
EFFICIENT LARGE�SCALE PROCESS�ORIENTED PARALLEL SIMULATIONS

Kalyan S� Perumalla
Richard M� Fujimoto

College of Computing
Georgia Institute of Technology

��� Atlantic Drive
Atlanta� Georgia ����������� U�S�A�

ABSTRACT

Process oriented views are widely recognized as very
useful for modeling� but di�cult to implement e��
ciently in a simulation system� as compared to event
oriented views� In particular� the complexity and run�
time overheads of the implementation have prevented
the widespread use of process oriented views in op�
timistic parallel simulations� Here� we review the
conventional approaches to implementing process�
oriented views� and outline some of the sources of
problems in those approaches� We also identify an
approach that we call stack reconstruction� which is
most suited for portably and e�ciently supporting
optimistic process�oriented views� Benchmark simu�
lations using our preliminary implementation� which
is incorporated in the TeD modeling and simulation
system� con	rms the low overheads of this approach�
and demonstrates its capability to simulate over one
million processes in a process�oriented model�

� INTRODUCTION

Three widely recognized world views for simulation
are
 event�oriented view� process�oriented view and
activity�scanning view �Mitrani ����� The 	rst
two views are the more widely used among the
three views� All the three views are equivalent in
the sense that process�oriented and activity�scanning
views can be translated into semantically equiva�
lent event�oriented views� An advantage of using
the process�oriented view is that models tend to be
smaller� and easier to develop and understand� mak�
ing it more appealing to the modelers� On the other
hand� it is generally perceived that event�oriented
views can be more e�ciently implemented than the
other two views� especially in the context of opti�
mistic parallel simulations�

In recent modeling and simulation e�orts� there is a
clear demand for the capability to support very large

scale simulation� The need for parallel simulation is
clear in these application domains� In addition� the
models tend to be too complex to express using the
low�level primitives of the event�oriented view� thus
making process�oriented view a natural choice for de�
veloping such large and complex systems� This makes
it important to 	nd ways to e�ciently support very
large number of processes in a process�oriented mod�
eling and simulation system�

Speci	cally� our experiences with modeling large
and complex telecommunication networks using the
TeD language �Perumalla et al� ����� SIGMET�
RICS PER ���� served as our initial motivation to
	nd e�cient implementation alternatives for process�
orientation� For example� in many interesting con	g�
urations �such as global Internet of network models
in TeD� the number of processes easily exceeds one
million� warranting e�cient support for large�scale
process orientation� Also� modelers demand support
for full process orientation� such as the ability to in�
voke wait statements over nested procedure calls� at
almost arbitrary points in a procedure body� Since
TeD permits the direct embedding of C�� code in
the models �see Perumalla et al� ����� we are further
constrained from exploring alternatives that trade�o�
modeling power for e�ciency�

The interaction of parallel simulation techniques
with the implementation of large�scale process�
oriented views �supporting millions of processes per
simulation generates challenges� such as minimizing
the memory size and memory copy requirements of
the implementation� Process�oriented views are gen�
erally perceived to be expensive in the context of op�
timistic parallel simulations� This is mainly due to
the fact that processes entail state�saving overheads
for the maintenance of additional control �ow infor�
mation and transient data� These overheads can be
quite large in naive implementations� unless they are
carefully reduced to the minimum necessary�



��� Related Work

A number of implementations of process�oriented
views �which are mostly language or preprocessor�
based have been reported in the recent years� The
Maisie language �Bagrodia and Liao ���� supports
the concept of process in the form of an entity de�
scription� along with support for the optimistic par�
allel simulation of Maisie entities� However� Maisie
does not include direct support for the suspension
of a stack of nested procedure calls �wait statements
cannot be used inside functions invoked by entities�
The macros�based approach of IMPORT�SPEEDES
�Whitehurst and Brutocao ���� also seems to limit
simulation time advances to the main process body�
Apostle �Booth and Bruce ���� is a new language
that implements process�orientation using continua�
tions� with support for optimistic parallel simulations�
Apostle� however� has specialized semantics� which
do not carry forward well to our domain of interest�
which is C��� Other languages and packages� such
as MODSIM and Parasol support process�orientation
views� but without great success in optimistic simu�
lations� More recent work includes the Nops system
�Poplawski ���� which reports low overhead imple�
mentation of processes� Nops� however� only supports
conservative parallel simulation� and it has no direct
support for advancing simulation time over a stack of
nested procedure calls�

Here� we identify an approach that we call stack
reconstruction as most suited for portably and e��
ciently implementing optimistic parallel simulations
of �true� process oriented views in an expressive lan�
guage such as C��� First� we de	ne what constitutes
true process orientation� in section �� Next� we brie�y
review some conventional implementation approaches
in section �� identifying their problems in the context
of optimistic parallel simulations� We then describe
the stack reconstruction approach with details of im�
plementation� followed by some salient performance
results which indicate the low overheads of the ap�
proach�

� PROCESS ORIENTATION

A process is a distinct �ow of control� containing a
combination of computation and synchronization op�
erations� Processes typically synchronize with each
other by exchanging events� Process orientation is an
elegant way of capturing context information under
the conventional procedural programming paradigm�
�Process or event orientation is orthogonal to object
orientation� In an object�oriented setting� procedures
in fact correspond to method calls� The main body

Table �
 Features of an Ideal Process�oriented System

F� Procedures can declare and use local
variables

F� Procedure calls can be nested
F� Procedures can be recursive and re�

entrant
�a Programming style

F� Primitives to advance simulation time
can be invoked in any procedure

F� Primitives to advance simulation time
can be invoked wherever a condi�
tional� looping or other statements can
appear�

�b Time control

of a process can invoke procedures which in turn can
invoke other procedures�

��� Functionality

The ideal modeling capabilities of a process are listed
in tables ��� �a and �b� Note that the features are
generally orthogonal to each other �i�e� it is possible
to pick and choose a subset of the features that will
be adopted by a process�oriented system� A pure
process�oriented view is one in which all the features
F� through F� are supported� The 	rst three fea�
tures are those that are expected of any modern lan�
guages supporting the procedural programming style�
and expected by most modern programmers� The last
two features are speci	c to the simulation domain �
time advancing primitives are those that serve to ad�
vance simulation time� such as wait� or hold state�
ments and other such variants� It is the interaction
of the programming style with the simulation time
advances that gives rise to interesting challenges in
implementing process�oriented views e�ciently�

��� Process Type Continuum

Although pure process�oriented views are useful in
some complex models� more restrictive de	nitions
of processes can be made for use in some models
which do not warrant the full power of pure process�
orientation�
By varying the combination of features that are

supported� we can achieve variation in the e�ciency
of implementation� For example� if the features F�
and F� are unused by a process�oriented model �i�e��
simulation time is advanced only at the top�level
statements in the main process body� as opposed to



under if statements or inside a procedure� then such
a model can be implemented in a way that incurs no
more overheads than if that model was re�written us�
ing event�oriented view� In fact� such processes are
nothing but event�oriented models expressed in a way
that better exposes context information� Such models
with lower demands on the expressive power do ap�
pear in real�life modeling� such as cited in Perumalla
et al� ������
Similarly� if we relax the feature F�� and enforce

the rule that all local variables are immutable �i�e��
never change after initialization� or if local variables
are not supported at all by the modeling language�
then� issues such as re�entrancy and recursion become
easier to handle in the implementation�
Other simpli	cations �such as in Maisie� IMPORT

and Nops preclude the feature F�� but do support
feature F�� In other words� although simulation time
cannot be advanced in procedures� it can be advanced
at any point in the process body �say� under condi�
tional and looping statements� In such implemen�
tations� a stack of suspended procedures must be
indirectly emulated using a chain of stack�less pro�
cesses� The issues of local variables and recursion are
also simpler to handle� especially in optimistic simula�
tions� due to the reduction in the amount of informa�
tion to state�save� and� the issues of local variables
and re�entrancy can be e�ectively delegated to the
host language� such as C���

� IMPLEMENTATION ALTERNATIVES

There exist several techniques for implementing
process�oriented views� of which we outline the im�
portant ones� One approach is to view the control
and data information of a process as a black box� and
preserve its contents across suspension and resump�
tion points � this is the threads�based approach� such
as in Mascarenhas and Rego ����� Another approach
is to de	ne the modeling language semantics in such
a way as to e�ectively remove the need for a stack
� the continuations�based approach of Booth and
Bruce ���� is an example� Yet another approach is
to transparently maintain auxiliary information that
is barely su�cient to restore the native stack of a sus�
pended process � which is the stack reconstruction
approach described here� We describe each of these
approaches next�

��� Process Stack

Manymodern languages �compilers� to be precise use
an optimization� called physical or native stack � for
the very frequent type of operation
 procedure call�

A native stack is an encoding of program counter�
return addresses� local variables and argument lists
�Koopman� Although the logical stack can be im�
plemented in other ways �say� using linked lists� it
is very often represented in contiguous memory lo�
cations for performance reasons� The native stack is
used to e�ciently implement the procedure call se�
mantics by pushing and popping invocation informa�
tion on and o� the stack� Since the memory size of
local variables and argument lists varies across proce�
dures� the native stack serves to optimize the memory
allocation and deallocation operations� by exploiting
the contiguous memory feature of the native stack�

The preceding way in which native stacks are used
is tightly coupled to the operation of executable code
that most compilers generate� and tightly integrated
into the way many operating system services �such as
signals operate�
Since the procedure stack is precisely what is nec�

essary to support process�oriented views� it is natural
to attempt to utilize native stacks to implement the
simulation processes� This is the approach taken in
implementations based on threads�

��� Threads

Threads are light�weight computation abstractions
widely used in many domains such as high perfor�
mance computing and multi�media servers� Threads
provide support for multiple process stacks which can
communicate and synchronize with each other� Sev�
eral multi�threading packages exist that provide op�
erating system�level threads and�or user process�level
threads �Tanenbaum ����� Portable implementa�
tions of threads are available� which typically make
use of standard facilities such as the POSIX calls
setjmp�� and longjmp��� Threads can be sched�
uled� suspended and resumed� Each thread typically
contains a stack of procedure activation frames� al�
though some optimized packages use special thread
synchronization semantics to avoid using physically
distinct stacks for each thread�
One way to implement simulation processes is to

use a single thread for each process� The thread sus�
pension and resumption primitives can be used to
achieve the simulation time advances in the simula�
tion process code� Thus� for example� a wait state�
ment in the simulation process will be mapped to
suspending the thread of the simulation process� and
handing control over to the simulator�s scheduler� At
the instant the waiting condition is satis	ed� the pro�
cess is resumed just after the wait statement� by re�
suming the thread of the simulation process�

The advantage of using a threads to implement sim�



ulation processes is that little additional implementa�
tion work is necessary to save and restore the stacks
of the simulation processes� The simulator only acts
as the thread scheduler� There are� however� several
drawbacks of threads�based implementation� Either
thread stacks bump into each other �thread stacks
typically do not grow� or the memory requirements
can be high to support very large number of pro�
cesses� Thread migration is either unsupported or
expensive� More importantly� conventional threads
are di�cult to optimize for optimistic parallel simula�
tion �as discussed in more detail in the next section�
The design of o��the�shelf thread systems may not be
well suited to scale to millions of active threads� Spe�
cial large�scale multi�threading systems exist� which
could potentially be useful in sequential and conser�
vative parallel simulations� but they have not been
tested for use in optimistic parallel simulation�

Fundamentally� conventional threads are general�
purpose computation abstractions� with potentially
complex inter�thread synchronization� and schedul�
ing disciplines� Simulation processes� however� have
simple and well de	ned suspension and resumption
semantics �based on simulation time advances� and
a simple scheduling discipline �usually� least times�
tamp 	rst� Whereas support for preemptive threads
incurs overheads such as saving register state� simu�
lation processes on the other hand need never incur
such overheads� due to their simpler scheduling disci�
pline�

��� Continuations

Continuations �Appel ���� constitute another e��
cient mechanism for implementing processes� Sup�
pose we de	ne the modeling language in a way that
allows the compiler to cast all language constructs
�such as conditional or looping statements into sep�
arate blocks of non�interruptible operations� In such
a case� the process can be implemented as a special
form of a 	nite state machine� in which each state
dynamically designates its successor� called a contin�
uation� If we ignore the issue of local variables for
simplicity� it is clear that the process context is fully
represented just by the identity of the current con�
tinuation �pointer to a function of the process� Fur�
ther optimizations are possible whereby explicit stor�
age of the per�process continuation information can
be avoided� and implicitly recorded on the run�time
stack of the simulator �Booth and Bruce �����

To e�ectively implement this technique� either spe�
cial language constructs have to be de	ned� or compil�
ers of existing languages have to be modi	ed �Appel
�����

� STACK RECONSTRUCTION

Another approach to implementing process�oriented
views is what we call stack reconstruction� The un�
derlying idea is that� instead of saving and restoring
the contents of the native stack� we separately main�
tain information at runtime such that the native stack
can be reconstructed to the same state in which it
was when the process was suspended� This not only
allows us to throw away the unnecessary contents of
the native stack� but also permits us to easily capture
modi	cations to the process state� which is essential
for state�saving operations in optimistic parallel sim�
ulation�

We use a compiler�based solution for supporting
this approach transparently� leaving the models un�
cluttered with the implementation details� We as�
sume the models are translated into some general pur�
pose programming language code� such as C�� which
is then compiled to result in executable models� We
use C�� as the target language in our examples�

�� procedure one��

�� �

�� ���

�� wait�c��

�� ���

	� 


�� procedure two��

�� �

� s�

��� if����� �

��� s�

��� wait�c��

��� s�

��� 


��� for����� �

�	� s�

��� call one��

��� s�

�� 


��� 


��� process p��

��� �

��� ���

��� call two��

��� ���

�	� 


Figure �
 Model Code of a Process p which Invokes
two��� which in turn Waits on a Condition� and In�
vokes one��

To understand how the stack reconstruction ap�
proach works� consider the pseudocode fragment in
	gure � of a process�oriented model containing two
procedures one�� and two��� For simplicity� we post�



pone the treatment of local variables and procedure
arguments to later in the discussion� The procedure
two�� contains some �arbitrary computation state�
ments� s�� s�� � � �� s�� In addition� it contains a simu�
lation advance �wait statement inside a conditional
�if statement� and a procedure call to one�� inside
a looping �for statement�

Consider the execution of process p when it invokes
the procedure two��� If and when the procedure ex�
ecution reaches line ��� it must be suspended at the
wait statement� and when the wait condition is sat�
is	ed� it must be resumed at line �� with the state�
ment s�� Similarly� when the execution reaches line
��� the procedure one��must be invoked� again� pro�
cess execution may have to be suspended if the proce�
dure one�� invokes some other wait statement� and
resumed at the correct position in procedure one��

when the process is resumed�

�� int two��

�� �

�� switch�JI� �

�� case �� goto start�

�� case �� goto lbl���

	� case �� goto lbl���

�� 


�� start� ��continue���

� s�

��� if� ��� � �

��� s�

��� wakeup � c��

��� JI � ��

��� return SUSPENDED�

��� lbl��� ��continue���

�	� s�

��� 


��� for����� �

�� s�

��� lbl��� flag � one���

��� if� flag �� SUSPENDED �

��� �

��� JI � ��

��� return SUSPENDED�

��� 


�	� s�

��� 


��� JI � ��

�� return DONE�

��� 


Figure �
 Extracts of Code Generated for two��

In the stack reconstruction approach� the compiler
identi	es and marks all the positions in a procedure
at which a process suspension can occur� Lines ��
and line �� qualify as suspension points of procedure
two��� The compiler then assigns ordinal numbers �

and � to the two suspension points� When the execu�
tion of procedure two�� is suspended� it is su�cient
to remember the ordinal number �or� jump index� JI
of the point where it was suspended� Using this num�
ber� we can directly jump �using a combination of
switch�� and goto statements at the beginning of
the procedure to the point where the execution was
left o�� This is demonstrated in 	gure � which lists
the code generated from the model of 	gure �� Note
that the resumption point for a wait statement is just
beyond the wait statement� whereas the resumption
point for a procedure call statement is exactly at
the same procedure call statement� which results in
a re�invocation of the procedures�

The unrolling of native stack occurs when the pro�
cess is suspended � all the procedures actually per�
form a return� returning control to the simulation
system� The reconstruction of native stack occurs
when the process is resumed � the procedure call
chain is correctly reconstructed using function re�
invocation� with the help of the saved ordinal num�
bers�

If each procedure can have at most ��� suspension
points in its body �which is a reasonable limit for
human�written models� a single byte is su�cient to
record the jump index for each procedure� An ar�
ray of jump indices can be used for each suspended
process to record the jump indices of its active proce�
dures� �The jump indices represent forward addresses
albeit� more memory e�cient� as opposed to the re�
turn addresses of conventional native stacks�

��� Local Variables

Now let us consider the implementation of local vari�
ables� We maintain a pointer to a memory bu�er
�frame along with each jump index� References to
the local variables in the procedure body are trans�
lated to indirect �pointer references to the frame�
In optimistic parallel simulations� the frame remains
allocated until the global simulation time �GVT suf�
	ciently advances to guarantee that the frame deal�
location will not be rolled back�

Procedure arguments can be viewed as special type
of local variables� which are initialized automatically
by the compiler based on the procedure invocation�
Hence� the compiler can treat them as such� and fol�
low the same techniques as for local variables to save
modi	cations to the arguments� A value of � for the
jump index can be used by the compiler to distinguish
between invocation and reconstruction� to enable it to
initialize the arguments upon invocation of a proce�
dure� and skip the initialization if the procedure is
re�invoked during stack reconstruction�



��� Optimistic Simulation

The important feature of stack reconstruction that
helps in optimistic simulations is that it allows to eas�
ily and transparently trap modi	cations to the logical
stack� The logical stack consists of jump indices and
local variables� Jump indices are incrementally state
saved by the compiler� since the compiler manages
them itself� Local variables can also be incrementally
state saved using transparent incremental state sav�
ing techniques� such as those using overloaded assign�
ment operators �Ronngren et al� ����� by trapping
modi	cations to local variables in the procedure body�
The stack reconstruction approach is also appealing
for optimistic parallel simulation due to its reduction
in the amount of state�saved information�

In native stacks� it is the case that not only more
extensive information is stored on the stack� but also
it is hard to gain precise access to any and all modi	�
cations to that information� These factors together
preclude e�cient state�saving of modi	ed informa�
tion in optimistic simulations� Thus� if native stacks
are used to implement process�oriented views in opti�
mistic simulations� it is becomes unavoidable to per�
form a brute�force blind copy of the whole native
stack for state�saving� resulting in large and expensive
state�saving costs for every process context�switch�
This has been the fundamental reason for the percep�
tion that process�orientation is expensive to support
under optimistic parallel simulations� It is now clear
that with a minimal intermediate translator� which
maintains jump indices and local variables� the state�
saving costs can be reduced to the minimumrequired�

This approach also allows for lazy and tight mem�
ory allocation� which is important when simulating
very large number of processes� In our implementa�
tion� we perform lazy allocation of memory � mem�
ory for the frame is not allocated until the moment
the frame is actually required� thus resulting in tight
memory utilization� as opposed to preset stack limits
of native stacks�

Another advantage of the stack reconstruction ap�
proach is its ability to support e�cient run�time mi�
gration of active processes across heterogeneous plat�
forms� Since machine�independent formats are used
to represent the logical stack of procedure calls� it is
both easy and e�cient to pack a process stack� and
move and restore it on the destination machine� even
if the source and the destination machines use incom�
patible native stack representations� A further advan�
tage is that the stack reconstruction implementation
is completely portable� independent of the operating
system or the native language compiler formats� It
also has the desirable feature of not interfering with

other compiler optimizations �such as tail recursion
and register allocation�

��� Related Schemes

Other parallel simulation systems do implement
variations on the scheme of using gotos �Maisie�s
code generator� IMPORT�s macros� Cilk�s frame�
allocator� but do not allow nested procedure calls�
Recent work on fault�tolerance systems �Ramkumar
and Strumpen ���� also utilizes another variant of
this scheme to �walk up and down the stack� for
portably checkpointing the C�runtime stack�

� PERFORMANCE

We have incorporated the stack reconstruction tech�
nique into the implementation of true process�
oriented views in the TeD modeling and simulation
system �Perumalla et al� ����� To test its capabil�
ities and run�time performance� we have used three
di�erent scenarios
 �� to measure its process context
switching costs in pure process�oriented models �� to
compare its performance against event�oriented mod�
els �� to stress�test the approach with respect to size�
using models containing over a million processes�

��� Context Switching Cost

The active depth of a stack is the depth of the stack
�number of procedures on the stack at the moment
the process is suspended� When the stack reconstruc�
tion approach is used� it is clear that the cost of sus�
pending or restoring a process is a function of the ac�
tive depth of the restored �or suspended stack� since
the active functions are re�invoked �or unrolled to
restore �or free up the stack� Figure � shows the

0

5

10

15

20

25

30

0 5 10 15 20 25 30

T
ot

al
 c

on
te

xt
 s

w
itc

hi
ng

 c
os

t (
m

ic
ro

 s
ec

on
ds

)

Active depth of suspended/restored stack

Figure �
 Variation of Process Context�switching
Cost with Active Depth of Stack



variation of the context switching cost with the ac�
tive depth of the stack� measured using a synthetic
model containing processes having exactly same ac�
tive depth of stack� The switching cost includes the
costs of suspending a process and resuming another
process� and also the cost of building and maintain�
ing runtime information to reconstruct the stack of
process� The benchmarks were run on an SGI Origin
multiprocessor with R����� processors�

From the 	gure� it is seen that the context switch�
ing takes less than ���s for processes with relatively
small active depths of stack� In our experience with
modeling large and complex telecommunication net�
work protocols� the processes in our models never
exceeded an active stack depth of �� giving a con�
text switching time of less than ��s� Figure � also
serves as a means of locating the tradeo� points when
the stack reconstruction approach performs better or
worse than other alternative approaches� such as us�
ing o��the�shelf thread packages�

��� Comparison with Event Orientation

On certain simpler types of process�oriented mod�
els� the run�time performance of our implementa�
tion achieves the superior performance of equivalent
event�oriented models� This is demonstrated in 	g�
ures � �a and �b� which plot the elapsed time of our
process�oriented implementation versus that of equiv�
alent event�oriented expression of the same models�
We used one synthetic and one real�life model in this
scenario� The 	gures correspond to the optimistic
parallel simulation of the models� using Time Warp�
The synthetic model is the well�known PHOLD appli�
cation containing processes that exchange events in a
way that conserves the total number of events in the
model� The second model is the PNNI telecommu�
nication network application �Perumalla et al� ����
containing network models capturing the ATM Fo�
rum�s standard on internetwork protocols called the
PNNI �Private Network to Network Interface� Both
the models share the feature that the simulation ad�
vance primitives �wait statements appear only at
the outer�most level in the process body� Since such
processes can be easily translated into e�cient event�
oriented models without any process�orientation over�
heads� one can reasonably expect to simulate such
quasi processes faster than pure processes� The
performance results shown in 	gure � demonstrate
that indeed our process�oriented view implementa�
tion achieves almost the same speed as the equiva�
lent event�oriented translation of these models� On
the multi�processor runs� the rollback behavior of
the PNNI models remained the same� thus making

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Number of processors

Process-oriented PHOLD
Event-oriented PHOLD

�a PHOLD

100

200

300

400

500

600

700

800

1 2 3 4 5 6

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Number of processors

Process-oriented PNNI
Event-oriented PNNI

�b PNNI

Figure �
 Performance of our Implementation on
Process�oriented Models as Compared to Equivalent
Event�oriented Models

the results directly comparable� On � and � pro�
cessors� the PHOLD model experienced �� and ��
fewer rollbacks respectively on the process�oriented
translation as compared to the event�oriented trans�
lation� making the process�oriented translation in fact
marginally better than the event�oriented translation�
This rollback behavior has been observed to be invari�
ant across repeated simulation runs�

��� Large Scale Process Orientation

Using the stack reconstruction implementation� we
are able to perform optimistic parallel simulations of
models containing processes in excess of one million�
We used a simple model� written in the TeD lan�
guage� of a wireless Personal Communication Services
�PCS network� in which each sector in the PCS net�
work is modeled as an entity� while each mobile inside
a sector is modeled as a process that accesses the state
of the sector entity� We used sample network con	g�
urations of a square grid containing ��� sectors along



each side of the grid� giving a total of ������ sectors�
Each sector contains �� mobile processes� giving a to�
tal of more than a million processes� The mobile be�
havior is expressed as a random walk over the sector
grid� superimposed by a call initiation sequence mod�
eled using inter�call generation times and call holding
times� This demonstrates that large�scale optimistic
parallel simulation of process�oriented models is in�
deed feasible to implement e�ciently�

� CONCLUSIONS

Based on the results of our stack reconstruction ap�
proach� we observe that process�oriented views can be
implemented in optimistic parallel simulations as e��
ciently as in conservative parallel simulations� This is
possible by carefully reducing the state�saving opera�
tions to the absolute minimum� The stack reconstruc�
tion approach allows us to capture the modi	cations
to the process�state in order to transparently sup�
port incremental state�saving� It also results in very
e�cient process context switches for processes with
relatively small active stack depths� In addition� it
brings with it the added bene	ts of reduced mem�
ory overheads� portability� and process�migratability
across heterogeneous platforms� This approach can
be easily implemented using a preprocessor or can be
incorporated into existing simulation languages�

In models containing processes with large active
stack depths� we intend to explore the tradeo� points
at which other alternative implementations perform
better than the stack reconstruction approach�

ACKNOWLEDGMENTS

The authors thank Christopher Carothers for help�
ful discussions� This work is partially supported
by DARPA Contract N���������C����� and by NSF
Grant NCR���������

REFERENCES

Appel A� W� ����� Compiling with Continuations�
Cambridge University Press�

Bagrodia R� L�� Liao W� ����� Maisie
 A Language
for the Design of E�cient Discrete�Event Simula�
tions� IEEE Transactions on Software Engineering�
Vol� �����

Booth C� J� M�� Bruce D� I� ����� Stack�free Process�
oriented Simulation� In Proceedings of ��th Work�
shop on Parallel � Distributed Simulation�

Frigo M�� Leiserson C� E�� Randall K� H� �����
The Implementation of the Cilk�� Multithreaded

Language� ACM SIGPLAN Conference on Pro�
gramming Language Design and Implementation
�PLDI���� June ������ Montreal� Canada�

Koopman P� J� Stack Computers
 The New
Wave� On�line book at http���www	cs	cmu	edu�

koopman�stack�computers��

Mascarenhas E�� Rego V� ����� Ariadne
 Archi�
tecture of a Portable Threads System Supporting
Thread Migration� Software � Practice and Expe�
rience� Vol� �����

Mitrani I� ����� Simulation Techniques for Discrete
Event Systems� Cambridge University Press�

Nicol D� M�� editor� Special Issue on the TeD�
����� SIGMETRICS Performance Evaluation Re�
view � Vol ��� No ��

Perumalla K� S�� Andrews M�� Bhatt S� ����� A Vir�
tual PNNI Network Testbed� In Proceedings of the
���� Winter Simulation Conference� ed� C� An�
dradottir� K� Healy� D� H� Withers� B� L� Nelson�
����������

Perumalla K� S�� Fujimoto R� M�� Ogielski A� T�
����� The TeD Language Manual� Avail�
able on�line via http���www	cc	gatech	edu�

computing�pads�ted	html�
Poplawski A�� Nicol D� M� ����� Nops � A Con�
servative Parallel Simulation Engine for TeD� In
Proceedings of the ��th Workshop on Parallel �
Distributed Simulation�

Ramkumar B�� Strumpen V� ����� Portable Check�
pointing for Heterogeneous Architectures� In ��th
International Symposium on Fault�Tolerant Com�
puting �FTCS����� ������

Ronngren R�� et al� ����� Transparent Incremental
State Saving in Time Warp� In Proceedings of �	th
Workshop on Parallel � Distributed Simulation�

Tanenbaum A� ����� Distributed Operating Systems�
Chapter �� Prentice Hall�

Whitehurst R� A�� Brutocao J� ����� Parallel Execu�
tion of Process�based Simulation Models� In Pro�
ceedings of SCS Multiconference�

AUTHOR BIOGRAPHIES

KALYAN S� PERUMALLA is a Research Scien�
tist at the College of Computing at Georgia Institute
of Technology� working towards the Ph�D� degree in
the area of parallel simulation techniques for large�
scale telecommunication networks�

RICHARD M� FUJIMOTO is a professor at the
College of Computing at Georgia Institute of Technol�
ogy� He has been an active researcher in the parallel
and distributed simulation community since �����


