
An Approach for Federating Parallel Simulators

Steve L. Ferenci
Kalyan S. Perumalla
Richard M. Fujimoto

College Of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
{ferenci,kalyan,fujimoto}@cc.gatech.edu

Keywords: federating, parallel simulators, proxy entity

ABSTRACT

This paper investigates issues concerning federations
of sequential and/or parallel simulators. An approach
is proposed for creating federated simulations by
defining a global conceptual model of the entire
simulation, and then mapping individual entities of the
conceptual model to implementations within individual
federates. Proxy entities are defined as a means for
linking entities that are mapped to different federates.

Using this approach, an implementation of a federation
of optimistic simulators is examined. Issues concerning
the adaptation of optimistic simulators to a federated
system are discussed. The performance of the
federated system utilizing runtime infrastructure (RTI)
software executing on a shared memory multiprocessor
(SMP) is compared with a native (non-federated) SMP-
based optimistic parallel simulator. It is demonstrated
that a well designed federated simulation system can
yield performance comparable to a native, parallel
simulation engine, but important implementation issues
must be properly addressed.

1. Introduction
There are two principal paradigms for constructing
parallel and distributed simulations today. The first,
widely utilized by the parallel discrete event simulation
(PDES) research community, is to define a parallel
simulation engine, associated languages, libraries, and
tools to create new high performance simulators.
Numerous examples of this approach exist today, e.g.,
TeD/GTW [1], SPEEDES [2], and Task-Kit [3] to
mention a few. Simulation models are specific to the
environment for which they were developed, making it
difficult, in general, to port models to new
environments.

A second paradigm that has emerged in the distributed
simulation community is to federate disparate
simulators, utilizing runtime infrastructure (RTI)
software to interconnect them. This approach is utilized

in efforts such as Distributed Interactive Simulation
(DIS) [4], Aggregate Level Simulation Protocol
(ALSP) [5] and the High Level Architecture (HLA)
[10]. This approach places few restrictions
concerning the realization of individual simulators.
This results in coarse-grained federations, where
entire simulations are viewed as black boxes, and
designated as federates. The runtime infrastructures
used to interconnect the simulations are typically
designed for coarse granularity concurrency.

Here, we explore an alternate approach. Unlike the
traditional PDES paradigm, explicit support for model
interoperability and reuse is defined. Unlike
traditional federated approaches such as the HLA, we
impose certain restrictions concerning the structure of
the simulators that are included in the federation in
order to enable entity level interactions between
federates. Thus, this approach does not attempt to
address the general problem of interoperability and
reuse of arbitrary legacy simulators. Rather, this
paper attempts to explore the question of how
simulators might be defined in the future in order to
support both model reuse and highly efficient
concurrent execution.

A second, related problem addressed in this paper
concerns the difficulty of constructing federations of
optimistic simulators, and the efficiency of their
execution. While interfaces such as the HLA support
federations of optimistic simulators, few, if any,
federations to date have included multiple optimistic
federates. We compare the efficiency of a federation
of optimistic simulations with a native (non-
federated) implementation executing the same
simulation model.

We next describe our approach to realizing federated
simulations. The prototype federated simulation is
then described that uses an RTI to interconnect
optimistic simulations. Implementation issues

associated with federating optimistic simulations are
discussed, and performance measurements presented.

2. Approach to Federating Simulations
At the highest level, our approach to realizing federated
simulations is based on:
• defining a global conceptual model (GCM) for the

entire (federated) simulation model based on an
entity/message-passing paradigm,

• standard entity types and data exchange definitions
to achieve semantic interoperability among entities
realized in different federates, and

• defining a mapping of the GCM to realization of
individual model components.

The GCM is central to this approach. Use of
conceptual models is not new. Such models are used at
least informally as part of the federation development
process in the HLA. Our approach differs from that
currently used in the HLA in that we formalize this
notion so that it can be used to automatically generate
and configure federated simulations.

Here, we do not address the second issue concerning
standard entity types and data definitions. These must
be realized by defining consensus within the modeling
and simulation community for each specific domain.
Work of this nature is in progress within the Defense
community, for example.

2.1. Global Conceptual Model
The GCM is based on an entity/message-passing
paradigm. This means the entire federated simulation
is viewed as a collection of entities that interact by
exchanging time stamped messages.

