
Design of High Performance RTI Software

Richard Fujimoto, Thom McLean
Kalyan Perumalla, and Ivan Tacic

College Of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
{fujimoto,mclean,kalyan,ivant}@cc.gatech.edu

Abstract
This paper describes the implementation of RTI-Kit, a
modular software package to realize runtime
infrastructure (RTI) software for distributed
simulations such as those for the High Level
Architecture. RTI-Kit software spans a wide variety of
computing platforms, ranging from tightly coupled
machines such as shared memory multiprocessors and
cluster computers to distributed workstations
connected via a local area or wide area network. The
time management, data distribution management, and
underlying algorithms and software are described.

Keywords: High Level Architecture, runtime
infrastructure, time management, data distribution
management

1. Introduction
Composing autonomous simulators and/or simulation
components has become an accepted paradigm to
realize parallel/distributed simulation systems. For
example, this is the approach used in the High Level
Architecture (HLA) that has become the standard
technical architecture for modeling and simulation in
the U.S. Department of Defense [1]. Such systems
require runtime infrastructure (RTI) software to
provide services to support interconnecting simulations
as well as to manage the distributed simulation
execution. One component of the HLA, the Interface
Specification (IFSpec) [2], defines the set of services
that are used by individual simulations to interact with
each other.

A distributed simulation in the HLA is referred to as a
federation. Each simulator is referred to as a federate.
This paper is concerned with the implementation of
runtime infrastructure (RTI) software. Here, we are
particularly concerned with implementation of the
services defined in version 1.3 of the HLA IFSpec.

The HLA spans a broad range of applications with
diverse computation and communication requirements.

We are concerned with realizing RTI software that can
span a broad range of computing platforms with widely
varying cost and performance characteristics. The RTI
software must execute efficiently on tightly coupled
machines such as shared memory multiprocessors or
workstation clusters using high-speed interconnects.
At the same time, the same software should be
configurable to realize distributed simulations
interconnected over local or wide area networks.

2. Related Work
To date, most work on HLA RTI software has focused
on networked workstations using well-established
communication protocols such as UDP and/or TCP.
While such implementations are sufficient for large
portions of the M&S community, many applications
require higher communication performance than can be
obtained utilizing these interconnection technologies.
Shared memory multiprocessors and cluster computing
platforms offer high performance alternatives.

A few systems have been adapted for use in high
performance computing platforms. Early versions of
the RTI-Kit software described here for cluster and
shared memory multiprocessors are described in [3, 4].
An implementation of RTI version 1.3 (dubbed the
DMSO RTI) for shared memory multiprocessors was
developed by the MIT Lincoln Laboratory [5, 6]
Adaptation of the SPEEDES framework to realize an
HLA RTI is described in [7].

3. RTI-Kit
RTI-Kit is a collection of libraries designed to support
development of Run-Time Infrastructures (RTIs) for
parallel and distributed simulation systems. Each
library can be used separately, or together with other
RTI-Kit libraries, depending on what functionality is
required. These libraries can be embedded into existing
RTIs, e.g., to add new functionality or to enhance
performance by exploiting the capabilities of a high
performance interconnect. For example, RTI-Kit

software was successfully embedded into an HLA RTI
developed in the United Kingdom [3, 8].
Alternatively, the libraries can be used in the
development of new RTIs.

This "library-of-libraries" approach to RTI
development offers several important advantages.
First, it enhances the modularity of the RTI software
because each library within RTI-Kit is designed as a
stand alone component that can be used in isolation of
other modules. Modularity enhances maintainability of
the software, and facilitates optimization of specific
components (e.g., time management algorithms) while
minimizing the impact of these changes on other parts
of the RTI. This design approach facilitates
technology transfer to other RTI development projects
because utilizing RTI-Kit software is not an "all or
nothing" proposition; one can extract modules such as
the time management while ignoring other libraries.

Multiple implementations of the RTI-Kit software have
been realized targeting different platforms.
Specifically, the current implementation can be
configured to execute over shared memory
multiprocessors such as the SGI Origin, cluster
computers such as workstations interconnected via a
low latency Myrinet switch [9], to workstations
interconnected over local or wide area networks using
standard network protocols such as IP.

