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ABSTRACT 

This paper investigates issues concerning federations 
of sequential and/or parallel simulators.  An approach 
is proposed for creating federated simulations by 
defining a global conceptual model of the entire 
simulation, and then mapping individual entities of the 
conceptual model to implementations within individual 
federates.  Proxy entities are defined as a means for 
linking entities that are mapped to different federates. 
 
Using this approach, an implementation of a federation 
of optimistic simulators is examined. Issues concerning 
the adaptation of optimistic simulators to a federated 
system are discussed.  The performance of the 
federated system utilizing runtime infrastructure (RTI) 
software executing on a shared memory multiprocessor 
(SMP) is compared with a native (non-federated) SMP-
based optimistic parallel simulator.  It is demonstrated 
that a well designed federated simulation system can 
yield performance comparable to a native, parallel 
simulation engine, but important implementation issues 
must be properly addressed. 
 
1. Introduction 
There are two principal paradigms for constructing 
parallel and distributed simulations today.  The first, 
widely utilized by the parallel discrete event simulation 
(PDES) research community, is to define a parallel 
simulation engine, associated languages, libraries, and 
tools to create new high performance simulators.  
Numerous examples of this approach exist today, e.g., 
TeD/GTW [1], SPEEDES [2], and Task-Kit [3] to 
mention a few.  Simulation models are specific to the 
environment for which they were developed, making it 
difficult, in general, to port models to new 
environments. 
 
A second paradigm that has emerged in the distributed 
simulation community is to federate disparate 
simulators, utilizing runtime infrastructure (RTI) 
software to interconnect them. This approach is utilized 

in efforts such as Distributed Interactive Simulation 
(DIS) [4], Aggregate Level Simulation Protocol 
(ALSP) [5] and the High Level Architecture (HLA) 
[10].  This approach places few restrictions 
concerning the realization of individual simulators.  
This results in coarse-grained federations, where 
entire simulations are viewed as black boxes, and 
designated as federates. The runtime infrastructures 
used to interconnect the simulations are typically 
designed for coarse granularity concurrency. 
 
Here, we explore an alternate approach.  Unlike the 
traditional PDES paradigm, explicit support for model 
interoperability and reuse is defined.  Unlike 
traditional federated approaches such as the HLA, we 
impose certain restrictions concerning the structure of 
the simulators that are included in the federation in 
order to enable entity level interactions between 
federates.  Thus, this approach does not attempt to 
address the general problem of interoperability and 
reuse of arbitrary legacy simulators.  Rather, this 
paper attempts to explore the question of how 
simulators might be defined in the future in order to 
support both model reuse and highly efficient 
concurrent execution.  
 
A second, related problem addressed in this paper 
concerns the difficulty of constructing federations of 
optimistic simulators, and the efficiency of their 
execution.  While interfaces such as the HLA support 
federations of optimistic simulators, few, if any, 
federations to date have included multiple optimistic 
federates.  We compare the efficiency of a federation 
of optimistic simulations with a native (non-
federated) implementation executing the same 
simulation model. 
 
We next describe our approach to realizing federated 
simulations.  The prototype federated simulation is 
then described that uses an RTI to interconnect 
optimistic simulations.  Implementation issues 



associated with federating optimistic simulations are 
discussed, and performance measurements presented. 
 
2. Approach to Federating Simulations 
At the highest level, our approach to realizing federated 
simulations is based on: 
• defining a global conceptual model (GCM) for the 

entire (federated) simulation model based on an 
entity/message-passing paradigm, 

• standard entity types and data exchange definitions 
to achieve semantic interoperability among entities 
realized in different federates, and 

• defining a mapping of the GCM to realization of 
individual model components. 

 
The GCM is central to this approach.  Use of 
conceptual models is not new.  Such models are used at 
least informally as part of the federation development 
process in the HLA.  Our approach differs from that 
currently used in the HLA in that we formalize this 
notion so that it can be used to automatically generate 
and configure federated simulations. 
 
Here, we do not address the second issue concerning 
standard entity types and data definitions.  These must 
be realized by defining consensus within the modeling 
and simulation community for each specific domain.  
Work of this nature is in progress within the Defense 
community, for example. 

2.1. Global Conceptual Model 
The GCM is based on an entity/message-passing 
paradigm.  This means the entire federated simulation 
is viewed as a collection of entities that interact by 
exchanging time stamped messages.   
 
Each entity in the GCM is viewed as a black box.  The 
GCM makes no assumptions concerning the internal 
realization of an entity, e.g., whether it is based on an 
event-oriented or a process-oriented world-view.  
Further, the GCM makes no assumption concerning the 
actual mechanism for passing information in or out of 
an entity.  This could be done through procedure calls 
or method invocations, for example.  In general, 
different federates may use entirely different 
mechanisms to implement and pass information among 
entities. 
 
We assume each entity defined in the GCM has a 
corresponding implementation in at least one of the 
simulators (federates) making up the federation.  Thus, 
we assume each simulator is internally composed of 
interacting entities.  We do not view this as an overly 
constraining assumption because the entity concept is 
widely used in modern discrete event simulation.  For 

example, object-oriented and object-based simulation 
systems typically utilize this approach.  Parallel 
discrete event simulations almost universally are 
based on logical processes that interact by exchanging 
messages, so they naturally fall into the 
entity/message-passing paradigm. 
 
Here, we preclude the use of modifiable, shared state 
variables between entities. In principle, mechanisms 
to allow shared state could be easily allowed by the 
GCM.  However, shared state introduces well-known 
difficulties concerning synchronization.  Specifically, 
references to shared-state inevitably result in zero 
lookahead interactions, which can have severe 
performance consequences.  Extension of the GCM to 
allow shared state is an area of future research. 
 
It is clear that not all simulators will be able to 
conform to the restrictions outlined above.  In some 
cases, it may be necessary to encapsulate the entire 
simulation as a single entity of the GCM. In other 
situations, it may not be possible to compose legacy 
simulations without major redevelopment efforts. 
 

Figure 1. Mapping GCM to Federates. PrA is a 

proxy of A, and PrB is a proxy of B. 
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2.2. Mapping the GCM to Federates 
Each entity in the GCM must have a realization in one 
of the simulators making up the federation.  For this 
purpose, a table is defined that maps each GCM entity 
to its corresponding realization in a federate.  This 
mapping is depicted in Figure 1, where entity A is 
mapped to federate 1, and entity B is mapped to 
federate 2. 
 
Interactions between entities that reside within the 
same federate are handled using the mechanisms 
defined internally within that federate.  Interactions 



between entities residing in different federates are 
handled using a mechanism called proxy entities.  A 
proxy entity is a local representation of an entity that 
resides within another federate. 
 
An entity initiates an interaction with a remote entity 
by interacting with the local proxy entity, using 
whatever interaction mechanisms are defined within 
the simulator.  For example, in Figure 1, suppose entity 
A wishes to interact with entity B.  This will be 
accomplished by entity A in federate 1 initiating an 
interaction with PrB, the proxy entity for B residing in 
federate 1.  In general, the entity initiating the 
interaction need not be aware that it is interacting with 
a proxy rather than the actual entity. 
 
The proxy entity PrB is responsible for converting the 
local interaction to one or more messages that are sent 
through the RTI to the destination federate, or in this 
case, Federate 2.  These messages are delivered to a 
second proxy entity (PrA) in Federate 2 that represents 
the entity initiating the interaction.  Proxy entity PrA 
must translate the incoming message(s) to interactions 
with the destination entity B.  PrA interacts with B 
using the local interaction mechanisms defined within 
Federate 2.  Again, entity B need not be aware that it is 
interacting with a local or remote entity. 
 
The principal task performed by the proxy entities is to 
convert local interactions using the mechanisms 
defined within the local simulator to interactions that 
are transmitted through the RTI, and vice versa.  A 
common interface is defined for the RTI, e.g., the 
Interface Specification defined for the High Level 
Architecture. 
 
To simplify the previous discussion, we assumed a 
separate proxy entity was used to represent each 
remote entity that interacts with a local entity.  In some 
cases it may be more efficient to realize a collection of 
proxy entities within a single entity, and time multiplex 
the usage of that realization. 
 
In general, proxy entities may be created or destroyed 
dynamically during the execution.  For example, 
consider a simulator modeling the operation of a 
sensor, e.g., radar.  As other vehicles, represented in 
other federates, move within range of the sensor, new 
proxy entities must be created within the radar 
simulator to represent them.  Further, such proxy 
entities can be discarded once the simulated vehicles 
move out of range. 
 
Of particular interest here is the case where each 
federate is a parallel discrete event simulation.  Such 
simulations are normally defined as collections of 

logical processes that interact by exchanging 
messages.  Thus, each logical process represents a 
single entity in the GCM.  The mapping of logical 
processes to federates can be defined as a mapping 
function: 
 
 LPtoFed(LPi) = Fedj 
 
LPtoFed identifies the federate on which each LP is 
instantiated. 
 
An example better illustrates the role the GCM plays.  
Suppose two disparate simulators are to be integrated 
with one another.  The first is an air battle simulation 
comprised of aircraft entities, the second is a ground 
battle simulation comprised of tank entities.  In the 
GCM each aircraft entity and each tank entity will be 
represented as an entity.  Each entity in the GCM is 
permitted to interact with any other entity in the 
GCM.  At this point information about the 
communication topology between entities can be used 
to more efficiently federate the simulators.  If an 
entity communicates only with local entities then 
there is no need to create a proxy entity to represent 
this entity in the other federates.  Next the entities in 
the GCM are mapped to the federates and proxy 
entities are created to facilitate communication 
between the federates.  
 
We will now consider the techniques for 
implementing the proxy-based federating approach.  
We illustrate the techniques using an LP-based 
prototype system, followed by some performance 
characteristics of the system. 
 
3. Prototype Overview 
An initial prototype was developed to enable 
exploration of this approach to realizing federated 
simulations, and to identify and evaluate performance 
issues.  As a first step, a realization of a homogeneous 
federation was developed.  Specifically, each federate 
is an instance of the TeD / GTW (Telecommunication 
Description Language implemented over the Georgia 
Tech Time Warp parallel simulator) [1, 6].  RTI 
software from the Federated Distributed Simulation 
Kit (FDK) was used to interconnect the simulators.  In 
the rest of this section, we describe the relevant 
aspects of the GTW implementation and the RTI 
interface, which have a bearing on the effort 
necessary to realize a federated implementation. 

3.1. GTW Overview 
Georgia Tech Time Warp (GTW) is an optimistic 
simulator based on Time Warp [7]. GTW has three 
main data structures: a message queue (MsgQ) holds 



incoming messages, a cancellation queue (CanQ) that 
holds messages that have been canceled (anti-
messages), and an event queue (EvQ) that holds 
processed and unprocessed events.  Each processor has 
each of these structures present and executes a loop 
that does the following three steps: 
 
(1) All incoming messages are removed from the 

MsgQ data structure, and the messages are filed 
one at a time into the EvQ data structure.  If a 
message has a timestamp smaller that the last 
event processed by the LP, the LP is rolled back.  
Messages sent by rolled back events are enqueued 
into the CanQ of the processor holding the event. 

(2) All incoming canceled messages are removed from 
the CanQ data structure, and are processed one at a 
time.  Rollbacks may also occur here, and are 
handled in essentially the same manner as 
rollbacks caused by normal messages.  

(3) A single unprocessed event is selected from the 
EvQ, and processed by calling the LP’s event 
handler procedure.  

 
The principal atomic unit of memory in GTW is a 
buffer.  Each buffer contains the storage for a single 
event, a copy of the automatically checkpointed state, 
pointers to scheduled messages (direct cancellation) 
and incremental state-save buffers, and miscellaneous 
status flags, and other information.  Each buffer utilizes 
a fixed amount of storage.  Each processor maintains a 
list of buffers that are not in use.  A buffer may be 
reused for future events once it has been determined 
that the time stamp of the event is less than global 
virtual time (GVT) [7].  GTW uses an efficient GVT 
algorithm described in [8].  In addition to the GVT 
algorithm, GTW also employs on-the-fly fossil 
collection that enables efficient storage reclamation for 
simulations containing large numbers of simulator 
objects [8]. 

3.2. FDK and BRTI Overview 
FDK is a modular and reusable set of libraries designed 
to facilitate the development of Run Time 
Infrastructures (RTIs) for developing or integrating 
parallel and distributed simulation systems [9].  Using 
the libraries provided by the FDK, an RTI was built 
that implements a subset of the High Level 
Architecture (HLA) services.  This RTI is called the 
BRTI, and the following is a brief description of the 
BRTI services that are pertinent to this paper. 
 
• Publish Object Class/Subscribe Object Class 

Attribute - These two services establish a 
communication pathway between two federates.  
A federate first publishes an object with Publish 

Object Class.  Other federates can subscribe to 
the published objects using Subscribe Object 
Class Attribute. 

• Update Attribute Values/Reflect Attribute 
Values - Update Attribute Values sends a 
message to all federates that have subscribed to 
an object notifying them of the change in the 
object’s state.  On the receiving side, Reflect 
Attribute Values is the means by which the RTI 
notifies the federate that an object has been 
updated.  

• Retract/Request Retraction - Given an Event 
Retraction Handle, Retract can be used to cancel 
a previously sent message. The retraction 
mechanism is used to implement Time Warp's 
anti-message mechanism between federates. 

• Flush Queue Request - This is used by the 
federate to notify the RTI that the federate wishes 
all messages currently residing within the RTI to 
be delivered to the federate as soon as possible. 
Additionally, Flush Queue Request will also 
attempt to advance time to the specified time. 

• Time Advance Grant - This is used by the RTI 
to notify the federate that its logical time has 
been advanced to the specified time. 

• Tick - This is used by the federate to provide the 
RTI with execution time to perform 
communication services, time management 
services, and deliver messages to the federate. 

 
The BRTI includes an underlying efficient 
asynchronous algorithm for periodically computing 
lower bound on the timestamp (LBTS) of future 
incoming events at any federate. 
 
4. Federated GTW 
Using the proxy-based approach, we have 
implemented a system for federating multiple 
instances of GTW simulations.  Each instance of 
GTW acts as a federate, which communicates using 
the BRTI with the other GTW federates The 
implementation process mainly involved three items: 
1. Defining a common abstraction of the application 

objects, called the federation object model, for 
use  by all GTW federates 

2. Defining a proxy framework that is used across 
all GTW applications 

3. A set of modifications to GTW for adapting its 
initialization, message sends, message 
cancellations and GVT computation modules, to 
accommodate the proxy-based model. 

 
We describe each of these items next. 



4.1. Federation Object Model 
A federation object model is necessary so that all the 
federates agree on a certain abstraction of the entities in 
the GCM.  The object model for the GTW federation is 
defined as follows.  Each logical process (LP) has input 
ports and output ports.  Each output port of an LP is 
mapped at initialization time to an input port of another 
LP.  Whenever an LP sends a message on one of its 
output ports, the LP that owns the corresponding 
mapped input port receives the message.  The LP 
actually sends a message by “assigning” the event data 
as the value of the port object variable.  This model 
based on ports allows the application to expose its 
communication topology, which is necessary to prevent 
broadcast semantics for inter-federate communication; 
at the same time, it does not exclude applications that 
do need all-to-all communication. 
 
During initialization, the communication links between 
federates are established with the help of BRTI 
services Publish Object Class and Subscribe Object 
Class Attribute, using port names as unique object 
classes.  Each federate publishes a list of output ports 
corresponding to the LPs that are owned by this 
federate.  A federate will subscribe to an output port if 
it owns an LP whose input port is mapped to that 
output port.  Port mapping can be specified in a file 
that is read in at run time.  If no file is specified then 
all-to-all communication is assumed by default. 
 
At runtime, event exchanges are realized using the 
ports as follows.  Since each port is an RTI object, its 
value can be updated by the federate that can publish 
new values to the object.  Events (event data) are 
assigned as values for the port objects.  This is done 
using the Update Attribute Values service of the 
BRTI.  On the other side of the output port, updates to 
the output port are received via the Reflect Attribute 
Values callback service of the BRTI. 
 
Based on the port descriptions of the LPs, the object 
class creation, publication and subscription services are 
automatically invoked by GTW, in order to initialize 
the communication services. 

4.2. Proxy Framework 
By default, a replication-based proxy framework is 
supported.  In this framework, every federate 
instantiates every LP that is present in the simulation's 
GCM.  At any federate, only those LPs that are mapped 
to that federate are executed as regular LPs.  The rest 
of the LPs are executed as proxies.  Exactly one 
federate owns any given non-proxy LP.  When any 
proxy LP receives an event, it forwards exactly one 
copy of that event to the federate that owns that LP.  In 

addition to the forwarding semantics, every GTW 
proxy LP implements an initialization function, which 
is the same as its corresponding non-proxy LP 
initialization function.  This is used in constructing 
global read-only data structures during the 
initialization stage at each GTW federate, as 
described next. 

4.3. Initialization and Read-only State 
The GTW federations are initialized as usual, similar 
to the non-federated GTW simulation, with one 
important distinction as follows.  When LPs are 
created and initialized in GTW, they are permitted not 
only to schedule their initial events, but also to 
cooperate in creating and initializing global data 
structures intended for read-only use during the actual 
simulation.  It is clear that, if the initialization 
procedures of all the LPs are invoked in all the 
federates, then identical copies of the global state are 
correctly created automatically in all the federates.  
This approach is what the proxy framework as 
described previously supports. 
 
This approach has the advantage that no source-code 
changes are required for the applications.  Since we 
are interested in minimizing the changes to the 
application, we implemented this approach. The 
initialization must be carefully controlled, however, in 
order to preserve the semantics of proxy LPs.  This is 
done at each federate by ignoring any message-sends 
performed by a proxy LP during its initialization, 
permitting the proxy LP to cooperate in the global 
data creation, but disallowing it to be scheduled 
during simulation at this federate.  Turning off 
message-sends was quite easy to implement in GTW -
- for any message-send by a proxy LP, a dummy 
“abort” message buffer is supplied by GTW to the LP, 
which is later discarded, instead of being scheduled, 
by the kernel. 

4.4. Sending and Receiving Messages and 
Message Cancellations 
The original native GTW includes a mechanism for 
sending messages and cancellations among LPs.  This 
mechanism needed to be augmented such that events 
and cancellations destined to a proxy LP at a federate 
get automatically forwarded to the federate where the 
destination LP is actually simulated.  For events 
exchanged between regular (non-proxy) LPs, the 
usual fast communication path of GTW is preserved.  
At each GTW federate, the processor whose ID is 
zero acts as the gateway to route events to and from 
other GTW federates. 
 



With a view to minimizing the source-code changes, 
while not compromising on efficiency, we preserved 
the method by which any GTW LP sends an event to 
another LP, irrespective of whether the destination LP 
is a proxy or not.  This essentially appends the event to 
the MsgQ of the owner processor of the event's 
destination LP.   The distinction between local and 
proxy LPs is, however, made at the time the event is 
actually extracted from the MsgQ by the destination 
processor. If the event is for a local LP then the event 
handler is called as usual. Otherwise (if the LP is a 
proxy), then this message is forwarded to the federate 
that owns the LP by invoking Update Attribute 
Values on the object of the corresponding port.   
  
On the receiver side, the BRTI accepts the message and 
stores it internally until the federate notifies the BRTI 
to deliver the messages.  In the main scheduling loop of 
GTW, Flush Queue Request is invoked to notify 
BRTI to delivery any messages received so far.  (The 
messages are actually delivered when the next time 
Tick is called).  Messages are delivered to the GTW 
federate by the BRTI via Reflect Attribute Values 
callback.  Once the message has been delivered it is 
appended to the MsgQ of the processor that owns the 
destination LP. 
 
Message cancellations (retractions) are treated in a 
manner analogous to normal events.  If the cancellation 
is meant for a local LP, then the existing GTW 
mechanism for processing cancellations is performed.  
If the retraction was in fact destined to a proxy LP, 
then the BRTI services will have to be used to cancel 
the message.  Every time a normal message is sent 
using Update Attribute Values, an event retraction 
handle is returned.  This handle is stored in the event 
buffer so that the handle can be used if it has to be 
canceled.  When a proxy LP receives a cancellation it 
invokes the BRTI Retract service with the event 
retraction handle.  When a federate receives a 
retraction, it makes a call back specified by the GTW 
federate.  The GTW federate performs a handle-to-
pointer hash to identify the retracted event, and places 
it on the CanQ of the processor who owns the 
destination LP.  Cancellations then proceed as usual in 
GTW. 