Each entity in the GCM is viewed as a black box. The
GCM makes no assumptions concerning the internal
realization of an entity, e.g., whether it is based on an
event-oriented or a process-oriented world-view.
Further, the GCM makes no assumption concerning the
actual mechanism for passing information in or out of
an entity. This could be done through procedure calls
or method invocations, for example. In general,
different federates may use entirely different
mechanisms to implement and pass information among
entities.

We assume each entity defined in the GCM has a
corresponding implementation in at least one of the
simulators (federates) making up the federation. Thus,
we assume each simulator is internally composed of
interacting entities. We do not view this as an overly
constraining assumption because the entity concept is
widely used in modern discrete event simulation. For

example, object-oriented and object-based simulation
systems typically utilize this approach. Parallel
discrete event simulations almost universally are
based on logical processes that interact by exchanging
messages, so they naturally fall into the
entity/message-passing paradigm.

Here, we preclude the use of modifiable, shared state
variables between entities. In principle, mechanisms
to allow shared state could be easily allowed by the
GCM. However, shared state introduces well-known
difficulties concerning synchronization. Specifically,
references to shared-state inevitably result in zero
lookahead interactions, which can have severe
performance consequences. Extension of the GCM to
allow shared state is an area of future research.

It is clear that not all simulators will be able to
conform to the restrictions outlined above. In some
cases, it may be necessary to encapsulate the entire
simulation as a single entity of the GCM. In other
situations, it may not be possible to compose legacy
simulations without major redevelopment efforts.

Figure 1. Mapping GCM to Federates. PrA is a

proxy of A, and PrB is a proxy of B.

P rB

A

P rA

B
R T I

G lo ba l C o ncep tu a l M o d e l

A B

Fed era te 1 Fed era te 2

2.2. Mapping the GCM to Federates
Each entity in the GCM must have a realization in one
of the simulators making up the federation. For this
purpose, a table is defined that maps each GCM entity
to its corresponding realization in a federate. This
mapping is depicted in Figure 1, where entity A is
mapped to federate 1, and entity B is mapped to
federate 2.

Interactions between entities that reside within the
same federate are handled using the mechanisms
defined internally within that federate. Interactions

between entities residing in different federates are
handled using a mechanism called proxy entities. A
proxy entity is a local representation of an entity that
resides within another federate.

An entity initiates an interaction with a remote entity
by interacting with the local proxy entity, using
whatever interaction mechanisms are defined within
the simulator. For example, in Figure 1, suppose entity
A wishes to interact with entity B. This will be
accomplished by entity A in federate 1 initiating an
interaction with PrB, the proxy entity for B residing in
federate 1. In general, the entity initiating the
interaction need not be aware that it is interacting with
a proxy rather than the actual entity.

The proxy entity PrB is responsible for converting the
local interaction to one or more messages that are sent
through the RTI to the destination federate, or in this
case, Federate 2. These messages are delivered to a
second proxy entity (PrA) in Federate 2 that represents
the entity initiating the interaction. Proxy entity PrA
must translate the incoming message(s) to interactions
with the destination entity B. PrA interacts with B
using the local interaction mechanisms defined within
Federate 2. Again, entity B need not be aware that it is
interacting with a local or remote entity.

The principal task performed by the proxy entities is to
convert local interactions using the mechanisms
defined within the local simulator to interactions that
are transmitted through the RTI, and vice versa. A
common interface is defined for the RTI, e.g., the
Interface Specification defined for the High Level
Architecture.

To simplify the previous discussion, we assumed a
separate proxy entity was used to represent each
remote entity that interacts with a local entity. In some
cases it may be more efficient to realize a collection of
proxy entities within a single entity, and time multiplex
the usage of that realization.

In general, proxy entities may be created or destroyed
dynamically during the execution. For example,
consider a simulator modeling the operation of a
sensor, e.g., radar. As other vehicles, represented in
other federates, move within range of the sensor, new
proxy entities must be created within the radar
simulator to represent them. Further, such proxy
entities can be discarded once the simulated vehicles
move out of range.

Of particular interest here is the case where each
federate is a parallel discrete event simulation. Such
simulations are normally defined as collections of

logical processes that interact by exchanging
messages. Thus, each logical process represents a
single entity in the GCM. The mapping of logical
processes to federates can be defined as a mapping
function:

 LPtoFed(LPi) = Fedj

LPtoFed identifies the federate on which each LP is
instantiated.

