
Updateable Simulation of Communication Networks

Steve L. Ferenci, Richard M. Fujimoto, Ph.D., Mostafa H. Ammar, Ph.D.,Kalyan Perumalla, Ph.D.
College Of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280

{ferenci,fujimoto,ammar,kalyan}@cc.gatech.edu

George F. Riley, Ph.D.
Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30032-0280

riley@ece.gatech.edu

Keywords: shared computation, event reuse, event composition, incremental simulation

ABSTRACT
A technique called updateable simulations is proposed to

reduce the time to complete multiple executions of a discrete
event simulation program. This technique updates the results
of a prior simulation run rather than re-execute the entire
simulation to take into account variations in the underlying
simulation model. A framework for creating updateable
simulations is presented. This framework is applied to the
problem of simulating a set of cascaded ATM multiplexers
and a network of ATM switches. Performance measurements
of sequential and parallel implementations of these
simulations on a shared memory multiprocessor are
presented, demonstrating that updateable simulations can
yield substantial reductions in the time required to complete
multiple simulation runs if there is much similarity among the
runs.

1. Introduction
It is almost always the case that multiple executions of a

simulation program are required to develop conclusions from
a study. For example, sensitivity and perturbation analysis
involve incrementally tweaking a parameter of the model in
order to determine what affects these changes have on the
simulation results. This usually requires many executions of
the simulation in order to thoroughly explore the problem
space. It becomes prohibitively time consuming to perform
such analyses if each simulation run requires many hours or
days to complete.

In other situations, previously completed simulation
analyses may have to be updated in order to incorporate new
information. For example, on-line simulations can be used to
predict the future behavior of an operational system such as a
communication network in order to guide management
decisions. Events such as new, unexpected traffic loads call
for simulation analyses to be repeated. A means to quickly
update the prior results, rather than completely re-execute the
simulations would be very beneficial.

The problem of completing multiple independent
simulation runs for perturbation and sensitivity analysis lends

itself to trivial parallelization by simply performing each run
on a different machine. Here, we focus on more sophisticated
techniques to gain additional performance improvement, and
to attack the problem of quickly redoing previously completed
studies in on-line simulation applications.

We observe that when multiple runs are required, the runs
are often similar. It is reasonable to believe that there may be
many computations that are similar among the different runs.
For example, consider a packet-level simulation of an ATM
network where different runs vary the buffer size of certain
switches in order to examine the effect of this parameter on
packet loss rates. Traffic generation computations may be
identical across the different runs. If buffer overflows seldom
occur (the usual case for most networks), buffer size will have
little impact on much of the simulation computation of each
switch. Traditional parallel replication techniques do not
exploit this fact.

In this paper a technique for improving the performance of
discrete event simulations by reusing event computations is
presented. This approach focuses on reusing previously
completed computations. The premise for this work is that
consecutive executions of models will have portions of the
computation that are similar or identical.

Section 2 summarizes related work in this area. The
updateable simulation technique is described in section 3.
Section 4 describes an implementation of this technique to
realize an updateable ATM multiplexer simulation and
Section 5 describes an implementation to realize an
updateable simulation of a network of ATM switches.
Measurements of a sequential and parallel implementation of
the algorithm are presented. Section 6 outlines future work,
and is followed by concluding remarks.

2. Related Work
Techniques for reusing or sharing computation have been

proposed before. The standard clock technique in [1] is an
implementation of a Single Clock Multiple Systems
simulation. Certain computations among executions of the
simulations are shared under the assumption that the time
stamp assigned to events remains the same across the different

mailto:riley@ece.gatech.edu

runs. A sample path of the simulation is pre-generated and
stored. Changing a parameter of the simulation and then using
a state update mechanism to construct the new simulation
execution from the stored data can generate new executions of
the simulation. Similar techniques are explored in [2] and [3].
However, these techniques rely heavily on the use of Poisson
input processes, and are only applicable to limited classes of
models. They cannot be generally applied to arbitrary discrete
event simulations.

Other techniques improve performance by sharing
computation that is common to multiple simulation runs.
Splitting [4], a technique used in rare-event simulation, splits
the simulation at a point just before the rare-event occurs and
creates copies of the simulation to increase the number of
“hits” on the rare event. In cloning [5] decision points are
placed in the simulation where the simulation can take one of
many branches of interest. At the decision point the
simulation is cloned once for each branch thus sharing all the
computation before the cloning point.

Incremental simulation techniques described in [6] and [7]
have similarities to the approach described here. Incremental
simulation has been proposed to aid in the design of VLSI
circuits where new simulations are needed because minor
changes are made to an existing circuit. When changes are
made, incremental simulation only simulates the portion of
the circuit that has been modified, reusing the rest of the
previously completed simulation.

The approach described here differs from the previous
approaches in a couple of key aspects. The approach, though
initially targeted at communication networks, is broad enough
to be applied to other types of simulations and simulation
domains. There is no assumption made of the simulation
domain. The technique also lends itself to parallelization. As
described in later sections a sequential and parallel
implementation of this technique is presented.

3. Updateable Simulation Framework
In a conventional replicated experiment, each run is

completed, independent of the other runs. In particular, each
run does not attempt to reuse intermediate results computed
during the other runs. The basic idea in an updateable
simulation is to update a previously completed simulation run
to take into account model variations rather than re-execute
the simulation “from scratch.” Our objective is to create
algorithms whereby the updated execution produces exactly
the same results as a complete re-execution. We target
discrete event simulations in this work.

A naive approach to realizing an updateable simulation is
to simply apply Time Warp [8]. The original execution can be
logged, and new messages introduced to effect changes to the
model, e.g., changing certain model parameters. These
messages trigger Time Warp’s rollback mechanism, which
can then update the computation to take into account the
introduced model variations. Optimizations such as lazy
cancellation [9] and lazy re-evaluation [10] can be applied.

In principle, such an approach will correctly update the
simulation, however there are many instances where this
approach will result in an excessive amount of re-
computation. For example, consider a communication
network simulation where the model changes involve
modifying the size of message buffers in each switch. Simply
applying Time Warp will cause the entire simulation to be
rolled back to the beginning. Specifically, all state vectors in
the original execution corresponding to logical processes
modeling the switches will be incorrect in the modified run
because they contain incorrect message buffer size
information. This suggests Time Warp will have to
completely re-execute the simulation of the switches to create
the correct state vectors.

The above discussion suggests that Time Warp’s “black
box” view of event computations will not be sufficient for
many applications. Rather, some knowledge of the event
computation itself will have to be utilized. Automated
analysis of event computations is an open question that will
not be addressed here. Rather, we define a framework in order
to illustrate some of principles that come into play in creating
updateable simulations.

An updateable simulation relies on an initial primary
execution of the simulation to create a base line from which
results from other runs will be derived. The conjecture is that
two simulations with only a small change in their initial state
or input parameters will have similar computation histories.
By utilizing the record of the previous execution a
computational savings can be gained in three areas. The first
is the cost of maintaining a time-stamp ordered list of pending
events. The events from the primary execution are already in
timestamp order and do not need to be reordered. Second,
since events are being reused the cost of creating and
scheduling new events can be saved. Third, if one can
determine the next k events that will be executed before
processing those events, one can instead process a composed
event that produces the same results as the k events, but much
more quickly. For example, if one could determine the next k
events simply increment a variable, those events could be
replaced by one event that increments the variable by k.
Realizing this capability is not trivial in general, as will be
discussed below.

Here, a packet level ATM multiplexer simulation shall be
used as a concrete example to illustrate key concepts. The
ATM multiplexer has two inputs, each connected to bursty
ON/OFF sources and a buffer of finite capacity. The
multiplexer model includes arrival and departure events and
keeps statistics on the number of arrivals, departures, losses,
and average delayed encountered by each packet.

The following notation will be used to describe the
updateable simulation framework. The execution of any
discrete event simulation can be described as a set of events
and a set of states where the events define transitions from
one state to another. If the simulation is at state Si then event
ei+1 defines a transition from state Si to Si+1. This will be

denoted by . The execution of event ei+1 may
also schedule other events that are not explicitly shown in the
notation. The execution of the simulation can be described as
a series of state transitions:

1
1

+
+→ i

i
i SS e

n
eeee SSSS n→→→→ Λ3

2
2

1
1

0
Where S0 is the initial state and Sn is the final state of the
simulation.

The actions of the execution of an event can be placed into
two categories, the modification of state and the scheduling of
new events. Define ⊕ as the execution of an event that
modifies state and schedules new events, Si ⊕ ei+1 =
(Si+1,Enew) where Enew is the set of events scheduled by ei+1.
Define ⊗ as the state modification portion of the event
computation, i.e., Si ⊗ ei+1 = Si+1. The composition of j events
is defined as Si ⊗ ei+1 ⊗ ei+2 ⊗...⊗ ei+j-1 ⊗ ei+j =
C⊗(Si,ei+1,...ei+j). Similarly a composition can be defined using
⊕, Si ⊕ ei+1 ⊕ ei+2 ⊕...⊕ ei+j-1 ⊕ ei+j = C⊕(Si,ei+1,...ei+j).

