
 - 1 -

Distributed Network Simulations using the Dynamic
Simulation Backplane 1

George F. Riley
Mostafa H. Ammar
Richard Fujimoto
Kalyan Perumalla

Donghua Xu
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

{riley,ammar,fujimoto,perumalla,xu}@cc.gatech.edu
(404) 894-6705, Fax: (404) 385-0332

Aug 28, 2000

We present an approach for creating distributed, component-based, simulations of communication
networks by interconnecting models of sub-networks drawn from different network simulation
packages. This approach supports rapid construction of simulations for large networks by reusing
existing models and software, and fast execution using parallel discrete event simulation
techniques. A dynamic simulation backplane is proposed that provides a common format and
protocol for message exchange, and services for transmitting data and synchronizing heterogeneous
network simulation engines. In order to achieve "plug-and-play" interoperability, the backplane
uses existing network communication standards, and dynamically negotiates among the participant
simulators to define a minimal subset of required information that each simulator must supply, as
well as other optional information. The backplane then automatically creates a message format that
can be understood by all participating simulators and dynamically creates the content of each
message by using callbacks to the simulation engines. This paper describes our approach to
interoperability as well as an implementation of the backplane. We present results that demonstrate
the proper operation of the backplane by distributing a network simulation between two different
simulation packages, ns2 developed at USC/ISI and GloMoSim developed at UCLA. We present
performance results that show that the overhead for the creation of the dynamic messages is
minimal. Although this work is specific to network simulations, we believe our methodology and
approach can be used to achieve interoperability in other distributed computing applications as
well.

1 This work is supported in part by NSF under contract number ANI-9977544 and DARPA under
contract number N66002-00-1-8934.

 - 2 -

1. Introduction
Distributed network simulations exchange information using event messages, which typically
model the data packets flowing between the simulated network elements. When the processes
composing the distributed simulation are homogeneous, then all can easily agree on the content and
meaning of the event messages. However, when exchanging event messages between
heterogeneous simulators, several interesting problems arise. How do the simulators agree in
advance on the representation of a simulated data packet? How can a simulator insist that a
particular protocol header must be present? How can a simulator specify the level of detail that is
modeled for a particular protocol? What should a simulator do when presented with protocol
information for which it has no internal representation?

To address these issues, we introduce the Dynamic Simulation Backplane, which provides a
common event message-passing interface between distributed simulations. The backplane creates a
dynamic format for network events messages, which is defined dynamically by the backplane using
registration calls provided by the simulators. By using the backplane, a simulation engine can
exchange meaningful event messages with other simulators, even when they do not share a
common event message format. The backplane defines a common API for simulators to describe
which network protocols are supported and which data elements within each protocol are required
or available by that simulator. Finally, the backplane supports baggage data, which occurs when a
given simulator must retain protocol information of interest only to another simulator.

1.1. Motivation
There are several commercially or publicly available network simulation packages, each of which
has its strengths and weaknesses. The ns[1] network simulator has a rich set of end-to-end network
protocols, and a variety of routing element queuing disciplines. The OpNet[2] simulator has a large
database of network equipment models, including routers and switches from several network
equipment vendors. The GloMoSim[3] simulation engine provides strong support for wireless
networks with mobility. Our research studies the interoperability of these heterogeneous network
simulators, thereby allowing the simulator modeler to describe and simulate each portion of a
network with the simulator most well suited for that portion of the network. In an ideal world, a
network modeler could use a different network simulator for different portions of the entire
network model, selecting the best simulator for the simulation requirements of that portion of the
model. For example, we might choose the ns simulator to model the behavior of the TCP
endpoints, using one of the rich set of TCP models available in ns. Next we might choose
GloMoSim to model a wireless local area network where the TCP endpoints are attached. Finally,
we might choose OpNet to model a wide area wired network connecting the wireless LANs
together, selecting the network routers from the large database of network equipment supported by
OpNet.

As a second example, suppose that a network modeler has previously developed a detailed model
of a local area network using the OpNet simulator. A second modeler has created a model of a
wide area network using ns. Finally a third modeler has developed a good model of wireless local
area network using GloMoSim. Each of the three models has been thoroughly tested and each
modeler is confident of the correctness of the model. Should the three modelers want to combine

 - 3 -

the simulation into one large model, they are faced with two possibilities. One solution is to
convert two of the three models into the same environment as the third (i.e. convert all models to
the ns simulation environment). By doing this, the confidence in two of the three existing models
is lost, due to the modifications to the model required by the conversion. A better solution would
be to run each of the three simulations in their native environment, together with a method to allow
event messages to be exchanged between the simulation engines.

For a third example, suppose that a given network model is too large to be defined and simulated
within the physical memory constraints of a single workstation. With a good method for
distributing the simulation on two or more workstations, the overall size of the network being
simulated can grow almost linearly with the number of workstations.

1.2. Related Work
The distributed execution of a single network simulation, either on several workstations or on a
tightly coupled SMP system, has been studied for some time. Cowie et al.[4, 5] describe the
Scaleable Simulation Framework (SSF) as a method for parallel simulation of large scale networks.
Nicol et al.[6] propose IDES, a Java based simulation engine designed specifically for distributed
network simulations. Perumalla et al.[7, 8] created the Telecommunications Description Language
(TED), which allows multithreaded network simulations on an SMP processor. Bagrodia et al.[3]
developed the GloMoSim simulation environment, which is built on top of the Parsec[9] parallel
simulation environment. Riley et al.[10] designed and implemented Parallel/Distributed ns (pdns),
which allows a single ns simulation to be distributed on a network of workstations. All of the
previous work has, however, been focused on a homogeneous simulation environment. All of the
distributed processes are running the same simulation engine, and thus the semantics of event
messages transferred between remote simulators is the same. Event messages can be transmitted
between simulators as just a “Bag of Bits”, without regard to the internal representation of these
events. Clearly, when exchanging messages between heterogeneous simulators, the bag of bits
approach will not work.

The High Level Architecture (HLA) [11] provides a standardized API for simulation engines to
register objects and request notification of object updates. While this approach does not limit the
distributed simulation to a common simulation engine, it does require the simulations to agree on
the format of the objects being exchanged. To contrast this with our work, we make no
assumptions regarding representation of messages internally in the simulator.

1.3. The Dynamic Backplane Approach
In order for heterogeneous simulators to exchange meaningful event messages, there must be some
common ground for the semantics and meaning of the information being exchanged. In the realm
of network simulations, a good starting point is the published standards for network protocols. Any
simulator that supports the simulation of data flows using the TCP protocol[12] must have some
understanding of at least some subset of the data items specified in RFC793. While a complete
implementation for all TCP variations and all TCP protocol fields may not be present, each
simulation must at least have some notion of a Sequence Number. Similarly, if the simulator
supports the routing of simulated packets using the IP protocol[13], then some parts of the data
items specified in RFC791 must be known. Again, all of the items may not be supported, such as

 - 4 -

the fragmentation of packets, but at a minimum some notion of a Destination Address must be
understood.

With this in mind, we designed the backplane using the concept of Protocols and Data Items. Each
simulator registers with the backplane a complete list of the protocols that are known to that
simulator. Within each protocol, the simulator registers which of the data items defined in that
protocol are supported. However, with the understanding that network simulations are often used
to promote experimental protocols or extensions to existing protocols, the backplane does not limit
the registration only to standardized protocols or data items. A simulator may register any
protocol, or any data item within a protocol. As long as one other simulator registers a protocol or
item by the same name, those simulators can exchange meaningful information.

Once all protocols and items are registered, the backplane negotiates between the participants,
using a global consensus protocol, to obtain a complete picture of the registered protocols and
items. Using the information from the global consensus, the backplane can then create dynamic
format messages (on a message-by-message basis) to exchange information between simulators.
The details of the registration process and the global consensus are given later.

The remainder of this paper is organized as follows. Section 2 describes in detail the design and
operation of the backplane. Section 3 gives a description of experiments we used for demonstrating
the viability of the backplane and lists some performance results. Finally, Section 4 states some
conclusions and gives the future direction of our research

2. The Dynamic Simulation Backplane

Simulator 1 Simulator 2 Simulator 3

System 1 System 2 System 3

T h e D y n a m i c S i m u l a t i o n B a c k p l a n e

R T I K I T L i b r a r y

Figure 1, Dynamic Simulation Backplane Architecture

Figure 1 shows the overall architecture of a distributed simulation using the Dynamic Simulation
Backplane. The figure shows a distributed simulation running on three systems. Each simulator
sends and receives event messages from the backplane in native format, using the internal

 - 5 -

representation for events that are specific to that simulator’s implementation. The backplane
converts the event messages to a common, dynamic format and forwards the events to other
simulators. The format of the dynamic messages is determined at runtime, on a message-by-
message basis. The backplane uses the services provided by a Runtime-Infrastructure library,
known as RTIKIT. The RTIKIT assists the backplane by providing the message distribution and
simulation time management services required by all distributed simulations. The backplane itself
provides services specific to the support for heterogeneous simulations.