The architecture for RTI software constructed using
RTI-Kit is shown in Figure 1. At the lowest level is the
communication layer that provides basic message
passing primitives. Communication services are
defined in a module called FM-Lib. This
communication layer software acts as a multiplexer to
route messages to the appropriate module. The current
implementation of FM-Lib implements reliable point-
to-point communication. It uses an API based on the
Illinois Fast Messages (FM) software [10] for its basic
communication services, and provides only slightly
enhanced services beyond those of FM.

Above the communication layer are modules that
implement key functions required by the RTI. These
modules form the heart of the RTI-Kit software.
Specifically, TM-Kit is a library that implements
distributed algorithms for realizing time management
services. Similarly, DDM-Kit implements functionality
required for data distribution management services.
MCAST is a library that implements group
communication services. Other libraries, not shown in
Figure 1, provide other utilities such as software for
buffer and queue management.

Finally, the interface layer utilizes the primitive
operations defined by these modules to implement a

specific Application Program Interface (API) such as
the HLA Interface Specification. The current RTI-Kit
distribution includes an implementation of a subset of
the HLA IFSpec (version 1.3).

The RTI-Kit architecture is designed to minimise the
number of software layers that must be traversed by
distributed simulation services. For example, TM-Kit
does not utilise the MCAST library for communication,
but rather directly accesses the low-level primitives
provided in FM-Lib. This is important in cluster
computing environments because low level
communications are on the order of a few
microseconds latency for short messages, compared to
hundreds of microseconds or more when using
conventional networking software such as TCP/IP.
Thus, if not carefully controlled, overheads introduced
by RTI software could severely degrade performance
in cluster environments, whereas such overheads
would be insignificant in traditional networking
environments where the time required for basic
communication services is very high. Measurements
indicate the overheads introduced by RTI-Kit are
small; a federation of optimistic sequential simulators

based on the Georgia Tech Time Warp (GTW)
software interconnected via RTI-Kit was observed to
yield performance comparable to the native, parallel,
GTW implementation [11].

Inte rfa ce La y er

TM-Kit D D M-Kit MCAST

C ommunic ation la y er

RTI

Fe d erate

Figure 1. RTI architecture using RTI-Kit.

4. Time Management
There are two principal components to the HLA time
management (TM) services. First, a time stamp
ordered (TSO) message delivery service guarantees
that successive messages delivered to each federate
have non-decreasing time stamps. Second, the time
management services manage simulation time (termed
logical time in the HLA) advances of each federate.

Federates must explicitly request that their logical time
be advanced by invoking an IFSpec service such as
Next Event Request, Time Advance Request, or Flush
Queue Request (see Figure 2). The RTI only grants the
advance via the Time Advance Grant service (callback)
when it can guarantee that no TSO messages will later
be delivered with a time stamp smaller than the granted
advance time. In this way the RTI ensures federates
never receives messages with time stamp less than the
federate's current logical time. See [12] for additional
details on the time management services.

In the HLA, time management is distinct from sending
and receiving messages (events). Services such as
Update Attribute Values and Reflect Attribute Values
are used to send and receive messages, respectively.

To facilitate the development of time management
services, a separate module called TM-Kit was
developed in RTI-Kit. This same TM-Kit module can
be utilized to implement and experiment with different
implementations of the HLA TM services.

4.1 Time Types
Logical time values in TM-Kit are defined as an
abstract data type called TM_Time. Like the HLA, this
data type may be defined arbitrarily; it can be as simple
as an integer or as complex as a tuple of values that
includes priorities and other fields to break ties. In
addition, comparison and other operators on this data
type must be defined. In order to maximize
performance, the current implementation of TM-Kit
implements operations on time types using macros.
Thus, the time type and associated macros must be
defined when TM-Kit is compiled. In the case of
federates using C++, a simulation time class can be
defined as a wrapper around this TM_Time data type.

4.2 TM-Kit API
TM-Kit provides primitives for computing a lower
bound on the time stamp (LBTS) of future messages
that could later be received by a federate. The RTI TM
software uses these primitives to both control time
advances as well as regulate event delivery. In this
sense, TM-Kit can be viewed as simply a distributed
LBTS calculator over which services such as RTI TM
are easily implemented. See [13] for an in depth
discussion of algorithms to compute LBTS.