An example better illustrates the role the GCM plays.
Suppose two disparate simulators are to be integrated
with one another. The first is an air battle simulation
comprised of aircraft entities, the second is a ground
battle simulation comprised of tank entities. In the
GCM each aircraft entity and each tank entity will be
represented as an entity. Each entity in the GCM is
permitted to interact with any other entity in the
GCM. At this point information about the
communication topology between entities can be used
to more efficiently federate the simulators. If an
entity communicates only with local entities then
there is no need to create a proxy entity to represent
this entity in the other federates. Next the entities in
the GCM are mapped to the federates and proxy
entities are created to facilitate communication
between the federates.

We will now consider the techniques for
implementing the proxy-based federating approach.
We illustrate the techniques using an LP-based
prototype system, followed by some performance
characteristics of the system.

3. Prototype Overview
An initial prototype was developed to enable
exploration of this approach to realizing federated
simulations, and to identify and evaluate performance
issues. As a first step, a realization of a homogeneous
federation was developed. Specifically, each federate
is an instance of the TeD / GTW (Telecommunication
Description Language implemented over the Georgia
Tech Time Warp parallel simulator) [1, 6]. RTI
software from the Federated Distributed Simulation
Kit (FDK) was used to interconnect the simulators. In
the rest of this section, we describe the relevant
aspects of the GTW implementation and the RTI
interface, which have a bearing on the effort
necessary to realize a federated implementation.

3.1. GTW Overview
Georgia Tech Time Warp (GTW) is an optimistic
simulator based on Time Warp [7]. GTW has three
main data structures: a message queue (MsgQ) holds

incoming messages, a cancellation queue (CanQ) that
holds messages that have been canceled (anti-
messages), and an event queue (EvQ) that holds
processed and unprocessed events. Each processor has
each of these structures present and executes a loop
that does the following three steps:

(1) All incoming messages are removed from the

MsgQ data structure, and the messages are filed
one at a time into the EvQ data structure. If a
message has a timestamp smaller that the last
event processed by the LP, the LP is rolled back.
Messages sent by rolled back events are enqueued
into the CanQ of the processor holding the event.

(2) All incoming canceled messages are removed from
the CanQ data structure, and are processed one at a
time. Rollbacks may also occur here, and are
handled in essentially the same manner as
rollbacks caused by normal messages.

(3) A single unprocessed event is selected from the
EvQ, and processed by calling the LP’s event
handler procedure.

The principal atomic unit of memory in GTW is a
buffer. Each buffer contains the storage for a single
event, a copy of the automatically checkpointed state,
pointers to scheduled messages (direct cancellation)
and incremental state-save buffers, and miscellaneous
status flags, and other information. Each buffer utilizes
a fixed amount of storage. Each processor maintains a
list of buffers that are not in use. A buffer may be
reused for future events once it has been determined
that the time stamp of the event is less than global
virtual time (GVT) [7]. GTW uses an efficient GVT
algorithm described in [8]. In addition to the GVT
algorithm, GTW also employs on-the-fly fossil
collection that enables efficient storage reclamation for
simulations containing large numbers of simulator
objects [8].

3.2. FDK and BRTI Overview
FDK is a modular and reusable set of libraries designed
to facilitate the development of Run Time
Infrastructures (RTIs) for developing or integrating
parallel and distributed simulation systems [9]. Using
the libraries provided by the FDK, an RTI was built
that implements a subset of the High Level
Architecture (HLA) services. This RTI is called the
BRTI, and the following is a brief description of the
BRTI services that are pertinent to this paper.

• Publish Object Class/Subscribe Object Class

Attribute - These two services establish a
communication pathway between two federates.
A federate first publishes an object with Publish

Object Class. Other federates can subscribe to
the published objects using Subscribe Object
Class Attribute.

• Update Attribute Values/Reflect Attribute
Values - Update Attribute Values sends a
message to all federates that have subscribed to
an object notifying them of the change in the
object’s state. On the receiving side, Reflect
Attribute Values is the means by which the RTI
notifies the federate that an object has been
updated.

• Retract/Request Retraction - Given an Event
Retraction Handle, Retract can be used to cancel
a previously sent message. The retraction
mechanism is used to implement Time Warp's
anti-message mechanism between federates.

• Flush Queue Request - This is used by the
federate to notify the RTI that the federate wishes
all messages currently residing within the RTI to
be delivered to the federate as soon as possible.
Additionally, Flush Queue Request will also
attempt to advance time to the specified time.

