG
Simple linear congruential generators may be sufficient for some
(agent-based models)
Mersienne Twister available in CUDA, but performance
implications unclear on large agent models

73

Bias and SIMD ConflictBias and SIMD Conflict

Data parallelism presents some fundamental conflicts
Data parallelism vs. Model specification
E.g., Segregation model

Certain ad-hoc schemes are possible, but can interfere with
model needs

RUN DEMO

Data parallelism presents some fundamental conflicts
Data parallelism vs. Model specification
E.g., Segregation model

Certain ad-hoc schemes are possible, but can interfere with
model needs

RUN DEMO

SEG

74

BiBi--Partite Mapping Challenge (Data Parallel)Partite Mapping Challenge (Data Parallel)

Appears in ABM for modeling

Exclusion

Information propagation

Appears in ABM for modeling

Exclusion

Information propagation

Examples

Move

Infect

Spawn

Problem: Naïve approaches are inadequate
Priority-based schemes result in artificial bias

Semaphore-based schemes incur runtime overheads

75

Randomized BiRandomized Bi--Partite: AlgorithmPartite: Algorithm

Pass 1: For each agent Aij
If Aij is a source

Do nothing
Else (Aij is a destination)

Within the neighborhood of vision v,
Randomly select a source

S (tentative)
Pass 2: For each agent Aij

If Aij is a source
Within the neighborhood of vision v,
Find the number of destination agents
who have picked Aij as their source

If the number is exactly equal to 1
Mark self as mapped to that
Unique destination

Else (Aij is a destination)
If this agent has a source selected

S(tentative)
Examine the neighborhood of S to

verify that Aij is the only
destination that selected S

If Aij is unique in selection of S
Mark self as mapped to that S

76

Modeling ChallengeModeling Challenge

Major challenge in moving from current CPU models to GPU
Often reformulation of model is required

E.g., field-based model for transportation

For maximum efficiency, irregular topologies must be converted
to rectangular structures "somehow"

Major challenge in moving from current CPU models to GPU
Often reformulation of model is required

E.g., field-based model for transportation

For maximum efficiency, irregular topologies must be converted
to rectangular structures "somehow"

77

Major Hurdle: Computation ParadigmsMajor Hurdle: Computation Paradigms

CPU = Random memory access
GPGPU = Streams-based paradigm
GPU = Highly data-parallel (SIMD) paradigm

CPU = Random memory access
GPGPU = Streams-based paradigm
GPU = Highly data-parallel (SIMD) paradigm

78

Fallout for DESFallout for DES

In general, unclear how to map LPs and events to
GPGPU framework

Can’t update LP in isolation
Can’t execute “single event” individually

Stream LP states?
Stream events? Only simultaneous ones? Lookahead-
based window? Multiple events/LP?

In general, unclear how to map LPs and events to
GPGPU framework

Can’t update LP in isolation
Can’t execute “single event” individually

Stream LP states?
Stream events? Only simultaneous ones? Lookahead-
based window? Multiple events/LP?

79

Numerical EffectsNumerical Effects

Numerical Precision
Accuracy - Visual vs. Analytical

Numerical Precision
Accuracy - Visual vs. Analytical

80

Numerical PrecisionNumerical Precision
In GPU evolution, numerical precision has been low, but has
been improving
Newest NVIDIA processors have begun supporting double
precision floating point

One double precision unit (DPU) per SM
64-bit arithmetic, from previous limitation of 32-bit arithmetic

Some limitations still exist, to be carefully considered
Examples

Double precision units are fewer than single precision units
In kernel invocations, silent conversion may happen
(double precision actual arguments from CPU to single precision formal
arguments on GPU)

In GPU evolution, numerical precision has been low, but has
been improving
Newest NVIDIA processors have begun supporting double
precision floating point

One double precision unit (DPU) per SM
64-bit arithmetic, from previous limitation of 32-bit arithmetic

Some limitations still exist, to be carefully considered
Examples

Double precision units are fewer than single precision units
In kernel invocations, silent conversion may happen
(double precision actual arguments from CPU to single precision formal
arguments on GPU)

81

Accuracy Accuracy -- Visual vs. AnalyticalVisual vs. Analytical
GPU hardware is historically geared towards visual consumption

