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ABSTRACT

We present a time�parallel technique for the fast gen�
eration of self�similar tra�c which is suitable for
performance studies of Asynchronous Transfer Mode
ATM� networks� The technique is based on the
well known result according to which the aggrega�
tion of a large number of heavy�tailed ON�OFF�
type renewal�reward processes asymptotically ap�
proximates a Fractional Gaussian Noise FGN� pro�
cess and� therefore� it possesses the characteristics of
self�similarity and long�range dependence� The tech�
nique parallelizes both the generation of the individ�
ual renewal�reward processes as well as the merging
of these processes in a per�time�slice manner� Re�
sults obtained from a message�passing implementa�
tion on a cluster of workstations con�rm that it is
possible to generate self�similar ATM tra�c in real�
time for ��� Mbps or even faster� links and that�
furthermore� the technique achieves an almost linear
speedup with respect to the number of available work�
stations�

� INTRODUCTION

It has been shown that the tra�c resulting from Vari�
able Bit Rate VBR� video coding Garrett and Will�
inger ����� as well as the data tra�c on an Ether�
net Leland et al� ����� resemble self�similar pro�
cesses� Subsequently� the interest has increased for
generating synthetic self�similar tra�c for use in the
simulations of networks� The self�similar tra�c gen�
eration presented herein relies on the observation
Willinger et al� ����� that the aggregation of re�
newal�reward processes� with lengths derived from
a heavy tailed distribution� asymptotically approx�
imates a Fractional Gaussian Noise FGN� process
which is a self�similar process� The asymptote is
taken for an increasingly large number of superposed
renewal�reward processes� N � and for an increasingly

large size of observation interval for the count pro�
cess� In the following� this technique will be called
the aggregation technique� Note that contrary to the
aggregation of Poisson processes� the aggregation of
heavy�tailed renewal reward processes leads to a re�
markably di�erent behavior with respect to the long�
term correlation� than that of the constituting pro�
cesses�

The renewal�reward processes are perceived as pro�
cesses alternating between an ON and an OFF period�
As long as the ON�OFF period is heavy tailed i�e��
with in�nite variance� and with a �nite mean� the
source model �ts the context of the theorem on aggre�
gation Willinger et al� ������ Although some initial
work on the parallel generation of self�similar tra�c
traces has been performed Willinger et al� ������
it su�ers from two problems� First it is speci�c to
MasPar�s Single Instruction Multiple Data SIMD�
architecture which is not a widely�used platform as
opposed to networked scienti�c workstations environ�
ments� Second� the simulation on the MasPar pro�
ceeds in a lock�step fashion� while� as demonstrated
in this paper� signi�cant performance gains are avail�
able by treating as a single event an entire period
during which the source activity remains the same�

In essence� this paper presents a Multiple Instruc�
tion Multiple Data MIMD� algorithm that can be
used in a message�passing environment� The re�
ported performance results are for a cluster of various
types of Sun Sparcstations connected to a �� Mbps
Ethernet and using PVM 
�
���� The fact that no
shared memory was available in the examples also
illustrates the performance penalty that communi�
cation latency brings into the computation without
harming� as will be demonstrated� the linear speedup
with respect to the number of available processors�

The main drawback of the aggregation technique
is its large computational requirements per sample
produced because of the large number of aggregated
sources�� This is the main reason why parallelism is



introduced� However� even though the computational
requirements are large� its actual computational com�
plexity is On� for n produced samples� All the other
self�similar tra�c generation techniques exhibit com�
plexity worse than On� and they eventually result in
a slowdown of the simulation as the simulated time in�
terval increases� The two frequently used techniques
with execution time worse than On� are Hosking�s
method Hoskings ����� and the Fast Fourier Trans�
form FFT� based method Paxson ������ Typically�
no a�priori limit can be put on how long a simulation
will run and it is preferable to use a technique which
can continue producing samples ad in�nitum with the
same computation cost per produced sample�

Moreover� the FFT�based and Hosking�s meth�
ods produce samples of the count process� Hence�
post�processing is required to scale the count pro�
cess� eliminate negative values and eventually to pro�
duce packet�cell arrivals consistent with the network
model i�e�� the link speed�� In contrast� the aggre�
gation technique does not su�er from such problems�
One way to contrast the aggregation to previous tech�
niques is that the former operates in a bottom�up
fashion from individual arrivals to asymptotic self�
similarity of the count process� while the latter oper�
ate in a top�down fashion from a self�similar count
process to individual arrivals��

Finally� certain techniques attempt to� in addition
to long�range dependence LRD�� also capture the
short�range dependence SRD� as depicted� e�g�� by
the short term autocorrelation Huang et al� ������
We view these techniques as orthogonal to the task
of �nding an arbitrarily scalable parallel generation
technique for the generation of LRD tra�c� Inclusion
of speci�c SRD components is left for future study�
Instead� the current paper bases the generation of the
self�similar� LRD� tra�c on only three parameters�
the desired Hurst parameter� H� the utilization of
the link bearing the self�similar tra�c� U � and the
average burst length� B�

The rest of the paper is organized as follows� The
details of the simulation model are illustrated in Sec�
tion �� The current implementation of the model on
a message�passing network is described in Section 
�
Section � presents and analyzes the performance re�
sults� Finally� Section � summarizes the conclusions�

� THE SIMULATION MODEL

Cell arrivals will be represented by Run�Length En�
coded RLE� tuples� An RLE tuple ti includes two
attributes� sti�� the state of the tuple� and dti�� the
duration of the tuple� The two attributes represent�

the discrete time duration dti� over which the state
sti� stays the same� The state is either an indication
of whether the source is in the ON or OFF state e�g��
� for OFF and � for ON in a strictly alternating fash�
ion�� or the aggregate number of sources active in
the ON state� for the speci�ed duration� that is� for
N sources� sti� � f�� �� � � �� Ng� Thus a sequence
of ti�s is su�cient for representing the arrival pro�
cess from an ON�OFF source or from any arbitrary
superposition of such sources� The bene�ts of such
representation is that the activity of the source over
several time slots can be encoded as a single RLE
tuple�

Similar representations have been used in the past
for simulations for the generation of cell loss statis�
tics in ATM multiplexers Nikolaidis� Fujimoto and
Cooper ������ In the current context� it is not possi�
ble to avoid the �xups inherent in the time�parallel
simulation� Instead� the traditional time�parallel
technique of performing �xups of the state trajectory
is followed Lin and Lazowska ������ The �xups are
fast and� as it turns out� they do not alter the state
in a way that several �xups are necessary� That is�
due to the length of the slices� ���� and �� seconds
of ��� Mbps link activity per slice in the given ex�
amples�� the transient due to a �xup does not cause
subsequent �xups�

In summary� the algorithm proceeds by generat�
ing a large number� N � of individual source traces
in RLE form� The utilization of each one of these
sources is set to U�N � such that the aggregation of
all N of them results in the desired link utilization
to U � Each logical process LP� of the simulation
merges and generates the combined arrival trace for
a separate non�overlapping segment of time� that we
call a slice� Thus� each LP is responsible for the gen�
eration of the self�similar tra�c trace in the form of
RLE tuples over a separate segment slice� of time�
In logical terms� the concatenation of the slices pro�
duced by each LP in the proper time succession is
the desired self�similar process� The LPs continue
looping generating a di�erent slice each time� The
LP performs the generation of the self�similar tra�c
trace by going through the following three steps at
each simulated time�slice�

�� It generates the merge of the RLE tuple traces
of the N individual sources�

�� It aggregates the merged tra�c into a link speed
equal to the desired access link speed�


� It corrects �xup� the produced RLE trace by
incorporating any residual cell counts�
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A

(1,13) (0,19) (1,10)

(0,6) (1,20) (0,16)

(1,9) (1,10)(0,10) (0,7) (0,6)

(1,6) (2,4) (3,3) (2,6) (2,4) (1,6)(1,13)

Cell Arrival

Figure �� Example of the Merge Operation

��� Heavy�Tailed ON�OFF
RLE Trace Generation

The generation of the individual RLE source traces is
also performed in parallel� Each LP generates all the
slices of a subset of sources that will be necessary to
the P LPs during the generation of the current slices�
That is� if P LPs are participating in the simulation�
each LP generates the RLE tuples of P subsequent
slices for the sources that it has been assigned to gen�
erate� It then sends the P�� of them to the other LPs
for each source it simulates� The individual ON�OFF
sources are parameterized accordingly to �t the de�
sired self�similar tra�c� Namely�

� The shape value� �� of the Pareto distribution
used for the ON period is set according to H �

����� Willinger et al� ������ where H is the
desired Hurst value�

� Since N ON�OFF sources are aggregated� the
per�source utilization of U�N is determined by
the ratio of the ON and OFF periods of the indi�
vidual processes� That is� the average OFF pe�
riod E�OFF� is set to E�OFF� � E�ON� ��U�N �

� The average ON period E�ON� is set to E�ON�
� B� the average burst length� which can be de�
rived from tra�c measurements� E�ON� does not
have any impact on the self�similarity� and it can
be considered a free variable�

��� RLE Trace Merging and Aggregation

The merging of the N RLE tuple traces is performed
as a merge�sort operation� where the key of the sort
is the implicit position of the starting time of RLE
tuples within a length of one slice� The value of
the merge at any point slot time� is the number of
sources out of the N � that are in their ON state� Fig�
ure � illustrates how the produced merged RLE tuple
trace is related to the constituting ON�OFF RLE tu�
ples� In Figure �� the sequence of RLE tuples� ti� is

represented as a sequence of the pairs of its attributes�
sti�� dti��� It is worthwhile to note that the prior�
ity list used to produce the merge�sort maintains� at
all times� N keys� As the performance results show�
apart from the generation of source RLE tuple traces�
a signi�cant portion of the execution time is spent at
this step�
The sequence of merged arrivals has to be aggre�

gated into a single ON�OFF RLE tuple trace� To
accomplish this task� the merged RLE tuple trace
passes through a server which can be viewed as a
multiplexer� with in�nite bu�er capacity and with an
output link rate equal to the link rate of the desired
self�similar tra�c access link rate� The RLE encoded
departure sequence of the multiplexer� is the desired
ON �OFF tra�c stream� Due to the queueing� SRD
artifacts develop but do not harm the LRD features
of the process� Figure � depicts the operation of such
a multiplexer where the constituting source streams�
before they are merged� are shown to the left� and the
corresponding produced ON�OFF merged stream is
shown to the right of the multiplexer�
The correctness of the simulation depends on the

state of the multiplexer bu�er� The dynamics of
such a bu�er are trivially represented by the follow�
ing discrete�time recursion on the number of cells� Q
stored at the in�nite multiplexer bu�er at the time
just after an RLE tuple� ti�

Q � maxfQ� dti�sti�� ��� �g ��

The initial value of Q is not known to P � � of the
P LPs� That is� for the P parallel LPs� only the one
assigned to simulate the �rst slice with respect to
temporal order� and indexed by �� knows the initial
state of the multiplexer Q� The remaining LPs� sim�
ply use an initial value of zero for Q� The �nal value
of Q is sent from an LP to the LP simulating the
next in temporal order� slice� Since the assumption
of Q � � may prove to be incorrect� depending on
the state of the queue left over by the previous slice�
a �xup phase is necessary�
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Figure �� Example of the Aggregation Operation�

��� The Fixup Operation

The ON�OFF RLE tuple trace produced at the out�
put of the multiplexer is in fact an encoded sequence
of the busy and idle periods of the server� If a �nal
state of the previous in temporal order� slice indi�
cates that Q should have been a value larger than
zero� the corrected departure sequence can be con�
structed by coalescing the idle periods in order to �t
the new value of Q in the idle periods of the pre�x
of the original departure trace of RLE tuples� Fig�
ure 
 illustrates an example of the �xup operation
where the original departure RLE tuple trace from
the multiplexer S is transformed by the �xup to in�
clude Q � � cells from the queue residual of the pre�
vious slice� The nine cells occupy the �rst idle period
and part of the second� thus expanding the �rst ON
period� as can be seen in S�� The result of the �xup is
the trace at the bottom� Note that the description
of the RLE tuples is in the form sti�� dti�� for each
tuple ti��
The overhead of the �xup is very small since it in�

volves iterating over the �rst couple of RLE tuples
of the departure trace until the residual cells are ac�
commodated in the idle periods between the previ�
ously calculated departures� Typically� the �xup ad�
vances over just a few RLE tuples before it termi�
nates� Hence� compared to all the other operations
which are performed in a tuple�wise fashion gener�
ation and merging�� the �xup is the least expensive
operation� In the experiments� it was veri�ed that the
large size of the slice relative to the residual Q� does
not cause further changes to the �nal state� That is�
the transient due to the incorporation of Q additional
cells is absorbed well within the length of the slice and
no subsequent �xups are necessary through a possi�
ble change in the �nal state of the slice�� For this
reason� the algorithm presented in the next section
assumes that the transient due to the �xup termi�
nates within the length of the slice�

� A MESSAGE�PASSING
IMPLEMENTATION

Figure � presents a message�passing implementation
of the presented algorithm� There exist P LPs� LPi�
i � �� � � � � P��� The time slices simulated by the LPs

are in the order implied by the index i of the LPi� i�e��
LPi�� simulates the slice of arrivals following imme�
diately after the slice of arrivals of LPi� Any residual
multiplexer queue contents are propagated from LPi
to LPi�� in order for LPi�� to perform the �xup� LP�
does not require any �xup since it has always perfect
knowledge of the initial multiplexer queue state set
equal to zero before the �rst loop of the algorithm��
The algorithm proceeds by simulating P slices in par�
allel at a time� Once the simulation of the P slices
is completed� the �nal state of LPP�� is sent to LP�
so that the next set of P slices can be generated in
parallel�
Each of the P LPs is responsible for generating

N�P of the individual sources to be aggregated line

 of Figure ��� When an LP is assigned to gener�
ate a source� it generates� in each loop� P successive
slices of this source�s activity loop at line � of Fig�
ure ��� Only one of these slices per source remains
local to LPi by assigning it to a local array slices��

at line � of Figure �� The remaining P � � slices
are sent to the LPs which will process the respective
slices� Therefore� the source generation process in a
message�passing environment is penalized by the cost
of sending the slice of the source activity to the LPs
to which they correspond�
Symmetrically� each LPi� waits to receive lines

�� to �	 of Figure �� the slices of the source activ�
ity corresponding to the i�th slice of all the sources
that were not generated locally by LPi� Again� in a
message�passing environment� there is a penalty in
waiting for receiving the slices of source activity of
the sources generated in other LPs� Note that the
receive slice� in line �� relies on the FIFO property
for the communication between any pair of LPs and
that there is no need to identify the individual source
slices� since they are interchangeable with respect to
the merging and aggregation operations�
Once the slices of all N sources have been received�

the merging and generation of the departure process
can be performed line �� of Figure �� producing the
departure RLE tuple trace� m� assuming that the ini�
tial state of the multiplexer queue is zero for all LPi
where i � � line ���� LP� uses as initial queue state
the value of q from the previous loop or q � � if it
is the �rst loop� The �nal state of the multiplexer
queue� q�� is therefore generated by LPi and can be
sent to the LP processing the next time slice� i�e�� to
LPi�� line ��� where it is received as q���
With the exception of LP�� which does not need

to perform a �xup� the LPs perform the �xup line
�
� operation taking into account the new �nal state
received from the previous i � �� LP line ���� The
fact that all send states are performed prior to the
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S

S’

Figure 
� Fixup Operation Example for Q � ��

LPi�
�� loop forever
�� t � ��

� for j � �� � � � � N

P
� �

�� for k � �� � � � � P � �
�� s � generate slicestate�j���
�� if k �� i then
	� send slices� LPk��
�� else
�� slices�t� � s�
��� t � t� ��
��� endif
��� endfor
�
� endfor
��� while t � N do
��� slices�t� � receive slice��
��� t � t� ��
�	� od
��� if i �� � then q � ��
��� q��m� � merge muxslices�N� q��
��� send stateq�� LP�i���modP ��
��� q�� � receive stateLP�i���modP ��
��� if i �� � then
�
� m� � fixupm� q� q����
��� else
��� q � q���
��� endif
�	� output tracem���
��� endloop

Figure �� The Parallel Algorithm�

receive states� ensures that there will be no deadlock�
Note that LP� does not need to immediately receive
q�� which will only be used in the merge mux of the
next loop� but it is shown performed in the same way
as all other LPs for the sake of symmetry� Once the
departure RLE tuple sequence has been �xed up from
the originalm to the correct m�� it is ready for output
for use by any simulation model line �	��

� EXPERIMENTS AND
PERFORMANCE EVALUATION

A number of con�gurations were examined with re�
spect to the number of sources� the length of the
time slices� the utilization parameters and the av�
erage burst length� The presented experiments are
for a con�guration of N � ��� individual ON�OFF
sources which was the largest con�guration with re�
spect to the number of sources and� hence� with re�
spect to computation� The length of the time slices
was set to ��
���� and �����	� cell slots represent�
ing� respectively� approximately �� and ���� seconds
of operation of a ��� Mbps ATM link� The link uti�
lization� U � was set to �� �� resulting in a per�source
utilization for each of the ��� sources set to ���� ��
The average burst length� B� is set to �� cells� The
limit of the available memory of a workstation places
a limit on the length of the time slice because the
more the RLE tuples the more the length of time that
can be represented by these tuples�� the selection of
the size of memory for RLE tuples was dictated by the
available physical memory of the workstations� In the
experiments� a conservative size of memory for RLE
tuples was allocated which was� at all times� no more
than � Mbytes per workstation for the slice length of
��
���� and � Mbytes for the slice length of �����	�
assuming � bytes per tuple� � bytes representing the
state and � bytes representing the duration�

Figures � and � present the percentage of time
spent in the execution at each step of the algorithm of
Figure � for a slice length of ��
���� and �����	� re�
spectively� The Generate � Send Sources is the time
spent between lines 
 and �
� The Receive is the time
spent between lines �� and �	� The Generate De�
partures is the time spent in line �� and� �nally the
Wait for Fixup is the time spent between lines �� and
��� The output trace function was set to a NO�OP
in order to allow measurements independently of any
speci�c �le I�O or IPC primitives used to incorporate
the code in another simulation� All the remaining
time spent in the execution of the algorithm includ�
ing the fixup function� was less than ���� � of the
total measured time and it is not reported� Thus� it
was veri�ed that the �xup operation for this model is
not a major computational burden� The experiments



were run on a set of Sun workstations under Solaris
��� and PVM 
�
��� and without any other signi�cant
user activity�
The shape of the curves does not di�er by much

between Figure � and Figure � despite the di�erence
in the slice length� Similar behavior was observed for
other parameter settings as well� The major fraction
of time is spent in the generation and sending of the
source slices where a slice is sent by send slice� as
soon as it is produced if it is to be processed by a re�
mote LP� Notably� the send operation is non�blocking
and not in�place in the PVM sense�� Hence� each
send operation involves the copying of the data to be
sent in a separate bu�er in order to allow the reuse
of the same allocated area for the generation of the
source RLE tuples in the next loop�
The more the workstations� i�e�� the higher the P �

the fewer the sources produced by each workstation�
Consequently� the Generate � Send Sources part of
the execution time decreases� as a percentage� for in�
creasing P but only to the point where the overhead
due to the send operation becomes the dominant over�
head� Thus� the gain out of splitting the generation of
sources over a gradually larger set of processors is di�
minished by the fact that most of the produced source
slices have to be sent to other workstations� The net
result is that eventually the Generate � Send Sources
percentage remains almost constant as P increases�
On the other hand� the Receive percentage from

being zero when P � �� increases as expected as the
number of sources produced at other LPs increases�
The time spent in Receive reaches an almost con�
stant percentage for increasing P � This is due to the
fact that as the LP gets more delayed in the Gen�
erate � Send Sources part� a longer time is given to
the LPs in fact to PVM� to receive the slice data
from other LPs and hence� then the receive slice
in line ��� returns almost instantly since the re�
ceived data is already local to the workstation and
hence� receive slice does not block as often� At the
same time� the volume of received data increases with
larger P � and hence the two trends balance out at an
almost constant percentage� in a much similar fashion
as it occurs in the Generate � Send Sources step�
A good example of how the computation is penal�

ized due to the scaling to a larger P � is given by the
Generate Departures step� The average time spent
here is constant subject to the slice length� inde�
pendent of P � Hence� its decrease demonstrates the
gradual increase of overheads related to the scaling of
the simulation to a larger P � However� the combined
e�ect of the Generate � Send Sources and the Receive
steps� results in an eventually constant percentage of
time covered by the Generate Departures step� The

only signi�cant remaining portion of time is the Wait
for Fixup step� This step is largely unrelated to the
message�passing overheads the data conveyed is very
small� only a queue size�� but rather to the nature of
the time�parallel algorithm�
Note that the time spent waiting for the queue size

