
Experiences Applying Parallel and Interoperable Network Simulation
Techniques in On-line Simulations of Military Networks

Kalyan Perumalla, Richard Fujimoto, Thom McLean and George Riley

kalyan@cc.gatech.edu fujimoto@cc.gatech.edu thom@cc.gatech.edu riley@ece.gatech.edu

College of Computing, Georgia Institute of Technology
 Atlanta, GA 30332-0280

Abstract
We present a case study in which we apply parallel

simulation methods and interoperability techniques to
network simulations for simulation-based on-line control
of military communication networks. The on-line
simulations model actual military networks, including
wired shipboard sub-networks connected via satellite
links, and wireless mobile devices. The modeled scenario
depicts the communication requirements of an
amphibious landing where a complex network connects
troops ashore and naval vessels. The simulations use a
heterogeneous set of tools, including ns2 models for
shipboard wired networks, and GloMoSim models for the
wireless devices. In this paper, we document the
challenges we encountered in applying parallel and
interoperable simulation methods, and describe our
solutions. We describe our experiences in addressing the
interoperability problems that naturally arose due to the
heterogeneity of scenario models. We also present a
preliminary study on the scalability of real-time
performance of parallel network simulations, which is
crucial for on-line simulations. Salient system
characteristics of the subject military network scenarios
are described for the benefit of exposure to the modeling
and simulation research community. Our exercise not
only highlights the relevance of parallel and distributed
simulation techniques to an important real-life problem,
but also demonstrates the feasibility of applying those
techniques in a practical setting.

1. Introduction
As part of some of our recent network modeling and

simulation projects[1], we were presented with a
challenging problem of delivering parallel and distributed
simulation solutions to on-line network management in
certain portions of defense networks. The military
scenarios of interest involved heterogeneous network
models and configurations spanning different network
simulators. The objectives of the project called for
integrated simulation of a few diverse military network
scenarios, executing at least as fast as real-time to aid in
simulation-based on-line network control. Interestingly,
as the detailed requirements unfolded, it became clear that
we were presented with an opportunity to apply parallel
and distributed simulation methodology and techniques to

realizing the overall objectives. New integration
(federating) techniques were needed for the interoperation
of the military scenario models written using
heterogeneous network simulators. Parallel simulation
techniques were called for to achieve faster-than-real-time
execution of potentially large network configurations.

When we undertook the work and started developing
the integrated execution framework, we were faced with
issues concerning interoperability, configuration and
performance of the simulated network models for the
scenarios at hand. Here we document our experiences
along these fronts. First, we present an overview of the
simulation-based on-line network control framework and
a description of the specific military network
configurations and scenarios used in our project. We
follow this with an identification of the issues we
confronted, along with a description of our solutions, in
terms of interoperability, configuration and performance.
Finally, we conclude with a summary and status, and
identify open issues and future work.

2. Background
We first present the context for simulation-based on-

line control in military networks, and describe details of
our subject scenarios along with our implementation
software framework for their interoperable distributed
simulation.

2.1. Military Networks
Modern military operations are becoming increasingly

reliant on network communications and connectivity. As
the foundation of military command and control
architectures, reliable and adaptive communication
capabilities can translate to significant operational
advantages during actual military engagement. For
example, timely and accurate exchange of critical
information, such as position updates calls for fire, and
medical evacuations can considerably enhance the ability
of military personnel to make informed critical decisions,
and lessen the probability of “blue-on-blue” (fratricide)
incidents.

However, due to the inherent unpredictability and
dynamically changing nature of hostile battlefield
environments and outcomes during engagement, it is

extremely difficult to provision for, plan and design
network operation in advance for reliable and/or efficient
operation. For instance, devices can be destroyed or can
fail or malfunction. Environmental changes, such as
introduction of new obstacles or devices moving out of
range of each other, greatly affect the connectivity and
quality of network operation. To compensate, military
network managers must make real-time decisions about
deployment of new assets, or reconfiguration of existing
assets during operation. The network managers attempt
to maintain the required level of network connectivity and
Quality of Service when both the availability of the
equipment as well as the load demands on the equipment
are changing dynamically.