• Time Advance Grant - This is used by the RTI
to notify the federate that its logical time has
been advanced to the specified time.

• Tick - This is used by the federate to provide the
RTI with execution time to perform
communication services, time management
services, and deliver messages to the federate.

The BRTI includes an underlying efficient
asynchronous algorithm for periodically computing
lower bound on the timestamp (LBTS) of future
incoming events at any federate.

4. Federated GTW
Using the proxy-based approach, we have
implemented a system for federating multiple
instances of GTW simulations. Each instance of
GTW acts as a federate, which communicates using
the BRTI with the other GTW federates The
implementation process mainly involved three items:
1. Defining a common abstraction of the application

objects, called the federation object model, for
use by all GTW federates

2. Defining a proxy framework that is used across
all GTW applications

3. A set of modifications to GTW for adapting its
initialization, message sends, message
cancellations and GVT computation modules, to
accommodate the proxy-based model.

We describe each of these items next.

4.1. Federation Object Model
A federation object model is necessary so that all the
federates agree on a certain abstraction of the entities in
the GCM. The object model for the GTW federation is
defined as follows. Each logical process (LP) has input
ports and output ports. Each output port of an LP is
mapped at initialization time to an input port of another
LP. Whenever an LP sends a message on one of its
output ports, the LP that owns the corresponding
mapped input port receives the message. The LP
actually sends a message by “assigning” the event data
as the value of the port object variable. This model
based on ports allows the application to expose its
communication topology, which is necessary to prevent
broadcast semantics for inter-federate communication;
at the same time, it does not exclude applications that
do need all-to-all communication.

During initialization, the communication links between
federates are established with the help of BRTI
services Publish Object Class and Subscribe Object
Class Attribute, using port names as unique object
classes. Each federate publishes a list of output ports
corresponding to the LPs that are owned by this
federate. A federate will subscribe to an output port if
it owns an LP whose input port is mapped to that
output port. Port mapping can be specified in a file
that is read in at run time. If no file is specified then
all-to-all communication is assumed by default.

At runtime, event exchanges are realized using the
ports as follows. Since each port is an RTI object, its
value can be updated by the federate that can publish
new values to the object. Events (event data) are
assigned as values for the port objects. This is done
using the Update Attribute Values service of the
BRTI. On the other side of the output port, updates to
the output port are received via the Reflect Attribute
Values callback service of the BRTI.

Based on the port descriptions of the LPs, the object
class creation, publication and subscription services are
automatically invoked by GTW, in order to initialize
the communication services.

4.2. Proxy Framework
By default, a replication-based proxy framework is
supported. In this framework, every federate
instantiates every LP that is present in the simulation's
GCM. At any federate, only those LPs that are mapped
to that federate are executed as regular LPs. The rest
of the LPs are executed as proxies. Exactly one
federate owns any given non-proxy LP. When any
proxy LP receives an event, it forwards exactly one
copy of that event to the federate that owns that LP. In

addition to the forwarding semantics, every GTW
proxy LP implements an initialization function, which
is the same as its corresponding non-proxy LP
initialization function. This is used in constructing
global read-only data structures during the
initialization stage at each GTW federate, as
described next.

4.3. Initialization and Read-only State
The GTW federations are initialized as usual, similar
to the non-federated GTW simulation, with one
important distinction as follows. When LPs are
created and initialized in GTW, they are permitted not
only to schedule their initial events, but also to
cooperate in creating and initializing global data
structures intended for read-only use during the actual
simulation. It is clear that, if the initialization
procedures of all the LPs are invoked in all the
federates, then identical copies of the global state are
correctly created automatically in all the federates.
This approach is what the proxy framework as
described previously supports.

This approach has the advantage that no source-code
changes are required for the applications. Since we
are interested in minimizing the changes to the
application, we implemented this approach. The
initialization must be carefully controlled, however, in
order to preserve the semantics of proxy LPs. This is
done at each federate by ignoring any message-sends
performed by a proxy LP during its initialization,
permitting the proxy LP to cooperate in the global
data creation, but disallowing it to be scheduled
during simulation at this federate. Turning off
message-sends was quite easy to implement in GTW -
- for any message-send by a proxy LP, a dummy
“abort” message buffer is supplied by GTW to the LP,
which is later discarded, instead of being scheduled,
by the kernel.