Floating point effects are not same as found on CPUs

Imprecision is less pronounced on latest generation of hardware
But lower precision data types usable in GPU languages

Special function units (SFU) have different algorithms
Different precision than CPU-equivalents for transcendental
functions

GPU hardware is historically geared towards visual consumption
Floating point effects are not same as found on CPUs

Imprecision is less pronounced on latest generation of hardware
But lower precision data types usable in GPU languages

Special function units (SFU) have different algorithms
Different precision than CPU-equivalents for transcendental
functions

For precision effects comparisons often need to account
for imprecision, esp. in our simulations. For example,
if(x == 1) {}

should be realized as
const float eps=1e-5;
if(1-eps < x && x < 1+eps) {}

For precision effects comparisons often need to account For precision effects comparisons often need to account
for imprecision, esp. in our simulations. For example,for imprecision, esp. in our simulations. For example,
if(x == 1) {}if(x == 1) {}

should be realized asshould be realized as
const float const float epseps=1e=1e--5;5;
if(1if(1--eps < x && x < 1+eps) {}eps < x && x < 1+eps) {}

82

Platform LimitationsPlatform Limitations

Recursion
Thread Stack Sizes
Thread Pause/Resume

Recursion
Thread Stack Sizes
Thread Pause/Resume

83

RecursionRecursion

Recursion occurs when a function (kernel) F invokes
itself in a chain of function (kernel) invocations

Direct recursion example: F() { ... if() { ... F(); ... } ... }
Indirect recursion example: F() { ... G(); ...} G() { ... F(); ... }

Few GPU systems support recursion in GPU threads
(kernels)
Most in fact "flatten" or "inline" the function call graph

E.g., via static analysis of function call chain
Perform memory allocation to fit the chain, all in the compiler
Hence, currently, only call chains of DAGs (directed acyclic
graphs) or trees

Recursion occurs when a function (kernel) F invokes
itself in a chain of function (kernel) invocations

Direct recursion example: F() { ... if() { ... F(); ... } ... }
Indirect recursion example: F() { ... G(); ...} G() { ... F(); ... }

Few GPU systems support recursion in GPU threads
(kernels)
Most in fact "flatten" or "inline" the function call graph

E.g., via static analysis of function call chain
Perform memory allocation to fit the chain, all in the compiler
Hence, currently, only call chains of DAGs (directed acyclic
graphs) or trees

84

Thread Stack SizesThread Stack Sizes

Thread stack size are statically determined
Maximum stack size may be severely limited by the memory
available on GPU

Typically to a few dozen kilo bytes per thread

For best efficiency and safety, may be best to avoid very long
function (kernel) call-chains

Unlike in current day CPU-based software

Thread stack size are statically determined
Maximum stack size may be severely limited by the memory
available on GPU

Typically to a few dozen kilo bytes per thread

For best efficiency and safety, may be best to avoid very long
function (kernel) call-chains

Unlike in current day CPU-based software

85

Thread Pause/ResumeThread Pause/Resume

GPU threads are fully in-lined function call graphs
In almost all current GPU systems
Little support for pause/resume semantics of CPU-based threads

Major distinction to bear in mind while moving from CPU-based
simulations to GPU-based simulation systems

Process-oriented simulations difficult to realize on GPUs

GPU threads are fully in-lined function call graphs
In almost all current GPU systems
Little support for pause/resume semantics of CPU-based threads

Major distinction to bear in mind while moving from CPU-based
simulations to GPU-based simulation systems

Process-oriented simulations difficult to realize on GPUs

86

Time Stepped & Discrete Event Time Stepped & Discrete Event
SimulationSimulation

Time Stepped Simulation
Typical Usage Template
Time Advance on CPU
Time Advance on GPU

Time Stepped Simulation
Typical Usage Template
Time Advance on CPU
Time Advance on GPU

Discrete Event Simulation
Data parallel execution (SIMD) implies traditional event
loop does not make sense
Cannot implement discrete event time leaps with
conventional algorithm(s)
Need to revisit the application program interface (API),
and refine it for GPUs

Discrete Event Simulation
Data parallel execution (SIMD) implies traditional event
loop does not make sense
Cannot implement discrete event time leaps with
conventional algorithm(s)
Need to revisit the application program interface (API),
and refine it for GPUs