2.2. Simulation-based On-line Control

Back-end
CPU farm
at remote

high-performance
computing site

Real-time monitoring tools
characterize network

traffic flows

Graphical display of
simulation outputs

Operational
Network

Fast on-line simulations
forecast behavior of

alternate
network configurations

Reconfigure network to
meet QOS objectives for

time critical traffic

Back-end
CPU farm
at remote

high-performance
computing site

Real-time monitoring tools
characterize network

traffic flows

Graphical display of
simulation outputs

Operational
Network

Operational
Network

Fast on-line simulations
forecast behavior of

alternate
network configurations

Reconfigure network to
meet QOS objectives for

time critical traffic

Figure 1: Illustration of simulation-based on-line
network control loop.

On-line simulations[5] offer a solution to this problem
of dynamic network control. Decisions backed by
extensive quantitative analysis can be made by evaluating
multiple alternative scenarios and choices concurrently in
real-time, and by picking the best alternative from among
them. For example, managers can evaluate the outcomes
of varying multiple parameters at their disposal, such as
introducing new assets, or changing bandwidth or
frequency allocations of existing assets, adjusting traffic
priority levels, restricting flows from certain classes of
traffic, and so on.

The simulation-based on-line network control loop is
depicted in Figure 1. Network monitoring tools track the
state of the network and its data traffic flows in real-time,
and feed that data into fast on-line simulations executed
on high performance computing platforms. Multiple
concurrent simulations evaluate the effects of multiple
‘what-if’ scenarios, and produce performance estimates of
the reconfigured network scenarios. The predicted
estimates are then analyzed, and the optimal configuration
is then fed back to the network manager, which in turn

initiates the reconfiguration actions on the actual network.

 Network Monitor

Simulator

Analyzer

Network Manager

Network
flow data

Network
metrics

Control
messages

Figure 2: Functional view of the on-line network

management loop. Shaded blocks correspond to a
single phase in the loop.

In Figure 2, a functional view is shown of the elements
and their interactions within the on-line simulation loop.
The shaded portions together represent the activity
periods of each element corresponding to a single
iteration cycle around the loop. The data flow between
the activity threads represents dependencies between
them. The prefix portion of the simulator thread
corresponds to initialization that sometimes can proceed
concurrently with network monitoring (e.g. route table
computation).

In this research, we investigate the use of parallel and
distributed network simulation methods in on-line
simulations providing real-time feedback to military
network managers. Clearly, to be useful to the manager,
the simulation results must be produced at least as fast as
real-time, and must represent an accurate picture of the
current state of the network. The simulations in our
research use actual measured traffic loads for portions of
the network, and run a number of different scenarios
(such as adjusting priority levels on certain flow classes)
that allow the network manager to predict the effect of a
set of adjustments and choose the best performing one to
adapt to changing network topology and requirements.

2.3. Military Network Scenarios
The integrated simulation scenario that formed the

initial subject of our study is illustrated in Figure 3, which
shows several ships linked via satellite communicating
with amphibious-landing troops.

The sea-based portion of our baseline scenario
consisted of 7 ships containing onboard computers. Each
ship contains a 100Mbps local area network connecting
its onboard computers, and a gateway node on each ship
connects the onboard systems to the rest of the world via
a 64Kbps satellite link. A variety of application classes
are hosted on the onboard systems, including military-

specific applications, as well as conventional applications
such as email, HTTP, and chat clients and servers.
Within each ship, a significant portion of data traffic stays
within the local area network, whereas the rest of the data
gets transported over the satellite link on a highly
regulated and prioritized basis. Land-based systems and
control stations are connected to the ships via their
satellite links alone.

Ad hoc
network

Figure 3: Schematic of the afloat and ground entities
communicating in the simulated scenarios.