4.4. Sending and Receiving Messages and
Message Cancellations
The original native GTW includes a mechanism for
sending messages and cancellations among LPs. This
mechanism needed to be augmented such that events
and cancellations destined to a proxy LP at a federate
get automatically forwarded to the federate where the
destination LP is actually simulated. For events
exchanged between regular (non-proxy) LPs, the
usual fast communication path of GTW is preserved.
At each GTW federate, the processor whose ID is
zero acts as the gateway to route events to and from
other GTW federates.

With a view to minimizing the source-code changes,
while not compromising on efficiency, we preserved
the method by which any GTW LP sends an event to
another LP, irrespective of whether the destination LP
is a proxy or not. This essentially appends the event to
the MsgQ of the owner processor of the event's
destination LP. The distinction between local and
proxy LPs is, however, made at the time the event is
actually extracted from the MsgQ by the destination
processor. If the event is for a local LP then the event
handler is called as usual. Otherwise (if the LP is a
proxy), then this message is forwarded to the federate
that owns the LP by invoking Update Attribute
Values on the object of the corresponding port.

On the receiver side, the BRTI accepts the message and
stores it internally until the federate notifies the BRTI
to deliver the messages. In the main scheduling loop of
GTW, Flush Queue Request is invoked to notify
BRTI to delivery any messages received so far. (The
messages are actually delivered when the next time
Tick is called). Messages are delivered to the GTW
federate by the BRTI via Reflect Attribute Values
callback. Once the message has been delivered it is
appended to the MsgQ of the processor that owns the
destination LP.

Message cancellations (retractions) are treated in a
manner analogous to normal events. If the cancellation
is meant for a local LP, then the existing GTW
mechanism for processing cancellations is performed.
If the retraction was in fact destined to a proxy LP,
then the BRTI services will have to be used to cancel
the message. Every time a normal message is sent
using Update Attribute Values, an event retraction
handle is returned. This handle is stored in the event
buffer so that the handle can be used if it has to be
canceled. When a proxy LP receives a cancellation it
invokes the BRTI Retract service with the event
retraction handle. When a federate receives a
retraction, it makes a call back specified by the GTW
federate. The GTW federate performs a handle-to-
pointer hash to identify the retracted event, and places
it on the CanQ of the processor who owns the
destination LP. Cancellations then proceed as usual in
GTW.

4.5. Synchronization
Both GTW and BRTI have their own concept of a
global time. In GTW it is GVT (Global Virtual Time)
and in BRTI it is LBTS (Lowest Bound on Time
Stamps). Coordinating the algorithms is crucial to
obtaining correct and efficient performance. In the
main scheduling loop of GTW, Flush Queue Request is
called to notify the BRTI to deliver all messages it has

received. A target time is passed as argument to the
BRTI, which indicates when the next event is
scheduled to the best of GTW's knowledge at that
time. When this federate participates in an LBTS
computation it will use this to determine its
contribution to the computation. When the LBTS
computation completes, BRTI issues a Time Advance
Grant which notifies the GTW federate that time has
been advanced. This time is what is used as the
global GVT. In the federated GTW, LBTS is
equivalent to GVT of the non-federated GTW.

5. Insights, Lessons, and Challenges
The process of federating GTW was straight forward.
The GTW kernel was augmented to use RTI services
where necessary, e.g., sending messages to remote
LPs or performing necessary time management
services. Only the GTW kernel was modified, thus
avoiding making significant modifications to the
applications. In the case of phold and PNNI no
changes were required in these applications. During
the course of the implementation it became apparent
that care must be taken to ensure good performance as
well as correctness. Two major challenges included
coordinating the GVT computation and LBTS
computation, and buffer management.

5.1. GVT and LBTS
The GVT algorithm [8] incorporated into GTW is
specially optimized for a shared-memory
implementation, which relies on the actual order of
operations on the MsgQ, CanQ and EvQ for handling
transient messages efficiently. When such an
algorithm is integrated with an RTI, which presents
incoming events at unpredictable moments, race
conditions can arise with respect to accounting for
transient messages in both the local GVT and LBTS
computation, potentially leading to incorrect GVT
values being computed.

Ensuring that the LBTS computation and the
incoming message delivery do not overlap with the
local GVT computation easily solves this problem. In
our implementation, an LBTS computation gets
initiated when a Flush Queue Request is made. By
calling Flush Queue Request only when no GVT
computation is active locally, we can prevent the race
condition. This ensures that all messages that have to
be considered in the local GVT computation have
already been delivered by BRTI, and the most
accurate local GVT value is used in the LBTS
computation. Thus, we were able to preserve the
efficient asynchronous GVT algorithm of GTW
without compromising its correct integration with the
time management services of the BRTI.

