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Abstract 
This paper describes the implementation of RTI-Kit, a 
modular software package to realize runtime 
infrastructure (RTI) software for distributed 
simulations such as those for the High Level 
Architecture.  RTI-Kit software spans a wide variety of 
computing platforms, ranging from tightly coupled 
machines such as shared memory multiprocessors and 
cluster computers to distributed workstations 
connected via a local area or wide area network. The 
time management, data distribution management, and 
underlying algorithms and software are described. 

Keywords: High Level Architecture, runtime 
infrastructure, time management, data distribution 
management 

1. Introduction 
Composing autonomous simulators and/or simulation 
components has become an accepted paradigm to 
realize parallel/distributed simulation systems. For 
example, this is the approach used in the High Level 
Architecture (HLA) that has become the standard 
technical architecture for modeling and simulation in 
the U.S. Department of Defense  [1].  Such systems 
require runtime infrastructure (RTI) software to 
provide services to support interconnecting simulations 
as well as to manage the distributed simulation 
execution.  One component of the HLA, the Interface 
Specification (IFSpec) [2], defines the set of services 
that are used by individual simulations to interact with 
each other.   

A distributed simulation in the HLA is referred to as a 
federation.  Each simulator is referred to as a federate. 
This paper is concerned with the implementation of 
runtime infrastructure (RTI) software.  Here, we are 
particularly concerned with implementation of the 
services defined in version 1.3 of the HLA IFSpec. 

The HLA spans a broad range of applications with 
diverse computation and communication requirements. 

We are concerned with realizing RTI software that can 
span a broad range of computing platforms with widely 
varying cost and performance characteristics. The RTI 
software must execute efficiently on tightly coupled 
machines such as shared memory multiprocessors or 
workstation clusters using high-speed interconnects.  
At the same time, the same software should be 
configurable to realize distributed simulations 
interconnected over local or wide area networks. 

2. Related Work 
To date, most work on HLA RTI software has focused 
on networked workstations using well-established 
communication protocols such as UDP and/or TCP.  
While such implementations are sufficient for large 
portions of the M&S community, many applications 
require higher communication performance than can be 
obtained utilizing these interconnection technologies.  
Shared memory multiprocessors and cluster computing 
platforms offer high performance alternatives. 

A few systems have been adapted for use in high 
performance computing platforms. Early versions of 
the RTI-Kit software described here for cluster and 
shared memory multiprocessors are described in [3, 4].  
An implementation of RTI version 1.3 (dubbed the 
DMSO RTI) for shared memory multiprocessors was 
developed by the MIT Lincoln Laboratory [5, 6]  
Adaptation of the SPEEDES framework to realize an 
HLA RTI is described in [7]. 

3. RTI-Kit 
RTI-Kit is a collection of libraries designed to support 
development of Run-Time Infrastructures (RTIs) for 
parallel and distributed simulation systems.  Each 
library can be used separately, or together with other 
RTI-Kit libraries, depending on what functionality is 
required. These libraries can be embedded into existing 
RTIs, e.g., to add new functionality or to enhance 
performance by exploiting the capabilities of a high 
performance interconnect. For example, RTI-Kit 



 

software was successfully embedded into an HLA RTI 
developed in the United Kingdom [3, 8].  
Alternatively, the libraries can be used in the 
development of new RTIs. 

This "library-of-libraries" approach to RTI 
development offers several important advantages.  
First, it enhances the modularity of the RTI software 
because each library within RTI-Kit is designed as a 
stand alone component that can be used in isolation of 
other modules. Modularity enhances maintainability of 
the software, and facilitates optimization of specific 
components (e.g., time management algorithms) while 
minimizing the impact of these changes on other parts 
of the RTI.  This design approach facilitates 
technology transfer to other RTI development projects 
because utilizing RTI-Kit software is not an "all or 
nothing" proposition; one can extract modules such as 
the time management while ignoring other libraries. 

Multiple implementations of the RTI-Kit software have 
been realized targeting different platforms.  
Specifically, the current implementation can be 
configured to execute over shared memory 
multiprocessors such as the SGI Origin, cluster 
computers such as workstations interconnected via a 
low latency Myrinet switch [9], to workstations 
interconnected over local or wide area networks using 
standard network protocols such as IP. 

The architecture for RTI software constructed using 
RTI-Kit is shown in Figure 1. At the lowest level is the 
communication layer that provides basic message 
passing primitives.  Communication services are 
defined in a module called FM-Lib. This 
communication layer software acts as a multiplexer to 
route messages to the appropriate module. The current 
implementation of FM-Lib implements reliable point-
to-point communication. It uses an API based on the 
Illinois Fast Messages (FM) software [10] for its basic 
communication services, and provides only slightly 
enhanced services beyond those of FM. 

Above the communication layer are modules that 
implement key functions required by the RTI.  These 
modules form the heart of the RTI-Kit software.  
Specifically, TM-Kit is a library that implements 
distributed algorithms for realizing time management 
services.  Similarly, DDM-Kit implements functionality 
required for data distribution management services.  
MCAST is a library that implements group 
communication services.  Other libraries, not shown in 
Figure 1, provide other utilities such as software for 
buffer and queue management. 

Finally, the interface layer utilizes the primitive 
operations defined by these modules to implement a 

specific Application Program Interface (API) such as 
the HLA Interface Specification.  The current RTI-Kit 
distribution includes an implementation of a subset of 
the HLA IFSpec (version 1.3). 

The RTI-Kit architecture is designed to minimise the 
number of software layers that must be traversed by 
distributed simulation services.  For example, TM-Kit 
does not utilise the MCAST library for communication, 
but rather directly accesses the low-level primitives 
provided in FM-Lib.  This is important in cluster 
computing environments because low level 
communications are on the order of a few 
microseconds latency for short messages, compared to 
hundreds of microseconds or more when using 
conventional networking software such as TCP/IP.  
Thus, if not carefully controlled, overheads introduced 
by RTI software could severely degrade performance 
in cluster environments, whereas such overheads 
would be insignificant in traditional networking 
environments where the time required for basic 
communication services is very high.  Measurements 
indicate the overheads introduced by RTI-Kit are 
small; a federation of optimistic sequential simulators 

based on the Georgia Tech Time Warp (GTW) 
software interconnected via RTI-Kit was observed to 
yield performance comparable to the native, parallel, 
GTW implementation [11]. 
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Figure 1. RTI architecture using RTI-Kit. 

4. Time Management 
There are two principal components to the HLA time 
management (TM) services.  First, a time stamp 
ordered (TSO) message delivery service guarantees 
that successive messages delivered to each federate 
have non-decreasing time stamps.  Second, the time 
management services manage simulation time (termed 
logical time in the HLA) advances of each federate. 

 



 

Federates must explicitly request that their logical time 
be advanced by invoking an IFSpec service such as 
Next Event Request, Time Advance Request, or Flush 
Queue Request (see Figure 2).  The RTI only grants the 
advance via the Time Advance Grant service (callback) 
when it can guarantee that no TSO messages will later 
be delivered with a time stamp smaller than the granted 
advance time.  In this way the RTI ensures federates 
never receives messages with time stamp less than the 
federate's current logical time.  See [12] for additional 
details on the time management services. 

In the HLA, time management is distinct from sending 
and receiving messages (events). Services such as 
Update Attribute Values and Reflect Attribute Values 
are used to send and receive messages, respectively. 

To facilitate the development of time management 
services, a separate module called TM-Kit was 
developed in RTI-Kit.  This same TM-Kit module can 
be utilized to implement and experiment with different 
implementations of the HLA TM services. 

4.1 Time Types 
Logical time values in TM-Kit are defined as an 
abstract data type called TM_Time. Like the HLA, this 
data type may be defined arbitrarily; it can be as simple 
as an integer or as complex as a tuple of values that 
includes priorities and other fields to break ties. In 
addition, comparison and other operators on this data 
type must be defined.  In order to maximize 
performance, the current implementation of TM-Kit 
implements operations on time types using macros.  
Thus, the time type and associated macros must be 
defined when TM-Kit is compiled.  In the case of 
federates using C++, a simulation time class can be 
defined as a wrapper around this TM_Time data type. 

4.2 TM-Kit API 
TM-Kit provides primitives for computing a lower 
bound on the time stamp (LBTS) of future messages 
that could later be received by a federate.  The RTI TM 
software uses these primitives to both control time 
advances as well as regulate event delivery.  In this 
sense, TM-Kit can be viewed as simply a distributed 
LBTS calculator over which services such as RTI TM 
are easily implemented.  See [13] for an in depth 
discussion of algorithms to compute LBTS. 