The backplane and RTIKIT services fall into five basic categories:

1. Protocol/Item Registration Services

2. Consensus Computation

3. Message Importing/Exporting Services,

4. Simulation Time Management Services, and

5. Event Distribution Services.

2.1. Protocol and Item Registration Services
Within the networking community, there are well known and widely adopted standards for
exchanging data packets between end systems. The Request For Comments (RFC’s) published by
the Internet Engineering Task Force (IETF) define clearly a number of protocols and required data
items to be exchanged by those protocols. For example, RFC791[13] defines the widely used
Internet Protocol (IP) and specifies a total of 14 individual data items within the protocol. We
chose to use these standards as the starting point for our registration services. Each simulator will
register with the backplane the protocols that are supported, and the data items within those
protocols. A unique ASCII string identifies each protocol within the backplane. An ASCII string
unique within the protocol defines each data item. We emphasize however that the published
standards are simply a starting point, and in no way are all-inclusive. With the backplane,
simulators can register any data item for a protocol, as long as the ASCII name is unique within the
protocol. Simulators can also ignore items within a published protocol if the particular item has no
meaning or use within that simulator. Additionally, simulators can register completely new
protocols for which there is no standard.

As protocols and data items are registered, each simulator must specify whether each is required or
optional. A required protocol is one for which all simulators participating in the distributed
simulation must provide support, or the distributed simulation cannot continue. An example of a
required protocol might be the Internet Protocol. If IP were specified as required by any simulator,
then all other simulators must also specify support for IP or the distributed simulation cannot
continue. Data items within a protocol also are specified as required or optional. While all
simulators might support the IP protocol, they may have differing levels of detail represented. For
example, the Header Checksum data item may be modeled in one simulator, but may have no
meaning in another. If the simulator supporting the header checksum field has some way to
determine a reasonable default value, then that item should be specified as optional. Other items

 - 6 -

within IP might be required items, such as the Destination Address. When registering data items,
the simulators also specify whether or not the data item needs byte-swapping or not. The backplane
will later use this information to insure that all data items exchanged with peers is in a common
byte ordering format. Lastly, simulators specify whether individual data items should be
considered baggage when they are exported to simulators with no corresponding items. Baggage
items are discussed in detail later.

When registering protocols, each simulator specifies the address of a callback function, called he
Export Query Callback, which the backplane later uses to determine if that protocol is to be
exported for a given event message. During the registration process, simulators will register all
protocols that have some meaning to that simulator. However, any given event message may not in
fact have information for all registered protocols. For example, a given simulator may support the
HTTP protocol, but a given event message may have only TCP/IP information meaningful. By
using the Export Query Callback, the simulator can inform the backplane, on a message-by-
message basis, which of the registered protocols are meaningful, and thus keep the size of the
dynamic event messages to a minimum for each message. The dynamic determination of the
message format is described later.

When registering protocol data items, the simulator specifies the address of three callback
functions, called the ProtocolItemExport callback, ProtocolItemImport callback and ItemDefault
callback. The ProtocolItemExport callback is used by the backplane during a message export
action to query the simulator for the correct value of the corresponding data item. The
ProtocolItemImport callback is used by the backplane to inform the simulator of the correct value
for data items during a message import action. The ItemDefault callback is used by the backplane
to inform the simulator that an optional data item has not been provided by a peer on a message
import. In this case, the simulator can determine a suitable default value. For each of the three
callbacks, a corresponding context pointer is specified, which is returned to the simulator when the
callbacks are executed. The context can be used to provide details specific to a given item, and
allow a single callback function to be used for many data items. Complete details concerning the
message exporting and importing are given later.

We discuss the operation of the backplane in terms of protocols and data items within those
protocols, since the target application for our research is the simulation of computer networks. As
previously mentioned, a protocol in this context might be IP, and the data items associated with this
protocol might be Source Address, Destination Address, etc. However, from the point of view of
the backplane, a protocol simply refers to a collection of individual data items that can be referred
to as an aggregate by a single name. If the target application were an air traffic control application,
a protocol could be “Aircraft Characteristics”, and the individual data items might be “Maximum
Cruising Speed”, “Fuel Consumption Rate”, and items of that nature. For the remainder of this
paper, we will continue to use the simulation of computer networks as the basis for discussion.

2.2. Consensus Computation
After all simulators have specified the protocols and data items needed, a global consensus protocol
is performed to find a minimal subset of required items, and a maximal set of optional items. The
purpose of the consensus protocol is twofold. First, it insures that all participating simulators
support the required protocols. Secondly, each protocol and each item within the protocols is

 - 7 -

assigned a globally unique Protocol Identifier and Item Identifier, which all participating simulators
are aware of. The identifiers are later used in the creation of the dynamic message format during
message exporting, explained later.

To accomplish the global consensus, each simulator calls a RegistrationComplete function after all
protocols and data items have been registered. This function acts as a barrier, which blocks until all
simulators have called the function. A single system is nominated as the Master system. In our
implementation, each simulator is assigned a unique node identifier in the range)1(0 −k� , where
k is the number of participating simulators, and the master is then chosen as the system with node
identifier 0. Each system, other than the master, reports the list of the registered protocols and data
items to the master. For each reported protocol, the master first determines if some other simulator
has already reported the same protocol. If not, the master adds this protocol to the list of known
protocols. The master also counts the number of simulators reporting a given protocol, and the
number of simulators that specify it as required. The same is done for data items within a protocol.

Once all simulators have reported all protocols and data items, the master has a complete view of
all reported protocols and items. The first step is to determine that all participants support the
required protocols and data items. There are several possibilities.

1. All required protocols are noted as required by all participants, and all required data items are
noted as required by all participants. This is the ideal case, in that all simulators agree on the
required protocols and data items, and all exchanged messages will contain the required
information.

2. At least one protocol is registered by at least one participant as required, but also registered by
at least one participant as optional. This is less than ideal, but the simulation can still continue.
Those participants registering optional protocols are not required to report that the protocol
exists during a message export operation, but can accept and represent that information as it is
received from their peers. The simulation may detect a failure at runtime, if an optional
protocol is not included in a message exported to a peer that lists the protocol as required.

3. An optional protocol has required data items, but the protocol is not registered by at least one
participant. The simulation may continue, but an error may be detected at runtime. A required
data item of an optional protocol means that if the protocol is exported, then the required item
must be included. A runtime error will occur if a participant exports data items for this
protocol, but does not export the required data item.

4. A protocol is registered by at least one participant as required, but the same protocol is not
registered by at least one other participant. In this case, the overall simulation cannot continue.
A required protocol is unknown to at least one participant, and thus that participant cannot
provide data items for the protocol on message exporting. The master system will inform all
participants of the error and abort the simulation.

Once the master has determined the validity of the protocol and item registrations as described
above, each protocol is assigned a unique protocol identifier by simply numbering them starting
from 0. Each item within each protocol is also assigned an identifier, again starting with 0 in each
protocol. Once the master system has assigned the identifiers, the complete set of protocols and

 - 8 -

data items is returned to all participants, along with the assigned identifiers. At this point, all
participants agree on the complete set of protocols and data items, along with the unique integer
identifiers assigned to each.

2.3. Message Importing/Exporting Services

Simulator A Simulator B

Simulated Link 1

Simulated Link 2

Simulated Link 3
Simulated Link 4

Figure 2, Simple Distributed Simulation

Once the registration and global consensus phase of the backplane execution has completed, the
simulation phase of each participant can begin. The backplane provides a mechanism for
exchanging event messages between simulators. Consider the distributed simulation shown in
Figure 2. This simulation defines a network model to be simulated, consisting of eight nodes and
eight links as shown. The actual simulation execution is distributed on two systems, simulators A
and B as shown. A data packet event message will need to be transferred from simulator A to
simulator B when a simulated transmit data packet event is generated at simulator A on link 1. The
backplane will export this event message, by converting it from an internal format specific to
simulator A, to a common dynamic format that can be understood by all simulators. Simulator B
will need to import the event message when a simulated receive data packet event is received on
link 1. The message import action is the conversion of the dynamic format message received from
a peer simulator to an internal representation specific to a given simulator. Details on the exporting
and importing actions are given in the next sections.