5.2. Buffer Management
The second major challenge actually became relatively
simple to solve using the proxy-entities. When sending
or receiving messages using the BRTI we either had to
decide what to do with a buffer once used, in the case
of sending, or where to obtain a buffer when receiving
a message. Message sends occur when an event is
removed from the MsgQ and its destination is a non-
local LP. At this point, the BRTI is used to send the
message, but what can be done with the buffer after the
send? The solution is quite simple: mark the buffer as
‘processed’, as if an event handler was called for this
event, and place it on the LP’s processed list. This
way, the on-the-fly fossil collection can recover the
buffer and place it on the free buffer list. The proxy
LPs essentially served as convenient buffer repositories
for remote messages, to facilitate in generating anti-
messages if necessary. This made it relatively easy to
integrate the proxy behavior with on-the-fly fossil
collection, GVT computation and cancellations, thus
minimizing the amount of code changes required.

When receiving messages, BRTI first asks GTW where
it can place messages arriving off the wire. This
ensures that there will not be a need for an extra
memory copy from a BRTI buffer to a GTW buffer.
GTW will give BRTI a buffer from processor 0's free
buffer list to store the message. At this point the
message will be stored in BRTI’s internal message
queue and delivered when GTW requests that the
message be delivered. When the messages are
delivered, processor 0 will forward the message to the
destination LP’s owner processor as if processor 0
scheduled it. As far at the destination processor is
concerned processor 0 sent the message. Using the
proxy-entities makes buffer management much simpler
since the existing buffer manager can be relied on.

5.3. Deadlocks and Flow Control
Deadlock is another disconcerting possibility that
arises when the simulators are federated together.
Even though the native simulators are designed to be
deadlock free in isolation, the deadlock problem arises
all over again when they are federated together. In
fact, we have observed this problem empirically early
on in our implementation. Even though GTW is
deadlock free in isolation, a naïve implementation of a
GTW federation can deadlock due to a circular hold-
and-wait condition on memory buffers used for sending
events between federates.

The flow control problem also shares this feature with
respect to federating, and deserves careful attention in a
federation.

6. Performance Study
We used two separate GTW applications in our
performance study. The first is the PHOLD
application, which is a synthetic benchmark
commonly used for parallel simulators. The second is
a practical application, called the PNNI (Private
Network to Network Interface) model suite, written in
the TeD language, and compiled as a GTW
application. The two applications exhibit contrasting
characteristics compared to each other. PHOLD is a
relatively fine-grained application, with small state
and event sizes. PNNI, on the other hand, is a
relatively coarse-grained application, with very large
state and event sizes.

With both applications, we compared two scenarios:
1. A non-federated multi-processor parallel

simulation, using a single instance of the original
GTW kernel. The LPs of the application are
statically mapped to different processors.

2. A federated simulation in which multiple
instances of single-processor GTW kernels
communicate using the BRTI. The LPs are
partitioned across the federates, but proxies are
instantiated for non-local LPs in every federate.

The LP-to-federate mapping used in the federated
simulation is the same as the LP-to-processor
mapping of the corresponding native GTW
simulation.

The test configuration for PHOLD included 40 LPs
with a message population of 40. The test
configuration for PNNI included a 200-node real-life
network with a user node attached to each network
node, giving a total of 400 LPs. All the simulations
were run on an SGI Origin multiprocessor (R10K
processors) and 4GB RAM. All communication is
through shared memory.

100000
120000
140000
160000
180000
200000
220000
240000

1 2 3 4 5 6 7 8 9

Number of processors

E
ve

nt
s

pe
r s

ec
on

d

Non-f ederated Federated

Figure 2. Performance of PHOLD simulation.

The performance of PHOLD is shown in the Figure 2.
The rollback statistics of the federated and non-

federated simulations were comparable on smaller
number of processors. But when larger number of
processors was used, the federated simulation incurred
fewer rollbacks, accounting for its higher performance
than the non-federated simulation.

The performance of PNNI is depicted in the Figure 3.
In all cases, the rollback behavior of federated and non-
federated simulations was comparable.

Figure 3. Performance of PNNI.

