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We present an approach for creating distributed, component-based, simulations of communication 
networks by interconnecting models of sub-networks drawn from different network simulation 
packages.  This approach supports rapid construction of simulations for large networks by reusing 
existing models and software, and fast execution using parallel discrete event simulation 
techniques.  A dynamic simulation backplane is proposed that provides a common format and 
protocol for message exchange, and services for transmitting data and synchronizing heterogeneous 
network simulation engines.  In order to achieve "plug-and-play" interoperability, the backplane 
uses existing network communication standards, and dynamically negotiates among the participant 
simulators to define a minimal subset of required information that each simulator must supply, as 
well as other optional information. The backplane then automatically creates a message format that 
can be understood by all participating simulators and dynamically creates the content of each 
message by using callbacks to the simulation engines.  This paper describes our approach to 
interoperability as well as an implementation of the backplane.  We present results that demonstrate 
the proper operation of the backplane by distributing a network simulation between two different 
simulation packages, ns2 developed at USC/ISI and GloMoSim developed at UCLA.  We present 
performance results that show that the overhead for the creation of the dynamic messages is 
minimal.  Although this work is specific to network simulations, we believe our methodology and 
approach can be used to achieve interoperability in other distributed computing applications as 
well. 
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1. Introduction 
Distributed network simulations exchange information using event messages, which typically 
model the data packets flowing between the simulated network elements.  When the processes 
composing the distributed simulation are homogeneous, then all can easily agree on the content and 
meaning of the event messages.  However, when exchanging event messages between 
heterogeneous simulators, several interesting problems arise.  How do the simulators agree in 
advance on the representation of a simulated data packet?  How can a simulator insist that a 
particular protocol header must be present?  How can a simulator specify the level of detail that is 
modeled for a particular protocol?  What should a simulator do when presented with protocol 
information for which it has no internal representation? 

To address these issues, we introduce the Dynamic Simulation Backplane, which provides a 
common event message-passing interface between distributed simulations. The backplane creates a 
dynamic format for network events messages, which is defined dynamically by the backplane using 
registration calls provided by the simulators. By using the backplane, a simulation engine can 
exchange meaningful event messages with other simulators, even when they do not share a 
common event message format. The backplane defines a common API for simulators to describe 
which network protocols are supported and which data elements within each protocol are required 
or available by that simulator. Finally, the backplane supports baggage data, which occurs when a 
given simulator must retain protocol information of interest only to another simulator.  

1.1. Motivation 
There are several commercially or publicly available network simulation packages, each of which 
has its strengths and weaknesses.  The ns[1] network simulator has a rich set of end-to-end network 
protocols, and a variety of routing element queuing disciplines.  The OpNet[2] simulator has a large 
database of network equipment models, including routers and switches from several network 
equipment vendors.  The GloMoSim[3] simulation engine provides strong support for wireless 
networks with mobility.  Our research studies the interoperability of these heterogeneous network 
simulators, thereby allowing the simulator modeler to describe and simulate each portion of a 
network with the simulator most well suited for that portion of the network.   In an ideal world, a 
network modeler could use a different network simulator for different portions of the entire 
network model, selecting the best simulator for the simulation requirements of that portion of the 
model.  For example, we might choose the ns simulator to model the behavior of the TCP 
endpoints, using one of the rich set of TCP models available in ns. Next we might choose 
GloMoSim to model a wireless local area network where the TCP endpoints are attached. Finally, 
we might choose OpNet to model a wide area wired network connecting the wireless LANs 
together, selecting the network routers from the large database of network equipment supported by 
OpNet.  

As a second example, suppose that a network modeler has previously developed a detailed model 
of a local area network using the OpNet simulator.  A second modeler has created a model of a 
wide area network using ns.  Finally a third modeler has developed a good model of wireless local 
area network using GloMoSim.  Each of the three models has been thoroughly tested and each 
modeler is confident of the correctness of the model.  Should the three modelers want to combine 
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the simulation into one large model, they are faced with two possibilities.  One solution is to 
convert two of the three models into the same environment as the third (i.e. convert all models to 
the ns simulation environment).  By doing this, the confidence in two of the three existing models 
is lost, due to the modifications to the model required by the conversion.  A better solution would 
be to run each of the three simulations in their native environment, together with a method to allow 
event messages to be exchanged between the simulation engines.   

For a third example, suppose that a given network model is too large to be defined and simulated 
within the physical memory constraints of a single workstation.  With a good method for 
distributing the simulation on two or more workstations, the overall size of the network being 
simulated can grow almost linearly with the number of workstations.  

1.2. Related Work 
The distributed execution of a single network simulation, either on several workstations or on a 
tightly coupled SMP system, has been studied for some time.  Cowie et al.[4, 5] describe the 
Scaleable Simulation Framework (SSF) as a method for parallel simulation of large scale networks.  
Nicol et al.[6] propose  IDES, a Java based simulation engine designed specifically for distributed 
network simulations.  Perumalla et al.[7, 8] created the Telecommunications Description Language 
(TED), which allows multithreaded network simulations on an SMP processor.  Bagrodia et al.[3] 
developed the GloMoSim simulation environment, which is built on top of the Parsec[9] parallel 
simulation environment. Riley et al.[10] designed and implemented Parallel/Distributed ns (pdns), 
which allows a single ns simulation to be distributed on a network of workstations.  All of the 
previous work has, however, been focused on a homogeneous simulation environment.  All of the 
distributed processes are running the same simulation engine, and thus the semantics of event 
messages transferred between remote simulators is the same.  Event messages can be transmitted 
between simulators as just a “Bag of Bits”, without regard to the internal representation of these 
events. Clearly, when exchanging messages between heterogeneous simulators, the bag of bits 
approach will not work. 

The High Level Architecture (HLA) [11] provides a standardized API for simulation engines to 
register objects and request notification of object updates.  While this approach does not limit the 
distributed simulation to a common simulation engine, it does require the simulations to agree on 
the format of the objects being exchanged.  To contrast this with our work, we make no 
assumptions regarding representation of messages internally in the simulator. 

1.3. The Dynamic Backplane Approach 
In order for heterogeneous simulators to exchange meaningful event messages, there must be some 
common ground for the semantics and meaning of the information being exchanged.  In the realm 
of network simulations, a good starting point is the published standards for network protocols.  Any 
simulator that supports the simulation of data flows using the TCP protocol[12] must have some 
understanding of at least some subset of the data items specified in RFC793.  While a complete 
implementation for all TCP variations and all TCP protocol fields may not be present, each 
simulation must at least have some notion of a Sequence Number.  Similarly, if the simulator 
supports the routing of simulated packets using the IP protocol[13], then some parts of the data 
items specified in RFC791 must be known.  Again, all of the items may not be supported, such as 
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the fragmentation of packets, but at a minimum some notion of a Destination Address must be 
understood. 

With this in mind, we designed the backplane using the concept of Protocols and Data Items.  Each 
simulator registers with the backplane a complete list of the protocols that are known to that 
simulator.  Within each protocol, the simulator registers which of the data items defined in that 
protocol are supported.  However, with the understanding that network simulations are often used 
to promote experimental protocols or extensions to existing protocols, the backplane does not limit 
the registration only to standardized protocols or data items.  A simulator may register any 
protocol, or any data item within a protocol.  As long as one other simulator registers a protocol or 
item by the same name, those simulators can exchange meaningful information. 

Once all protocols and items are registered, the backplane negotiates between the participants, 
using a global consensus protocol, to obtain a complete picture of the registered protocols and 
items.  Using the information from the global consensus, the backplane can then create dynamic 
format messages (on a message-by-message basis) to exchange information between simulators.  
The details of the registration process and the global consensus are given later. 

The remainder of this paper is organized as follows. Section 2 describes in detail the design and 
operation of the backplane. Section 3 gives a description of experiments we used for demonstrating 
the viability of the backplane and lists some performance results. Finally, Section 4 states some 
conclusions and gives the future direction of our research 

2.  The Dynamic Simulation Backplane 

Simulator 1 Simulator 2 Simulator 3 

System 1 System 2 System 3 

T  h  e     D  y  n  a  m  i   c    S  i  m  u  l  a  t  i  o  n    B  a  c  k  p  l  a  n  e 

R  T  I  K  I  T         L  i  b  r  a  r  y 

 

Figure 1, Dynamic Simulation Backplane Architecture 

Figure 1 shows the overall architecture of a distributed simulation using the Dynamic Simulation 
Backplane.  The figure shows a distributed simulation running on three systems.  Each simulator 
sends and receives event messages from the backplane in native format, using the internal 
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representation for events that are specific to that simulator’s implementation. The backplane 
converts the event messages to a common, dynamic format and forwards the events to other 
simulators. The format of the dynamic messages is determined at runtime, on a message-by-
message basis.  The backplane uses the services provided by a Runtime-Infrastructure library, 
known as RTIKIT. The RTIKIT assists the backplane by providing the message distribution and 
simulation time management services required by all distributed simulations. The backplane itself 
provides services specific to the support for heterogeneous simulations.   

The backplane and RTIKIT services fall into five basic categories: 

1. Protocol/Item Registration Services  

2. Consensus Computation  

3. Message Importing/Exporting Services,  

4. Simulation Time Management Services, and  

5. Event Distribution Services. 

2.1. Protocol and Item Registration Services 
Within the networking community, there are well known and widely adopted standards for 
exchanging data packets between end systems.  The Request For Comments (RFC’s) published by 
the Internet Engineering Task Force (IETF) define clearly a number of protocols and required data 
items to be exchanged by those protocols.  For example, RFC791[13] defines the widely used 
Internet Protocol (IP) and specifies a total of 14 individual data items within the protocol.  We 
chose to use these standards as the starting point for our registration services.  Each simulator will 
register with the backplane the protocols that are supported, and the data items within those 
protocols.  A unique ASCII string identifies each protocol within the backplane. An ASCII string 
unique within the protocol defines each data item.   We emphasize however that the published 
standards are simply a starting point, and in no way are all-inclusive.    With the backplane, 
simulators can register any data item for a protocol, as long as the ASCII name is unique within the 
protocol.  Simulators can also ignore items within a published protocol if the particular item has no 
meaning or use within that simulator.  Additionally, simulators can register completely new 
protocols for which there is no standard. 

As protocols and data items are registered, each simulator must specify whether each is required or 
optional. A required protocol is one for which all simulators participating in the distributed 
simulation must provide support, or the distributed simulation cannot continue.  An example of a 
required protocol might be the Internet Protocol.  If IP were specified as required by any simulator, 
then all other simulators must also specify support for IP or the distributed simulation cannot 
continue. Data items within a protocol also are specified as required or optional. While all 
simulators might support the IP protocol, they may have differing levels of detail represented.  For 
example, the Header Checksum data item may be modeled in one simulator, but may have no 
meaning in another.  If the simulator supporting the header checksum field has some way to 
determine a reasonable default value, then that item should be specified as optional.  Other items 
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within IP might be required items, such as the Destination Address.    When registering data items, 
the simulators also specify whether or not the data item needs byte-swapping or not.  The backplane 
will later use this information to insure that all data items exchanged with peers is in a common 
byte ordering format.  Lastly, simulators specify whether individual data items should be 
considered baggage when they are exported to simulators with no corresponding items.  Baggage 
items are discussed in detail later. 

When registering protocols, each simulator specifies the address of a callback function, called he 
Export Query Callback, which the backplane later uses to determine if that protocol is to be 
exported for a given event message.  During the registration process, simulators will register all 
protocols that have some meaning to that simulator.  However, any given event message may not in 
fact have information for all registered protocols.  For example, a given simulator may support the 
HTTP protocol, but a given event message may have only TCP/IP information meaningful.  By 
using the Export Query Callback, the simulator can inform the backplane, on a message-by-
message basis, which of the registered protocols are meaningful, and thus keep the size of the 
dynamic event messages to a minimum for each message.  The dynamic determination of the 
message format is described later. 

When registering protocol data items, the simulator specifies the address of three callback 
functions, called the ProtocolItemExport callback, ProtocolItemImport callback and ItemDefault 
callback.  The ProtocolItemExport callback is used by the backplane during a message export 
action to query the simulator for the correct value of the corresponding data item.  The 
ProtocolItemImport callback is used by the backplane to inform the simulator of the correct value 
for data items during a message import action.  The ItemDefault callback is used by the backplane 
to inform the simulator that an optional data item has not been provided by a peer on a message 
import.  In this case, the simulator can determine a suitable default value.  For each of the three 
callbacks, a corresponding context pointer is specified, which is returned to the simulator when the 
callbacks are executed.  The context can be used to provide details specific to a given item, and 
allow a single callback function to be used for many data items.  Complete details concerning the 
message exporting and importing are given later. 

We discuss the operation of the backplane in terms of protocols and data items within those 
protocols, since the target application for our research is the simulation of computer networks. As 
previously mentioned, a protocol in this context might be IP, and the data items associated with this 
protocol might be Source Address, Destination Address, etc. However, from the point of view of 
the backplane, a protocol simply refers to a collection of individual data items that can be referred 
to as an aggregate by a single name.  If the target application were an air traffic control application, 
a protocol could be “Aircraft Characteristics”, and the individual data items might be “Maximum 
Cruising Speed”, “Fuel Consumption Rate”, and items of that nature.  For the remainder of this 
paper, we will continue to use the simulation of computer networks as the basis for discussion. 

2.2. Consensus Computation 
After all simulators have specified the protocols and data items needed, a global consensus protocol 
is performed to find a minimal subset of required items, and a maximal set of optional items.  The 
purpose of the consensus protocol is twofold.  First, it insures that all participating simulators 
support the required protocols.  Secondly, each protocol and each item within the protocols is 
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assigned a globally unique Protocol Identifier and Item Identifier, which all participating simulators 
are aware of.  The identifiers are later used in the creation of the dynamic message format during 
message exporting, explained later.  

To accomplish the global consensus, each simulator calls a RegistrationComplete function after all 
protocols and data items have been registered.  This function acts as a barrier, which blocks until all 
simulators have called the function.  A single system is nominated as the Master system.  In our 
implementation, each simulator is assigned a unique node identifier in the range )1(0 −k� , where 
k is the number of participating simulators, and the master is then chosen as the system with node 
identifier 0.  Each system, other than the master, reports the list of the registered protocols and data 
items to the master.  For each reported protocol, the master first determines if some other simulator 
has already reported the same protocol.  If not, the master adds this protocol to the list of known 
protocols.  The master also counts the number of simulators reporting a given protocol, and the 
number of simulators that specify it as required.  The same is done for data items within a protocol. 

Once all simulators have reported all protocols and data items, the master has a complete view of 
all reported protocols and items.  The first step is to determine that all participants support the 
required protocols and data items.  There are several possibilities. 

1. All required protocols are noted as required by all participants, and all required data items are 
noted as required by all participants.  This is the ideal case, in that all simulators agree on the 
required protocols and data items, and all exchanged messages will contain the required 
information. 

2. At least one protocol is registered by at least one participant as required, but also registered by 
at least one participant as optional.  This is less than ideal, but the simulation can still continue.  
Those participants registering optional protocols are not required to report that the protocol 
exists during a message export operation, but can accept and represent that information as it is 
received from their peers.  The simulation may detect a failure at runtime, if an optional 
protocol is not included in a message exported to a peer that lists the protocol as required. 

3. An optional protocol has required data items, but the protocol is not registered by at least one 
participant.  The simulation may continue, but an error may be detected at runtime.  A required 
data item of an optional protocol means that if the protocol is exported, then the required item 
must be included.  A runtime error will occur if a participant exports data items for this 
protocol, but does not export the required data item. 

4. A protocol is registered by at least one participant as required, but the same protocol is not 
registered by at least one other participant.  In this case, the overall simulation cannot continue.  
A required protocol is unknown to at least one participant, and thus that participant cannot 
provide data items for the protocol on message exporting. The master system will inform all 
participants of the error and abort the simulation. 

Once the master has determined the validity of the protocol and item registrations as described 
above, each protocol is assigned a unique protocol identifier by simply numbering them starting 
from 0.  Each item within each protocol is also assigned an identifier, again starting with 0 in each 
protocol.  Once the master system has assigned the identifiers, the complete set of protocols and 
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data items is returned to all participants, along with the assigned identifiers.  At this point, all 
participants agree on the complete set of protocols and data items, along with the unique integer 
identifiers assigned to each. 

2.3. Message Importing/Exporting Services 

Simulator A Simulator B 

Simulated Link 1 

Simulated Link 2 

Simulated Link 3 
Simulated Link 4 

 

Figure 2, Simple Distributed Simulation 

Once the registration and global consensus phase of the backplane execution has completed, the 
simulation phase of each participant can begin.  The backplane provides a mechanism for 
exchanging event messages between simulators.  Consider the distributed simulation shown in 
Figure 2.  This simulation defines a network model to be simulated, consisting of eight nodes and 
eight links as shown.  The actual simulation execution is distributed on two systems, simulators A 
and B as shown.  A data packet event message will need to be transferred from simulator A to 
simulator B when a simulated transmit data packet event is generated at simulator A on link 1.  The 
backplane will export this event message, by converting it from an internal format specific to 
simulator A, to a common dynamic format that can be understood by all simulators.  Simulator B 
will need to import the event message when a simulated receive data packet event is received on 
link 1.  The message import action is the conversion of the dynamic format message received from 
a peer simulator to an internal representation specific to a given simulator.  Details on the exporting 
and importing actions are given in the next sections. 

Exporting Messages 
When a given simulator must transmit a data packet event to a peer simulator, the ExportMessage 
function of the backplane is called.  This function calls the ProtocolExistsQuery (PEQ) callback for 
every protocol registered by that simulator, to determine if this particular data packet event contains 
data items for each protocol.  This technique allows a simulator to register all protocols that are 
known to that simulator, even if all protocols do not exist for all data packet events.  If the PEQ 
callback reports that the protocol is present in the packet, the backplane notes in the dynamic 
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format message that data items for this protocol are following.  Then the ProtocolItemExport 
callback is called for every item registered for that protocol, and the reported value for each item is 
noted in the dynamic format message.  In response to the ProtocolItemExport callback, a simulator 
can report that no value exists for a given item, allowing all possible items for each protocol to be 
registered, even if they are not present in all data packets.  As data items are copied to the dynamic 
format message, they are byte-swapped as needed to a common byte-ordering representation. 

The PEQ callback is called only for those protocols registered by the simulator calling the 
ExportMessage function.  Recall that after the global consensus computation each simulator has a 
complete picture of all protocols and all data items registered by any participant.  Clearly, if some 
simulator has not registered a given protocol, then that protocol cannot exist in native format data 
packet events for that simulator, and thus the protocol is assumed to be absent. 

Importing Messages 
When a simulator has received a dynamic format data packet event from a peer, the message must 
be converted back to an internal representation for that simulator in order to be meaningful.  The 
simulator calls the ImportMessage function of the backplane to accomplish this conversion.  This 
function scans the dynamic format message, and for each protocol included will determine if this 
simulator has registered the existence of the protocol.  If the protocol has not been registered, and if 
any peer specified the baggage indicator for the protocol, then all items in the protocol become 
baggage (as described in the next section).  If the protocol was registered, then the 
ProtocolItemImport or ItemDefault callback is called for each registered item.  ProtocolItemImport 
is called for each data item included in the dynamic message, and ItemDefault is called for each 
item not included in the dynamic message.  For items present in the dynamic message but not 
registered by the simulator, the item may become baggage. 

After all of the callbacks for registered data items have been called, the simulator receiving the 
dynamic message will have a complete picture, in native format, of the meaningful content of the 
message that was exported by the peer, plus any defaulted data items. 
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Baggage 

Simulator 1 Simulator 2 Simulator 3 

Link 1 Link 2 

Node 1 

Node 12 

 

Figure 3, Baggage Example 

Baggage data items are information that must be carried along with a simulated data packet within 
a given simulator, but in fact have no meaning for that simulator.  Consider the distributed 
simulation shown in Figure 3.  For this example, we assume that simulators 1 and 3 have the same 
level of detail for the TCP protocol, but that simulator 2 has support for IP only and no notion of 
the TCP protocol.  Now suppose that the overall simulation is to model the behavior of a TCP flow 
from node 1 to node 12.  It is clear that when simulated packets arrive at node 12 in simulator 3, the 
TCP protocol information from node 1 must be included for the simulation to function properly.  
However, since simulator 2 does not have an internal representation of TCP protocol items, there 
must be some way for simulator 2 to retain this information that was provided by simulator 1.  
When packets flow from simulator 1 to simulator 2 (on link 1), the backplane will convert the data 
packets to the dynamic format, using all of the registered data items from simulator 1 (which will 
include both TCP and IP information).  When simulator 2 receives the dynamic message, the 
backplane will convert the information back to an internal representation known to simulator 2.  
Any data item (or protocol) that is included in the dynamic message but is NOT known to simulator 
2 will be retained as baggage.  In this case the baggage will be all data items from the TCP protocol 
supplied by simulator 1.  The baggage buffer will be returned to simulator 2 as an output of the 
ImportMessage function, and must be retained by simulator 2 as part of the data packet.  Simulator 
2 does not need to be aware of the meaning of any of the baggage, but rather must just carry the 
baggage along with the packet as a bag of bits. 

The packet will be routed through the simulated network by simulator 2, and eventually be passed 
to simulator 3, via link 2.  When exporting the data packet via the ExportMessage function, the 
baggage buffer is provided to the backplane, and all baggage items are included in the dynamic 
format message sent to simulator 3.  When the data packet arrives at simulator 3 (via link 2) it will 
contain all of the IP protocol information provided by simulator 2, plus the TCP protocol 
information provided by simulator 1 that was carried as baggage. 
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Importing/Exporting Example 

Simulator 1 

System 1 

Simulator 2 

System 2 

TCP 
    Port 
    Sequence 
    Flags 
IP 
   Source 
   Destination 
MAC 802.3 
   Source 
   Destination 

TCP 
    Port 
    Sequence 
    Window 
IP 
   Source 
   Destination 
    TTL 
    Flags 
 

Backplane 

 

Figure 4, Exporting and Importing Example 

Figure 4 shows a simple example of message importing and exporting.  Simulator 1 has registered 
three protocols, TCP, IP, and MAC 802.3, each with several data items as shown.  TCP and MAC 
have been registered as optional, and IP has been registered as required.  Simulator 2 has registered 
TCP as optional and IP as required, with three and four data items respectively, again as shown.  
The IP/Destination item and the TCP/Sequence item have been registered as required by both 
simulators.  All other items are optional.  At some point in the distributed simulation, simulator 1 
has created a data packet transmission event that must be received by simulator 2.  Simulator 1 calls 
the ExportMessage function of the backplane, which creates a dynamic format message as follows.  
First, the ProtocolExistsQuery callback is called, for the TCP protocol.  Assuming that simulator 1 
reports that TCP exists for this message, the ProtocolItemExport callbacks are called for the Port, 
Sequence, and Flags items, and the reported values are stored in the dynamic message.  The process 
is repeated for the IP and MAC protocols, resulting in a total of 7 data items being represented in 
the dynamic message.  Any value for which the byte-swapping specification was included during 
registration is byte swapped to a common byte ordering representation.  The resulting dynamic 
message is then transmitted to simulator 2 by whatever system interconnect exists between the 
participants in the distributed simulation. 

When simulator 2 receives the dynamic message, it in turn calls the ImportMessage function of the 
backplane, which converts the dynamic message to a format internal to simulator 2.  It does this by 
using the ProtocolItemImport callbacks that were specified for TCP/Sequence, TCP/Port, 
IP/Source, and IP/Destination, and passing the values (byte swapped as necessary) reported for 
those fields by simulator 1.  Since no value for TCP/Window, IP/TTL, or IP/Flags was specified by 
simulator 2, the ItemDefault callbacks for each of those items is called, allowing simulator 2 to 
determine a suitable default value.  Since simulator 2 has no representation for TCP/Flags or MAC 
802.3 (or any MAC layer), the simulator will create baggage items for those if they were specified 
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as baggage by simulator 1 when registered.  If the baggage flag was not specified, the items are 
simply discarded. 

One of the strengths of the backplane design is that it allows simulators to interact at differing 
levels of abstraction and still exchange meaningful event messages.  In the above example, 
simulator 1 has less detail in TCP and IP than does simulator 2, but has more detail for the MAC 
layer.  By allowing simulators to calculate reasonable defaults for optional data items, and by 
abstracting away entire optional protocol layers, simulators can still interact and exchange 
messages, providing that all required protocols and items are present. 

2.4. Simulation Time Management Services 
An important requirement for any distributed discrete event simulation is the proper management 
of simulation time advancement.  The participating simulators cannot just advance their own local 
view of the simulation time as fast as possible.  Instead, they must insure that they will never 
receive an event message in the simulated past.  To accomplish this constraint, the simulators must 
periodically participate in a global consensus computation to determine a lower bound on the 
timestamp of the smallest unprocessed event message, including event messages that are in transit 
from one simulator to another.  This global minimum timestamp value is called the Lower Bound 
Time Stamp (LBTS).  Once this LBTS value is determined, all simulators can use this value as an 
upper bound on the local simulation time advancement.  If no simulator advances the local 
simulation time beyond the computed LBTS value, and if no simulator sends an event message in 
the simulated past, then it can be guaranteed that no simulator will receive events in their local view 
of the simulated past. 

A number of approaches to computing the LBTS exist [14-18].  The backplane makes use of time 
management services provided by the RTIKIT [19], which uses a butterfly barrier technique first 
proposed by Brooks [20].  Using the butterfly barrier, simulators exchange local LBTS and 
message count information with each other in a series of rounds.  After the completion of a fixed 
number of rounds, all processors have agreement on the global state of the unprocessed messages, 
and can thus compute an LBTS value. 

The backplane provides the time management services by use of the NextEventRequest function.  
When calling this function, simulators specify the timestamp of the next unprocessed event in their 
local event queue.  The backplane responds with a TimeAdvanceGrant callback, which reports the 
time to which this simulator may safely advance the local simulation time.  The granted value is 
always less than or equal to the requested time in the NextEventRequest call. 

2.5. Event Distribution Services. 
Another requirement for all distributed simulations is Data Distribution.  Often an event message is 
created at one simulator that in fact must be processed at some other simulator.  Considering again 
the sample distributed simulation shown in Figure 2, simulator A must inform simulator B of 
receive packet events for any simulated packets sent on links 1, 2, 3, or 4.  In this case it is not 
sufficient for A to inform B of a received packet.  It must also advise B of which of the 4 links the 
packet is to be received on. 
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The backplane again makes use of the services provided by the RTIKIT.  The RTIKIT defines links 
as Object Instances, and allows simulators to register interest in object instances.  Simulator A 
would register each of the links as an instance of a link object. Simulator B would register interest 
in any actions affecting the link object.  When generating a data packet to be sent on link 1, 
Simulator A calls the UpdateAttributeValues backplane function, specifying the link object being 
updated, the timestamp of the event, and the data associated with the event.  When this function is 
called, any simulator previously registering interest in this object is notified that the event occurred. 

3. Experimental Methodology and Results 
To demonstrate the feasibility of the backplane approach, and to measure the overhead incurred by 
the conversion of messages to and from the dynamic format, we devised a series of three 
benchmarks.  Those are: 

1. A micro-benchmark, where we coded a simple wrapper around the backplane, registered a 
varying number of protocols and data items, and measured the CPU time required for the 
ExportMessage and ImportMessage functions. 