The amphibious-landing portion of the scenario
consisted of 64 mobile entities, each possessing an IEEE
802.11b 11Mbps wireless network interface, operating in
ad-hoc network mode. A few of the systems that are
afloat are connected to gateway mobile nodes via
medium-range (line-of-sight) links. The rest of the
mobile nodes communicate with the ships via the gateway
mobile nodes.

For simulation purposes, traffic load measurements for
the shipboard systems were collected using data
collection tools (described later) from an unclassified
replica of an operational classified test-bed. The traffic is
then summarized and modeled in terms of periodic TCP
data generators.

2.4. Simulators and Backplane
The shipboard systems, land-based control station

systems and the satellite links were all modeled in the ns-
2 simulator[1]. A model of the amphibious landing
scenario existed before our project, and was written using
the GloMoSim simulator[10] by other groups and
validated in projects separate from ours. The ns-2 models
were written in a combination of C++ and Tcl languages,
while the GloMoSim models were written in C. The
GloMoSim scenario included mobility models for
movement on the terrain by the mobile entities.

GloMoSim was an appropriate simulator of choice for
the mobile portion of the scenario due to its rich set of
mobile wireless network models. Similarly, ns-2
accurately fit the requirements of detailed and flexible
TCP models for the wired portion of the network.

For integration purposes, we used our dynamic
simulation backplane software[5] that facilitates rapid
integration of network simulators based on existing
network standards. The backplane supports dynamic
binding and transformation of network data among
heterogeneous simulators.

3. Network Simulator Interoperability
One of the key challenges was the integration of the

scenario models written in different simulators, namely,
ns-2 and GloMoSim. The shipboard networks and
satellite communication models were written in ns-2,
while the wireless mobile networks of the amphibious-
landing portion were written in GloMoSim. In order to be
able to simulate data traffic exchanged across the two
models, it became necessary to integrate the two network
models so that end points of network connections
spanning across the two simulators indeed successfully
connect with each other, and are able to exchange data
packets between themselves. Thus, TCP sources in
GloMoSim needed to connect to TCP sinks in ns-2 and
vice versa, and exchange TCP/IP packets between them.

3.1. TCP Model Interoperability
For the TCP endpoints in the shipboard networks, the

ns-2 scenario used the FullTCP model, which is a fairly
detailed implementation of the TCP standard
specification. The corresponding TCP endpoints in
GloMoSim utilized the built-in TCP model of GloMoSim,
which is based on actual BSD UNIX source code for TCP
stack processing.

While the TCP models in both ns-2 and GloMoSim are
fairly detailed TCP implementations, and mostly faithful
to the TCP standards, they possessed sufficiently different
properties to make their integration challenging.
Resolving each and every disparity is crucial for correct
operation – otherwise packets can, at best, mysteriously
disappear in either simulator. For example, the TCP input
packet-processing code in GloMoSim is especially
challenging, containing at least 29 distinct conditions
tested on packet contents at different places, any of which
can cause an incoming TCP packet to be discarded. In the
worst case, the simulators can abruptly fail due to failed
assertions or other runtime errors.

Some of the important disparities in TCP handling
between ns-2 and GloMoSim are as follows.

1. GloMoSim computes checksums on all TCP packets
it generates. Hence it expects checksums on the

packets it receives, and drops the packets whose
checksums are incorrect. Ns-2, on the other hand,
does not deal with checksums. For packets
generated by GloMoSim and destined to ns-2, it is
straightforward to import the packet by just ignoring
the checksum portion of the header. However, for
packets going in the reverse direction, the packet
transformation process is more complex since
checksums need to be correctly added to the ns-2
TCP packet in order to convert to a GloMoSim TCP
packet. Failing to do so would consistently cause
GloMoSim to drop all packets originating from ns-2.
An easier, but less satisfactory, solution is to turn off
checksum checks in GloMoSim, which is what we
adopted, in interest of expediency of
implementation. Although turning off checksums
has the drawback of not dealing correctly with link
models that simulate data corruption, it did not
present a problem in our scenario that did not use
such link models.