TM-Kit itself does not directly handle time stamped
messages. Instead, the interface layer software built
over TM-Kit is responsible for dealing with message
queuing and timestamp ordered delivery. The TM-Kit
merely requires that it be informed of very simple
information such as how many TSO messages are sent
or received over the network by the RTI between two

successive LBTS computations. This carefully
designed demarcation of responsibility permits TM-Kit
to be easily imported into other RTI implementations.

The central procedures in the TM-Kit API are
described next (see Figure 2):

• TM_StartLBTS: The RTI in any processor can
call this procedure to initiate a new LBTS
computation. If two different processors
simultaneously and independently invoke this
primitive, the resulting two computations are
automatically merged, and only one new LBTS
computation is actually started.

• LBTS_Started: This procedure is a callback
indicating another processor has initiated a new
LBTS computation. TM-Kit invokes this callback
to retrieve logical time information from this
federate for this new LBTS computation.
Specifically, the federate must provide the

minimum time stamp of any future message it
might produce, assuming no additional TSO
messages are later delivered to the federate.

Figure 2. TM-Kit interface and implementation.

• LBTS_Done: This procedure is a second callback

TM-Kit

TM
_I

n,
 T

M
_O

ut
,

TM
_P

ut
Ta

g

TM
_G

et
Ta

g

LB
TS

St
ar

te
d

, L
B

TS
D

on
e

TM
_S

ta
rtL

B
TS

Scalable distributed asynchronous reduction

Federate

R
ef

le
ct

 A
ttr

ib
ut

e
V

al
ue

s…

Communication Network

 RTI TSO Services

U
pd

at
e

A
ttr

ib
ut

e
V

al
ue

s…

N
ex

t E
ve

nt
 R

eq
ue

st
,

Ti
m

e
A

dv
an

ce
 R

eq
ue

st
,

Fl
us

h
Q

ue
ue

 R
eq

ue
st

…

Ti
m

e
A

dv
an

ce
 G

ra
nt

that the TM-Kit invokes to indicate that an LBTS
computation has completed. The newly computed
LBTS value is passed as an argument.

• TM_In and TM_Out: These two procedures form
the mechanism by which information about
transient messages is indicated to the TM-Kit.
Transient messages are those that have been sent,
but have not yet been received while the LBTS
computation is taking place. TM_Out must be
called whenever a TSO message is sent, and
TM_In must be called whenever one is received.
This information is sufficient for TM-Kit to take
transient messages into account to correctly
compute the LBTS.

• TM_PutTag and TM_GetTag: These procedures
provide a means for the TM-Kit software to
piggyback and retrieve important control
information in event messages. TM_PutTag is
called prior to sending a message in order to place
time management information in the message.
TM_GetTag is called at the destination to extract
the time management information from a received
message.

Different approaches may be used to initiate new
LBTS computations. For example, each processor
might asynchronously start a new computation
whenever it needs a new LBTS value to be computed;
as discussed earlier, the TM-Kit software automatically
merges multiple, simultaneous initiations of new LBTS
computations by different processors into a single
LBTS computation. Alternatively, a central controller
could be used to periodically start a new LBTS
computation at fixed intervals of wallclock time, or
using some other criteria.

4.3 TM-Kit Implementation
The heart of the LBTS software in the TM-Kit is a
scalable, distributed, asynchronous reduction engine.
Each LBTS computation is realized as a series of
reduction operations. Each reduction operation is
aimed at computing the reduction of processor values
along a consistent distributed snap shot. The value at
each processor i is a pair <Li,Mi>, where Li is the local
conditional lower bound on future timestamps that can
be generated by processor i, and Mi is the difference
between the counts of total sent and received messages
at processor i since the previous LBTS computation.
The Li values are reduced with the minimum operator,
while the Mi values are reduced using the addition
operator. The LBTS computation terminates
successfully when the sum of all Mi becomes zero. All
processors receive the resulting LBTS value as the
minimum among all Li.