in the Wait for Fixup is less than �� � of the total
time in all con�gurations� Hence� the overhead due
to the time�parallel nature of the simulation is small�
In fact� the average time waiting for �xup decreases
slightly as the number of workstations increases al�
though its variance increases depending on the di�er�
ent processing speeds of the individual workstations�
A fast workstation will complete the Generate and
Send Sources stage faster but will have to wait in the
Receive step for longer� Similarly� it will complete
the Generate Departures faster� but will have to wait
longer in the Wait for Fixup step� Summarizing� the
algorithm deals with load imbalances at the cost of
performance due to the synchronization points be�
tween processors at the blocking receive operations�
To cancel out e�ects where a certain run for P work�
stations was performed with the faster workstations
and a run at P � � with slower ones� the set of work�
stations used at P � � is the exact same set as the
ones used in the run for P plus one additional new�
workstation�
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Figure 	 compares the percentage of time spent in
the Generate and Send Sources for the two di�erent
slice lengths� The di�erence is evident in the tran�
sient around P � �� where the shorter slice presents
a more sudden drop in its percentage� Note that as
long as P � � the two di�erent slice lengths should
cause no di�erence in performance� as indeed is the
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case� However� when P � �� the shorter the slice� the
more frequent the communication� Hence� the con�
tention brought to the communication medium and
the overheads due to the frequency of the send oper�
ations are more intense for shorter slices� Note that
the volume of data sent are the same in both slice
sizes� but the smaller size sends them by calling more
frequently in the examples� twice as frequently� the
send operation� Eventually� the di�erence due to the
di�erent slice lengths becomes less signi�cant as in�
creasingly more data are sent over the network� i�e��
for higher P �
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Figure � captures the bene�t of time�parallel simu�
lation� That is� the almost linear speedup to the num�
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ber of used processors� even when the overheads due
to communication contention are considered� The
waiting time for a �xup value as well as the �xup op�
eration are not the dominant overheads� The speedup
for di�erent slice lengths may be very similar but the
shorter slices can rapidly reach the point of diminish�
ing returns as the shape of the line for a slice length
of ���� seconds illustrates between 	 and � worksta�
tions�� The linear behavior is lost sooner or later for
increasing P � but we have systematically produced
good results following the linear speedup for a small
aggregation of workstations typically a dozen or less
of them��

Figure � presents the simulation speed in seconds
of simulated operation of a ��� Mbps ATM link� It is
easy to see that the technique enables the generation
of self�similar tra�c faster than real�time� That is�
for any P � �� one second of link activity of a ���
Mbps ATM link can be generated in less than a sec�
ond of wall clock simulation time� Furthermore� the
fact that the simulation speed reaches almost four
times the speed of the ��� Mbps link in fact� 
���
indicates that the technique can be safely used with
minor modi�cations for the generation of real�time
ATM link workloads of even ��� Mbps links� Consid�
ering that the reported performance is achieved using
commodity workstations and low speed �� Mbps�
networking infrastructure� it is safe to assume that
it can give even better results on a multiprocessor
system for an embedded ATM link testing device�



� CONCLUSIONS

We have presented a time�parallel technique for the
fast parallel generation of self�similar tra�c� A
message�passing implementation of the algorithm
over a cluster of scienti�c workstations communicat�
ing over a �� Mbps Ethernet shows that it is possible
to generate self�similar tra�c for ��� Mbps or faster
ATM links in real�time by utilizing less than a dozen
workstations� The property of real�time generation is
of particular importance for use by equipment ATM
switches in particular� manufacturing companies� To
our knowledge� currently� no commercial ATM testing
product can supply continuous real�time self�similar
tra�c� The work detailed in this paper targets at
solving this problem with the aid of small scale paral�
lel processing using commodityworkstations attached
on a general purpose Ethernet�
The paper also serves as a case study for im�

plementing time�parallel simulation techniques on a
loosely coupled network of scienti�c workstations� It
illustrates that even with a limited communication
bandwidth� it is possible to achieve a speedup al�
most linear to the number of utilized workstations
when the �xup stage of the algorithm is computa�
tionally inexpensive� Indeed� in the tests we have
conducted the linear speedup is only impaired by the
communication overhead inherent in any message�
passing scheme and not by the �xup phase of the algo�
rithm� The results are particularly impressive when
compared to previous techniques that were distinctly
ine�cient due to the fact that their computational
complexity was not linear to the number of samples
generated�
Future work includes the extension of the technique

to �t both LRD and SRD artifacts in the produced
tra�c� Another objective is the simulation of ATM
multiplexers fed by several self�similar streams in or�
der to study the e�ects of multiplexing self�similar
processes with di�erent Hurst parameters�
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