4.5. Synchronization 
Both GTW and BRTI have their own concept of a 
global time.  In GTW it is GVT (Global Virtual Time) 
and in BRTI it is LBTS (Lowest Bound on Time 
Stamps).  Coordinating the algorithms is crucial to 
obtaining correct and efficient performance. In the 
main scheduling loop of GTW, Flush Queue Request is 
called to notify the BRTI to deliver all messages it has 

received.  A target time is passed as argument to the 
BRTI, which indicates when the next event is 
scheduled to the best of GTW's knowledge at that 
time.  When this federate participates in an LBTS 
computation it will use this to determine its 
contribution to the computation. When the LBTS 
computation completes, BRTI issues a Time Advance 
Grant which notifies the GTW federate that time has 
been advanced.  This time is what is used as the 
global GVT.  In the federated GTW, LBTS is 
equivalent to GVT of the non-federated GTW. 
 
5. Insights, Lessons, and Challenges 
The process of federating GTW was straight forward.  
The GTW kernel was augmented to use RTI services 
where necessary, e.g., sending messages to remote 
LPs or performing necessary time management 
services.  Only the GTW kernel was modified, thus 
avoiding making significant modifications to the 
applications.  In the case of phold and PNNI no 
changes were required in these applications.  During 
the course of the implementation it became apparent 
that care must be taken to ensure good performance as 
well as correctness.  Two major challenges included 
coordinating the GVT computation and LBTS 
computation, and buffer management. 

5.1. GVT and LBTS 
The GVT algorithm [8] incorporated into GTW is 
specially optimized for a shared-memory 
implementation, which relies on the actual order of 
operations on the MsgQ, CanQ and EvQ for handling 
transient messages efficiently.  When such an 
algorithm is integrated with an RTI, which presents 
incoming events at unpredictable moments, race 
conditions can arise with respect to accounting for 
transient messages in both the local GVT and LBTS 
computation, potentially leading to incorrect GVT 
values being computed. 
 
Ensuring that the LBTS computation and the 
incoming message delivery do not overlap with the 
local GVT computation easily solves this problem.  In 
our implementation, an LBTS computation gets 
initiated when a Flush Queue Request is made.  By 
calling Flush Queue Request only when no GVT 
computation is active locally, we can prevent the race 
condition.  This ensures that all messages that have to 
be considered in the local GVT computation have 
already been delivered by BRTI, and the most 
accurate local GVT value is used in the LBTS 
computation. Thus, we were able to preserve the 
efficient asynchronous GVT algorithm of GTW 
without compromising its correct integration with the 
time management services of the BRTI. 



5.2. Buffer Management 
The second major challenge actually became relatively 
simple to solve using the proxy-entities.  When sending 
or receiving messages using the BRTI we either had to 
decide what to do with a buffer once used, in the case 
of sending, or where to obtain a buffer when receiving 
a message.  Message sends occur when an event is 
removed from the MsgQ and its destination is a non-
local LP.  At this point, the BRTI is used to send the 
message, but what can be done with the buffer after the 
send?  The solution is quite simple: mark the buffer as 
‘processed’, as if an event handler was called for this 
event, and place it on the LP’s processed list.  This 
way, the on-the-fly fossil collection can recover the 
buffer and place it on the free buffer list. The proxy 
LPs essentially served as convenient buffer repositories 
for remote messages, to facilitate in generating anti-
messages if necessary.  This made it relatively easy to 
integrate the proxy behavior with on-the-fly fossil 
collection, GVT computation and cancellations, thus 
minimizing the amount of code changes required. 
 
When receiving messages, BRTI first asks GTW where 
it can place messages arriving off the wire.  This 
ensures that there will not be a need for an extra 
memory copy from a BRTI buffer to a GTW buffer.  
GTW will give BRTI a buffer from processor 0's free 
buffer list to store the message.  At this point the 
message will be stored in BRTI’s internal message 
queue and delivered when GTW requests that the 
message be delivered.  When the messages are 
delivered, processor 0 will forward the message to the 
destination LP’s owner processor as if processor 0 
scheduled it.  As far at the destination processor is 
concerned processor 0 sent the message.  Using the 
proxy-entities makes buffer management much simpler 
since the existing buffer manager can be relied on. 