87

SolutionsSolutions

Algorithms
Operation
Example and
Performance Study

Algorithms
Operation
Example and
Performance Study

88

TS and DES: Example ApplicationTS and DES: Example Application

Simulation of Diffusion Processes
E.g., heat, dye, mood, disease, …

2-D scenario
Spatial grid along x, y axes

Study performance of time-stepped and discrete-event
execution on CPU & GPGPU

Simulation of Diffusion Processes
E.g., heat, dye, mood, disease, …

2-D scenario
Spatial grid along x, y axes

Study performance of time-stepped and discrete-event
execution on CPU & GPGPU

βαα +
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

y
Q

x
Q

t
Q

yx

89

TimeTime--stepped Approachstepped Approach

Advance simulation time in fixed increments, Δt
Update entire grid state every Δt

Maps very easily to stream processing of GPGPUs

Advance simulation time in fixed increments, Δt
Update entire grid state every Δt

Maps very easily to stream processing of GPGPUs

βαα +
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

y
Q

x
Q

t
Q

yx

βαα +
Δ

+−
+

Δ

+−
=

Δ

− +−+−
+

2
,1,,1

2
1,,1,,

1
, 22

y
qqq

x
qqq

t
qq n

ji
n

ji
n

ji
y

n
ji

n
ji

n
ji

x

n
ji

n
ji

Simulation time

90

Mapping Time Stepped Update to GPGPUMapping Time Stepped Update to GPGPU

FP

FP

FP

FP

Texture Memory

FP=Fragment Processor

Qij
n Qij

n+1
Q[i][j] = f(Q[i][j],

Q[i-1][j], Q[i+1][j],
Q[i][j+1], Q[i][j-1])

Note: No read/write hazards

Q[i][j] = f(Q[i][j],
Q[i-1][j], Q[i+1][j],
Q[i][j+1], Q[i][j-1])

Note: No read/write hazards

• Most existing GPGPU simulations are time-stepped!

• Shown to be much faster on GPGPU than on CPU

91

Experiment PlatformsExperiment Platforms

CPU: Centrino 2.1GHz, 2GB
GPU: NVIDIA GeForce 6800 Go, 256MB,

16 Fragment processors
CPU: Microsoft VC++ v7
GPU: Brook stream compiler,

DirectX 9 runtime

CPU: Centrino 2.1GHz, 2GB
GPU: NVIDIA GeForce 6800 Go, 256MB,

16 Fragment processors
CPU: Microsoft VC++ v7
GPU: Brook stream compiler,

DirectX 9 runtime

92

TimeTime--stepped Performance on GPGPUstepped Performance on GPGPU

0

1

2

3

4

5

50x50 100x100 250x250 500x500 750x750
Problem size

Sp
ee

du
p

• Performance relative to time-stepped code on CPU

• 2x implies TS on GPGPU is twice as fast as on CPU

Large caches of CPU help
on small grid sizes

Streaming, 2-D caching and
asynchronous memory
operations of GPGPU help
on large grid sizes

93

But is it a fair comparison?But is it a fair comparison?

Time-stepped simulation on CPU is not the fastest
method

Other methods exist
E.g., discrete event formulation

Time-stepped may favor GPGPU
Asynchronous memory operations, etc.

Let us compare with DES on CPU…

Time-stepped simulation on CPU is not the fastest
method

Other methods exist
E.g., discrete event formulation

Time-stepped may favor GPGPU
Asynchronous memory operations, etc.

Let us compare with DES on CPU…

94

Discrete Event Approach on CPUDiscrete Event Approach on CPU

Advance simulation time in variable increments
Each grid element is advanced independently

Solve for Δt, for a given resolution of Q (state space)

Maps to event list based simulation

Advance simulation time in variable increments
Each grid element is advanced independently

Solve for Δt, for a given resolution of Q (state space)

Maps to event list based simulation

βαα +
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

y
Q

x
Q

t
Q

yx

βαα +
Δ

+−
+

Δ

+−
=

Δ

− +−+−
+

2
,1,,1

2
1,,1,,

1
, 22

y
qqq

x
qqq

t
qq n

ji
n

ji
n

ji
y

n
ji

n
ji

n
ji

x

n
ji

n
ji

Simulation time

95

0

1

2

3

4

5

6

7

8

9

50x50 100x100 250x250 500x500 750x750
Problem size

Sp
ee

du
p

0

1

2

3

4

5

6

7

8

9

50x50 100x100 250x250 500x500 750x750
Problem size

Sp
ee

du
p

DiscreteDiscrete--Event Performance on CPUEvent Performance on CPU

• Performance relative to time-stepped code on CPU

• Clearly DES is much faster than TS

Little gain over TS

- Tight coupling across grid

High gain over TS

- Needless computation
eliminated on larger grids

96

How can we apply similar approach to How can we apply similar approach to
GPGPU?GPGPU?