The distributed reduction engine employed here differs
from other work such as [14] in that our algorithm is
general-purpose in nature, and not tied to any specific
type of communication network. In particular, it is
designed to work efficiently over shared-memory, local
area and wide area networks. Broadcast
communication is never employed in the reduction
algorithm, and hence the reduction engine exhibits
high scalability, while retaining optimal logarithmic
time complexity. Also, no barriers are used in the
computation, and the algorithm operates completely
asynchronously.

The reduction engine itself is a module that is
independent of TM-Kit, and hence can be reused for
other purposes as well. The software for both the
reduction engine as well as the TM-Kit software is
compact. The reduction engine consists of
approximately 1000 lines of code, while the TM-Kit
consists of an additional 500 lines. The architecture of
this software is carefully designed to accommodate
adaptive and hierarchical approaches to LBTS
computation for heterogeneous communication
platforms.

4.4 Distributed Reduction
In the distributed algorithm employed by the reduction
engine, each processor i executes an ordered sequence
of actions, Si=<a1

i,…,am
i>, called its schedule. (The

number of actions in the schedule can be different for
different processors). Each action a=sj (or a=rj)
corresponds to a send to (or receive from) another
processor j. The reduction proceeds as follows: each
processor i attempts to process as many actions as
possible in its schedule Si in its specified order. If an
action is a receive action, a=rj, and processor j has not
yet sent its value to processor i then the schedule
execution blocks at this receive action until such time
that the value is received from processor j. When the
value is received, it is immediately reduced with the
processor's current reduction value. Thus, values
received from other processors are reduced in the order
in which their corresponding receive actions appear in
the schedule. A send action, a=sj, in the schedule is
processed by sending a value v to processor j, where v
is equal to the (partially reduced) value obtained by
reducing all received values from the beginning of the
schedule until this send action. The global reduction
completes when all the processors successfully
complete the execution of their schedules.

The schedules are carefully designed in such a way that
all processors compute precisely the same final
reduced value by the end of all schedule executions.
Several different schedules holding this property are
possible, corresponding to different communication

patterns for reduction (e.g. “all-to-all”, “star” and
“butterfly”). In particular, we have implemented a
variant of the butterfly communication pattern which
guarantees important scalability properties: ensuring
optimal logarithmic complexity for the time to
complete the reduction, while also limiting to
logarithmic complexity the number of message sends
and receives performed by any single processor.

The convenient abstraction of a schedule, coupled with
the customizable distributed reduction algorithm,
allows one to easily vary and experiment with different
communication alternatives on different
communication platforms (e.g, Ethernet LAN, TCP
wide-area networks and shared memory), with few
modifications to the software.

4.5 LBTS Computation
TM-Kit's LBTS computation is built over the
distributed reduction software. Each LBTS
computation involves one or more reduction phases.
Each reduction phase is called a trial, which computes
a snapshot across all processors of their individual
conditional lowerbounds on timestamps of future
messages they can generate. These snapshots may not
correspond to a consistent global snapshot because of
transient messages that might not have been accounted
for in the snapshot. A count of the total number of
messages sent and received at each processor is
included in the reduction. Thus, as part of the reduced
value, all the processors obtain information on the
number of outstanding (transient) messages, which
signals to them either that the snapshot is in fact
consistent (if the number of outstanding messages is
zero), or that they need to retry the reduction. The
LBTS computation ends successfully when the last
reduction phase indicates a consistent snap shot.

It might initially appear as though multiple reduction
phases can be inefficient. However, it should be noted
that in a network with ordered delivery (e.g., TCP,
Myrinet, shared memory) successive reductions
increase the probability that all transient messages will
be flushed and delivered before the later reduction
completes, leading to rapid algorithm convergence.

5. Data Distribution Management
Data Distribution Management (DDM) services are
used to specify the routing of data among federates. In
the HLA, DDM is based on an n-dimensional
coordinate system called a routing space. For example,
a two-dimensional routing space might represent the
play box in a virtual environment. A rectangular
update region can be associated with each update
message generated by a federate. Federates express

interests via rectangular subscription regions. If the
update region associated with a message overlaps with
a federate's subscription region, the message is routed
to that subscribing federate. For example, in Figure 3
updates using update region U are routed to federates
subscribing to region S1 but not to federates
subscribing to region S2.

