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Abstract 
We present a case study in which we apply parallel 

simulation methods and interoperability techniques to 
network simulations for simulation-based on-line control 
of military communication networks.  The on-line 
simulations model actual military networks, including 
wired shipboard sub-networks connected via satellite 
links, and wireless mobile devices.  The modeled scenario 
depicts the communication requirements of an 
amphibious landing where a complex network connects 
troops ashore and naval vessels.  The simulations use a 
heterogeneous set of tools, including ns2 models for 
shipboard wired networks, and GloMoSim models for the 
wireless devices.  In this paper, we document the 
challenges we encountered in applying parallel and 
interoperable simulation methods, and describe our 
solutions.  We describe our experiences in addressing the 
interoperability problems that naturally arose due to the 
heterogeneity of scenario models.  We also present a 
preliminary study on the scalability of real-time 
performance of parallel network simulations, which is 
crucial for on-line simulations.  Salient system 
characteristics of the subject military network scenarios 
are described for the benefit of exposure to the modeling 
and simulation research community.  Our exercise not 
only highlights the relevance of parallel and distributed 
simulation techniques to an important real-life problem, 
but also demonstrates the feasibility of applying those 
techniques in a practical setting. 

1. Introduction 
As part of some of our recent network modeling and 

simulation projects[1], we were presented with a 
challenging problem of delivering parallel and distributed 
simulation solutions to on-line network management in 
certain portions of defense networks.  The military 
scenarios of interest involved heterogeneous network 
models and configurations spanning different network 
simulators.  The objectives of the project called for 
integrated simulation of a few diverse military network 
scenarios, executing at least as fast as real-time to aid in 
simulation-based on-line network control.  Interestingly, 
as the detailed requirements unfolded, it became clear that 
we were presented with an opportunity to apply parallel 
and distributed simulation methodology and techniques to 

realizing the overall objectives. New integration 
(federating) techniques were needed for the interoperation 
of the military scenario models written using 
heterogeneous network simulators.  Parallel simulation 
techniques were called for to achieve faster-than-real-time 
execution of potentially large network configurations. 

When we undertook the work and started developing 
the integrated execution framework, we were faced with 
issues concerning interoperability, configuration and 
performance of the simulated network models for the 
scenarios at hand.  Here we document our experiences 
along these fronts.  First, we present an overview of the 
simulation-based on-line network control framework and 
a description of the specific military network 
configurations and scenarios used in our project.  We 
follow this with an identification of the issues we 
confronted, along with a description of our solutions, in 
terms of interoperability, configuration and performance.  
Finally, we conclude with a summary and status, and 
identify open issues and future work. 

2. Background 
We first present the context for simulation-based on-

line control in military networks, and describe details of 
our subject scenarios along with our implementation 
software framework for their interoperable distributed 
simulation. 

2.1. Military Networks 
Modern military operations are becoming increasingly 

reliant on network communications and connectivity.  As 
the foundation of military command and control 
architectures, reliable and adaptive communication 
capabilities can translate to significant operational 
advantages during actual military engagement.  For 
example, timely and accurate exchange of critical 
information, such as position updates calls for fire, and 
medical evacuations can considerably enhance the ability 
of military personnel to make informed critical decisions, 
and lessen the probability of “blue-on-blue” (fratricide) 
incidents. 

However, due to the inherent unpredictability and 
dynamically changing nature of hostile battlefield 
environments and outcomes during engagement, it is 



extremely difficult to provision for, plan and design 
network operation in advance for reliable and/or efficient 
operation.  For instance, devices can be destroyed or can 
fail or malfunction.  Environmental changes, such as 
introduction of new obstacles or devices moving out of 
range of each other, greatly affect the connectivity and 
quality of network operation.  To compensate, military 
network managers must make real-time decisions about 
deployment of new assets, or reconfiguration of existing 
assets during operation.  The network managers attempt 
to maintain the required level of network connectivity and 
Quality of Service when both the availability of the 
equipment as well as the load demands on the equipment 
are changing dynamically. 