DES-style event list infeasible on GPGPU
Data parallel execution

But global reductions are very fast
Fast logarithmic reduction algorithms

Can reap the benefits of larger time advances
Without event lists, but with global advances

DES-style event list infeasible on GPGPU
Data parallel execution

But global reductions are very fast
Fast logarithmic reduction algorithms

Can reap the benefits of larger time advances
Without event lists, but with global advances

97

Hybrid ApproachHybrid Approach
Compute upper bound on Δt for each element

Solve for Δt, for a given resolution of Q (state space)

Advance time by minimum Δt, update all elements
Maps to GPGPUs very well!

Compute upper bound on Δt for each element
Solve for Δt, for a given resolution of Q (state space)

Advance time by minimum Δt, update all elements
Maps to GPGPUs very well!

βαα +
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2

y
Q

x
Q

t
Q

yx

βαα +
Δ

+−
+

Δ

+−
=

Δ

− +−+−
+

2
,1,,1

2
1,,1,,

1
, 22

y
qqq

x
qqq

t
qq n

ji
n

ji
n

ji
y

n
ji

n
ji

n
ji

x

n
ji

n
ji

Simulation time

98

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

50x50 100x100 250x250 500x500 750x750
Problem size

Sp
ee

du
p

CPU-Hybrid GPU-Hybrid

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

50x50 100x100 250x250 500x500 750x750
Problem size

Sp
ee

du
p

CPU-Hybrid GPU-Hybrid

Hybrid Performance on GPGPU & CPUHybrid Performance on GPGPU & CPU

• Performance relative to time-stepped code on CPU

CPU much faster due to very
large cache

- Small grid fits in cache!

High gain on larger grids

- Faster time advances
enabled by hybrid execution

99

Performance Study ResultPerformance Study Result

Performance gain from DES-style execution can be
reaped on GPGPU as well

Using proper adaptation of DES to hybrid

GPGPU can give several fold improvement over CPU
performance on plain TS as well as DES (hybrid)

GPU-Hybrid is 17× relative to TS-CPU!

Performance gain from DES-style execution can be
reaped on GPGPU as well

Using proper adaptation of DES to hybrid

GPGPU can give several fold improvement over CPU
performance on plain TS as well as DES (hybrid)

GPU-Hybrid is 17× relative to TS-CPU!

Part IIIPart III

Networked GPUs
Other Types of GPU Usage
in Simulations
Future Developments and
Outlook

Networked GPUs
Other Types of GPU Usage
in Simulations
Future Developments and
Outlook

101

Networked GPUsNetworked GPUs

Hardware System
CUDA+MPI
Latency Challenge
B+2R Algorithm
Performance

Hardware System
CUDA+MPI
Latency Challenge
B+2R Algorithm
Performance

102

Hierarchical GPU System HardwareHierarchical GPU System Hardware

Multi-Node

Node (Multi-GPU)

GPU

Block

........Thread

........

103

Analogous Networked MultiAnalogous Networked Multi--core core
Hardware SystemHardware System

Multi-Socket

Multi-Core

Thread

Multi-Node

........

........

104

CUDA+MPICUDA+MPI

An economical cluster solution
Affordable GPUs, each providing one-node CUDA
MPI on giga-bit Ethernet provides inter-node communication

Memory speed-constrained system
Inter-memory transfers can dominate runtime
Runtime overhead can be severe

Need a way to tie CUDA and MPI
Algorithmic solution needed to overcome latency challenge

An economical cluster solution
Affordable GPUs, each providing one-node CUDA
MPI on giga-bit Ethernet provides inter-node communication

Memory speed-constrained system
Inter-memory transfers can dominate runtime
Runtime overhead can be severe

Need a way to tie CUDA and MPI
Algorithmic solution needed to overcome latency challenge