5.3. Deadlocks and Flow Control 
Deadlock is another disconcerting possibility that 
arises when the simulators are federated together.  
Even though the native simulators are designed to be 
deadlock free in isolation, the deadlock problem arises 
all over again when they are federated together.  In 
fact, we have observed this problem empirically early 
on in our implementation. Even though GTW is 
deadlock free in isolation, a naïve implementation of a 
GTW federation can deadlock due to a circular hold-
and-wait condition on memory buffers used for sending 
events between federates. 
 
The flow control problem also shares this feature with 
respect to federating, and deserves careful attention in a 
federation. 
 

6. Performance Study 
We used two separate GTW applications in our 
performance study.  The first is the PHOLD 
application, which is a synthetic benchmark 
commonly used for parallel simulators.  The second is 
a practical application, called the PNNI (Private 
Network to Network Interface) model suite, written in 
the TeD language, and compiled as a GTW 
application.  The two applications exhibit contrasting 
characteristics compared to each other.  PHOLD is a 
relatively fine-grained application, with small state 
and event sizes.  PNNI, on the other hand, is a 
relatively coarse-grained application, with very large 
state and event sizes. 
 
With both applications, we compared two scenarios: 
1. A non-federated multi-processor parallel 

simulation, using a single instance of the original 
GTW kernel.  The LPs of the application are 
statically mapped to different processors.  

2. A federated simulation in which multiple 
instances of single-processor GTW kernels 
communicate using the BRTI.  The LPs are 
partitioned across the federates, but proxies are 
instantiated for non-local LPs in every federate. 

The LP-to-federate mapping used in the federated 
simulation is the same as the LP-to-processor 
mapping of the corresponding native GTW 
simulation. 
 
The test configuration for PHOLD included 40 LPs 
with a message population of 40.  The test 
configuration for PNNI included a 200-node real-life 
network with a user node attached to each network 
node, giving a total of 400 LPs.  All the simulations 
were run on an SGI Origin multiprocessor (R10K 
processors) and 4GB RAM.  All communication is 
through shared memory. 
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Figure 2.  Performance of PHOLD simulation. 
 
The performance of PHOLD is shown in the Figure 2.  
The rollback statistics of the federated and non-



federated simulations were comparable on smaller 
number of processors. But when larger number of 
processors was used, the federated simulation incurred 
fewer rollbacks, accounting for its higher performance 
than the non-federated simulation. 
 
The performance of PNNI is depicted in the Figure 3.  
In all cases, the rollback behavior of federated and non-
federated simulations was comparable. 

Figure 3.  Performance of PNNI. 

In both types of applications, we observe that the 
performance of the federated simulation is comparable 
to that of the optimized monolithic parallel simulator.  
This indicates that for an application, not only the reuse 
capabilities but also performance needs can be met 
using a standards-based federated implementation. 
 
7. Conclusions and Future Work 
In this paper we presented an approach to federating 
parallel simulations.  We introduced the Global 
Conceptual Model (GCM) as a key concept to 
federating parallel simulations, and presented the 
implementation techniques for a prototype federation 
of GTW optimistic parallel simulators.  The 
implementation of a proxy-based GTW federation 
involved a relatively small amount (15%) of source-
code changes to the GTW kernel, along with the use of 
the RTI library. Our implementation ensured that GTW 
applications written to run on non-federated GTW 
would run on the GTW federation with almost no 
source-code changes.  By keeping overheads low, such 
as by minimizing memory copy operations via careful 
buffer management, and by adopting asynchronous 
GVT/LBTS algorithms, we demonstrated that the 
federation of parallel simulators could perform nearly 
as well as native parallel simulators. We intend to 
extrapolate further from this observation: if any parallel 
simulator shall be developed from scratch in the future, 
it is actually feasible to develop it as a federation of 
sequential simulators (rather than as yet another 
monolithic parallel simulator) without the fear of a 

significant performance penalty!  The system 
presented here is one of the first works to evaluate the 
performance of a standards-based federation of 
optimistic parallel simulators. 
  
Although there has been much work on GVT 
algorithms, the problem of hierarchical composition 
of different GVT/LBTS algorithms appears to be an 
interesting research area to be explored further.  
Specifically, this is a problem that becomes more 
relevant in a federation of heterogeneous parallel 
simulators, rather than of sequential simulators. 
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