Exporting Messages
When a given simulator must transmit a data packet event to a peer simulator, the ExportMessage
function of the backplane is called. This function calls the ProtocolExistsQuery (PEQ) callback for
every protocol registered by that simulator, to determine if this particular data packet event contains
data items for each protocol. This technique allows a simulator to register all protocols that are
known to that simulator, even if all protocols do not exist for all data packet events. If the PEQ
callback reports that the protocol is present in the packet, the backplane notes in the dynamic

 - 9 -

format message that data items for this protocol are following. Then the ProtocolItemExport
callback is called for every item registered for that protocol, and the reported value for each item is
noted in the dynamic format message. In response to the ProtocolItemExport callback, a simulator
can report that no value exists for a given item, allowing all possible items for each protocol to be
registered, even if they are not present in all data packets. As data items are copied to the dynamic
format message, they are byte-swapped as needed to a common byte-ordering representation.

The PEQ callback is called only for those protocols registered by the simulator calling the
ExportMessage function. Recall that after the global consensus computation each simulator has a
complete picture of all protocols and all data items registered by any participant. Clearly, if some
simulator has not registered a given protocol, then that protocol cannot exist in native format data
packet events for that simulator, and thus the protocol is assumed to be absent.

Importing Messages
When a simulator has received a dynamic format data packet event from a peer, the message must
be converted back to an internal representation for that simulator in order to be meaningful. The
simulator calls the ImportMessage function of the backplane to accomplish this conversion. This
function scans the dynamic format message, and for each protocol included will determine if this
simulator has registered the existence of the protocol. If the protocol has not been registered, and if
any peer specified the baggage indicator for the protocol, then all items in the protocol become
baggage (as described in the next section). If the protocol was registered, then the
ProtocolItemImport or ItemDefault callback is called for each registered item. ProtocolItemImport
is called for each data item included in the dynamic message, and ItemDefault is called for each
item not included in the dynamic message. For items present in the dynamic message but not
registered by the simulator, the item may become baggage.

After all of the callbacks for registered data items have been called, the simulator receiving the
dynamic message will have a complete picture, in native format, of the meaningful content of the
message that was exported by the peer, plus any defaulted data items.

 - 10 -

Baggage

Simulator 1 Simulator 2 Simulator 3

Link 1 Link 2

Node 1

Node 12

Figure 3, Baggage Example

Baggage data items are information that must be carried along with a simulated data packet within
a given simulator, but in fact have no meaning for that simulator. Consider the distributed
simulation shown in Figure 3. For this example, we assume that simulators 1 and 3 have the same
level of detail for the TCP protocol, but that simulator 2 has support for IP only and no notion of
the TCP protocol. Now suppose that the overall simulation is to model the behavior of a TCP flow
from node 1 to node 12. It is clear that when simulated packets arrive at node 12 in simulator 3, the
TCP protocol information from node 1 must be included for the simulation to function properly.
However, since simulator 2 does not have an internal representation of TCP protocol items, there
must be some way for simulator 2 to retain this information that was provided by simulator 1.
When packets flow from simulator 1 to simulator 2 (on link 1), the backplane will convert the data
packets to the dynamic format, using all of the registered data items from simulator 1 (which will
include both TCP and IP information). When simulator 2 receives the dynamic message, the
backplane will convert the information back to an internal representation known to simulator 2.
Any data item (or protocol) that is included in the dynamic message but is NOT known to simulator
2 will be retained as baggage. In this case the baggage will be all data items from the TCP protocol
supplied by simulator 1. The baggage buffer will be returned to simulator 2 as an output of the
ImportMessage function, and must be retained by simulator 2 as part of the data packet. Simulator
2 does not need to be aware of the meaning of any of the baggage, but rather must just carry the
baggage along with the packet as a bag of bits.

The packet will be routed through the simulated network by simulator 2, and eventually be passed
to simulator 3, via link 2. When exporting the data packet via the ExportMessage function, the
baggage buffer is provided to the backplane, and all baggage items are included in the dynamic
format message sent to simulator 3. When the data packet arrives at simulator 3 (via link 2) it will
contain all of the IP protocol information provided by simulator 2, plus the TCP protocol
information provided by simulator 1 that was carried as baggage.

 - 11 -

Importing/Exporting Example

Simulator 1

System 1

Simulator 2

System 2

TCP
 Port
 Sequence
 Flags
IP
 Source
 Destination
MAC 802.3
 Source
 Destination

TCP
 Port
 Sequence
 Window
IP
 Source
 Destination
 TTL
 Flags

Backplane

Figure 4, Exporting and Importing Example

Figure 4 shows a simple example of message importing and exporting. Simulator 1 has registered
three protocols, TCP, IP, and MAC 802.3, each with several data items as shown. TCP and MAC
have been registered as optional, and IP has been registered as required. Simulator 2 has registered
TCP as optional and IP as required, with three and four data items respectively, again as shown.
The IP/Destination item and the TCP/Sequence item have been registered as required by both
simulators. All other items are optional. At some point in the distributed simulation, simulator 1
has created a data packet transmission event that must be received by simulator 2. Simulator 1 calls
the ExportMessage function of the backplane, which creates a dynamic format message as follows.
First, the ProtocolExistsQuery callback is called, for the TCP protocol. Assuming that simulator 1
reports that TCP exists for this message, the ProtocolItemExport callbacks are called for the Port,
Sequence, and Flags items, and the reported values are stored in the dynamic message. The process
is repeated for the IP and MAC protocols, resulting in a total of 7 data items being represented in
the dynamic message. Any value for which the byte-swapping specification was included during
registration is byte swapped to a common byte ordering representation. The resulting dynamic
message is then transmitted to simulator 2 by whatever system interconnect exists between the
participants in the distributed simulation.

When simulator 2 receives the dynamic message, it in turn calls the ImportMessage function of the
backplane, which converts the dynamic message to a format internal to simulator 2. It does this by
using the ProtocolItemImport callbacks that were specified for TCP/Sequence, TCP/Port,
IP/Source, and IP/Destination, and passing the values (byte swapped as necessary) reported for
those fields by simulator 1. Since no value for TCP/Window, IP/TTL, or IP/Flags was specified by
simulator 2, the ItemDefault callbacks for each of those items is called, allowing simulator 2 to
determine a suitable default value. Since simulator 2 has no representation for TCP/Flags or MAC
802.3 (or any MAC layer), the simulator will create baggage items for those if they were specified

 - 12 -

as baggage by simulator 1 when registered. If the baggage flag was not specified, the items are
simply discarded.

One of the strengths of the backplane design is that it allows simulators to interact at differing
levels of abstraction and still exchange meaningful event messages. In the above example,
simulator 1 has less detail in TCP and IP than does simulator 2, but has more detail for the MAC
layer. By allowing simulators to calculate reasonable defaults for optional data items, and by
abstracting away entire optional protocol layers, simulators can still interact and exchange
messages, providing that all required protocols and items are present.

2.4. Simulation Time Management Services
An important requirement for any distributed discrete event simulation is the proper management
of simulation time advancement. The participating simulators cannot just advance their own local
view of the simulation time as fast as possible. Instead, they must insure that they will never
receive an event message in the simulated past. To accomplish this constraint, the simulators must
periodically participate in a global consensus computation to determine a lower bound on the
timestamp of the smallest unprocessed event message, including event messages that are in transit
from one simulator to another. This global minimum timestamp value is called the Lower Bound
Time Stamp (LBTS). Once this LBTS value is determined, all simulators can use this value as an
upper bound on the local simulation time advancement. If no simulator advances the local
simulation time beyond the computed LBTS value, and if no simulator sends an event message in
the simulated past, then it can be guaranteed that no simulator will receive events in their local view
of the simulated past.

A number of approaches to computing the LBTS exist [14-18]. The backplane makes use of time
management services provided by the RTIKIT [19], which uses a butterfly barrier technique first
proposed by Brooks [20]. Using the butterfly barrier, simulators exchange local LBTS and
message count information with each other in a series of rounds. After the completion of a fixed
number of rounds, all processors have agreement on the global state of the unprocessed messages,
and can thus compute an LBTS value.

The backplane provides the time management services by use of the NextEventRequest function.
When calling this function, simulators specify the timestamp of the next unprocessed event in their
local event queue. The backplane responds with a TimeAdvanceGrant callback, which reports the
time to which this simulator may safely advance the local simulation time. The granted value is
always less than or equal to the requested time in the NextEventRequest call.

2.5. Event Distribution Services.
Another requirement for all distributed simulations is Data Distribution. Often an event message is
created at one simulator that in fact must be processed at some other simulator. Considering again
the sample distributed simulation shown in Figure 2, simulator A must inform simulator B of
receive packet events for any simulated packets sent on links 1, 2, 3, or 4. In this case it is not
sufficient for A to inform B of a received packet. It must also advise B of which of the 4 links the
packet is to be received on.

 - 13 -

The backplane again makes use of the services provided by the RTIKIT. The RTIKIT defines links
as Object Instances, and allows simulators to register interest in object instances. Simulator A
would register each of the links as an instance of a link object. Simulator B would register interest
in any actions affecting the link object. When generating a data packet to be sent on link 1,
Simulator A calls the UpdateAttributeValues backplane function, specifying the link object being
updated, the timestamp of the event, and the data associated with the event. When this function is
called, any simulator previously registering interest in this object is notified that the event occurred.

3. Experimental Methodology and Results
To demonstrate the feasibility of the backplane approach, and to measure the overhead incurred by
the conversion of messages to and from the dynamic format, we devised a series of three
benchmarks. Those are:

1. A micro-benchmark, where we coded a simple wrapper around the backplane, registered a
varying number of protocols and data items, and measured the CPU time required for the
ExportMessage and ImportMessage functions.

2. A homogeneous, distributed network simulation using three processes all running the ns
network simulator. This simulation was run with two different versions of pdns, first one
without the backplane, and the second using the backplane for all event messages sent from
one simulator to another.

3. A simple heterogeneous simulation, as depicted in Figure 5. For this experiment, we used
the Telnet application that is part of the GloMoSim simulation engine as the data flow
endpoints. The ns simulation engine was used to model a small wide area network
connecting the two GloMoSim wireless LANs.

3.1. Item Exporting and Importing Overhead
The purpose of the micro-benchmark was simply to measure the CPU overhead associated with the
exporting of data items to the dynamic message format, and the importing of data items from the
dynamic message format. A simple wrapper around the backplane was implemented, which
measured the overall ExportMessage and ImportMessage time, as a function of the total number of
protocols and data items registered. The results are shown in Table 1 below. The amortized time
per registered item varies depending on the mix of protocols and items, but is on the order of one-
half microsecond per item. This benchmark was run on a 200Mhz Pentium Pro system running
Linux.

 - 14 -

Number Protocols Number Items / Proto Total Items Microseconds per Item
1 1 1 0.77
1 10 10 0.39
10 1 10 0.58
10 10 100 0.38
10 100 1000 0.38
100 1 100 0.58
100 10 1000 0.41
100 100 10000 0.42

Table 1, Micro-Benchmark

3.2. Backplane Overhead in Homogeneous Simulation
Next the parallel/distributed ns software was modified to use the backplane for event messages
being sent between the instances of the ns simulators. A simple distributed simulation consisting of
three local area networks was constructed, and each of the LANs was assigned to a different
processor. The simulation modeled FTP data flow between a pair of endpoints on different
simulators, and the simulation was run for varying amounts of simulation time. For a comparison
point, the same simulation was run on the unmodified pdns, without using the backplane.

The results are shown in Table 2 below. Given the small overhead determined in the micro-
benchmark, the difference between the ns to ns run using the backplane versus the same run
without the backplane should be negligible, which it is. In fact, the backplane version runs slightly
faster due to the fact that the backplane produces somewhat smaller event messages than the
standard ns. The standard ns uses rather large events, where the backplane exports and sends to
peers only the used portion of any given event message.

Simulation Seconds CPU Time (Backplane) CPU Time (No Backplane)
10.0 1.7 1.7
100.0 14.5 15.0
1000.0 144.5 154.0

Table 2, Homogeneous Simulation

 - 15 -

GloMoSim ns GloMoSim

Figure 5, Experimental Heterogeneous Simulation Model

3.3. Heterogeneous Simulation Demonstration
Finally we used the backplane to implement the simple distributed simulation shown in Figure 5,
consisting of two GloMoSim wireless nodes, connected via a small ns wired network. The
GloMoSim endpoints modeled a Telnet connection and the ns network forwarded the simulated
packets between the two wireless endpoints. All simulators registered the IP and TCP protocols.
Each simulator registered the data items for those protocols specific to their unique implementation.