105

Latency ChallengeLatency Challenge

High latency between GPU and CPU memories
CUDA inter-memory data transfer primitives

Very high latency across CPU memories
MPI communication for data transfers

Naïve method gives very poor computation to
communication ratio

Slow-downs instead of speedups across distributed GPUs

High latency between GPU and CPU memories
CUDA inter-memory data transfer primitives

Very high latency across CPU memories
MPI communication for data transfers

Naïve method gives very poor computation to
communication ratio

Slow-downs instead of speedups across distributed GPUs

106

Example: Conventional MethodExample: Conventional Method

Block0,0

P0,0

Block0,1
P0,1

Block0,2
P0,2

Block1,0
P1,0

Block1,1
P1,1

Block1,2
P1,2

Block2,0
P2,0

Block2,1
P2,1

Block2,2
P2,2

B

107

Our B+2R MethodOur B+2R Method

Block0,0

P0,0

Block0,1
P0,1

Block0,2
P0,2

Block1,0
P1,0

Block1,1
P1,1

Block1,2
P1,2

Block2,0
P2,0

Block2,1
P2,1

Block2,2
P2,2

B+2R
R R

108

B+2R AlgorithmB+2R Algorithm
Let Te be total number of iterations in the simulation
1 For all blocks Blockij in the given agent grid G
1.1 Let (tli, tlj) be the top left index of Blockij
1.2 Let (bri, brj) be the bottom right index of Blockij
1.3 For t=0 to Te/R
1.4 For r=R-1 down to 0
1.5 Update(tli-r, tlj-r, bri+r, brj+r)
1.6 Communicate(tli, tlj, bri, brj, r)
1.7 Barrier()

B

R
B+2R

R

Direction of error
propagation in R

B×B
sub-block mapped

to processing
element p

R layers of
lagging cells

109

B+2R Implementation within CUDAB+2R Implementation within CUDA

Split into b×b
logical blocks

Global memory

.…

Shared memory
per block

B+2R

b×b blocks
R state updates

R state updates

110

PerformancePerformance

Multi-Node GPU GOL - 16 mil Agents

0

50

100

150

1 2 4 8
MPI Level R (Rm)

Sp
ee

du
p

Rt=1 Rt=2 Rt=4

Over 100× speedup with MPI+CUDA

Speedup relative to naïve method with no latency-hiding

Multi-Node GPU LDR - 16 mil Agents

0

10

20

30

40

2 4 8

MPI Level R (Rm)

Sp
ee

du
p

Rt=2 Rt=4 Rt=8

111

Other Types of GPU Usage in Other Types of GPU Usage in
SimulationsSimulations

LOS Computation and
Collision Detection
Numerical Integration
Linear Algebra

LOS Computation and
Collision Detection
Numerical Integration
Linear Algebra

112

LOS Computation and Collision LOS Computation and Collision
DetectionDetection

Expensive computation such as line-of-sight (LOS)
determination, and collision detection delegated to GPU
Highly data-parallel computation well-suited for SIMD
architecture of GPUs
Examples

M. Verdesca, J. Munro, M. Hoffman, M. Bauer, and D. Manocha,
"Using Graphics Processor Units to Accelerate OneSAF: A Case
Study in Technology Transition," in Interservice/Industry Training,
Simulation and Education Conference (IITSEC), 2005
Gress A., Guthe M., Klein R., "GPU-based Collision Detection for
Deformable Parameterized Surfaces," in Computer Graphics
Forum, 2006

Expensive computation such as line-of-sight (LOS)
determination, and collision detection delegated to GPU
Highly data-parallel computation well-suited for SIMD
architecture of GPUs
Examples

M. Verdesca, J. Munro, M. Hoffman, M. Bauer, and D. Manocha,
"Using Graphics Processor Units to Accelerate OneSAF: A Case
Study in Technology Transition," in Interservice/Industry Training,
Simulation and Education Conference (IITSEC), 2005
Gress A., Guthe M., Klein R., "GPU-based Collision Detection for
Deformable Parameterized Surfaces," in Computer Graphics
Forum, 2006

113

Numerical IntegrationNumerical Integration

Small memory foot-print, small time-step integrators are best suited
for GPU platform

