
Parino � An Extendable Framework for Solving Mixed

Integer Programs in Parallel

Kalyan Perumalla �kalyan�cc�gatech�edu�
Martin Savelsbergh �mwps�isye�gatech�edu�

Umakishore Ramachandran �rama�cc�gatech�edu�

College of Computing and
School of Industrial Systems and Engineering

Georgia Institute of Technology
Atlanta� GA �����

GIT�CC������
March ��� ����

ABSTRACT

This report documents a framework called Parino that we have developed for
solving large mixed integer programs �MIPs� in parallel� Parino combines
portability and e�ciency with �exibility� It is written in C��� and is portable
across any message passing platforms� The �exibility of the framework is a
result of mapping the MIP computation to an entity�FSM paradigm� where
it is expressed in terms of the interactions among several distributed active
objects� Thus� it is possible to incrementally enhance the functionality of
Parino by incorporating new dynamic objects into the framework� We have
used this feature to augment the core parallel MIP computation in Parino

with a simple distributed cut management system� which is again expressed
in terms of the entity	FSM paradigm� Parino is currently operational� It has
been tested on an
	node IBM SP� multicomputer� and new feature additions
and enhancements are being continually made to it�

Parino � An Extendable Framework for Solving Mixed

Integer Programs in Parallel

Kalyan Perumalla� Martin Savelsberghy Umakishore Ramachandran�

� Introduction

Mixed integer programming deals with problems of maximizing or minimizing a function
of many variables subject to linear inequality and equality constraints and integrality
restrictions on some or all of the variables� A remarkably rich variety of problems can
be represented by such models�

An important and widespread area of application concerns the management and
e�cient use of scarce resources to increase productivity� These applications include op�
erational problems such as the distribution of goods� production scheduling and machine
sequencing� but also more tactical and strategical problems such as capital budgeting�
facility location and the design of communication and transportation networks�

In the past decade� research on linear programming based branch�and�bound algo�
rithms for mixed integer programming has focused on improving the linear programming
approximation� Reformulation techniques have been developed that have proven to be
quite successful� In combination with the availability of faster and more robust linear
programming methods 	due to the development and maturation of interior point methods
as well as to enhancements to the simplex method
 and the availability of increasingly
powerful hardware platforms providing high speed processors and large amounts of in�
ternal memory� these methods have allowed the solution of mixed integer programs of
sizes and with speeds that did not seem possible ten years ago� There are many rea�
sons to believe that parallel computing may provide the opportunity for even greater
advances� Related work in parallel�distributed mixed integer program solution appears
in ��� � �� �� �� ���

Parino 	Parallel Mixed Integer Optimizer
 is a parallel software system that we have
developed for solving mixed integer programs 	MIPs
� Parino is an evolving system�

�College of Computing� Georgia Institute of Technology
yIndustrial and Systems Engineering� Georgia Institute of Technology

�

with new features and enhancements added to it continually� The heart ofParino is a so�
phisticated linear programming based branch�and�cut algorithm in a parallel�distributed
setting� It is designed so that it is straight�forward to incorporate many of the state�of�
the�art mixed integer programming techniques�

Parino has been designed to work on any message�passing system� such as a network
of workstations� and does not assume the availability of any sophisticated underlying
inter�processor communication or shared memory system� Parino carefully exploits the
weak synchronization requirements that are inherent in a branch�and�cut algorithm� For
example� in distributed active set management and in distributed cut management� the
required communication is explicitly controlled� as opposed to leaving the control to a
generalized native or emulated shared�memory system�

Parino uses a special entity�FSM architecture as the underlying message passing sys�
tem that allows the objects that can be identi�ed in the MIP computation domain to be
mapped naturally and elegantly to equivalent entities and their threads of computation�
The use of the entity�FSM architecture also allows for easy extension of Parino�s func�
tionality and for easy tuning of the system for optimal performance when it is ported
to di�erent computation platforms and communication subsystems� In addition� as a
natural fallout� Parino allows the incorporation of problem�dependent runtime control
	online steering
 of the computation by varying the various key parameters at runtime�
thereby varying the strategies of computation and search and the appropriate use of
various heuristics�

� Entity�FSM Architecture

To facilitate extendability and portability without sacri�cing e�ciency� the Parino sys�
tem is built using an e�cient and portable class library called Naylak 	see ��� for an
overview
� The Naylak system supports a world view based on the concept of active
entities for distributed computation� It provides a higher software interface layer above
traditional process�based message passing systems� Figure � illustrates the Naylak
system architecture�

Traditionally� bulky processes 	usually UNIX processes
 are the units which commu�
nicate by exchanging messages� Except for some relatively small or medium complexity
applications� process�level messaging modularity cannot adequately scale with the appli�
cation complexity� In Naylak� an additional layer is added over this basic process�level
message�passing by introducing the concept of lighter units called entities � Each process�
thus� consists of a set of entities� and message�passing is performed at the entity level
rather than process level� Thus� entities send messages to other entities� as opposed to
processes sending messages to other processes�

Another feature lacking in traditional message�passing interfaces� such as PVM� is
that of context maintenance� If a given computation consists of several stages� with
some message�passing�synchronization occuring between the stages� then either barriers
or arti�cial message tags are used to realize the multi�stage computation� In Naylak�
the concept of a �nite state machine 	FSM
 is supported to directly facilitate multi�
stage computation� An FSM is an arbitrary graph of states � where each state is a set
of statements that are executed indivisibly 	atomically
� Every FSM is associated with
a single entity� called its owner� An entity can have zero or more FSMs running for
it� Each FSM� in e�ect� is a thread of computation� and each FSM state is a unit
of computation� Each FSM state dynamically designates its next state� Since FSM
states are executed indivisibly 	atomically
� no synchronization is required for access to
common data across FSM�s and FSM states�� FSM�s can be started� paused� resumed
and terminated dynamically�

Entity

ExecutiveExecutive

Entity Entity Entity

State S

State 3

State 1

State 2

FSM

Process Process

State 1

State XState W

State 3

State 2

FSM

State 3

State 1

State 2

FSM

State Y

State 3

State 1

State 2

FSM

State Z

State 3

State 1

State 2

FSM

State 3

State 1

State 2

FSM

State U

State 3

State 1

State 2

FSM

State V

State 3

State 1

State 2

FSM

State T

Communication System

Figure �� Naylak System Architecture

Entities can be created and terminated dynamically� The mapping of entities to

�This is one of the main di�erentiating features from other systems that combine conventional message

passing with threads� in such threads�based systems� explicit synchronization primitives� such as mutexes

or semaphores� should be used to ensure the atomic nature of the most common sequence of operations�

whereas such operation is provided by default in this entity�FSM architecture� This greatly eases the

burden on the programmer� and helps in a natural �ow of control and data�

�

UNIX�level processes� and the mapping of the processes to the parallel processors can be
controlled at runtime� Entities can create or terminate other entities dynamically� The
creation and termination can be performed synchronously or asynchronously�

Although abstractions usually entail slight overheads� the implementation of the
Naylak system has been carefully designed in order to minimize the overhead im�
posed by the layering� As compared to the execution time of the procedures involved
per unit of computation in Parino� the overhead incurred 	which is mostly from extra
memory�copying instructions
 due to the Naylak runtime system is insigni�cant�

The Naylak system is portable across any message�passing system� Its software
interface is in C��� Its object�oriented design facilitates its portability� with few and
isolated modi�cations for porting� The entity�FSM architecture has been found to be
very useful due to the following features�

� it facilitates development of distributed algorithms

� it allows system adjustment to improve performance on a platform�speci�c basis

� it is portable

� it is extendable�

� Parino System Architecture

The heart of Parino is a linear programming based branch�and�bound algorithm� A
brief summary of the algorithm is given below 	see ��� �� for additional information
�

Branch�and�bound Node k of a branch�and�bound tree corresponds to a subproblem
MIP	k
 obtained by adding constraints to the original problem MIP	�
� Frequently�
these constraints are simply tighter bounds for the integer variables which� in the case of
binary variables� implies that the variable is �xed to either � or �� Any feasible solution
to MIP provides a lower bound� Let zbest be the value of the greatest lower bound over
all available feasible solutions� At node k of the tree� we solve the LP relaxation LP	k
 of
MIP	k
� We assume that LP	k
 is feasible and bounded and its optimal value is z	k
� If
the optimal solution x	k
 found to LP	k
 happens to satisfy the integrality constraints�
then x	k
 is also optimal to MIP	k
� in which case� if z	k
 � zbest� we update zbest�
We can forget about node k� Otherwise� if x	k
 does not satisfy all of the integrality
constraints� there are two possibilities� If z	k
 � zbest� an optimal solution to MIP	k

cannot improve on zbest� Again we can forget about node k� On the other hand� if
z	k
 � zbest� MIP	k
 requires further exploration� This is done by branching� creating
at least two new subproblems 	descendants
 of MIP	k
� MIP	k	i

� i � �� � � � � q� q � �

�

Each subproblem is formed by adding constraints to MIP	k
� Each feasible solution to
MIP	k
 must be feasible to at least one descendant and� conversely� each feasible solution
to a descendant must be feasible to MIP	k
� Moreover the solution x	k
 must not be
feasible to any of the descendants� A simple realization of these requirements is to select
a variable xj � j � p� such that xj	k
 is not integral� and to create two descendants� in
one of these we add the constraint xj � bxj	k
c and in the other xj � dxj	k
e� Node k
is now replaced by its descendants and the size of the tree grows�

Qlty Bal. FSM

Load Bal. FSM

Distributor

Primer

Primer FSM

RecvWork FSM

Loader

SendWork FSM

Solve FSM

Worker

RecvWork FSM

Loader

SendWork FSM

Solve FSM

Worker

Logger

Work nodes

Results

Operations

Operations

Operations

Operations

Status

Status

Status

Status

Work
nodesWork

nodes

Commands
Statistics

Commands
Statistics

Figure � Illustration of the Parino system architecture� Dotted regions represent UNIX
processes� ovals represent Naylak entities� boxes represent FSMs and arrows represent
relevant communication�

System Entities

The Parino system consists of several entities interacting with each other� Figure
depicts the various entities� their FSMs and the interactions among them� Each entity is
responsible for a clearly de�ned set of operations� The types of entities include primer �
distributor � loader � worker and logger among others� Exactly one instance of the primer
entity type and one instance of the distributor entity type are created for a given run�

�

Exactly one instance of the loader entity is created per processor� and exactly one worker
entity is created per loader entity�

The primer entity is responsible for initially creating all the entities� reading the initial
problem� waiting for results� and printing the results� The distributor is responsible for
the coordination of load balancing and quality balancing across the distributed active
sets 	as will be explained in later sections
� Each loader entity is responsible for the
maintenance of the active set at each processor� Loaders act on commands from the
distributors to achieve load balancing and quality balancing� The distributor� in addition�
is responsible for termination�detection 	end of parallel branch and bound search
� The
duties of a worker are simply to request a node for computation from its loader� evaluate
the node� generate new nodes if necessary� report results back to the loader and repeat the
entire process again� The loaders and the distributor together deal with the distributed
active set management� There is no centralized active set 	as will be explained shortly
�
As an example to illustrate the working of each entity� Figure � depicts a simpli�ed
version of the state transition diagram of the SolveFSM of a worker entity�

� Active Set Management

The set of unevaluated nodes that are generated during a branch�and�bound operation is
called the active set � Several techniques exist for the e�ective management of the active
set of nodes in a branch�and�bound search in a parallel�distributed setting� The alterna�
tives range from fully centralized set� through quasi�distributed set� to fully distributed
set�

��� Shared Memory Vs� Message Passing

Several issues arise with each of the alternatives to active set management� With a
centralized set implementation� the obvious concern is contention� A less obvious is�
sue exists when the centralized set is implemented using shared�memory� Typically� the
shared�memory implementations guarantee some consistency properties that are usually
more generalized and stricter than that are su�cient for the management of the active
set in parallel branch�and�bound� Although it is not clear how the shared memory im�
plementation interacts in general with the access patterns of the active set� it intuitively
appears that a more direct control of the required inter�process communication by the
processes will result in better performance and lesser communication and latencies be�
tween computations� This e�ect can be more pronounced when the shared�memory is
emulated over a message�passing environment 	eg�� TreadMarks
� in which unnecessary
communication is more expensive than in a bus�based shared�memory system� The un�
derlying reason for the relaxed synchronization requirements is that it is algorithmically

�

SolveFSM

Worker Entity

SolveLP

FindCuts

ReceivedCuts

GetWork

ReceivedWork

GenerateBranches

Wrapup

GenerateCuts

UseCuts

Initialize

Request to Loader

Request to Cut Manager

Work Node from Loader

Cut
Received?

New Node to Loader

(Optimal LP)

No Cut Received?

No more cuts? LP Infeasible/IP Feasible?

Cuts from CutManager

No more work?

Feasible Solution to Loader

Figure �� Illustration of a simpli�ed version of the SolveFSM of a worker entity�

�

not necessary to work on the node with best bound�
In a fully distributed active set implementation� each processor holds its 	partial

active set� and the union of these partial sets can be seen as equivalent to the global
central active set� With such a scheme� it is well known that the issues of load imbalance
and quality imbalance have to be taken into consideration�

Load imbalance arises when the number of nodes in the distributed active sets across
processors varies signi�cantly� Quality imbalance implies that the closeness of the bounds
to the optimal solution varies considerably across processors� thereby resulting in some
processors potentially working on unpromising nodes� which is undesirable� However� this
scheme using a distributed active set does imply that explicit control of the distribution
of the nodes 	at appropriate time instants during the search
 through explicit message
passing among the processors can potentially reduce the amount of communication as
compared to a highly generalized shared�memory system that works without su�cient
knowledge of the application requirements�

Another important di�erence between the preceding two extreme alternatives is with
respect to scalability� Native 	say� bus�based
 shared�memory systems typically cannot
scale to more than a few dozens of processors� Thus� a centralized active set implemen�
tation can potentially be constrained by this limit on the number of processors that can
be e�ectively used�

In the case of a distributed active set scheme� there is no true limit on the number
of processors� hence� it is not constrained� provided that the algorithms for load and
quality balancing are themselves scalable with respect to the number of processors�

The preceding observations also hold for other distributed data structures used in
parallel�distributed MIP� such as cuts and pseudo�costs� that can be shared across pro�
cessors� but do not have any strong consistency requirements�

With the preceding observations� and also considering the fact that message�passing
systems� such as network of workstations� are ubiquitously available� and less expen�
sive than shared�memory systems� it was decided to implement a decentralized active
set scheme in the Parino system� The quantity and quality balancing algorithms are
described in the following sections� Similarly� in a separate report� we present a fully
distributed cut management scheme that is designed and developed with parameters to
provide a range of alternatives from fully centralized to fully distributed cut databases�

��� Implementation

Initially� the �rst loader�s active set contains the root node� and the active sets of the
other loaders are empty� The distributor asynchronously keeps track of the current
levels of loads and qualities of the active sets at each loader� The load or quantity of
an active set is de�ned as the number of nodes in its active set� The quality of an

�

active set is de�ned as the average of the bounds of the top k nodes � k � � in our
current implementation� The loaders periodically � every one second in the current
implementation � send updates of their current loads and qualities to the distributor�
This is an example of the use of the weak synchronization and consistency requirements
inherent in various aspects of parallel mixed integer programming and parallel branch
and bound computations� since we can control the communication without in�uencing
the correctness of underlying algorithm�

Quantity balancing

Whenever a worker requests its loader for a node from the active set and the loader �nds
its active set empty� the loader sends an out�of�work message to the distributor entity
and waits for a response� The distributor then arranges for some unevaluated nodes to
be sent from an appropriately selected loader to this loader� as explained in detail below�
The distributor never actually sends or receives any nodes � it only directs the loaders
to exchange nodes appropriately� The �Quantity�balancing FSM� of the distributor acts
on out�of�work messages from the loaders� All out�of�work messages are collected in a
FIFO queue�

Suppose the �rst request in the queue is from Li� Let Lj be the loader with the
maximum load 	based on the most recent information available to the distributor
� The
distributor sends a message to Lj asking it to send part of its active set to Li� and
waits for a response from Lj � Loader Lj responds with a success status if and when it
has successfully completed the transfer of part of its active set to loader Li� if Lj could
not transfer any nodes at all 	which is possible if Lj had just run out of work itself
�
it responds with a failure status� If the response indicates success� then the distributor
dequeues the out�of�work request from Li from its queue� and sends the loader Li a
success response� Loader Li is� at that point� guaranteed to have a non�empty active
set� The distributor�s quantity�balancing FSM then moves on to process the next out�of�
work message� if any� from other loaders� If the response from Lj is that of failure� then
the distributor does not dequeue the request of Li� but instead continues executing the
preceding steps all over again � this time using the updated information of the quantity
levels 	which were implied by the failure message
�

The distributor uses the same request queue to detect termination of the parallel
branch and bound search � this is detected if all the loaders are waiting on the queue�

Potential Enhancements

Some enhancements to the preceding distribution algorithm may be suggested� We will
discuss two of them� One might suggest that a loader should not wait to fetch more

�

nodes until it completely runs out of nodes in its active set� instead� a threshold� k�
could be used so that whenever the number of nodes in the active set drops below k�
a request for more work should be sent to the distributor� Two issues arise with this
approach� First� thrashing can occur� where� nodes get moved from one loader to another
unnecessarily without ever being evaluated� Another drawback with this approach is
that termination detection has to be addressed separately� where as� when k � �� it
can be detected as part of the load balancing algorithm� Second� there is no obvious
method to �nd the optimal value for k� because it varies considerably with the nature
of the MIP problem being solved and with the interplay of the various heuristics used�
One might also suggest that a loader with an empty set should fetch new nodes from
the processor with the highest quality as opposed to fetching them from the processor
with the highest load� However� the quality balancing algorithm discussed in the next
subsection ensures balanced qualities across the processors� so this is not an issue� The
statistics collected when solving the various MIP problems demonstrates that the loaders
run out of work very infrequently compared to the total number of nodes generated� and
hence the computation time potentially gained by prefetching is not signi�cant�

Another sophisticated enhancement would be to perform node�exchanges in parallel
if more than one loader is waiting in the queue for work� This optimization is based
on the observation that if several loaders run out of work at almost the same time� the
basic quantity balancing algorithm described previously processes them sequentially� in
the order in which they are added into the FIFO request queue� Instead� they could be
processed in parallel� This modi�cation entails more bookkeeping and a slight increase
in the complexity in coding� It is currently unclear if such an optimization may fetch sig�
ni�cant gains in our current experiments� which are based on relatively small number of
processors� However� since such an optimization never adversely harms the performance
of our basic algorithm� it is possible to incorporate this optimization when porting to
con�gurations with large number of processors�

Quality balancing

As mentioned earlier� all loaders periodically report the load and quality levels of their
respective 	local
 active sets to the distributor� Thus� at any given instant� the distributor
possesses an approximation to the actual levels at each loader� A �quality�balancing
FSM� of the distributor periodically checks if the quality levels of the active sets 	as given
by the approximations
 are relatively close together� detects any wide disparities� and
directs the loaders to exchange work units appropriately to smooth out the di�erences�

More precisely� the quality�balancing FSM periodically 	every seconds� in our cur�
rent implementation
 computes the minimum and maximum among the quality levels of
the loaders� Suppose the quality level� qmin at loader Lmin� is the minimum� and the