2. A homogeneous, distributed network simulation using three processes all running the ns 
network simulator.  This simulation was run with two different versions of pdns, first one 
without the backplane, and the second using the backplane for all event messages sent from 
one simulator to another. 

3. A simple heterogeneous simulation, as depicted in Figure 5.  For this experiment, we used 
the Telnet application that is part of the GloMoSim simulation engine as the data flow 
endpoints.  The ns simulation engine was used to model a small wide area network 
connecting the two GloMoSim wireless LANs. 

3.1. Item Exporting and Importing Overhead 
The purpose of the micro-benchmark was simply to measure the CPU overhead associated with the 
exporting of data items to the dynamic message format, and the importing of data items from the 
dynamic message format.  A simple wrapper around the backplane was implemented, which 
measured the overall ExportMessage and ImportMessage time, as a function of the total number of 
protocols and data items registered.  The results are shown in Table 1 below.  The amortized time 
per registered item varies depending on the mix of protocols and items, but is on the order of one-
half microsecond per item.  This benchmark was run on a 200Mhz Pentium Pro system running 
Linux. 
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Number Protocols Number Items / Proto Total Items Microseconds per Item 
1 1 1 0.77 
1 10 10 0.39 
10 1 10 0.58 
10 10 100 0.38 
10 100 1000 0.38 
100 1 100 0.58 
100 10 1000 0.41 
100 100 10000 0.42 

Table 1, Micro-Benchmark 

3.2. Backplane Overhead in Homogeneous Simulation 
Next the parallel/distributed ns software was modified to use the backplane for event messages 
being sent between the instances of the ns simulators.  A simple distributed simulation consisting of 
three local area networks was constructed, and each of the LANs was assigned to a different 
processor.  The simulation modeled FTP data flow between a pair of endpoints on different 
simulators, and the simulation was run for varying amounts of simulation time.  For a comparison 
point, the same simulation was run on the unmodified pdns, without using the backplane. 

The results are shown in Table 2 below.  Given the small overhead determined in the micro-
benchmark, the difference between the ns to ns run using the backplane versus the same run 
without the backplane should be negligible, which it is.  In fact, the backplane version runs slightly 
faster due to the fact that the backplane produces somewhat smaller event messages than the 
standard ns.  The standard ns uses rather large events, where the backplane exports and sends to 
peers only the used portion of any given event message. 

Simulation Seconds CPU Time (Backplane) CPU Time (No Backplane) 
10.0 1.7 1.7 
100.0 14.5 15.0 
1000.0 144.5 154.0 

Table 2, Homogeneous Simulation 
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GloMoSim ns GloMoSim 

 

Figure 5, Experimental Heterogeneous Simulation Model 

3.3. Heterogeneous Simulation Demonstration 
Finally we used the backplane to implement the simple distributed simulation shown in Figure 5, 
consisting of two GloMoSim wireless nodes, connected via a small ns wired network.  The 
GloMoSim endpoints modeled a Telnet connection and the ns network forwarded the simulated 
packets between the two wireless endpoints.  All simulators registered the IP and TCP protocols.  
Each simulator registered the data items for those protocols specific to their unique implementation. 

This simulation demonstrates the proper operation of baggage data items, since a number of 
GloMoSim specific data items are used which have no meaning in the ns environment.  The flow of 
packets through the backplane was tracked using debug messages showing the contents of the 
packets and the number of packets processed.  While this simulation, by design, modeled only a 
single data flow and a small number of packets, the overall operation of the backplane was verified.  
No performance numbers are shown here, since there is no easy way to determine any comparison 
data. 

 5Conclusions and Future Work 
We believe the Dynamic Simulation Backplane is a viable approach for interconnecting 
heterogeneous simulations of computer networks.  The experimental results show that the overhead 
to convert messages to a dynamic format is small enough to be inconsequential; and in fact can 
give slightly better performance due to the selective exporting of data items. 

For future work, we are planning on more experimentation with the GloMoSim to ns interfaces, 
using more protocols and more data items.  We also are planning on integrating the OpNet network 
simulator into the backplane environment, although this effort is complicated by the lack of source 
code for OpNet. 
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