Example:
J. Gao, E. Ford, and J. Peters, "Parallel Integration of Planetary
Systems on GPUs," in Proceedings of the 46th Annual Southeast
Regional Conference on XX, 2008

Small memory foot-print, small time-step integrators are best suited
for GPU platform

Example:
J. Gao, E. Ford, and J. Peters, "Parallel Integration of Planetary
Systems on GPUs," in Proceedings of the 46th Annual Southeast
Regional Conference on XX, 2008

Computation of forces in N-body problems may be viewed as direct
numerical integration, performed on the GPUs
Integration can be off-loaded to the GPU as co-processor.
Dead-reckoning of entities (by integration schemes) in semi-
automated forces, for example, can be off-loaded to the GPUs (no
citation yet!)

Computation of forces in N-body problems may be viewed as direct
numerical integration, performed on the GPUs
Integration can be off-loaded to the GPU as co-processor.
Dead-reckoning of entities (by integration schemes) in semi-
automated forces, for example, can be off-loaded to the GPUs (no
citation yet!)

114

Linear AlgebraLinear Algebra

Matrix operations (multiplication or inversion) occur commonly inside
a simulation, as part of simulation state updates.
Examples

Matrix operations within a state update of an entity (within a multi-scale, multi-
resolution simulation method)
Matrix operations across the entire simulation state (entire domain of a
simulation using implicit methods)
These can be delegated to GPU as co-processors.

Matrix operations (multiplication or inversion) occur commonly inside
a simulation, as part of simulation state updates.
Examples

Matrix operations within a state update of an entity (within a multi-scale, multi-
resolution simulation method)
Matrix operations across the entire simulation state (entire domain of a
simulation using implicit methods)
These can be delegated to GPU as co-processors.

The speed of lower precision may be exploited.
Lower-precision arithmetic may be sufficient in some applications.
Single-precision or mixed-precision linear algebra is another key
motivation for using GPUs for linear algebra

The speed of lower precision may be exploited.
Lower-precision arithmetic may be sufficient in some applications.
Single-precision or mixed-precision linear algebra is another key
motivation for using GPUs for linear algebra

115

Future Developments and OutlookFuture Developments and Outlook

OpenCL
Nexus, CUDA-C++, MSVC
Fermi/GTX300
Heterogeneous Cores
GPU-based
Supercomputing
Packaged and
Customized Solutions

OpenCL
Nexus, CUDA-C++, MSVC
Fermi/GTX300
Heterogeneous Cores
GPU-based
Supercomputing
Packaged and
Customized Solutions

116

OpenCLOpenCL

Open Computing Language
Device-independent programming (ideally!)
Apple-led effort
Gaining industry support
We may expect NVIDIA, Microsoft, IBM, Intel, AMD, and
others to support it

Open Computing Language
Device-independent programming (ideally!)
Apple-led effort
Gaining industry support
We may expect NVIDIA, Microsoft, IBM, Intel, AMD, and
others to support it

117

Nexus, CUDANexus, CUDA--C++, MSVCC++, MSVC

New, “developer-friendly” environment from NVIDIA
Integration with Microsoft Visual Studio
Moving from C to C++ (CUDA already had some C++)

New, “developer-friendly” environment from NVIDIA
Integration with Microsoft Visual Studio
Moving from C to C++ (CUDA already had some C++)

118

Fermi/GTX300Fermi/GTX300

Very recent offerings in the market
Among the most powerful commodity, off-the-shelf
GPU-based systems

Very recent offerings in the market
Among the most powerful commodity, off-the-shelf
GPU-based systems

119

Heterogeneous CoresHeterogeneous Cores

Multi-cores all on die, but cores differ in functionality
and capabilities
Many types of cores into one system

This is probably the medium- to long-term trend
Little distinction between current processor and co-
processor
Customizable and/or packaged multi-cores

Multi-cores all on die, but cores differ in functionality
and capabilities
Many types of cores into one system

This is probably the medium- to long-term trend
Little distinction between current processor and co-
processor
Customizable and/or packaged multi-cores

120

GPUGPU--based Supercomputingbased Supercomputing

Roadrunner-trend may continue
May not necessarily be based on IBM Cell processor

Already NVIDIA (Fermi)-based high-performance
configurations being installed

One at ORNL/Georgia Tech led by Jeffrey Vetter

Roadrunner-trend may continue
May not necessarily be based on IBM Cell processor

Already NVIDIA (Fermi)-based high-performance
configurations being installed

One at ORNL/Georgia Tech led by Jeffrey Vetter

121

Packaged and Customized SolutionsPackaged and Customized Solutions

E.g., Mobile platforms, financial markets, data mining
E.g., Solutions marketed by Mercury Systems

E.g., Mobile platforms, financial markets, data mining
E.g., Solutions marketed by Mercury Systems

Thank you!Thank you!