TM-Kit itself does not directly handle time stamped 
messages.  Instead, the interface layer software built 
over TM-Kit is responsible for dealing with message 
queuing and timestamp ordered delivery.  The TM-Kit 
merely requires that it be informed of very simple 
information such as how many TSO messages are sent 
or received over the network by the RTI between two 

successive LBTS computations.  This carefully 
designed demarcation of responsibility permits TM-Kit 
to be easily imported into other RTI implementations. 

The central procedures in the TM-Kit API are 
described next (see Figure 2): 

• TM_StartLBTS: The RTI in any processor can 
call this procedure to initiate a new LBTS 
computation. If two different processors 
simultaneously and independently invoke this 
primitive, the resulting two computations are 
automatically merged, and only one new LBTS 
computation is actually started. 

• LBTS_Started: This procedure is a callback 
indicating another processor has initiated a new 
LBTS computation.  TM-Kit invokes this callback 
to retrieve logical time information from this 
federate for this new LBTS computation.  
Specifically, the federate must provide the 

minimum time stamp of any future message it 
might produce, assuming no additional TSO 
messages are later delivered to the federate. 

Figure 2. TM-Kit interface and implementation. 

 

• LBTS_Done: This procedure is a second callback 
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that the TM-Kit invokes to indicate that an LBTS 
computation has completed. The newly computed 
LBTS value is passed as an argument. 

• TM_In and TM_Out: These two procedures form 
the mechanism by which information about 
transient messages is indicated to the TM-Kit.  
Transient messages are those that have been sent, 
but have not yet been received while the LBTS 
computation is taking place.  TM_Out must be 
called whenever a TSO message is sent, and 
TM_In must be called whenever one is received.  
This information is sufficient for TM-Kit to take 
transient messages into account to correctly 
compute the LBTS. 

• TM_PutTag and TM_GetTag: These procedures 
provide a means for the TM-Kit software to 
piggyback and retrieve important control 
information in event messages.  TM_PutTag is 
called prior to sending a message in order to place 
time management information in the message.  
TM_GetTag is called at the destination to extract 
the time management information from a received 
message. 

Different approaches may be used to initiate new 
LBTS computations.  For example, each processor 
might asynchronously start a new computation 
whenever it needs a new LBTS value to be computed; 
as discussed earlier, the TM-Kit software automatically 
merges multiple, simultaneous initiations of new LBTS 
computations by different processors into a single 
LBTS computation. Alternatively, a central controller 
could be used to periodically start a new LBTS 
computation at fixed intervals of wallclock time, or 
using some other criteria. 

4.3 TM-Kit Implementation 
The heart of the LBTS software in the TM-Kit is a 
scalable, distributed, asynchronous reduction engine.  
Each LBTS computation is realized as a series of 
reduction operations.  Each reduction operation is 
aimed at computing the reduction of processor values 
along a consistent distributed snap shot.  The value at 
each processor i is a pair <Li,Mi>, where Li is the local 
conditional lower bound on future timestamps that can 
be generated by processor i, and Mi is the difference 
between the counts of total sent and received messages 
at processor i since the previous LBTS computation. 
The Li values are reduced with the minimum operator, 
while the Mi values are reduced using the addition 
operator.  The LBTS computation terminates 
successfully when the sum of all Mi becomes zero.  All 
processors receive the resulting LBTS value as the 
minimum among all Li. 

The distributed reduction engine employed here differs 
from other work such as [14] in that our algorithm is 
general-purpose in nature, and not tied to any specific 
type of communication network.  In particular, it is 
designed to work efficiently over shared-memory, local 
area and wide area networks.  Broadcast 
communication is never employed in the reduction 
algorithm, and hence the reduction engine exhibits 
high scalability, while retaining optimal logarithmic 
time complexity.  Also, no barriers are used in the 
computation, and the algorithm operates completely 
asynchronously. 

The reduction engine itself is a module that is 
independent of TM-Kit, and hence can be reused for 
other purposes as well.  The software for both the 
reduction engine as well as the TM-Kit software is 
compact.  The reduction engine consists of 
approximately 1000 lines of code, while the TM-Kit 
consists of an additional 500 lines.  The architecture of 
this software is carefully designed to accommodate 
adaptive and hierarchical approaches to LBTS 
computation for heterogeneous communication 
platforms. 

4.4 Distributed Reduction 
In the distributed algorithm employed by the reduction 
engine, each processor i executes an ordered sequence 
of actions, Si=<a1

i,…,am
i>, called its schedule.  (The 

number of actions in the schedule can be different for 
different processors).  Each action a=sj (or a=rj) 
corresponds to a send to (or receive from) another 
processor j.  The reduction proceeds as follows: each 
processor i attempts to process as many actions as 
possible in its schedule Si in its specified order.  If an 
action is a receive action, a=rj, and processor j has not 
yet sent its value to processor i then the schedule 
execution blocks at this receive action until such time 
that the value is received from processor j.  When the 
value is received, it is immediately reduced with the 
processor's current reduction value. Thus, values 
received from other processors are reduced in the order 
in which their corresponding receive actions appear in 
the schedule.  A send action, a=sj, in the schedule is 
processed by sending a value v to processor j, where v 
is equal to the (partially reduced) value obtained by 
reducing all received values from the beginning of the 
schedule until this send action. The global reduction 
completes when all the processors successfully 
complete the execution of their schedules. 

The schedules are carefully designed in such a way that 
all processors compute precisely the same final 
reduced value by the end of all schedule executions.  
Several different schedules holding this property are 
possible, corresponding to different communication 

 



 

patterns for reduction (e.g. “all-to-all”, “star” and 
“butterfly”).  In particular, we have implemented a 
variant of the butterfly communication pattern which 
guarantees important scalability properties: ensuring 
optimal logarithmic complexity for the time to 
complete the reduction, while also limiting to 
logarithmic complexity the number of message sends 
and receives performed by any single processor. 

The convenient abstraction of a schedule, coupled with 
the customizable distributed reduction algorithm, 
allows one to easily vary and experiment with different 
communication alternatives on different 
communication platforms (e.g, Ethernet LAN, TCP 
wide-area networks and shared memory), with few 
modifications to the software. 

4.5 LBTS Computation 
TM-Kit's LBTS computation is built over the 
distributed reduction software.  Each LBTS 
computation involves one or more reduction phases.  
Each reduction phase is called a trial, which computes 
a snapshot across all processors of their individual 
conditional lowerbounds on timestamps of future 
messages they can generate.  These snapshots may not 
correspond to a consistent global snapshot because of 
transient messages that might not have been accounted 
for in the snapshot.  A count of the total number of 
messages sent and received at each processor is 
included in the reduction.  Thus, as part of the reduced 
value, all the processors obtain information on the 
number of outstanding (transient) messages, which 
signals to them either that the snapshot is in fact 
consistent (if the number of outstanding messages is 
zero), or that they need to retry the reduction.  The 
LBTS computation ends successfully when the last 
reduction phase indicates a consistent snap shot. 

It might initially appear as though multiple reduction 
phases can be inefficient.  However, it should be noted 
that in a network with ordered delivery (e.g., TCP, 
Myrinet, shared memory) successive reductions 
increase the probability that all transient messages will 
be flushed and delivered before the later reduction 
completes, leading to rapid algorithm convergence. 

5. Data Distribution Management 
Data Distribution Management (DDM) services are 
used to specify the routing of data among federates.  In 
the HLA, DDM is based on an n-dimensional 
coordinate system called a routing space. For example, 
a two-dimensional routing space might represent the 
play box in a virtual environment.  A rectangular 
update region can be associated with each update 
message generated by a federate. Federates express 

interests via rectangular subscription regions. If the 
update region associated with a message overlaps with 
a federate's subscription region, the message is routed 
to that subscribing federate. For example, in Figure 3 
updates using update region U are routed to federates 
subscribing to region S1 but not to federates 
subscribing to region S2. 

S2

S1

U
S2

S 1

U

 0.5  1.0

 0.5

 1.0

 0.0
 0.0

 

Figure 3. Two-dimensional routing space with 
subscription regions S1 and S2 and update region U. 

5.1 Implementation Approaches 
DDM-Kit uses multicast services (implemented in the 
MCAST library) to realize communications among 
federates.  MCAST provides standard group 
communication services (join, leave, and send 
messages to groups).  A central problem in realizing 
the DDM services concerns the definition and 
composition of the multicast groups.  Subscription 
regions must be mapped to groups to which the 
federate must join.  Update regions associated with a 
message are mapped to one or more groups to which 
the message must be sent.  

Two well-known approaches to realizing DDM are to 
form groups based on (1) grids and (2) update regions. 
As will be seen momentarily, the grid-based approach 
provides a simple means to match update and 
subscription regions, but tends to utilize a large number 
of multicast groups, and can result in duplicate or extra 
messages that must be filtered at the receiver.  The 
update region approach avoids these drawbacks, but at 
the cost of greater complexity (and runtime overhead) 
to match update and subscription regions.  DDM-Kit 
uses a variation on the update region approach using 
grid cells to reduce matching overhead.  Each of these 
are described next. 

5.1.1 Region-Based Groups 
In the regions based approach a multicast group is 
defined for each update region [15]. Updates are 

 



 

simply sent to the group associated with the update 
region. A federate subscribes to the group if one or 
more of its subscription regions overlap with the 
update region. 

When a subscription region changes, the new 
subscription region must be matched against all other 
update regions in order to determine those that overlap 
with the new subscription region.  The federate must 
then subscribe to the groups with overlapping update 
regions. Similarly, when an update region changes, the 
new update region must be matched against all 
subscription regions to determine the new composition 
of the update region's group.  This requires examining 
all subscription/update regions in use by the federation.  
Thus it does not scale well as the number of regions 
becomes large. 

5.1.2 Grid-Based Groups 
In the grid-based approach the routing space is 
partitioned into non-overlapping grid cells, and a 
multicast group is defined for each cell [13, 16]. A 
federate subscribes to the group associated with each 
cell that partially or fully overlaps with its subscription 
regions.  An update operation is realized by sending an 
update message to the groups corresponding to the 
cells that partially or fully overlap with the associated 
update region. 

A federate may have multiple subscription regions 
overlapping a specific grid cell.  To avoid multiple 
subscriptions to the group, each grid cell can maintain 
a subscription count array with an entry for each 
federate that indicates the number of subscription 
regions for that federate that overlap this cell. The 
federate leaves the group if this count becomes zero 
during a subscription region change.  Similarly, the 
federate will join the group if its count becomes non-
zero. 

The grid-based approach eliminates the need to 
explicitly match update and subscription regions.  
While grid partitioning eliminates the matching 
overhead, a large number of groups is needed if a fine 
grid structure is defined; a coarse grid leads to 
imprecise filtering, negating some of the benefits of 
DDM.  In addition, the grid scheme has other  
shortcomings:  

• Duplicate messages may occur.  For example, if a 
subscription and update region both overlap with 
the same two cells, two identical copies of the 
message will be sent to the subscribing federate 
over different multicast groups.  These must be 
filtered at the receiver, incurring additional 
overhead.  

• Extra messages may occur. This is a direct result 
of discretizing the routing space into grid cells. 
Subscription and update regions may overlap with 
the same grid cell, but may not overlap with each 
other.  In this case, a message will be sent to the 
subscribing federate, even though its subscription 
region does not overlap with the update region.  
These unwanted messages will also have to be 
filtered at the destination. 

There is a tradeoff between the number of duplicate 
and extra messages as the grid cell size changes. 
Smaller grid cells will generally result in fewer extra 
messages, but more duplicates, and vice versa.  

5.1.3 Region-Based Groups with Grids 
DDM-Kit uses a variation on the region-based 
approach that uses grid cells to reduce matching 
overhead.  A multicast group is defined for each update 
region, eliminating the duplicate and extra message 
problem of the grid scheme. However, grid partitioning 
is used to match update and subscription regions, 
improving the scalability of the pure update-region 
based approach. 

Grids can be used to improve the efficiency of region 
changes.  Logically, when a subscription region 
changes, one need only consider those update regions 
overlapping the grid cells covering the old and new 
subscription regions to determine the new composition 
of multicast groups. Similarly, when an update region 
changes, one need only consider those subscription 
regions that overlap the grid cells of the old/new 
update region to determine the new composition of the 
group. 

DDM-Kit uses a variation on this approach to manage 
group membership.  Recall the pure grid-based 
approach used subscription counts to track the number 
of times a federate is subscribed to a grid cell.  DDM-
Kit uses a similar concept, but for update regions, to 
trigger group join and leave requests.  Specifically, a 
subscription strength array is defined for each update 
region, with one entry per federate.  The entry for a 
federate indicates the "strength" of that federate's 
subscription to the update region (group).  One unit of 
strength corresponds to one subscription region for the 
federate overlapping with the update region in exactly 
one grid cell.  The strength of a subscription region is 
the number of grid cells in which the subscription 
region overlaps with the update region.  The total 
strength of the federate's subscription to an update 
region is the sum of the strengths of each of the 
federate's subscription regions.  For example, if the 
federate has two subscription regions, and one overlaps 
the update region in one cell, and the second overlaps 
it in two cells, the strength of the federate's 

 



 

subscription to the update region is three.  The federate 
remains joined to the update region's multicast group 
so long as it has a subscription strength of at least one.  
The DDM-Kit software keeps the strength arrays 
updated as regions come and go and are modified.  It 
issues a join request if the federate's subscription 
strength becomes non-zero, and issues a leave request 
if the strength becomes zero.  This approach is easily 
extended to consider classes and attributes, as required 
in the HLA DDM services. 

Finally, the various data structures that are required to 
implement DDM may be centralized, or distributed 
among the processors participating in the federation 
execution [15].  Further, the data structures may be 
replicated to enable fast lookup, at the expense of 
additional communication to keep the multiple copies 
consistent.  The current implementation of DDM-Kit 
uses a replicated copy of the data structures in each 
processor. Alternate implementation approaches are 
under investigation. 

5.2 Time Managed DDM 
The HLA DDM services are defined to operate 
independent of the time management services.  In 
particular, changes to subscriptions and update regions 
are not synchronized with logical time.  DDM-Kit does 
provide support for time managed DDM, however.   

Without time managed DDM, missed and/or extra 
messages may occur: 

• Missed messages.  If a federate is added to a 
multicast group at logical time T after an update 
with a time stamp greater than T has been sent to 
the group, the federate will not receive a message 
it should have received. 

• Extra messages. If a federate leaves a group at 
logical time T after an update with a time stamp 
greater than T was sent to the group, the federate 
will receive a message that it had not expected to 
receive. 

This problem is discussed in detail in [17]. Briefly, one 
solution to this problem is to provide a message log to 
avoid missed messages. Updates are logged as they are 
issued. When a change in group membership indicates 
that a previously issued update should have been sent 
to a federate but in fact was not, an update is retrieved 
from the log and sent. On the other hand, extra 
messages can be avoided by performing extra filtering 
by the federates receiving the updates. 

6. RTI Implementations 
This section explains the implementation of an RTI 
using RTI-Kit.  A specific example is given, based on 

the HLA IFSpec definition of the Time Advance 
Request service. 

6.1 Basic RTI Functionality 
As shown in Figure 1, an RTI implementation can be 
thought of as an interface to RTI-Kit functionality.  An 
RTI implementation presents services to the federate 
according to a specific paradigm for simulation 
execution management and exchange of data.  Each 
RTI implementation must manage whatever global and 
local state information is required for its paradigm.   

Typically, an RTI will have state variables which 
include time management information (such as local 
time, result of the most recent LBTS computation, 
lookahead, the state of any federate requests to advance 
time), communication information (such as the 
multicast groups, and group membership, and the 
mapping of groups to message types, as mentioned in 
section 5) and the state of execution management 
processes (such as pause/resume, save/restore, 
join/resign).  The RTI must also have a means for 
delivering messages and other information to the 
federate.  In the case of an HLA federate, this is done 
using callback functions.  Therefore, the RTI must 
have a means of registering callback functions. 

6.2 TAR Implementation 
As an example, let us explore how one might 
implement the Time Advance Request (TAR) function 
using RTI-Kit primitives.  A federate invokes TAR 
when it is ready to 1) receive messages up to a specific 
time, and 2) advance its clock to that time.  The 
expected behavior of the RTI is to deliver messages up 
to the requested time, and issue a Time Advance Grant 
(TAG) when no more messages with timestamps less 
than or equal to the requested time will be delivered.  
As with other current HLA RTI implementations we 
will expect the federate to use a “tick()”  method to 
pass control to the RTI.  It is in tick() that federate 
callbacks are issued. 

Upon receiving a TAR invocation, the RTI records that 
a TAR is pending and notes the requested time.  Then 
the RTI computes the local minimum timestamp (by 
adding the requested time to the lookahead), and 
initiates an LBTS computation (TM_StartLBTS)  
specifying that time value. In initiating the LBTS 
computation, the RTI also indicates the routine to be 
executed when the LBTS computation is complete 
(LBTS_Done).  After the LBTS computation has been 
started, the RTI returns from the TAR method.  Other 
federates’ RTI implementations will receive the LBTS 
start-up message, and have an LBTS_Started callback 
invoked.  This is the first step in the TAR process, 

 



 

where all RTI instances have calculated a local 
minimum timestamp, and are participating in an LBTS 
computation. 

Typically, once a federate invokes TAR, it will tick() 
the RTI until a TAG is issued. While the federate is 
waiting for LBTS to be advanced to the requested time, 
receive-order and “safe” timestamp-order messages 
can be delivered.   Message delivery is conducted as 
follows.  Each time the federate invokes tick(), the 
RTI-Kit modules, including TM-Kit, must be “ticked.” 
This allows the messages to be pulled off the wire, and 
permits the continued processing of LBTS 
computations.  Each message is dispatched to its 
appropriate handler.  RTI-Kit provides efficient FIFO 
and heap implementations for buffering receive-order 
and timestamp order messages. After the RTI-Kit has 
been ticked, the messages on the FIFO queue can be 
delivered.  If an LBTS computation was completed 
during TM-Tick, the LBTS_Done callback will pass 
the new value of LBTS.  If LBTS is greater than the 
timestamps of any messages in the TSO heap, then 
those messages can also be delivered, in order.  Once 
the messages have been delivered, the tick() call 
returns control to the federate.  Message delivery, from 
within the tick() call, is the second step in the TAR 
process. 

The federate will continue to tick the RTI, until the 
value of LBTS is greater than the requested time.  At 
this point (after delivering the pending messages) the 
RTI will update the local time, note that a TAR is no 
longer pending, and invoke the TAG callback.  This 
completes the TAR process.   

Of course, the TAR process is one common method for 
advancing time in a conservative simulation.  Because 
many RTIs use similar paradigms for advancing 
federate time, RTI-Kit includes a module called RTI-
Core which simplifies RTI implementation.  The RTI-
Core module provides basic sets of services for dealing 
with conservative and optimistic time management 
interfaces, as well as event retraction.  

6.3 Exploring DesignTrade-offs 
One important feature of a modular RTI design is the 
ability to explore design trade-offs. The overhead of a  
particular interface design may lead one to choose a 
modified, or partial implementation.  This may produce 
a more efficient execution for the target federation. 
This is a reasonable trade-off, even in an HLA 
execution environment, considering that freely 
available compliant RTIs exist, and the principle 
reason for choosing a different implementation would 
either be for 1) performance or 2) federation specific 
architectural considerations.   

An example of this type of trade-off is evident when 
considering the flexibility in configuring object 
attribute updates.  The HLA IF specification allows for 
the ownership, transport and ordering of every attribute 
of every object to be individually set.  While this could 
be a powerful tool for customizing the communications 
configuration of a federation execution, there is a 
significant overhead associated with checking each 
attribute in an attribute handle-value pair set (AHVPS).  
In federations where ownership is static, and transport 
is never altered from the default, a significant 
simplification is possible.  This fact was exploited in 
the design of an RTI-Kit-based AHVPS class. The 
design assumes that a new AHVPS (or Parameter 
HVPS) will eventually be sent as an object attribute 
update or an interaction message.  The AHVPS 
constructor allocates memory for the entire message, 
marshalling the AHVPS data into the appropriate slot.  
This eliminates the need to copy any data during an 
UpdateObjectAttributeValue() or SendInteraction() 
call.  Such an implementation would not be efficient if 
attribute updates cannot be assumed to be atomic. 

7. Conclusion 
RTI-Kit provides a software base for research and 
development of distributed simulation systems.  
Although it was designed with the High Level 
Architecture in mind, the software is applicable to 
many other classes of parallel and/or distributed 
simulation systems.  The modular design approach 
makes RTI-Kit will suited for experimental research in 
federated simulation systems. 

RTI-Kit is currently distributed as part of the Federated 
Distributed Simulation Tool Kit (FDK) package.  It is 
being used in a variety of educational and research 
projects such as research in DDM, use of high 
bandwidth and active networks for distributed 
simulations, and federated simulations for modeling 
telecommunication networks. 
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