This simulation demonstrates the proper operation of baggage data items, since a number of
GloMoSim specific data items are used which have no meaning in the ns environment. The flow of
packets through the backplane was tracked using debug messages showing the contents of the
packets and the number of packets processed. While this simulation, by design, modeled only a
single data flow and a small number of packets, the overall operation of the backplane was verified.
No performance numbers are shown here, since there is no easy way to determine any comparison
data.

 5Conclusions and Future Work
We believe the Dynamic Simulation Backplane is a viable approach for interconnecting
heterogeneous simulations of computer networks. The experimental results show that the overhead
to convert messages to a dynamic format is small enough to be inconsequential; and in fact can
give slightly better performance due to the selective exporting of data items.

For future work, we are planning on more experimentation with the GloMoSim to ns interfaces,
using more protocols and more data items. We also are planning on integrating the OpNet network
simulator into the backplane environment, although this effort is complicated by the lack of source
code for OpNet.

 - 16 -

5. Bibliography
1. McCanne, S. and S. Floyd, The {LBNL} Network Simulator. 1997.

2. Bertolotti, S. and L. Dunand, Opnet 2.4: an environment for communication network
modeling and simulation, in Proceedings of the European Simulation Symposium. 1993.

3. Zeng, X., R. Bagrodia, and M. Gerla, {GloMoSim}: a library for parallel simulation of
large-scale wireless networks, in Proceedings of the 12th Workshop on Parallel and
Distributed Simlations. 1998.

4. Cowie, J., et al., Towards Realistic Million-Node Internet Simulations, in International
Conference on Parallel and Distributed Processing Techniques and Applications. 1999.

5. Cowie, J.H., D.M. Nicol, and A.T. Ogielski, Modeling the Global Internet. Computing in
Science and Engineering, 1999.

6. Nicol, D., et al., IDES: A Java-based Distributed Simulation Engine, in Proceedings of the
International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems. 1998.

7. Perumalla, K.S. and R.M. Fujimoto, Efficient Large-Scale Process-Oriented Parallel
Simulations, in Proceedings of the Winter Simulation Conference. 1998.

8. Perumalla, K., R. Fujimoto, and A. Ogielski, TeD - A Language for Modeling
Telecommunications Networks. Performance Evaluation Review, 1998. 25(4).

9. Bagrodia, R., et al., Parsec: A Parallel Simulation Environment for Complex Systems. IEEE
Computer, 1998. 31(10): p. 77-85.

10. Riley, G.F., R.M. Fujimoto, and M.A. Ammar, A Generic Framework for Parallelization of
Network Simulations, in Proceedings of Seventh International Symposium on Modeling,
Analysis and Simulation of of Computer and Telecommunication Systems. 1999.

11. Myjak, M.D., et al., Implementing Object Transfer in the HLA, in Proceedings of the Spring
Simulation Interoperability Workshop. 1999.

12. Postel, J., Internet RFC793: Tramsmission Control Protocol. IETF Network Working
Group, 1981.

13. Postel, J., Internet RFC791 : Internet Protocol, in IETF Network Working Group. 1981.

14. Mattern, F., Efficient Algorithms for Distributed Snapshots and Global Virtual Time
Approximation, in Journal of Parallel and Distributed Computing. 1993.

15. Chandy, K.M. and J. Misra, Asynchronous Distributed Simulation via a Sequence of
Parallel Computations. Communications of the ACM, 1981. 24(4): p. 198-205.

 - 17 -

16. Riley, G.F., R.M. Fujimoto, and M.A. Ammar, Network Aware Time Management and
Event Distribution. 2000.

17. Steinman, J., SPEEDES: Synchronous Parallel Environment for Emulation and Discrete
Event Simulation, in Advances in Parallel and Distributed Simulation. 1991, SCS
Simulation Series. p. 95-103.

18. Nicol, D.M., The Cost of Conservative Synchronization in Parallel Discrete Event
Simulations. Journal of the Association for Computing Machinery, 1993. 40(2): p. 304-333.

19. Fujimoto, M., Perumalla, Tacic. Design of High Performance RTI Software. in Distributed
Simulation and Real-Time Application. 2000. SanFrancisco, CA.

20. Brooks, D.E., The Butterfly Barrier. The International Journal of Parallel Programming,
1986. 14: p. 295-307.