��

quality level� qmax at loader Lmax� is the maximum� If the relative di�erence between the
two levels is greater than a threshold� �� 	i�e�� if qmax�qmin

qmax
� �
� then it sends a message

to Lmax to exchange
� its top few nodes with those of Lmin � alternate nodes of the top

m nodes of Lmax are exchanged with alternate nodes of the top m nodes of Lmin 	m � �
in the current implementation
� Loader Lmax responds after successfully performing the
exchange operation� and the FSM updates the quality and quantity levels to re�ect the
new values� and repeats the preceding quality�balancing process�

The quality�balancing FSM also takes into account the quantity levels of the active
sets as follows� During one of the periodic checks� if the FSM �nds that the quantity
level of at least one loader is zero 	i�e� at least one loader has run out of work
� then it
temporarily skips the quality�balancing process described previously� This is so that it
does not interfere with the quantity�balancing algorithm� In fact� the quality�balancing
is skipped temporarily whenever the quantity level of any loader drops below a threshold
� � � 	� � � in current implementation
�

Choosing �

The parameter � varies with the MIP problem� and it directly a�ects the approxima�
tion of the distributed active set to a centralized active set with respect to best�bound
search� A larger value of � results in lesser communication� but higher potential for
degenerated search� while a lower value of � results in greater communication� but closer
approximation to the global best�bound search� � can be set to any desired value during
initialization� by choosing the right value based on the problems size and estimated objec�
tive value� if necessary� our implementation allows for tuning this parameter dynamically
at runtime�

Our approach for choosing � is based on the following idea� Let zIP denote the
optimum value and let zIP be an approximation of zIP � Furthermore� let � be an
approximation of the average absolute di�erence between the bound of a node and that
of its parent node� This implies that� ignoring the initial and trailing phases of the
search� the mutual di�erences of the qualities among the distributed active sets also is
roughly in the order of �� Therefore� we set � � � �

zIP
� In our implementation� we

take zIP to be the best feasible solution found so far� we continuously update �� and
periodically adjust ��

In general� � can be made lower than the value suggested by the preceding method�
ology� this enforces a tighter proximity of the qualities of the active sets� But� a very
low value of � can result in anomolous behavior� where the processors spend more time

�Shu�ing by exchanging� rather than one�way transfer from the loader with maximum quality to

the one with minimum quality is better for proper mixture of the best bounds across the two active sets

because exchanging results in a better averaging when the bounds are relatively close together�

��

exchanging nodes than in processing the nodes� On the other hand� a very high value of
� can result in anomolous behavior as well� where processors spend most of there time
working on unimportant nodes�

� Algorithmic enhancements

Several algorithmic enhancements can be made to augment the basic LP�based branch�
and�bound algorithm for mixed integer programming� The enhancements implemented
in Parino include preprocessing� reduced�cost �xing� global reduced�cost �xing and cut
generation� In this section� we describe our implementation approaches in Parino to
some of these enhancements 	we describe the ones in which parallel�distributed process�
ing issues arise
�

��� Global Reduced Cost Fixing

Whenever an improved feasible solution 	new incumbent value
 is found� the LP solution
to the original 	root
 problem is used in the reduced cost �xing algorithm� The variables
that are �xed by this operation� if any� can remain �xed in any solution to the MIP
problem�

This global reduced cost �xing has been implemented in Parino as follows� When�
ever a feasible solution that is better than the current incumbent is found� the root node
is resolved 	with some of the variables �xed at known values� and with some globally
valid cuts loaded into the LP
� Reduced cost �xing is performed on the resulting root
node solution� The information about variables that get �xed due to this operation is
broadcast to all the loaders� When a loader receives such information� it prunes all the
nodes in its active set that represent contradictory ranges of branch variable values that
have been �xed by the global reduced cost �xing� In addition� all workers incorporate
into their LPs the newly known values to the globally �xed variables�

��� Cut generation

Cut generation techniques try to tighten the linear programming relaxation of an integer
program by generating strong valid inequalities�

A simple distributed cut management service is implemented using a set of entities �
local pool managers � shared global pool managers � shared pool managers and a global pool

manager � The entities and their relations to each other are depicted in Figure �� The cut
management entities are distinct� and complement the entities used in the branch�and�
bound� The extendability through incremental addition of entities 	and FSMs
 using

�

Parino is illustrated by this augmentation of the core entities with cut management
entities�

	 Portability

Parino is written entirely in C��� It uses the Naylak system for parallel processing
and hence is portable with respect to the underlying communication platform of the
parallel computing system� In addition� Parino uses CPLEX� a commercially available
optimization package for linear programming� for parts of its bounding operations� As
CPLEX is available on a wide variety of platforms� portability on that point is also
ensured� Although Parino currently uses CPLEX as linear programming solver� it can
use any other linear programming solver in place of CPLEX�

Furthermore� most features of the Parino system can be recon�gured or �ne tuned
appropriately for optimal performance for di�erent computation and communication
platforms�

� Scalability

Based on the performance data from early runs on problems from MIPLIB� we observed
that the quantity and quality balancing algorithms� which are the only sections of the
framework that require quasi�centralized operation� do not constitute a bottleneck� We
believe from the observations that Parino is scalable with respect to the problem size�
and also scales well with respect to the number of processor available� We expect Parino
to provide linear performance even on a ����processor con�guration for large problems�
We plan to perform more exhaustive and extensive study of the solver�s performance
data to con�rm this hypothesis�

 Future Research

We are currently working on using the extendable framework of Parino to incorporate
many advanced techniques in mixed integer program solution 	both well known� as well
as state�of�the�art
� such as�

� primal heuristics

� improved branching

� distributed cut management

��

Qlty Bal. FSM

Load Bal. FSM

Distributor

Primer

Primer FSM

Local
Pool Mgr

RecvWork FSM

Loader

SendWork FSM

Solve FSM

Worker

Add Cut FSM

Match Cut FSM

Cut Mgr

Pool Mgr
Shared Glob Shared

Pool Mgr
Global

Surrogate

RecvWork FSM

Loader

SendWork FSM

Solve FSM

Worker

Add Cut FSM

Match Cut FSM

Cut Mgr

Logger

Global Cut Mgr

Add Cut FSM

Match Cut
FSM

Global
Surrogate

Shared Shared Glob
Pool Mgr

Local
Pool MgrPool Mgr

Work
nodes

Cuts

Work nodes

Cuts

Commands

Statistics

Cuts

Cuts

Work
nodes

Commands

Statistics

Shared Cuts

Replicated Cuts

Shared Shared

Results

Figure �� Parino architecture with the addition of entities for a simple distributed cut
management service�

��

� branch � cut

� branch � price

� Bender�s decomposition�

We plan to test the performance of Parino on the problems in MIPLIB ����

References

��� R�E� Bixby� W� Cook� A� Cox� and E� Lee� �Parallel Mixed Integer Programming��
Technical Report CRPC�TR������ Center for Parallel Computation� Rice University�
�����

�� R�L� Boehning� R�M� Butler� B�E� Gillett� �A Parallel Integer Linear Programming
Algorithm�� European J� Operations Research ��� �������� �����

��� T�L� Cannon and K�L� Ho�man� �Large�scale ��� Programming on Distributed Work�
stations�� Annals of Operations Research ��� ������� �����

��� J� Eckstein� �Parallel Branch�and�bound Algorithms for General Mixed Integer Pro�
gramming on the CM���� SIAM J� on Optimization �� �������� �����

��� J� Eckstein� �Control strategies for Parallel Mixed Integer Branch�and�bound�� Proc�

of Supercomputing ��� IEEE Computer Society Press� Washington� DC� �����

��� J� Eckstein� �Distributed versus Centralized Storage and Control for Parallel Branch�
and�bound� Mixed Integer Programming on the CM���� to appear in Computational

Optimization and Applications�

��� B� Gendron� T� Crainic� �Parallel Branch�and�bound Algorithms� Survey and Syn�
thesis�� Operations Research ��� ��������� �����

��� G� Nemhauser� and L� Wosley� Integer and Combinatorial Optimization� New
York�Wiley� �����

��� K� Perumalla� K� Schwan� �CoGEnt� A Distributed Active Object Framework��
Internal Report� College of Computing� Georgia Institute of Technology� �����

��

