
Virtual Time Synchronization over Unreliable Network Transport

Kalyan Perumalla Richard Fujimoto

kalyan@cc.gatech.edu fujimoto@cc.gatech.edu
 College of Computing, Georgia Tech

 Atlanta, GA 30332-0280

Abstract

In parallel and distributed simulations, it is sometimes

desirable that the application's time-stamped events

and/or the simulator's time-management control

messages be exchanged over a combination of reliable

and unreliable network channels. A challenge in

developing infrastructure for such simulations is to
correctly compute simulation time advances despite the

loss of some simulation events and/or control messages.

Presented here are algorithms for synchronization in

distributed simulations performed directly over best-effort

network transport. The algorithms are presented in a
sequence of progressive refinement, starting with all

reliable transport and finishing with combinations of

reliable and unreliable transports for both time-stamped

events and time management messages. Performance

results from a preliminary implementation of these

algorithms are also presented. To our knowledge, this is
the first work to solve asynchronous time synchronization

performed directly over unreliable network transport.

1. Introduction

Traditional parallel discrete event simulation research has

so far focused mainly on reliable communication

platforms. However, in certain application domains, such

as Distributed Interactive Simulation (DIS) and High
Level Architecture (HLA), it is desirable to execute the

simulations directly over unreliable (best-effort) network

transport such as User Datagram Protocol (UDP). This is

motivated in part by potential performance gains due to

the lower overhead afforded by unreliable transport
compared to reliable delivery. However, current state-of-

the-art parallel/distributed simulation techniques restrict

the applications either to using completely reliable

communication for all time-stamped ordered event

processing, or alternatively to receive-ordered processing

of all events irrespective of their timestamps. This is
clearly restrictive and points to a need for extending

parallel/distributed simulation technology to

accommodate unreliable transport in time synchronization

and timestamp-ordered event exchange.

Several important issues arise in the context of building

simulation infrastructure over unreliable transport: Does

time management make sense if time-stamped events sent

over unreliable transport can be lost? How should time

management be performed in such applications? Are
traditional synchronization algorithms that are based on

reliable transport less or more efficient than alternative

algorithms (such as those presented here) implemented

directly over unreliable network transport? Here, we

attempt to answer some of these questions by first

presenting a parallel/distributed simulation application
model that accommodates a combination of reliable and

unreliable time-synchronized events, followed by a

description of novel algorithms that solve the associated

time synchronization problem.

1.1. Motivation

In domains such as DIS and HLA, for performance

reasons, unreliable message transport services such as

UDP are typically employed for exchanging events. In

DIS, entity state update events are sent periodically, while

intermediate notification events are also sent when the

state differs significantly from the dead-reckoned state.
Since regular state updates are sent periodically, the

applications are designed to tolerate some losses in the

intermediate state notifications between the periodic state

updates. However, unlike traditional parallel and

distributed discrete event simulation (PDES) applications,
time synchronization is not performed, partly because of

lack of efficient algorithms in the context of unreliable

network transport, thus giving rise to potential for

anomalies in the simulation. Traditional time

synchronization algorithms are not directly useful here,

since most of them assume reliable delivery. The
algorithms presented here are designed to solve this

problem, so that time management can be enabled in such

applications.

1.2. Related Work

Little literature exists on the use of unreliable network
transport for simulation time management. Several global

virtual time (GVT) algorithms have been formulated, but

almost all of them assume reliable message delivery. In

fact, most parallel simulation synchronization algorithms

have been presented in the context of reliable delivery.

In [2], fault tolerance at the level of node-failures is

addressed in the context of optimistic parallel simulation,

whereas we address individual message losses, and are
not restricted to optimistic simulators. Specialized

hardware-supported techniques for fast reductions are

presented in [10], whereas we address unreliability of

message delivery in the common communication

platforms, such as multi-hop wide-area networks. The

work that is closest in relation to our work is the time
synchronization algorithms presented in [8] in the context

of unreliable delivery in broadcast-based networks. Also,

our algorithms have some superficial resemblance to

coloring-based GVT algorithms such as Mattern's

algorithm[6], although they differ significantly in that

unreliable communication is supported in our algorithm.

The solution to the noncommittal barrier synchronization

problem presented in [7] in the context of reliable
network transport appears to be closely related to the

virtual time synchronization problem. We believe that

variations of the algorithms presented here can be used to

solve the same noncommittal barrier synchronization

problem, but in the presence of message losses.

On a more theoretical note, distributed consensus

problems such as leader election and termination
detection have been previously studied in the context of

faulty networks[1]. However, most of that work is

theoretical in nature, dealing with less benign node and

link failures, and not directly applicable to efficient

distributed simulation execution over best-effort

networks.

The rest of the paper is organized as follows. A

generalized model is described for simulations that
exchange time-stamped events over unreliable network

transport. This is followed by a description of

implementation challenges for providing safe simulation

time advances during the course of simulation execution,

along with associated definitions. We then present the

algorithms and describe their operation, followed by a
report on a preliminary performance study. We conclude

with a summary of results and description of related open

issues.

2. Background

2.1. Simulation Model

Here we consider a generalized model of distributed

simulations in which the application designates certain

events as "reliable" events, and others as "unreliable"
events. For our purposes, a message is defined as reliable

if it is guaranteed to arrive at its destination within a

certain time limit. Both reliable and unreliable events are

time-stamped. The difference between the two types is in

their (1) potential to be lost (2) potential to violate global

simulation time order. Reliable events are never lost, and
always delivered to the application in a timely manner in

relation to global simulation time. Unreliable events, on

the other hand, can be lost, and can arrive sufficiently late

to miss their timestamp ordered processing opportunity.

For correctness, the application requires all reliable events

to be processed in global simulation time order.

However, the application is designed to tolerate the loss

(non-delivery) of a certain number of unreliable events
per unit execution time and still retain simulation model

accuracy. Unreliable events could potentially be received

with their timestamps being less than the (currently

committed) simulation time of the processor.

2.2. Simulator Implementation Challenges

The use of unreliable transport in parallel/distributed

simulation raises two challenges that are different from

traditional PDES: (1) lost time management messages (2)

lost time-stamped events.

Time Management (TM) messages: Most parallel and

distributed simulators have been implemented on top of

reliable network delivery. Such implementations

typically fail if the assumption of reliable delivery is
violated at any time during the simulation execution.

Most existing time synchronization algorithms have this

property of failure, and hence cannot be used unmodified

over unreliable network transport. Either existing

algorithms need to be modified, or new algorithms must

be devised to deal with losses in TM messages.

Time-stamped Events: A fundamental problem with
unreliable time-stamped events is that it is hard to

distinguish between transient events and lost events. The

challenge is to resolve this conflict by accounting for as

many events as possible within a specified amount of

time, and presume the rest of the events are lost. If some

of those events indeed arrive late without getting lost,
then they could still be used in the application without

violating global simulation time order if their timestamps

happen to be greater than current simulation time at the

received processor. On the other hand, if the timestamps

are less than current simulation time, then those events

can be passed to the application to be dealt with
accordingly. Since applications that use unreliable events

typically possess functionality to deal with late events, the

late delivery should not be a problem.

In summary, the main trade-off in dealing with unreliable

events is to wait sufficiently long for unreliable events to

arrive, but not too long to hold up the simulation time

advances in case the events never arrive.

2.3. Lower Bound on Timestamp (LBTS)

A value called lower bound on timestamp (LBTS) is a

useful quantity that can be defined in any

parallel/distributed simulation system. At any given

moment during simulation execution, the LBTS value at a

processor is defined as the timestamp of the earliest event

that can be received by that processor in the future from
other processors. The LBTS value is useful in

conservative parallel simulation to determine which

events are safe to execute. In optimistic parallel

simulation it is useful in determining when it is safe to

reclaim optimistic memory and to commit other
irrevocable actions. The faster the LBTS is updated as

the simulation progresses, the better is the performance of

the simulation. Moreover, it is desirable that the process

of computing LBTS value is asynchronous in nature, so

that the simulation can continue without stopping while

LBTS is being computed in background.

Wallclock time

P0

P1

P2

P3

P4

Band0 Band1 Bandd Bandd+1

E1

E2

Figure 1: Illustration of wallclock time divided into

bands. Event E1 is entirely contained in band d, while

E2 crosses band d into d+1.

In our approach for asynchronous LBTS computation, the

wallclock time at each processor is divided into

contiguous bands as shown in Figure 1. The bands need
not be equi-spaced, but could in fact have a staggered

pattern as Figure 1 illustrates. Some events may be in

transit across bands, while other events originate and

terminate entirely within the same band.

In fact, the end of band d+1 is conveniently defined for

our purposes by the latest wallclock time at which all

events sent from band d are received by their destination

processors. In other words, all events sent from band d
are fully contained within bands d and d+1. All four

algorithms presented here preserve this invariance.

2.4. Definitions

Every event E is tagged with the ID of the band d during

which the event was sent. Thus each event is denoted by
Ed(t), or simply by Ed, where d is its sending band and t is

its simulation receive time. Further, the transport type, if

relevant, is shown as superscript. Thus, Er denotes an

event sent over reliable transport, and Eu denotes one sent

over unreliable transport.

Let δi[d] denote the number of events Ed sent minus the

number of events Ed received by processor i. Let

∆=∑δi[d]. Let τi[d] = min(t) of all unprocessed events
Ed'(t) (uncommitted events, in the case of optimistic

simulation) received by processor i, for all d'<=d.

Let LBTSd denote the smallest timestamp of all events Ed'

that originate in bands d'<=d and received in future bands

d''>d. In other words, it is the smallest timestamp of any

event that is sent from any band d'<=d and received in

any band d''>d.

Note that LBTSd can be safely used as LBTS in all bands

d'>d. Also LBTSd<=LBTSd+1 for all d. In the algorithms

presented later, the computation for LBTSd is performed

during the band d+1.

Clearly, LBTSd = min(τi[d]) over all i, if ∆=∑δi[d]
equals zero. In other words, if every event originating or

contained in band d' <= d has been received at its

destination processor, then no event received in future

band d'' > d can have timestamp less than min τi[d]. But

how do the processors know when ∆ becomes equal to
zero? In other words, how can the processors detect that

all Ed'<=d have reached their destinations?

2.5. LBTS Computation

One approach to detect exhaustion of all transient events

belonging to band d is to iteratively perform a distributed

reduction of all the δi[d] values. Once the sum (∆) of all
the values reduces to zero, the minimum of their

corresponding τi[d] directly gives LBTSd! This

observation is key to the algorithms presented here. The

algorithms are based on the fact that each LBTS

computation can be performed as an iterated sequence of
distributed reductions. The last reduction in each

sequence is one that observes ∆=0. The reductions in this

sequence are numbered starting with zero, and every

control message (not simulation event) used for reduction

belonging to band d and reduction r is identified by its

band number and iteration number, and denoted as Vdr.
Each reduction itself is uniquely identified by its band and

iteration numbers.

With every Vdr, the value of LBTSd-1 is piggybacked, and

hence reduction messages are written as Vdr(Ld-1) where

Ld-1 denotes the value of LBTSd-1. Note that LBTSd-1 is

always available when LBTSd is being computed, for any

d.

3. Algorithms

We now present four algorithms corresponding to four

different combinations of reliability of time-stamped

events and time management (TM) messages.

The first algorithm is designed for the classical PDES

model: reliable events coupled with reliable TM messages

(ERVR). The remaining three algorithms are based on the
first algorithm and are progressively refined to

accommodate unreliability. As a surprisingly simple

variation of the first algorithm, we present the second

algorithm to deal with lost TM messages, i.e., reliable

events coupled with unreliable TM messages (ERVU). We

further refine the second algorithm to give the third
algorithm, which is designed for the more general case of

applications using both reliable and unreliable events

coupled with unreliable TM messages (EREUVU). Finally,

as a special case of the third algorithm, we describe the

fourth algorithm for an important class of applications

that use both reliable and unreliable events coupled with

reliable TM messages (EREUVR).

The algorithms are presented from the point of view of
processor i's execution. All processors execute the same

algorithm. In all four algorithms, reduction messages are

identified by their band and sequence identifiers (d,r).

When a reduction (d,r) is in progress at a processor, any

arriving reduction messages belonging to an older
reduction (d',r') are discarded (i.e., if d'<d or if d=d' and

r'<r). If any reduction messages belonging to a future

reduction (d'',r'') are received, they are buffered until the

algorithm moves to that reduction (i.e., if d''>d or if d''=d

and r''>r). Also, whenever a processor i receives a time-

stamped event, it immediately adds that event to its local

event queue.

As noted previously, all the algorithms are defined in such
a way that computation of LBTSd is started as well as

completed entirely within band d+1. A corollary is that

all events originating in band d are received in bands d or

d+1 and no later.

Note that in both reliable and unreliable transports, the

algorithms do not require message order to be preserved

by the network.

3.1. Reliable Events and Reliable TM Messages

The algorithm for this model is shown in the following

box. This algorithm possesses some resemblance with

other coloring-based global virtual time (GVT)

algorithms, such as Mattern's algorithm [6]. The band

numbers roughly correspond to the colors in those
algorithms; however, the use of multiple reductions per

band is unique to our algorithm.

Although other well-known algorithms exist in PDES

literature for time synchronization over reliable transport,

our Algorithm 1 is unique in that the algorithms for

unreliable transport follow as natural extensions to this

algorithm, as will be seen in ensuing sections.

d+1,0

d,r d,r+1
∆>0

∆==0

Figure 2: Transitions from reduction (d,r) in

Algorithm 1.

Algorithm 1: ERVR At each processor i:

1. For all d, δi[d]=0; τi[d]=∞.

2. d=0
3. r=0

4. τi[d]=min(τi[d], MinQi)

5. Start-reduction(d, r, δi[d], τi[d])

6. While not end of reduction(d,r)

 6.1 If Ed(t) is received
{ τi[d]=min(τi[d], t); --δi[d] }

 6.2 If any E is sent

{tag E as Ed+1; δi[d+1]++}

7. (∆,τ)=reduced-value(d,r)

8. If ∆>0 then { r++; goto 5 }

9. Else (∆==0) { Output LBTSd=τ; d++; goto 3 }

In line 1, all the δi[d] values are initialized to zero since
no events are sent or received during any band at the

beginning of simulation. Similarly, all the τi[d] values are

initialized to infinity. The algorithm starts with band 0,

by initializing d to zero (line 2). For each band, it starts

with the sequence of reductions, starting with reduction

zero (line 3). The LBTS computation for a band d starts
by initializing τi[d] to the smallest timestamp of events in

a snapshot of its local event queue (MinQi) on line 4.

This snapshot covers all events that may have arrived

before the processor entered the LBTSd computation. The

loop between lines 5 and 9 inclusive is used to iterate

through the reduction sequence of band d until LBTSd is

computed.

During each iteration of the loop, a distributed reduction

Rdr is started (line 5), with δi[d] and τi[d] as processor i's

contribution to the reduction values. Note that δi[d] are

reduced using the sum operator, while τi[d] are reduced

using the minimum operator. The reduced value is stored

in (∆,τ), where, ∆ represents the sum of all δi[d] (the total
number of outstanding events in the network that are yet

to reach their destinations), and τ is the minimum of all

τi[d]. If ∆ does not equal zero, it implies that not all

events generated in band d have been accounted for in τ

(some events are in transit). In that case, another

reduction is attempted by continuing the loop to move to
the next reduction r+1 (line 8). If ∆ equals zero, then it

clear that there are no more outstanding events in transit

in the network. Hence τ represents the minimum of all

events generated within band d that are not yet processed

by the processors, which is nothing but LBTSd. Hence,

LBTSd is generated as output and then the algorithm
moves to the next band d+1 (line 9). Figure 2 illustrates

the transitions from reduction (d,r) to the next reductions.

Even while a reduction is in progress, the simulation

could send and/or receive other events, since the LBTS

computation is asynchronous. These events are handled

in lines 6.1 and 6.2. If an event originating in band d is

received, then τi[d] is updated to take the timestamp of the

received event into account, and δi[d] is decremented to
note the fact that one more event of band d has been

accounted for (line 6.2). If an event is being sent, that

event is tagged as originating in the next band d+1, and

the corresponding δi[d+1] is incremented to note the fact

that one more event originated in band d+1.

It is easy to prove by induction on d that Algorithm 1

correctly computes LBTSd.

3.2. Reliable Events and Unreliable TM

Messages

Algorithm 1 requires surprisingly few modifications to
deal with lost reduction messages. As such, the second

algorithm is a natural extension to algorithm 1 to function

in the presence of unreliable reduction messages. The

extension is to essentially perform timeouts on incoming

reduction messages, and act on timeouts.

Let us examine the effect of a lost reduction message in

algorithm 1. First it should be noted that some processors

might still be able to complete their current reduction and
move on to the next reduction or next band. This is

possible, for example, if the message is lost in the last

level in a butterfly communication pattern for hierarchical

reduction [3]. Other processors fail to complete their

current reduction, waiting directly for the lost message, or

indirectly for messages that are supposed to be generated

based on the lost message.

Thus, three cases arise in Algorithm 1 if a reduction

message is lost:

Case 1: All processors fail to complete their current
reduction (d,r) waiting for the message that will never

arrive.

Case 2: Some processors successfully complete their

reduction while others fail. Those processors that do

succeed observe that the ∆ value has still not reached

zero, and hence they move on to the next reduction within

the same band, i.e., to (d,r+1). The other failed
processors are still waiting for their current reduction (d,r)

to complete.

Case 3: Those processors that succeed observe that ∆

equals zero, and hence successfully complete the

computation of LBTSd and move on to the next band d+1,

starting with reduction (d+1,0).

The first two cases can be easily addressed by adding a

timeout mechanism to reductions. Upon waiting for a

predefined time interval, reductions complete abnormally

with a ∆ value of ∞. The processors then will continue
with the algorithm as though the failed reduction in fact

completed with a non-zero value for ∆, making it appear

as though some more messages of band d are in transit.

d+1,0

d,r d,r+1 ∆>0 or timeout

∆==0

d+1,r'

Vd+1,r'

Figure 3: Transitions from reduction (d,r) in

Algorithm 2.

Now consider case 3. In this case, some processors are

still waiting for their current reduction to complete, but

might receive reduction messages corresponding to the

next band (d+1,r') from the successful processors. Recall

that the value of LBTSd is always piggybacked as Ld in
reduction messages, Vd+1,r', of band d+1. The waiting

processor can exploit this fact when it receives a

reduction message of d+1, by using that Ld value as

LBTSd to immediately terminate its current reduction.

Moreover, for the next band d+1, it can advance to

reduction r' instead of starting with reduction 0. These
transitions are illustrated in Figure 3, and the Algorithm 2

is given in the following box, expressed as a modification

to Algorithm 1. The modification is to add timeout

mechanism to reductions, and to terminate the currently

active reduction (d,r) if a future reduction message Vd+1,r'

is received, and catch up to that future reduction.

Algorithm 2: ERVU At each processor i:

Same as Algorithm 1, but with the following added:

 6.3 If V(d+1)r'(Ld) is received

{ Output LBTSd=Ld; d++; r=r'; goto 4 }

It is very interesting that tolerance to lost reduction

messages can be easily achieved by adding just a couple
of lines to the reliable delivery-based algorithm. Thus it

can be noted that resilience to network transport

unreliability is conceptually very easy to achieve in

simulation time management.

3.3. Reliable and Unreliable Events and

Unreliable TM Messages

We now turn to the more general case in which

applications can send time-stamped events on both
reliable and unreliable transports, and also want to

perform time management over unreliable transport. All

events sent over reliable transport must always be

factored into time management; however, there is
flexibility with regard to the number of unreliable events

that can be missed in time management, which in turn

translates into a trade-off for performance optimization.

We exploit this flexibility by introducing two parameters,

α and β, using which this algorithm can be tuned to suit

the application's performance needs. The parameter α is

defined as a limit on the number of reductions performed

per band. The parameter β is defined as a limit on the
number of unreliable events that the application can

tolerate per band, if all those β events (eventually) violate

global timestamp order or never arrive. A special case is

when β=∞, in which case LBTSd can be advanced without

ever waiting for unreliable events.

The parameter α can be viewed as controlling the

maximum amount of wallclock time spent waiting for

unreliable events, while β can be viewed as controlling
the maximum number of unreliable events that can be

ignored in the LBTS computation.

The algorithm is shown in the following box. This

algorithm follows along the lines of Algorithm 2, except

that the conditions for transitions from one reduction to

the next are slightly more complex.

Algorithm 3: EREUVU At each processor i:

1. For all d, δr
i[d]= δui[d]=0; τi[d]=∞.

2. d=0

3. r=0

4. τi[d]=min(τi[d], MinQi)

5. Start-reduction(d, r, δri[d], δui[d], τi[d])
6. While not end of reduction(d,r)

 6.1 If Ed(t) is received

6.1.1 τi[d]=min(τi[d], t);

6.1.2 If Ed is reliable { --δr
i[d] }

 6.1.3 Else (unreliable) { --δu
i[d] }

 6.2 If any E is sent
6.2.1 Tag E as Ed+1

6.2.2 If E is reliable { δri[d+1]++ }

 6.2.3 Else (unreliable) { δui[d+1]++ }

 6.3 If V(d+1)r'(Ld) is received

{ Output LBTSd=Ld; d++; r=r'; goto 4 }
7. (∆r, ∆u,τ)=reduced-value(d,r)

8. If ∆r>0 or (∆u>β and r<α) then { r++; goto 5 }

9. Else { Output LBTSd=τ; d++; goto 3 }

First, each δi[d] is split into two terms: δri[d] and δui[d],

where δr
i[d] corresponds to reliable events and δui[d]

corresponds to unreliable events. Similarly, ∆ is split into

∆r and ∆u. For correctness of simulation, all processors
must necessarily keep iterating for LBTSd until the total

number of transient reliable messages in the system, given

by ∆r, becomes zero for LBTSd to be correct. Otherwise,

LBTSd could potentially advance further than the

timestamp of a transient reliable event that can arrive

later. In contrast, by definition, the application can

tolerate up to β unreliable events that violate global

timestamp order.

d+1,0

d,r d,r+1 ∆
r
>0 or

(timeout and r<α)

∆
r
==0

and

(∆
u

<=β or
r>=α)

d+1,r'

Vd+1,r'

Figure 4: Transitions from reduction (d,r) in

Algorithm 3.

Except for the way transport types are used for events,

this algorithm is similar to Algorithm 2, and differs with it
in the following ways: (1) Reductions are performed on

triples (δr
i[d], δui[d], τi[d]), instead of pairs (δi[d], τi[d]).

(2) Whenever an event is sent or received, the appropriate

event counter is updated corresponding to the event's

transport type. (3) The termination condition for
reduction sequence and LBTS computation for a band are

modified appropriately to accommodate unreliable events.

3.4. Reliable and Unreliable Events and

Reliable TM Messages

In an important class of applications, such as Distributed

Interactive Simulation (DIS), applications utilize a

mixture of reliable and unreliable events. Periodic state

updates, which contain critical information, are sent over

reliable transport, while less critical events are sent over
unreliable transport. Time management in such

applications can be performed over reliable transport.

The last algorithm addresses time management in such

applications.

This algorithm, in fact, can be expressed as a special case

of Algorithm 3. First, the timeout value for reductions

can be set to infinity, since reduction messages sent over
reliable transport are never lost. Secondly, α can be set to

a value that ensures that the algorithm waits for a fixed

amount of time before giving up waiting for any transient

unreliable events. Note that α should be not be set to too

low a value, since otherwise it could potentially ignore all

transient unreliable events. Finally, β can be set to
infinity, which essentially translates to the fact that no

unreliable events will ever hold up the progress of LBTS.

4. Performance Study

We have completed a preliminary implementation of the

algorithms and incorporated them into the time
management module of the Federated Simulations

Development Kit (FDK) from Georgia Tech[5]. The FDK

is a modular set of libraries designed for the development

of Run Time Infrastructures (RTIs) for parallel and
distributed simulation systems, and includes an RTI that

implements a subset of the High Level Architecture

(HLA) services.

To study the effects of unreliable transport on the

performance of time management, we tested the

implementation using two applications. The first is a

time-stepped application that exercises simulation time

advances in the absence of inter-processor event exchange
(i.e., invokes HLA-like TimeAdvanceRequest service).

The application stresses the speed of asynchronous

reduction, with the metric of interest being the number of

LBTS computations that successfully complete per

second of wallclock time. The second is a TCPI/IP traffic

simulation using the Parallel and Distributed NS (PDNS),
which uses the FDK for event exchange and

synchronization. The PDNS simulation included both

time-stamped event exchange and simulation time

synchronization. The experiments were run on a network

of workstations. In one scenario, the workstations were
connected by local area network (Ethernet) at Georgia

Tech, and in the other, the workstations spanned Georgia

Tech, Dartmouth College and Carnegie Mellon

University.

Unfortunately, we observed few message losses in either

scenario. The performance of time management (number

of LBTS computations per second) remained the same

between UDP-based and TCP-based communication.
This can be attributable to the fact that TCP can perform

as efficiently as UDP in the absence of losses, and the

simulation incurs the overhead of TCP connection setup

among processors only at initialization time. The absence

of losses prevented us from making conclusions about the

performance of reliable and unreliable transports, except
for the observation that our algorithms performed no

worse than reliable transport-based algorithms in the

absence of message losses.

As an alternative scenario, we used reliable transport

(TCP) and artificially dropped messages (using a uniform

random number generator) in the RTI communication

module before they are submitted to the time management
module. This provided us control on the actual loss

probability realized in the network during execution as

seen by the time management module.

The experiments were executed on a cluster of 16 Intel

Pentium III 550 MHz processors connected by fast

Ethernet. The machines were normally loaded when the

experiments were executed (i.e., there were other user

processes running on the system). The results are shown
in Figure 5, comparing the rate of completed LBTS

computations for different values of message loss

probability q (10%, 1% and 0.1%), against that of reliable

delivery (no loss).

As expected, increasing the loss probability decreases the

LBTS computation rate. The performance for low loss

probability (q=0.1%) is similar to that of no losses,
showing that the algorithm is capable of dynamically

extracting the superior performance of reliable delivery if

the actual observed losses are low. For higher loss

probability (q=10%), the reduction algorithm is observed

to be not sufficiently robust for larger number of

processors. For more than 4 processors, reductions timed
out more frequently due to the higher loss probability;

degrading the overall LBTS rate. The average number of

reduction iterations per band was between 1 and 2.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

2 4 6 8 10 12 14 16

No. of processors

L
B

T
S

 c
o

m
p

u
ta

ti
o

n
s
 p

e
r

s
e
c
o

n
d

reliable q=0.1% q=1% q=10%

Figure 5: Performance of Algorithm 2 for different

values of message loss probability q.

Evidently, more extensive performance analysis is needed

before conclusive notes on the performance differential

between reliable and unreliable transport-based

synchronization can be made.

5. Conclusions and Future Work

Time-synchronized distributed simulation over best-

effort/unreliable networks is an important problem that

has largely gone unresolved so far. Little literature exists

that deals with solutions for simulation time management

in the presence of event and control message losses.
Here, we have presented algorithms to address these

issues. To our knowledge, ours is among the first works

to address this problem in the context of general best-

effort networks. We have first defined a simulation

model in the context of unreliable delivery of time-
stamped events, which has not traditionally been

considered in PDES. We have shown that unreliable

delivery of time management messages can be dealt with

in a relatively straightforward fashion, as a simple

extension of our algorithm for reliable transport. In

addition, none of our algorithms assumes that the network
preserves message order. Using the algorithms presented

here, more complex time-managed applications can be

developed using a mixture of reliable and unreliable time-

stamped events, and using reliable or unreliable time

management messages. It is now clear that unreliable

events can in fact be explored for use in real-life
applications. Additional work, however, remains in the

area of performance analysis, optimization and tuning, as

discussed next.