2. To support implementation-specific extensions, TCP
includes facilities to append optional field values to
the header. While GloMoSim utilizes this feature
and adds certain optional header information, ns-2
does not contain support for the same, and hence
gets quite confused if the packet header includes
optional fields. The solution is to correctly parse the
TCP headers in the backplane and strip optional
fields in GloMoSim-generated TCP packets before
submitting them to ns-2. Since optional fields can
by definition be ignored, correct operation is ensured
despite discarding those values at the receiver end.
Again, a less appealing, but more expedient, solution
that we adopted is turning off the generation of
optional fields in GloMoSim.

3. Packet fragmentation is another feature in which
GloMoSim and ns-2 differ. GloMoSim (partially)
supports fragmentation of packets, and sets the IP
header values accordingly. On the other hand, ns-2
has little support for packet fragmentation. A
comprehensive solution to this incompatibility is
inherently complex, since it requires addition of the
missing fragmentation feature to ns-2, which can
entail significant source code modification. We
adopted an ad-hoc solution by ensuring that no
fragmented packets were ever sent by GloMoSim to
ns-2.

4. While both ns-2 and GloMoSim model sequence
and acknowledgement numbers in TCP headers, the
numbers are mismatched between the two
simulators. Whereas GloMoSim starts its numbers
at zero, ns-2 generates packets with sequence and
acknowledgement numbers starting with negative
one. Although truly compatible TCP

implementations should be able to accept and honor
any starting values for those fields in the headers, it
was necessary to convert them in the backplane to
the specific values expected by each simulator for
correct operation. Otherwise, connections would
succeed, but data exchange would fail on both sides
– either packets would be buffered indefinitely or
would be discarded promptly, due to mismatched
sequence numbers.

5. Window size specifications in TCP headers are
handled differently in ns-2 and GloMoSim. While
GloMoSim has the capability to accept and properly
process receiver-advertised window size setting, ns-
2 does not. We addressed this problem by keeping
the receiver-advertised window size fixed at a
default value. Our solution, although expedient, is
sub-optimal in scenarios that require experimenting
with window size adjustments at runtime.

The remaining protocol header values are generated
and accepted by both simulators in a compatible fashion,
adhering to the TCP standard. In both GloMoSim and ns-
2, TCP SYN packets are acknowledged with SYN-ACK
packets, thus allowing new TCP connection requests to
complete correctly. Source and destination port numbers,
acknowledgements and retransmissions are also modeled
compatibly.

The rest of simulator integration was relatively
straightforward, using well-known techniques for event
exchange via RTI state update interface, and coordinating
simulation time advances via RTI time management
services. Similarly, it was straightforward to apply proxy
and remote link techniques[6] for capturing packets
originating in one simulator destined for sub-networks in
a different simulator, and re-routing them to the proper
remote nodes.

The biggest problem with achieving interoperability
was not in finding the solution to the problems, but in fact
in finding the actual sources of the problems. Although
the disparities were easy to fix in retrospect, it was
extremely time consuming to trace backwards in
execution to find the cause of anomalous simulator
operation. Once found, each disparity was relatively
straightforward to fix.

3.2. General Model Interoperability
Although our preceding experiences have been specific

to TCP model compatibility issues, it is possible to
extrapolate to other models as well. Similar semantic
compatibility issues are bound to arise with ATM network
models, for example.

When viewed at a higher level, the interoperability
issues we encountered with GloMoSim and ns-2 models
can be abstracted in the context of the general problem of

integrating different protocol models. The grand goal of
interoperable simulations is to enable the user to pick and
choose models from different simulators, and be able to
mix and match them as needed by the user. At the heart
of the issue is the fact that different models incorporate
different amount of detail for the same protocol (e.g.
checksum vs. no checksum, fragmentation vs. no
fragmentation). Even in the case of matching amount of
detail, often, different models have disparate
implementations for the same features of the same
protocol (e.g., different initial values for TCP sequence
numbers, different treatment of TCP window sizes).

Solution Approaches

One approach to deal with this heterogeneity is to
require that all models that need to be interoperated fully
conform to network standard specifications. For example,
we can require that both ns-2 and GloMoSim fully
conform to TCP standards. Complete conformance to
standards by definition ensures interoperability.
However, this can be quite constraining for achieving
interoperability. Modifying the models might not be
straightforward, and can entail significant development
and testing. Moreover, this approach curtails potentially
optimized models that abstract away minor operational
details of protocols for runtime and memory efficiency of
simulation.

Another alternative could be to let the runtime
infrastructure such as our backplane implement and
supply the missing features, and provide the necessary
additions and conversions among the different model
variants. This enables plugging in different models
without fear of missing functionality. However, a major
drawback of this approach is that the integrating
infrastructure itself can end up becoming model-heavy,
with a large repository of fallback protocol features
incorporated to accommodate all possible combinations of
models. The infrastructure thus asymptotically
approaches becoming a model-rich simulator all by itself.

For any given protocol in general, it appears that the
best approach would not be evident until it is attempted to
integrate some representative or prevalent models.

4. Simulated Network Topology and
Data Specification

Another problem that we faced was that we had to
contend with multiple data formats for input and output
specification of both network node configuration and
network traffic data. The ns-2 portion of the scenario (the
shipboard assets, satellite links, and corresponding wired
ground equipment) was coded in the Otcl language, as are
all ns-2 scripts. The wireless portion of the scenario was
given in a Scenario Description File (SDF) format[12]

which specifies fixed and mobile wireless
communications devices, device mobility, and the data
exchanged among the devices.

In order to describe an integrated simulation across
differing simulators, there must be some method for each
simulator to be aware of and be able to refer to devices
defined in the other simulators. Connection endpoints
that are on different, and possibly dissimilar, simulators
must be known to each other to specify endpoint
addresses. Secondly, the specification of the simulation
in two different languages puts an undue burden on the
user, requiring detailed knowledge of multiple simulation
environments.

Our solution to these problems was twofold – one was
to develop a unified specification interface, and the
second was to develop conversion tools to convert
individual formats to the unified interface.

First, we developed a unified interface to both ns-2 and
GloMoSim scenarios, by extending the ns-2 configuration
to be a union of ns-2 and GloMoSim configuration
parameters. These extensions include specification of all
information required in the GloMoSim scenario
configuration files. The single ns-2 interface to both ns-2
and GloMoSim enabled the user to describe and execute a
heterogeneous simulation using a single description file,
containing both ns-2 and GloMoSim information in a
common format. The drawback of this approach is that it
is not simulator-neutral, and favors one simulator as the
master over another. A more satisfactory approach would
be to adopt a more standardized method for configuring
network simulators (say, an XML-based standard
topology, traffic and mobility specification).

 Secondly, we implemented an SDF to Otcl conversion
tool, which reads the GloMoSim-specific SDF file, and
produces an ns-2/Otcl format file containing network
configuration and data flow descriptions matching those
in the SDF. The tool helped us avoid manual conversion
of the rather voluminous data from the SDF file to the
Otcl format. Although this effort is work in progress, the
current implementation possesses sufficient functionality
to produce a reasonable subset of the total information
found in the SDF.

5. Network Monitoring, Analysis and
Reconfiguration

As described previously, the on-line simulation loop
consists of network monitoring tools feeding into analysis
engines that in turn spawn on-line simulations to evaluate
and pick from multiple alternative scenarios, and the best
configuration is effected on the live network via a
network management/reconfiguration tool. In our
particular military network scenario, we utilized a data
collection tool called CoralReef developed by CAIDA

[14] for sniffing and filtering the relevant data traffic on
the local area networks. The summarized traces obtained
from CoralReef were used to feed into multiple
simulation instances. For an initial proof-of-concept
capability, we employed manual observation and manual
scenario generation for the analysis portion of the control
loop. For the reconfiguration phase, we were unable to
effectuate actual reconfiguration of the network, primarily
due to constraints on access to the network test-bed
hardware. However, we do not foresee any significant
hurdles in actually employing the reconfiguration
recommendations if sufficient privileges are available to
operate on an actual operating network.