An Updateable Simulation consists of two phases. The first
or primary phase is an execution of some base-line simulation.
This produces a set of states and a set of events that will be
used to derive new simulation executions. The second or
update phase starts with applying an Update transformation to
S0 to produce S’

0, the initial state of the new simulation. For
the remainder of this paper, events and state associated with
the update phase will have an apostrophe.

m
eeee

n
eeee

SSSS
SU

SSSS

m

n

''''
)(

''''
0

3
2

2
1

1

0

3
2

2
1

1
0

→→→→

⇓

→→→→

Λ

Λ

If an event occurs in both the primary and update phase,
and that event schedules the same new event(s) in the update
phase that were scheduled in the primary phase, the event is
said to be re-useable. New events need not be re-created and
re-scheduled for re-useable events. Certain conditions based
on the current state and possibly other information will be
discussed that can be used to identify re-useable events.
Updateable Simulation Algorithm

Figure 1 shows the updateable simulation algorithm. This
algorithm assumes the primary phase has been completed, and
E, the ordered set of events processed in the primary phase,
has been preserved. The initial state for the Update phase S’

0
is first created. In the multiplexer example, only the
BufferCapacity variable differs from the initial state
used in the primary phase. The initial state for the multiplexer
consists of all zeros except for the buffer capacity.

The set Ew is a time stamp ordered working event list and is
initialized with the set of events from the primary phase. As
the execution progresses Ew diverges from the primary phase
as new events not used in the primary phase are created and
events in the primary phase not re-used in the update phase
are canceled. The function Reuse returns the number of events
r at the head of Ew that can be reused. This means these r
events will schedule the same events in the update phase that

they scheduled in the primary phase. A more detailed
description of Reuse shall be given shortly. These r events can
be reused in one of two ways. The events could be
individually applied using the ⊗ operator to perform the
necessary state transition. Alternatively, a composite of the r
events could be defined and applied to the state. The
composite of the r events, under the ⊗ operator, performs the
same state transitions as applying the individual events, but
does so more efficiently in one event computation. We defer
discussion of the composite event computation until later.

If e cannot be reused (as determined by the Reuse
procedure), it must be re-executed. If e was an event
processed in the primary phase, events scheduled by e during
the primary phase are canceled, and e is re-executed. This
approach is similar to aggressive cancellation in Time Warp.
It is easy to see a lazy cancellation approach could easily be
utilized. This algorithm continues through Ew until all of the
events have been processed.

Given:
 E = {e1, e2,...,en} (in time stamp order)
 S0 = initial state vector in primary phase
Set:
 Ew = E, /* Ew in time-stamp order. */
 i = 0
 S’

0 = U(S0)
While (Ew not empty)
 (r,C) = Reuse(S’i,Ew)
 If (r > 0) then
 /* C = composition of next r events */
 S’

i+r = S’
i ⊗ C

 else
 e = Next event in Ew
 If (e not canceled) then
 Mark events scheduled by e canceled
 S’

i = S’
i-1 ⊕ e

 execute e, place all Enew in Ew

 (Enew are new events created by e)
 else
 Mark events scheduled by e canceled
 endif
 endif
 remove events from Ew that were processed
endwhile
Figure 1 Updateable simulation algorithm
using aggressive cancellation.

The algorithm bears some similarity to Time Warp. The
key innovations are the Reuse function and event
composition. This Reuse function identifies when an event
from the primary phase can be reused. This function is based
on a predicate that is tested against the events in Ew, the
current simulation state of the update phase, and information
stored during the primary phase. The predicate Rj(S’

i,Ew)
evaluates to true if the following three conditions hold:

1. The first j events on Ew are in E
2. E’

new = Enew
3. None of the first j events has been canceled

The first condition requires the events must have originated
from the primary execution, rather than be new events
generated during the update phase. Obviously, in order to
reuse an event’s computation (specifically its event

scheduling computations), it must have been previously
executed. The second condition requires that if the events
were re-executed during the update phase, they will create and
schedule the same events (same timestamp, event type, etc.)
that they did in the primary phase. This is not guaranteed
because the state of the simulation prior to processing the
events in the update phase may be different from what it was
in the primary phase. Determination of this condition requires
analysis of the event computation and the current state of the
simulation during the update phase, as will be discussed
momentarily. Finally, the j events must not have been
canceled. Optimizations to accommodate cancelled events are
possible, but beyond the scope of the current discussion. With
this predicate we can define the Reuse function as “return the
maximum j such that Rj is true”.

This algorithm does not attempt to update previously
scheduled events, but rather, cancels and re-creates them. One
optimization to our algorithm would relax the second
condition above, and provide a mechanism to update events
scheduled in the primary phase for use in the update phase.
This is beyond the scope of this paper, however.
ATM Multiplexer Rj Predicates

Two Rj predicates for the ATM multiplexer example are
presented next to illustrate the Reuse function. The first shown
in Figure 2 is defined for j equal to one so it is only able to tell
if the very next event on Ew can be reused. This predicate
determines if the current state of the simulation in the update
phase is sufficiently similar to the corresponding state during
the primary phase to allow the event to be reused. For
example, an arrival must have the same buffer occupancy as it
did in the primary phase otherwise the departure timestamp
will be different (violating condition 2 above). If the buffer
capacity has decreased then arrival events that scheduled
departure events may now find a full buffer and must now be
dropped. In this case the event must be re-executed. Similarly
if the buffer capacity has increased then an arrival event that
was lost in the primary phase may now be able to schedule a
departure event, so must be executed. On the other hand,
departure events can always be reused unless they have been
canceled.

The most notable drawback of R1 is that it can only
determine if one event can be reused. The next Rj predicate
operates on a set of j events, where j is specified before
executing the primary phase. To support more powerful
predicates some additional processing must be done during
the primary phase. This is required to derive some information
concerning the future of the execution for each event in the
primary phase. For instance, the number of packets lost over
the next j events in the ATM multiplexer example. If this
information is available during the update phase then more
than one event can be tested using the Rj predicate efficiently.
In general, it is important that the additional processing that is
performed during the primary phase be significantly smaller
than the corresponding efficiency gain in the update phase.

During the primary phase we compute for each event the

number of packets lost over the next k events. Using this
information a simple Rj predicate can be defined for j equal to
k (see figure 3). Let ej be the event at the head of Ew and Sj-1
be the state in the primary phase before ej is executed. The
next k events can be reused if:

1. none of the next k events has been canceled,
2. none of the next k events is new,
3. the buffer occupancy in S’

i is the same as that in
Sj-1,

4. the new buffer capacity is greater than or equal to
the buffer capacity in the primary phase,

5. there are no losses over the next k events.
Conditions 1 and 2 are easy to verify by examining the

next k events in Ew. Comparing buffer occupancy and buffer
capacity in state S’

i and Sj-1 verifies conditions 3 and 4.
Finally, condition 5 is tested using the information stored
during the primary phase. As long as there are no losses over
the next k events and the buffer occupancy has not changed
then the next k events have not been affected by the change in
initial state.

R1(S’ ,Ew) i
 BC’ = Buffer Capacity of S’

i
 BO’ = Buffer Occupancy of S’

i
 e = top of Ew, Sj is the state in the primary phase before e
 is executed (if e∈E)
 /* state logged from primary phase */
 BC = Buffer Capacity of Sj
 BO = Buffer Occupancy of Sj

 if (e ∉ E or e is canceled) then
 return(0)
 else if (e is an arrival) then
 if (BO’==BC’ and BC’<BC) then
 /*arrival now must be dropped */
 return(0)
 else if (BO’==BC’ and BC’>BC) then
 /* arrival must now be queued */
 return(0)
 else
 return(1)
 endif
 else if (e is a departure) then
 return(1)
 endif
Figure 2 R1 function for ATM multiplexer. Only
tests one event at a time.

Rk(S’

i, Ew)
 None of the first k events of Ew is new
 None of the first k events has been canceled
 L = number of losses over next k events
 If (BC’ >= BC and BO’ == BO and L == 0) then
 reuse
 else
 do not reuse
Figure 3 Rj function for ATM multiplexer uses
number of lost packets per k events to test k
events for reuse.

Composing Event Computations
The discussion thus far has focused on the problem of

determining when a set of events could be guaranteed to
schedule the same events during the update phase as they did

in the primary phase. Once this has been determined, the state
of the simulation in the update phase must be transformed to a
new state to reflect processing the events that could be reused.
Event composition is used to allow this state transformation to
be efficiently performed.

Obviously, one could simply execute each of the k events
with event creation and scheduling turned off. Event
composition improves upon this by applying the state
transition of k consecutive events to the current state as one
new event computation. In the case of the ATM multiplexer
one could derive the state transition for groups of k events.
Figure 4 shows the state transitions for four consecutive
events, and four combinations of event types. For instance, to
apply two arrivals then two departures apply the changes
specified in the AADD row to the current state. The buffer
occupancy will increase by min(2,BR), where BR is the buffer
capacity remaining (buffer capacity – buffer occupancy). If
the remaining buffer capacity is greater than two, then the two
arrival events will queue packets on the buffer. If the
remaining buffer capacity is one then only one packet will be
queued, and if the remaining buffer capacity is zero then both
packets are lost. The number of arrivals and departures is
incremented by two. The number of lost packets is determined
similar to determining the buffer occupancy. Finally, the time
in buffer can be calculated based on the number of packets
that are lost. This can be done for each valid combination of
four events. Note any combination where there are more than
two arrivals back-to-back is invalid. This is a two-input
multiplexer and during each time unit can accept only two
arrivals.

 BO A D Losses TIB
AAAA Invalid
AADD min

(2,BR)
+2 +2 max

(0,2-
BR)

L=0: 2BO+1
L=1: BO
L=2: 0

DDDA -2 +1 +3 0 BO-2
DDDD 0 0 +4 0 0
Figure 4: Change in state caused by composite of four
events. BR = Buffer Capacity Remaining, BC = Buffer
Capacity, BO = Buffer Occupancy before the event s are
executed, A = Arrival Event, D = Departure Event

The information in Figure 4 can be created in at least two
ways. For a given k the table can be created a priori and then
used during the update phase as needed. If a group of k events
can be used, then obtain the state transition for that sequence
of events from the table. General methods for performing the
composition are an interesting area of future research.

4. Case study: ATM Multiplexer
The ATM multiplexer simulation described in section 3

was implemented to demonstrate the techniques outlined
above. The implementation uses the R1 predicate defined in
Figure 2 to determine event reuse. Event composition is not
being used in these experiments. The updateable simulation
technique was applied to a sequential and a parallel version of
the ATM multiplexer. The parallel version is implemented as
a time warp optimistic simulator [8] on a shared memory
multi-processor. The application of the updateable simulation

technique is identical in both implementations.
4.1. Performance

A 31 multiplexer model is used to evaluate the
performance and effectiveness of the updateable simulation
technique. The model has 32 input sources that feed into a
bank of 16 two-input multiplexers (upstream multiplexers).
These 16 multiplexers feed into a second bank of 8
multiplexers and so on until all traffic is fed into a single
multiplexer (downstream multiplexer). The buffer sizes of the
individual multiplexers can be modified, and the input sources
can be set to produce varying traffic loads. For simplicity all
traffic sources are set to the same link utilization. For
example, a source with link utilization of 10% will generate
about 10 packets per 100-time units.

Two experiment types are used to gather performance data.
The first sets of experiments vary the capacity of the input
buffer; the second adds additional sources.

 Execution time speedup is used to evaluate the
performance of the updateable ATM simulation relative to a
non-updateable simulation. To calculate this metric the time
taken to run all the update phases of the updateable simulation
is summed. Then the time taken to run the corresponding non-
updateable simulations is summed. Then speedup is calculated
by dividing the non-updateable execution time by the
updateable execution time. This particular metric does not
include the overheads incurred during the primary phase. In
all of the ATM multiplexer experiments below the primary
phase ran about 17% slower than the corresponding non-
updateable simulation. The overhead is due to saving the state
and events. Event Reuse measures the percentage of events
that are reused from the primary phase.

The goal of these experiments is to obtain the same results
from the updateable simulation as would have been obtained
by running the non-updateable simulation. For each update
phase the statistical output produced was verified against the
output from a non-updateable simulation run.
Buffers Experiment

In the Buffers experiment the capacity of the input buffers
is decreased before each update phase. There are four
variations of this experiment 1) all of the multiplexer’s buffer
capacities are changed, 2) half changed, 3) one upstream
multiplexer is changed, and 4) the downstream multiplexer is
changed. Buffers capacities are decreased between update
sub-phases. For each experiment the background traffic
intensity is varied.

Figures 5 and 6 show the speedup and reuse ratio for the
parallel simulations. Note the speedup of the updateable
parallel simulation is relative to a non-updateable parallel
simulation. The background traffic level is 4the existing
traffic (x-axis of Figures 5 and 6) from the primary phase. For
example, a background traffic level of 15% means that all the
sources are set to a link utilization of 15%. Speedup varies
considerably depending on which multiplexer is updated and
the level of traffic. If the downstream multiplexer is updated

Despite the fact that the majority of events were not reused
when half or all of the multiplexer’s buffers were changed,
further optimization may still be possible. During the update
phase it is common for event sequences to remain the same as
in the primary phase, except the events are shifted in time. For
instance, adding an extra arrival may cause a sequence of
departure events to be delayed one time unit. This
optimization is explored briefly in the section 6.

over six-fold speedup is obtained for all traffic levels. Since
only the “last” multiplexer is updated most of the events in the
simulation are unaffected resulting in a nearly 100% reuse of
events. However, if an upstream multiplexer is updated then
speedup ranges from eleven for light traffic levels to one (no
speedup) for heavy traffic levels. An update at an upstream
multiplexer will affect more events resulting in a lower reuse
rate particularly at the heavier traffic levels.

Parallel: Update Speedup

0
2
4
6
8

10
12

15
%

26
%

35
%

45
%

48
%

54
%

58
%

60
%

Background Traffic Level

Sp
ee

du
p

Upstream Mux Downstream Mux
Half All

Figure 5: Speedup of update phase versus
non-updateable ATM simulation.

Parallel: Reuse Ratio

0
0.2
0.4
0.6
0.8

1

15% 26% 35% 45% 48% 54% 58% 60%
Background Traffic Level

R
eu

se
 R

at
io

Upstream Mux Downstream Mux
Half All

Figure 6: Percentage of events reused during
the update phase.

New Sources Experiment
The New Sources experiment uses the same model as the

Buffers experiment but now the buffer sizes are held constant
between runs and new sources are turned on in each update
phase. One, two, three, or four new sources are activated at
upstream multiplexers for each of the background traffic
levels.

Sequential: Update Speedup

0

2

4

6

15% 26% 35% 45% 48% 54% 58% 60%
Background Traffic Level

Sp
ee

du
p

One New Src Two New Src's
Three New Src's Four New Src's

Figure 7: Speedup of update phase versus
non-updateable ATM simulation.

Sequential: Reuse Ratio

0
0.2
0.4
0.6
0.8

1

15% 26% 35% 45% 48% 54% 58% 60%
Background Traffic Level

R
eu

se
 R

at
io

One New Src Two New Src's
Three New Src's Four New Src's

Figure 8: Percentage of events reused during
the update phase.

When the capacities of all multiplexer buffers are changed
the speed up is slightly less than two for the lightest traffic
level. As the traffic level is increased there is little to no
speedup, and for the highest three traffic levels there is a
slight slow down. As more and more packets arrive the input
buffers become saturated causing packets to be dropped. This
effect spreads to multiplexers down stream and causes most
events not to be reused, so the reuse rate declines to almost
zero. The slow down for the three highest source levels are
not unexpected. Nearly all of the events must be executed and
there is an added cost of applying the reuse predicate. One
possible solution to avoid this performance degradation is to
detect when the state of the simulation as a whole has
diverged sufficiently from the primary run then switch off all
updateable simulation support.

Figures 7 and 8 show the speedup and reuse ratio for the
sequential implementation of the simulation. The x-axis is the
same as in Figures 5 and 6. As the background traffic level
increases the reuse rate and speedup increase. This seems
counter-intuitive but at higher background traffic levels there
is a higher probability of packets being lost. So in fact the
packets from the new sources are being dropped earlier
limiting the changes caused by the new sources.

5. Case Study: ATM Switch
The ATM switch simulation uses the same event types as

the ATM multiplexer but with additional code to forward
packets along the designated circuit. The update algorithm
used in the ATM multiplexer does not reuse events where the
only difference is the time stamp. The update algorithm used
in the ATM switch simulation will detect when an event’s
time stamp must be changed and make the necessary change
to allow the event to be re-used. Care is taken to ensure that
all events are processed in time stamp order. The algorithm
used here is based on the algorithm in Figure 2 except now the
Reuse function now returns a set of events with altered time
stamps.