5.1. Reduction Timeout Value Estimation

It is clear that the timeout value used for detecting failed
reductions affects the rate of LBTS computations. Longer

timeouts imply longer time for processors to discover

failed reductions, thus wasting time. On the other hand,

lower timeout values make the processors timeout too

early, thus artificially missing messages that might

complete the reduction. The best timeout value is one
that is based on dynamically tracking network delays, and

varying it accordingly. It is very hard to predict message

delays in multi-hop networks; however, a reasonable

alternative would be to start the timeout value at a large

conservative value, and gradually adjust it based on a

history of actual delays observed for the received
messages. Dynamic adjustment techniques for an optimal

timeout value remain to be investigated. Some of the

techniques from networking research, such as TCP

timeout mechanisms, could be potentially applied here.

5.2. Threshold for Unreliable Events

In applications using both unreliable and reliable time-

stamped events, the threshold β determines the time spent

waiting for unreliable events in transit to arrive at their

destinations. Thus, the β value affects the rate of LBTS

computations. Larger β values waste time waiting for the

events that will never arrive. Smaller β values advance
the LBTS more rapidly than the unreliable events can

arrive, potentially advancing LBTS beyond the

timestamps of some or all of the outstanding unreliable

events. Thus, there is a tradeoff between waiting

sufficiently long to receive as many unreliable events as
possible, and waiting sufficiently little to not hold up the

LBTS computation for receiving the unreliable events that

may have actually been lost. Additional research is

needed to dynamically estimate and adjust the threshold β

to its optimal value.

5.3. Robust and Scalable Reduction

Another interesting research item is the design of robust

and scalable distributed reduction algorithms that perform

well even in the presence of significant number of lost

messages. The challenge is to devise a distributed

reduction algorithm that scales with the number of
processors as well as with message loss probability.

When used within the LBTS algorithms presented here, it

can improve the efficiency of time management by

providing a high degree of probability that a reduction

will complete without timing out, despite message losses.

5.4. Additional Performance Evaluation

The biggest challenge to a performance evaluation of the

algorithms was that we could not control the amount of

message losses observed on the network connections. To

address this, we are exploring network emulation-based

experimentation approaches. We also intend to study the
performance of the algorithms on a more extensive set of

applications (e.g. ModSAF[11]) over wide-area networks

using UDP.

6. Acknowledgements

The authors would like to thank David Nicol and Maria
Hybinette for providing access to their workstations, at

Dartmouth and CMU respectively, for wide area

experiments. Thanks also to Mostafa Ammar and George

Riley for helpful comments on TCP vs. UDP

performance.

7. References

[1] Afek, Y. and M. Saks, "Detecting Global Termination

Conditions in the Face of Uncertainty," Principles of

Distributed Computing, August 1987.

[2] Damani, O.P., V.K. Garg, "Fault Tolerant Distributed

Simulation," the 12th Workshop on Parallel and Distributed

Simulation, May 1998.

[3] Fujimoto, R.M., "Parallel and Distributed Simulation

Systems," Wiley Inter-science, 2000.

[4] Fujimoto, R.M., "Time Management in the High Level

Architecture," Simulation, Vol. 71, No. 6, December 1998.

[5] Fujimoto, R.M., T. McLean, K. Perumalla and I. Tacic,

“Design of High-performance RTI Software”, Proceedings

of Distributed Simulations and Real-time Applications,

August 2000.

[6] Mattern, F, "Efficient Algorithms for Distributed Snapshots

and Global Virtual Time Approximation", Journal of

Parallel and Distributed Computing, 1993.

[7] Nicol, D., “Noncommittal Barrier Synchronization,”

Parallel Computing, vol. 21, 1995.

[8] Riley, G.F., et al, "Network Aware Time Management and

Event Distribution," the 14th Workshop on Parallel and

Distributed Simulation, May 2000.

[9] Riley, G.F., et al, “A Generic Framework for

Parallelization of Network Simulations”,MASCOTS, 1999.

[10] Srinivasan, S., et al, "Implementation of Reductions in

Support of PDES on a Network of Workstations," the 12th

Workshop on Parallel and Distributed Simulation, May

1998.

[11] Modular Semi-Automated Forces, http://www.modsaf.org.