S2

S1

U
S2

S 1

U

 0.5 1.0

 0.5

 1.0

 0.0
 0.0

Figure 3. Two-dimensional routing space with
subscription regions S1 and S2 and update region U.

5.1 Implementation Approaches
DDM-Kit uses multicast services (implemented in the
MCAST library) to realize communications among
federates. MCAST provides standard group
communication services (join, leave, and send
messages to groups). A central problem in realizing
the DDM services concerns the definition and
composition of the multicast groups. Subscription
regions must be mapped to groups to which the
federate must join. Update regions associated with a
message are mapped to one or more groups to which
the message must be sent.

Two well-known approaches to realizing DDM are to
form groups based on (1) grids and (2) update regions.
As will be seen momentarily, the grid-based approach
provides a simple means to match update and
subscription regions, but tends to utilize a large number
of multicast groups, and can result in duplicate or extra
messages that must be filtered at the receiver. The
update region approach avoids these drawbacks, but at
the cost of greater complexity (and runtime overhead)
to match update and subscription regions. DDM-Kit
uses a variation on the update region approach using
grid cells to reduce matching overhead. Each of these
are described next.

5.1.1 Region-Based Groups
In the regions based approach a multicast group is
defined for each update region [15]. Updates are

simply sent to the group associated with the update
region. A federate subscribes to the group if one or
more of its subscription regions overlap with the
update region.

When a subscription region changes, the new
subscription region must be matched against all other
update regions in order to determine those that overlap
with the new subscription region. The federate must
then subscribe to the groups with overlapping update
regions. Similarly, when an update region changes, the
new update region must be matched against all
subscription regions to determine the new composition
of the update region's group. This requires examining
all subscription/update regions in use by the federation.
Thus it does not scale well as the number of regions
becomes large.

5.1.2 Grid-Based Groups
In the grid-based approach the routing space is
partitioned into non-overlapping grid cells, and a
multicast group is defined for each cell [13, 16]. A
federate subscribes to the group associated with each
cell that partially or fully overlaps with its subscription
regions. An update operation is realized by sending an
update message to the groups corresponding to the
cells that partially or fully overlap with the associated
update region.

A federate may have multiple subscription regions
overlapping a specific grid cell. To avoid multiple
subscriptions to the group, each grid cell can maintain
a subscription count array with an entry for each
federate that indicates the number of subscription
regions for that federate that overlap this cell. The
federate leaves the group if this count becomes zero
during a subscription region change. Similarly, the
federate will join the group if its count becomes non-
zero.

The grid-based approach eliminates the need to
explicitly match update and subscription regions.
While grid partitioning eliminates the matching
overhead, a large number of groups is needed if a fine
grid structure is defined; a coarse grid leads to
imprecise filtering, negating some of the benefits of
DDM. In addition, the grid scheme has other
shortcomings:

• Duplicate messages may occur. For example, if a
subscription and update region both overlap with
the same two cells, two identical copies of the
message will be sent to the subscribing federate
over different multicast groups. These must be
filtered at the receiver, incurring additional
overhead.

• Extra messages may occur. This is a direct result
of discretizing the routing space into grid cells.
Subscription and update regions may overlap with
the same grid cell, but may not overlap with each
other. In this case, a message will be sent to the
subscribing federate, even though its subscription
region does not overlap with the update region.
These unwanted messages will also have to be
filtered at the destination.

There is a tradeoff between the number of duplicate
and extra messages as the grid cell size changes.
Smaller grid cells will generally result in fewer extra
messages, but more duplicates, and vice versa.

5.1.3 Region-Based Groups with Grids
DDM-Kit uses a variation on the region-based
approach that uses grid cells to reduce matching
overhead. A multicast group is defined for each update
region, eliminating the duplicate and extra message
problem of the grid scheme. However, grid partitioning
is used to match update and subscription regions,
improving the scalability of the pure update-region
based approach.