For the event reuse analysis events are placed into five
categories. Identical events are events that have the same time
stamp and perform the same state transition. Delta TS events
are events where the time stamp is changed but the event itself
does not change. Skipped events are identical events but
application of the reuse function to these events can be
avoided. If an update does not affect an object then all of the
events will be the same. The object can be “fast-forwarded” to
its final state. If the update does not affect the object until
simulation time t then all of the events with time stamp t will
be unaffected. By saving an objects state before each event is
executed it is possible implement a fast forward mechanism
that eliminates having to apply the Reuse function to these
events. The final two categories are new events and canceled
events.
5.1. Performance

A network of fifty-one switches is used to evaluate
performance. The switches are divided into ten subnetworks
containing five switches each and one central switch
connecting the ten subnetworks together. Switches within
each subnetwork are fully connected.

An experiment similar to the new sources experiment for
the ATM multiplexer is used to evaluate performance. The
experiment has five local circuits in each subnetwork each
with a link utilization of 20%. In each update phase a new
circuit is added with a link utilization of 20% that connects
two subnetworks. Essentially global flows are added to the
simulation in each update phase. In update phase 1 one new
circuit is added, in update phase 2 two new circuits are added,
and so on.

With only one new circuit the speedup is nearly 7 times,
see Figure 9. A single new circuit does not perturb the
simulation greatly allowing many events to be skipped and the
majority of the rest of the events can be reused, see Figure 10.
As the number of new circuits is increased there is a greater
perturbation to the simulation causing fewer events to be
skipped but more events are identical. The events created by
the new circuits increase the probability that a simulation
object will be affected by the update earlier in simulation
time. The earlier in simulation time an object is affected by an
update the fewer events that are skipped. However, in these

experiments a large portion of the events is still identical. This
explains why the percentage of skipped events drops and
identical events rises between one and five new circuits. After
that point the new circuits cause more packets to be delayed
resulting in fewer identical events and more delta TS events.

Updateable Switch Speedup

0

2
4

6

8

1 2 3 4 5 6 7 8 9 10
Number of new circuits

Sp
ee

du
p

Figure 9: Speedup of update phase versus
non-updateable ATM switch simulation

Switch Events

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9 10
Update phase

Pe
rc

en
ta

ge
 o

f
Ev

en
ts

Identical Delta TS Canceled
New Skipped

Figure 10: Categorization of events in switch
simulation.

6. Future Work
The simulations described in this paper are used to

illustrate techniques to realize updateable simulation. There
are many areas requiring further research. First, managing the
information that is saved during the primary phase must be
done efficiently to realize good performance. For long
running simulations the amount of information that will need
to be stored can be vast. Efficient techniques to compress,
store (to secondary storage), and load (from secondary
storage) this data are needed.

Another enhancement to the technique includes developing
Rj for j larger than one. Unfortunately time did not permit
implementation of the reuse-predicates described in section 3.
We believe a more powerful reuse predicate and use of event
composition will improve performance.

The correctness of the simulation results will also have to
be addressed. For now the results of the updateable simulation
are compared against the results of a traditional simulation to
verify correct execution. The correctness of the updateable

simulation will rest heavily on the correctness of the reuse
predicate. In addition to automatically generating reuse
predicates for a given simulation there must be a methodology
to verify correctness. However, relaxing correctness
requirements may lead to a class of reuse predicates the will
produce approximate results bounded by some error. It may
be reasonable to sacrifice some accuracy for a significant gain
in performance.

To provide more robust, meaningful results we are
examining implementation of this technique in a large existing
simulation package such ns2 [11]. An analysis of a simple ns
simulation showed that this technique shows promise even
with more complex TCP/IP simulations. A base line
simulation with four TCP flows was run logging all of the
events. Then 10 additional runs were made adding a new TCP
flow for each run. The analysis showed that a significant
number of events were delayed (time stamp is different) but
not altered, see Figure 11. This suggests that an updateable
simulation capable of dealing with time stamp changes events
could perform well.

ns TCP Simulation analysis

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9 10
Number of New Flows

Pe
rc

en
ta

ge
 o

f
Ev

en
ts

Identical Events Delayed Events
New Events Modified Events

Figure 11: Categorization of events in an ns
simulation
7. Conclusions

A general framework for realizing updateable simulation
was presented. The premise of the framework is that multiple
simulation runs may share a considerable amount of
computation and reusing this computation will provide a
speedup. An important task is to identify when an event or
events can be reused. This task is performed by a Reuse
procedure that uses information stored during the primary
phase to quickly determine when an event or events and be
reused. Efficiency of the update then becomes tightly bound
to how efficiently the Reuse procedure can be implemented.
Unfortunately due to space constraints an analysis of the reuse
procedure used in this paper could not be presented here.

The updateable simulation techniques were applied to a
sequential and parallel packet level ATM multiplexer
simulation. In both implementations execution time speedup
was achieved despite using a Reuse procedure that only
evaluated one event at a time. An ATM switch was also
implemented using an update algorithm that could
accommodate changing the time stamp of an event.

Key areas of further research were identified ranging from

event composition, state compression, and correctness of
updateable simulations. Finally, additional work is required to
consider implementation of an updateable simulation using
existing simulators such as ns2.

8. Acknowledgements
This research was funded by Defense Advanced Research
Projects Agency, contract N66001-00-1-8934, and National
Science Foundation Grant ANI-9977544.

9. References
1. Vakili, P., Massively Parallel and Distributed Simulation

of a Class of Discrete Event Systems: A Different
Perspective. ACM Transactions on Modeling and
Computer Simulation, 1992. 2(3): p. 214-238.

2. Cassandras, C.G., J.-I. Lee, and Y.-C. Ho, Efficient
Parametric Analysis of Performance Measures for
Communication Networks. IEEE Journal on Selected Areas
in Communication, 1990. 8(9): p. 1709-1722.

3. Glynn, P.W. and P. Heidelberger, Analysis of Parallel
Replicated Simulations Under a Completion Time
Constraint. ACM Transactions on Modeling and Computer
Simulation, 1991. 1(1): p. 3-23.

4. Glasserman, P., P. Heidelberger, and P. Shahabuddin.
Splitting for Rare Event Simulation: Analysis of Simple
Cases. in Winter Simulation Conference. 1996. Coronado,
California, USA.

5. Hybinette, M. and R.M. Fujimoto. Cloning, a Novel
Method for Interactive Parallel Simulation. in Winter
Simulation Conference. December 1997.

6. Hwang, S.Y., T. Blank, and K. Choi, Fast Functional
Simulation: An Incremental Approach. IEEE Transactions
on Computer-Aided Design of Integrated Circuit Systems,
1988. 7(7): p. 765-774.

7. Choi, K., S.Y. Hwang, and T. Blank. Incremental-in-Time
Algorithm for Digital Simulation. in 25th ACM/IEEE
Design Automation Conference, 1988 Proceedings. 1988.

8. Jefferson, D.R., et al., The Time Warp Operating Systems,
in 11th Symposium on Operating Systems Principles. 1987.
p. 77-93.

9. Gafni, A., Rollback Mechanisms for Optimistic Distributed
Simulation Systems, in Proceedings of the SCS
Multiconference on Distributed Simulation. 1988. p. 61-67.

10. West, D., Optimizing Time Warp: Lazy Rollback and Lazy
Re-evaluation, in Computer Science Department. 1988,
University of Calgary: Calgary, Alberta Canada.

11. Team, T.V.P., ns Notes and Documentation. 1998.

	Introduction
	Related Work
	Updateable Simulation Framework
	
	
	Figure 1 Updateable simulation algorithm using aggressive cancellation.
	Figure 2 R1 function for ATM multiplexer. Only tests one event at a time.
	Figure 3 Rj function for ATM multiplexer uses number of lost packets per k events to test k events for reuse.
	Figure 4: Change in state caused by composite of four events. BR = Buffer Capacity Remaining, BC = Buffer Capacity, BO = Buffer Occupancy before the event s are executed, A = Arrival Event, D = Departure Event

	Case study: ATM Multiplexer
	Performance
	
	Buffers Experiment
	Figure 5: Speedup of update phase versus non-updateable ATM simulation.
	Figure 6: Percentage of events reused during the update phase.
	Despite the fact that the majority of events were
	New Sources Experiment
	Figure 7: Speedup of update phase versus non-updateable ATM simulation.
	Figure 8: Percentage of events reused during the update phase.

	Case Study: ATM Switch
	Performance
	
	Figure 9: Speedup of update phase versus non-updateable ATM switch simulation
	Figure 10: Categorization of events in switch simulation.

	Future Work
	
	
	Figure 11: Categorization of events in an ns simulation

	Conclusions
	Acknowledgements
	References