6. Performance Evaluation
We now present our preliminary performance study

aimed at analyzing and optimizing the real-time
performance of the scenario execution, and understanding
the limits on the scale of larger scenarios that can be
simulated in real-time for on-line control.

6.1. Low-latency communication
In order to achieve scalable real-time performance, it

was clear that low latency inter-processor communication
support was necessary for fast parallel execution. To this
end, we chose the commonly available shared-memory
symmetric multiprocessor (SMP) platform, and
implemented a fast shared-memory communication
mechanism. Our communication algorithm was carefully
designed to be both portable and efficient, and has been
tested on multiple platforms including SGI, Sun, HP and
Intel SMPs. On our target platform, which is Linux on
Intel processors, round-trip latency is observed to be 5-7
microseconds (for messages up to 4 Kilo bytes) on an
Intel 8-way SMP box with 550MHz processors, with a
total of 4 GB of memory.

During initialization, the UNIX System V interface is
utilized for portably mapping shared memory segments
among processes. Since system calls for synchronization
are expensive (typically consuming dozens of
microseconds per call), we avoided using system calls
beyond initialization phase. Instead, we devised and used
a pair-wise buffer pool scheme that allows efficient
synchronization for message exchanges among processors
without incurring system call penalty.

6.2. Simulator Pre-Initialization for
Static Network Configuration

Initializing the simulator even before flow data is
obtained from network monitors can save simulator
initialization time, thus reducing the overall time to
simulate the scenarios. If the simulated network is static
in nature (i.e., network size and topology doesn’t change

over time, but only the data traffic changes), then the
simulator can proceed with initialization of routing tables
and other data structures even before receiving flow data
information from the monitors. Since routing table
computation can be a time-consuming operation, pre-
computing it concurrently with network data monitoring
eliminates initialization time from the main control loop,
and hence helps reduce overall control loop latency.
While, this optimization is possible for static network
configurations, the same may not always be possible for
networks with dynamically changing connectivity, such
as in mobile networks. In the specific scenarios used in
our project, since the connectivity did not often change
within the ns-2 portion of the network models, we were in
fact able to apply this optimization and thus eliminate ns-
2’s expensive runtime overhead of route computation.

In general, however, to achieve satisfactory real-time
performance, it is necessary to address the effect of route
computation during initialization. Approaches such as
Nix Vector [5] can help compute only the routes that are
actually needed during simulation by the specific
scenario, thereby avoiding up-front runtime cost. This
becomes especially true in the case of large network
configurations simulated for relatively short periods of
operation.

The GloMoSim portion of the network used dynamic
routing models (Bellman-Ford) due to the ad-hoc mobile
nature of the wireless network devices which makes
network route setup happens inherently at runtime as part
of actual simulation, and could not be easily optimized via
pre-initialization or on-demand route computation.

6.3. On-line vs. real-time
It is worth noting the difference between on-line

simulations and strict real-time simulations. In traditional
real-time simulations (e.g. emulation), each and every
event is executed when wall clock time reaches the
timestamp of that event. In on-line simulations, on the
other hand, individual events need not be constrained by
wall clock time. Instead, it is sufficient if t seconds of
simulated time is simulated in t’ seconds of wall clock
time where t’ <= t . This means that, even though bursts
in simulation load might violate time constraints in strict
real-time simulations, it is possible to even out such bursts
over time in on-line simulations. Hence, in our
performance study, for the purposes of on-line
simulations, we consider a simulation to meet real-time if
it completes simulation of t seconds of simulated time in
less than or equal to t seconds of wall clock time, without
regard to any relation between intermediate points in wall
clock and simulated times.

Note that every real-time simulation can always serve
as an on-line simulation, but not necessarily vice versa.

6.4. Scalability of Real-time Execution
While our initial set of scenarios consisted of relatively

smaller network configurations, larger-scale scenarios are
envisioned to include multiple instantiations of the
smaller scenarios, from regional to world scale. In
anticipation of scenarios with larger network
configurations, we undertook testing the scalability of the
simulation tools. We devised a series of experiments to
evaluate scalability limits with increasing network size
and data traffic.

The aim of this study is not so much in investigating
parallel simulation performance, but in empirically
determining the scale of network sizes and traffic volumes
that we can realistically expect to simulate in real-time on
off-the-shelf hardware.

For the purposes of this study, we focused on the
shipboard networks portion of the scenarios, and used a
parallel version of ns-2, called pdns[6]. The shipboard
sub-networks were naturally partitioned across processors
by allocating all nodes belonging to the same sub-network
to the same processor. Such partitioning naturally
exposed satellite link latency as the lookahead value
across processors (approximately 230 milliseconds), since
networks across ships communicated only via satellite
links.

The network is scaled by first starting with our
baseline scenario of local area networks connected via
satellite links, including the data traffic generators from
the scenario. These data sources generate sufficient
amount of off-ship traffic to almost always keep the low-
bandwidth satellite link fully saturated. Additional nodes
are added by adding nodes within each local area
network. Along with each added node, a new data flow is
added with the newly added node as the flow source, and
a randomly chosen node as destination node within the
same local area network as the added node. Keeping the
newly added flow local to the ship is important since any
extra remote communication will result in little increase
in simulation load, as the satellite link is already fully
loaded. Hence, our scaling scheme ensures increasing
simulation load with increasing network size, which is a
worst-case condition for network scalability. This
roughly corresponds to simulating a plausible future
scenario in which the number of shipboard systems is
increased.

Figure 4 shows the time taken to simulate 300 seconds
of the network behavior as the total number of nodes in
the network is increased. The experiments were run on an
8-CPU SMP box with each processor being a 550MHz
Intel Xeon processor, with 4 GB of main memory.

It is observed that while sequential ns-2 manages better
than real-time performance until the number of nodes
nears 700, pdns keeps up with real-time up to 4500 nodes

and beyond. This shows that while our initial scenario
configurations can be easily executed by sequential ns-2,
larger-scale scenarios will need, and can indeed benefit
from, parallel execution.

0

100

200

300

400

500

600

700

0 1500 3000 4500 6000 7500
Number of network nodes

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

 Sequential
8 CPUs

Simulated time (real-time threshold)

Figure 4: Real-time performance of sequential ns-2
and parallel pdns. Pdns is observed to deliver seven-
fold increase in network size compared to sequential
ns-2, showing that thousands of network nodes can be
simulated in real-time.

7. Related Work
While interoperable simulation techniques have been

the subject of study and implementation in the defense
community for training and other purposes, little work
focused on federated simulation of heterogeneous models
of defense networks. More generally, very limited work
so far addressed the problem of rapid integration of
heterogeneous network models across different network
simulators. For example, relatively little is known about
how to make different TCP models interoperate with each
other seamlessly across simulators.

The work most closely related to this problem is [5][8],
in which heterogeneous simulation is performed by
transporting network data of a TCP model in one
simulator over an IP transport model in a different
simulator. Here, we address the problem of directly
interfacing disparate TCP models belonging to different
simulators. The direct interfacing raises interoperability
issues that are in a way different from those in other
interoperability scenarios. In previous work, inter-
simulator data exchanged across simulators is treated as
baggage – the data gets generated in a layer of one
simulator and is transported over a lower layer model in
another simulator. However, when different models
belonging to the same layer are integrated in a peer-to-
peer fashion, as in the military network scenarios here,
data can no longer be considered baggage, and hence

semantic interoperability for exchanged data needs to be
addressed.

An approach to on-line network simulation is
described in [11]. This work uses an approximate parallel
fixed-point computation to simulate the network, as
opposed to packet level simulation that is the focus of our
work. Simulation interoperability has also been dealt
with in the SEAMLSS project [12] where an approach
based on the Department of Defense High Level
Architecture [13] is used. This work has not addressed
the types of interoperability issues (e.g., TCP end nodes
modeled in different simulators) addressed in this paper.

8. Conclusion
Our case study serves to demonstrate the relevance and

applicability of both parallel network simulation
techniques as well as interoperability techniques for
heterogeneous network simulators in practical
applications. This study also identifies the issues and
challenges that arise in the application of parallel and
distributed network simulation solutions in a practical
setting.

It is interesting to note that the size of networks and
intensity of data flow in the scenarios of interest are well
within the capabilities of state-of-the-art parallel
simulation techniques. In contrast to general Internet
research into very large-scale network simulations, the
military networks of interest appear to be of manageable
size for fast real-time simulation-based on-line control.

However, in general, there are open issues that remain
to be resolved to fully enable seamless interoperability
and plug-n-play operation of heterogeneous network
models (e.g. for use in web-based network simulation).

For satisfactory real-time performance, low-latency
inter-processor communication mechanism is clearly
necessary. Our shared-memory message-passing module
enabled us to achieve the desired latency on the shared-
memory platform. However, this limits scalability to the
number of processors per SMP box. To achieve an
additional order-of-magnitude scalability (100 or more
processors) we are now developing a combination of
shared-memory and Myrinet-based hierarchical low-
latency communication support. Although other
implementations of hierarchical communication libraries
exist, such as certain MPI implementations, our
experience showed that they entail unsatisfactory latency
overheads for simulation applications. Further work is

needed to explore the best solution for scalable low-
latency communication for parallel network simulation.

References
[1] Richard Fujimoto, Kalyan Perumalla, George Riley,

Flexible, Efficient Network Emulation – A Backplane
Approach – web page,
http://www.cc.gatech.edu/computing/pads/nms.

[2] Thom McLean, Richard Fujimoto, The Federated-
simulation Development Kit: A Source-Available RTI,
Spring Simulation Interoperability Workshop, March 2001.

[3] The Network Simulator – ns2 homepage,
http://www.isi.edu/nsnam/ns/.

[4] The OPNET Network Modeler – web page,
http://www.mil3.com/products/modeler/home.ht
ml.

[5] George Riley, Mostafa Ammar, Richard Fujimoto, Kalyan
Perumalla, Donghua Xu, Distributed Network Simulations
using the Dynamic Simulation Backplane, the International
Conference on Distributed Computing Systems, April
2001.

[6] George Riley, Richard Fujimoto, Mostafa Ammar, A
Generic Framework for Parallelization of Network
Simulations, the Seventh International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, October 1999.

[7] Boleslaw Szymanski, Yu Liu, Anand Sastry, Kiran
Madnani, Real-time On-line Network Simulation,
Technical Report 04-01, Department of Computer Science,
Rensselear Polytechnic Institute, 2001.

[8] Donghua Xu, George Riley, Mostafa Ammar, Richard
Fujimoto, Split Protocol Stack Network Simulations Using
the Dynamic Simulation Backplane, the 9th International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, August 2001.

[9] Tao Ye, et al, Network Management and Control Using
Collaborative On-line Simulation, the International
Conference on Communications, 2001.

[10] Xiang Zeng, Rajive Bagrodia, Mario Gerla, GloMoSim: A
Library for Parallel Simulation of Large-scale Wireless
Networks, the 12th Workshop on Parallel and Distributed
Simulations, May 1998.

[11] B. K. Szymanski, Y. Liu, A.Sastry, and K. Madnani, Real-
Time On-Line Network Simulation, the 5th Workshop on
Distributed Simulation and Real-Time Applications, pp.
22-29, August 2001.

[12] The SEAMLSS Project, http://www.seamlss.com.
[13] High Level Architecture, Defense Modeling and

Simulation Office, http://hla.dmso.mil/.
[14] CAIDA, The CoralReef Software Suite as a Tool for System

and Network Administrators,
http://www.caida.org/tools/measurement/coralreef.