Grids can be used to improve the efficiency of region
changes. Logically, when a subscription region
changes, one need only consider those update regions
overlapping the grid cells covering the old and new
subscription regions to determine the new composition
of multicast groups. Similarly, when an update region
changes, one need only consider those subscription
regions that overlap the grid cells of the old/new
update region to determine the new composition of the
group.

DDM-Kit uses a variation on this approach to manage
group membership. Recall the pure grid-based
approach used subscription counts to track the number
of times a federate is subscribed to a grid cell. DDM-
Kit uses a similar concept, but for update regions, to
trigger group join and leave requests. Specifically, a
subscription strength array is defined for each update
region, with one entry per federate. The entry for a
federate indicates the "strength" of that federate's
subscription to the update region (group). One unit of
strength corresponds to one subscription region for the
federate overlapping with the update region in exactly
one grid cell. The strength of a subscription region is
the number of grid cells in which the subscription
region overlaps with the update region. The total
strength of the federate's subscription to an update
region is the sum of the strengths of each of the
federate's subscription regions. For example, if the
federate has two subscription regions, and one overlaps
the update region in one cell, and the second overlaps
it in two cells, the strength of the federate's

subscription to the update region is three. The federate
remains joined to the update region's multicast group
so long as it has a subscription strength of at least one.
The DDM-Kit software keeps the strength arrays
updated as regions come and go and are modified. It
issues a join request if the federate's subscription
strength becomes non-zero, and issues a leave request
if the strength becomes zero. This approach is easily
extended to consider classes and attributes, as required
in the HLA DDM services.

Finally, the various data structures that are required to
implement DDM may be centralized, or distributed
among the processors participating in the federation
execution [15]. Further, the data structures may be
replicated to enable fast lookup, at the expense of
additional communication to keep the multiple copies
consistent. The current implementation of DDM-Kit
uses a replicated copy of the data structures in each
processor. Alternate implementation approaches are
under investigation.

5.2 Time Managed DDM
The HLA DDM services are defined to operate
independent of the time management services. In
particular, changes to subscriptions and update regions
are not synchronized with logical time. DDM-Kit does
provide support for time managed DDM, however.

Without time managed DDM, missed and/or extra
messages may occur:

• Missed messages. If a federate is added to a
multicast group at logical time T after an update
with a time stamp greater than T has been sent to
the group, the federate will not receive a message
it should have received.

• Extra messages. If a federate leaves a group at
logical time T after an update with a time stamp
greater than T was sent to the group, the federate
will receive a message that it had not expected to
receive.

This problem is discussed in detail in [17]. Briefly, one
solution to this problem is to provide a message log to
avoid missed messages. Updates are logged as they are
issued. When a change in group membership indicates
that a previously issued update should have been sent
to a federate but in fact was not, an update is retrieved
from the log and sent. On the other hand, extra
messages can be avoided by performing extra filtering
by the federates receiving the updates.

6. RTI Implementations
This section explains the implementation of an RTI
using RTI-Kit. A specific example is given, based on

the HLA IFSpec definition of the Time Advance
Request service.

6.1 Basic RTI Functionality
As shown in Figure 1, an RTI implementation can be
thought of as an interface to RTI-Kit functionality. An
RTI implementation presents services to the federate
according to a specific paradigm for simulation
execution management and exchange of data. Each
RTI implementation must manage whatever global and
local state information is required for its paradigm.

Typically, an RTI will have state variables which
include time management information (such as local
time, result of the most recent LBTS computation,
lookahead, the state of any federate requests to advance
time), communication information (such as the
multicast groups, and group membership, and the
mapping of groups to message types, as mentioned in
section 5) and the state of execution management
processes (such as pause/resume, save/restore,
join/resign). The RTI must also have a means for
delivering messages and other information to the
federate. In the case of an HLA federate, this is done
using callback functions. Therefore, the RTI must
have a means of registering callback functions.

6.2 TAR Implementation
As an example, let us explore how one might
implement the Time Advance Request (TAR) function
using RTI-Kit primitives. A federate invokes TAR
when it is ready to 1) receive messages up to a specific
time, and 2) advance its clock to that time. The
expected behavior of the RTI is to deliver messages up
to the requested time, and issue a Time Advance Grant
(TAG) when no more messages with timestamps less
than or equal to the requested time will be delivered.
As with other current HLA RTI implementations we
will expect the federate to use a “tick()” method to
pass control to the RTI. It is in tick() that federate
callbacks are issued.

Upon receiving a TAR invocation, the RTI records that
a TAR is pending and notes the requested time. Then
the RTI computes the local minimum timestamp (by
adding the requested time to the lookahead), and
initiates an LBTS computation (TM_StartLBTS)
specifying that time value. In initiating the LBTS
computation, the RTI also indicates the routine to be
executed when the LBTS computation is complete
(LBTS_Done). After the LBTS computation has been
started, the RTI returns from the TAR method. Other
federates’ RTI implementations will receive the LBTS
start-up message, and have an LBTS_Started callback
invoked. This is the first step in the TAR process,

where all RTI instances have calculated a local
minimum timestamp, and are participating in an LBTS
computation.

Typically, once a federate invokes TAR, it will tick()
the RTI until a TAG is issued. While the federate is
waiting for LBTS to be advanced to the requested time,
receive-order and “safe” timestamp-order messages
can be delivered. Message delivery is conducted as
follows. Each time the federate invokes tick(), the
RTI-Kit modules, including TM-Kit, must be “ticked.”
This allows the messages to be pulled off the wire, and
permits the continued processing of LBTS
computations. Each message is dispatched to its
appropriate handler. RTI-Kit provides efficient FIFO
and heap implementations for buffering receive-order
and timestamp order messages. After the RTI-Kit has
been ticked, the messages on the FIFO queue can be
delivered. If an LBTS computation was completed
during TM-Tick, the LBTS_Done callback will pass
the new value of LBTS. If LBTS is greater than the
timestamps of any messages in the TSO heap, then
those messages can also be delivered, in order. Once
the messages have been delivered, the tick() call
returns control to the federate. Message delivery, from
within the tick() call, is the second step in the TAR
process.

The federate will continue to tick the RTI, until the
value of LBTS is greater than the requested time. At
this point (after delivering the pending messages) the
RTI will update the local time, note that a TAR is no
longer pending, and invoke the TAG callback. This
completes the TAR process.

Of course, the TAR process is one common method for
advancing time in a conservative simulation. Because
many RTIs use similar paradigms for advancing
federate time, RTI-Kit includes a module called RTI-
Core which simplifies RTI implementation. The RTI-
Core module provides basic sets of services for dealing
with conservative and optimistic time management
interfaces, as well as event retraction.

6.3 Exploring DesignTrade-offs
One important feature of a modular RTI design is the
ability to explore design trade-offs. The overhead of a
particular interface design may lead one to choose a
modified, or partial implementation. This may produce
a more efficient execution for the target federation.
This is a reasonable trade-off, even in an HLA
execution environment, considering that freely
available compliant RTIs exist, and the principle
reason for choosing a different implementation would
either be for 1) performance or 2) federation specific
architectural considerations.

An example of this type of trade-off is evident when
considering the flexibility in configuring object
attribute updates. The HLA IF specification allows for
the ownership, transport and ordering of every attribute
of every object to be individually set. While this could
be a powerful tool for customizing the communications
configuration of a federation execution, there is a
significant overhead associated with checking each
attribute in an attribute handle-value pair set (AHVPS).
In federations where ownership is static, and transport
is never altered from the default, a significant
simplification is possible. This fact was exploited in
the design of an RTI-Kit-based AHVPS class. The
design assumes that a new AHVPS (or Parameter
HVPS) will eventually be sent as an object attribute
update or an interaction message. The AHVPS
constructor allocates memory for the entire message,
marshalling the AHVPS data into the appropriate slot.
This eliminates the need to copy any data during an
UpdateObjectAttributeValue() or SendInteraction()
call. Such an implementation would not be efficient if
attribute updates cannot be assumed to be atomic.

7. Conclusion
RTI-Kit provides a software base for research and
development of distributed simulation systems.
Although it was designed with the High Level
Architecture in mind, the software is applicable to
many other classes of parallel and/or distributed
simulation systems. The modular design approach
makes RTI-Kit will suited for experimental research in
federated simulation systems.

RTI-Kit is currently distributed as part of the Federated
Distributed Simulation Tool Kit (FDK) package. It is
being used in a variety of educational and research
projects such as research in DDM, use of high
bandwidth and active networks for distributed
simulations, and federated simulations for modeling
telecommunication networks.

8. References
1. Kuhl, F., R. Weatherly, and J. Dahmann, Creating

Computer Simulation Systems: An Introduction to the
High Level Architecture for Simulation. 1999: Prentice
Hall.

2. Defense Modeling and Simulation Office, High Level
Architecture Interface Specification, Version 1.3, . 1998:
Washington D.C.

3. Fujimoto, R.M. and P. Hoare, HLA RTI Performance in
High Speed LAN Environments, in Proceedings of the
Fall Simulation Interoperability Workshop. 1998:
Orlando, FL.

4. Ferenci, S. and R.M. Fujimoto, RTI Performance on
Shared Memory and Message Passing Architectures, in

Proceedings of the 1999 Sprin Simulation
Interoperability Workshop. 1999: Orlando, FL.

5. Boswell, S.B., et al., Communication Experiments with
RTI 1.3, . 1999, MIT Lincol Laboratory: Lexington, MA.

6. Christensen, P.J., D.J. Van Hook, and M.W. H, HLA RTI
Shared Memory Communication, in Proceedings of the
1999 Spring Simulation Ineroperability Workshop. 1999:
Orlando, FL. p. Paper 99S-SIW-090.

7. Steinman, J.S., et al., Design of the HPC-RTI for the
High Level Architecture, in Proceedings of the Fall
Simulation Interoperability Workshop. 1999: Orlando,
FL. p. Paper 99F-SIW-071.

8. Hoare, P., G. Magee, and I. Moody, The Development of
a Prototype HLA Runtime Infrastructure (RTI-Lite)
Using CORBA, in Proceedings of the 1997 Summer
Computer Simulation Conference. 1997. p. 573-578.

9. Boden, N., et al., Myrinet: A Gigabit Per Second Local
Area Network. IEEE Micro, 1995. 15(1): p. 29-36.

10. Pakin, S., et al., Fast Message (FM) 2.0 Users
Documentation, . 1997, Department of Computer
Science, University of Illinois: Urbana, IL.

11. Ferenci, S.L., K.S. Perumalla, and R.M. Fujimoto, An
Approach for Federating Parallel Simulators, in
Proceedings of the 14th Workshop on Parallel and
Distributed Simulation. 2000, IEEE Computer Society. p.
63-70.

12. Fujimoto, R.M., Time Management in the High Level
Architecture. Simulation, 1998. 71(6): p. 388-400.

13. Fujimoto, R.M., Parallel and Distributed Simulation
Systems. 2000: Wiley Interscience.

14. Srinivasan, S., et al., Implementation of Reductions in
Support of PDES on a Network of Workstation, in
Proceedins of the 12th Workshop on Parallel and
Distributed Simulation. 1998. p. 116-123.

15. Van Hook, D.J. and J.O. Calvin, Data Distribution
Management in RTI 1.3, in Proceedings of the Spring
Simulation Interoperability Workshop. 1998: Orlando,
FL. p. paper 98S-SIW-206.

16. Van Hook, D.J., S.J. Rak, and J.O. Calvin, Approaches to
Relevance Filtering, in Proceedings of the 11th DIS
Workshop on Standards for the Interoperability of
Distributed Simulations. 1994: Orlando, FL.

17. Tacic, I. and R.M. Fujimoto, Synchronized Data
Distribution Management in Distributed Simulations, in
Proceedings of the Workshop on Parallel and Distributed
Simulation. 1998.

	Introduction
	Related Work
	RTI-Kit
	Time Management
	Time Types
	TM-Kit API
	TM-Kit Implementation
	Distributed Reduction
	LBTS Computation

	Data Distribution Management
	Implementation Approaches
	Region-Based Groups
	Grid-Based Groups
	Region-Based Groups with Grids

	Time Managed DDM

	RTI Implementations
	Basic RTI Functionality
	TAR Implementation
	Exploring DesignTrade-offs

	Conclusion
	References