In both types of applications, we observe that the
performance of the federated simulation is comparable
to that of the optimized monolithic parallel simulator.
This indicates that for an application, not only the reuse
capabilities but also performance needs can be met
using a standards-based federated implementation.

7. Conclusions and Future Work
In this paper we presented an approach to federating
parallel simulations. We introduced the Global
Conceptual Model (GCM) as a key concept to
federating parallel simulations, and presented the
implementation techniques for a prototype federation
of GTW optimistic parallel simulators. The
implementation of a proxy-based GTW federation
involved a relatively small amount (15%) of source-
code changes to the GTW kernel, along with the use of
the RTI library. Our implementation ensured that GTW
applications written to run on non-federated GTW
would run on the GTW federation with almost no
source-code changes. By keeping overheads low, such
as by minimizing memory copy operations via careful
buffer management, and by adopting asynchronous
GVT/LBTS algorithms, we demonstrated that the
federation of parallel simulators could perform nearly
as well as native parallel simulators. We intend to
extrapolate further from this observation: if any parallel
simulator shall be developed from scratch in the future,
it is actually feasible to develop it as a federation of
sequential simulators (rather than as yet another
monolithic parallel simulator) without the fear of a

significant performance penalty! The system
presented here is one of the first works to evaluate the
performance of a standards-based federation of
optimistic parallel simulators.

Although there has been much work on GVT
algorithms, the problem of hierarchical composition
of different GVT/LBTS algorithms appears to be an
interesting research area to be explored further.
Specifically, this is a problem that becomes more
relevant in a federation of heterogeneous parallel
simulators, rather than of sequential simulators.

0

1 0 0 0
2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0
6 0 0 0

7 0 0 0

1 2 3 4 5

Nu mb e r o f p ro c e s s o rs

E
ve

nt
s

pe
r s

ec
on

d

No n - f e d e ra te d Fe d e ra te d

8. Acknowledgements
This work was supported under contract #DASG-60-
99-C-0052 from the U.S. Army Space and Missile
Defense Command

9. References
1. Bhatt, S., et al., Parallel Simulation Techniques

for Large-Scale Networks. IEEE Communications,
1998. 36(8): p. 42-47.

2. Steinman, J.S., SPEEDES: A Multiple-
Synchronization Environment for Parallel
Discrete Event Simulation. International Journal
on Computer Simulation, 1992: p. 251-286.

3. Unger, B., et al., Scheduling Critical Channels in
Conservative Parallel Discrete Event Simulation,
in Proceedings of the Workshop on Parallel and
Distributed Simulation. 1999.

4. IEEE Std 1278.1-1995, IEEE Standard for
Distributed Interactive Simulation -- Application
Protocols. 1995, New York, NY: Institute of
Electrical and Electronics Engineers, Inc.

5. Wilson, A.L. and R.M. Weatherly, The Aggregate
Level Simulation Protocol: An Evolving System, in
Proceedings of the 1994 Winter Simulation
Conference. 1994. p. 781-787.

6. Das, S., et al., GTW: A Time Warp System for
Shared Memory Multiprocessors, in Proceedings
of the 1994 Winter Simulation Conference. 1994.
p. 1332-1339.

7. Jefferson, D., Virtual Time. ACM Transactions on
Programming Languages and Systems, 1985. 7(3):
p. 404-425.

8. Fujimoto, R.M. and M. Hybinette, Computing
Global Virtual Time in Shared Memory
Multiprocessors. ACM Transactions on Modeling
and Computer Simulation, 1997. 7(4): p. 425-446.

9. Fujimoto, R.M. and P. Hoare, HLA RTI
Performance in High Speed LAN Environments, in
Proceedings of the Fall Simulation
Interoperability Workshop. 1998: Orlando, FL.

10.Defense Modeling and Simulation Office,
http://hla.dmso.mil.

	Introduction
	Approach to Federating Simulations
	Global Conceptual Model
	Mapping the GCM to Federates

	Prototype Overview
	GTW Overview
	FDK and BRTI Overview

	Federated GTW
	Federation Object Model
	Proxy Framework
	Initialization and Read-only State
	Sending and Receiving Messages and Message Cancellations
	Synchronization

	Insights, Lessons, and Challenges
	GVT and LBTS
	Buffer Management
	Deadlocks and Flow Control

	Performance Study
	Conclusions and Future Work
	Acknowledgements
	References