Questions?

Slides will be made available
online at www.ornl.gov/~2ip

http://www.ornl.gov/~2ip

	Introduction to Simulations on GPUs
	Goals and Expected Outcomes
	Tutorial Detail Map
	Tutorial Item Sequence
	Scope
	Acknowledgements & Disclaimers
	References
	Good Starting Points
	Sources of Extracts Used Here
	Motivating Demonstrations
	Part I
	Introduction
	Evolution
	Graphics as Computation
	Computation on GPUs (Pre-CUDA)
	SIMD Execution
	SIMD Execution (continued)
	Add-on vs. Packaged: To Get Started
	Co-Processor vs. Processor
	Instantiations – A Few Popular Examples
	IBM Cell Processor
	NVIDIA GeForce, GTX
	NVIDIA Tesla
	LANL RoadRunner
	Basic GPU-based Algorithms
	Sorting, Reduction
	Linear Algebra
	Stencil Computation
	Fast Fourier Transforms
	Computational Geometry
	Software
	OpenGL, Cg
	Example of Cg Kernel Code
	Brook, CUDA, Stream
	NVIDIA CUDA
	NVIDIA CUDA Installation Outline
	Applications
	Benefits�(in Context of Parallel Simulations)
	Real-time Execution
	Computation “Close to Visualization”
	Cheaper High-Performance
	Common GPU Applications
	Non-Traditional GPU Applications
	Agent Based Simulations
	Transportation Simulations
	Network Simulation
	Development
	Basic Concepts
	Execution Contexts and Kernel Functions
	Software vs. Hardware Views
	Software vs. Hardware Views
	Inter-Memory Data Transfers
	Launching GPU Threads
	Synchronization, Coordination, Termination
	Part II
	Computational Considerations
	Memory Hierarchy
	CPU Memory vs. GPU Memory
	GPU Memory Types
	GPU Memory Types (NVIDIA)
	Bank Conflicts, Bandwidth
	Scheduling
	Thread Launch Cost
	Thread-Count Effects
	Synchronization
	CPU-GPU Coordination
	Intra-GPU Thread Coordination
	SIMD Constraints
	Conditional Statements
	Conditional Statements (continued)
	Looping
	Random Number Generation
	Bias and SIMD Conflict
	Bi-Partite Mapping Challenge (Data Parallel)
	Randomized Bi-Partite: Algorithm
	Modeling Challenge
	Major Hurdle: Computation Paradigms
	Fallout for DES
	Numerical Effects
	Numerical Precision
	Accuracy - Visual vs. Analytical
	Platform Limitations
	Recursion
	Thread Stack Sizes
	Thread Pause/Resume
	Time Stepped & Discrete Event Simulation
	Solutions
	TS and DES: Example Application
	Time-stepped Approach
	Mapping Time Stepped Update to GPGPU
	Experiment Platforms
	Time-stepped Performance on GPGPU
	But is it a fair comparison?
	Discrete Event Approach on CPU
	Discrete-Event Performance on CPU
	How can we apply similar approach to GPGPU?
	Hybrid Approach
	Hybrid Performance on GPGPU & CPU
	Performance Study Result
	Part III
	Networked GPUs
	Hierarchical GPU System Hardware
	Analogous Networked Multi-core Hardware System
	CUDA+MPI
	Latency Challenge
	Example: Conventional Method
	Our B+2R Method
	B+2R Algorithm
	B+2R Implementation within CUDA
	Performance
	Other Types of GPU Usage in Simulations
	LOS Computation and Collision Detection
	Numerical Integration
	Linear Algebra
	Future Developments and Outlook
	OpenCL
	Nexus, CUDA-C++, MSVC
	Fermi/GTX300
	Heterogeneous Cores
	GPU-based Supercomputing
	Packaged and Customized Solutions
	Thank you!