2.2. Simulation-based On-line Control 
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Figure 1: Illustration of simulation-based on-line 
network control loop. 

On-line simulations[5] offer a solution to this problem 
of dynamic network control.  Decisions backed by 
extensive quantitative analysis can be made by evaluating 
multiple alternative scenarios and choices concurrently in 
real-time, and by picking the best alternative from among 
them.  For example, managers can evaluate the outcomes 
of varying multiple parameters at their disposal, such as 
introducing new assets, or changing bandwidth or 
frequency allocations of existing assets, adjusting traffic 
priority levels, restricting flows from certain classes of 
traffic, and so on. 

The simulation-based on-line network control loop is 
depicted in Figure 1.  Network monitoring tools track the 
state of the network and its data traffic flows in real-time, 
and feed that data into fast on-line simulations executed 
on high performance computing platforms.  Multiple 
concurrent simulations evaluate the effects of multiple 
‘what-if’ scenarios, and produce performance estimates of 
the reconfigured network scenarios.  The predicted 
estimates are then analyzed, and the optimal configuration 
is then fed back to the network manager, which in turn 

initiates the reconfiguration actions on the actual network. 
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Figure 2: Functional view of the on-line network 

management loop.  Shaded blocks correspond to a 
single phase in the loop. 

In Figure 2, a functional view is shown of the elements 
and their interactions within the on-line simulation loop.  
The shaded portions together represent the activity 
periods of each element corresponding to a single 
iteration cycle around the loop.  The data flow between 
the activity threads represents dependencies between 
them.  The prefix portion of the simulator thread 
corresponds to initialization that sometimes can proceed 
concurrently with network monitoring (e.g. route table 
computation). 

In this research, we investigate the use of parallel and 
distributed network simulation methods in on-line 
simulations providing real-time feedback to military 
network managers.  Clearly, to be useful to the manager, 
the simulation results must be produced at least as fast as 
real-time, and must represent an accurate picture of the 
current state of the network. The simulations in our 
research use actual measured traffic loads for portions of 
the network, and run a number of different scenarios 
(such as adjusting priority levels on certain flow classes) 
that allow the network manager to predict the effect of a 
set of adjustments and choose the best performing one to 
adapt to changing network topology and requirements.  

2.3. Military Network Scenarios 
The integrated simulation scenario that formed the 

initial subject of our study is illustrated in Figure 3, which 
shows several ships linked via satellite communicating 
with amphibious-landing troops. 

The sea-based portion of our baseline scenario 
consisted of 7 ships containing onboard computers.  Each 
ship contains a 100Mbps local area network connecting 
its onboard computers, and a gateway node on each ship 
connects the onboard systems to the rest of the world via 
a 64Kbps satellite link.  A variety of application classes 
are hosted on the onboard systems, including military-



specific applications, as well as conventional applications 
such as email, HTTP, and chat clients and servers.  
Within each ship, a significant portion of data traffic stays 
within the local area network, whereas the rest of the data 
gets transported over the satellite link on a highly 
regulated and prioritized basis.  Land-based systems and 
control stations are connected to the ships via their 
satellite links alone. 
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Figure 3: Schematic of the afloat and ground entities 
communicating in the simulated scenarios. 

The amphibious-landing portion of the scenario 
consisted of 64 mobile entities, each possessing an IEEE 
802.11b 11Mbps wireless network interface, operating in 
ad-hoc network mode.  A few of the systems that are 
afloat are connected to gateway mobile nodes via 
medium-range (line-of-sight) links.  The rest of the 
mobile nodes communicate with the ships via the gateway 
mobile nodes. 

For simulation purposes, traffic load measurements for 
the shipboard systems were collected using data 
collection tools (described later) from an unclassified 
replica of an operational classified test-bed.  The traffic is 
then summarized and modeled in terms of periodic TCP 
data generators. 

2.4. Simulators and Backplane 
The shipboard systems, land-based control station 

systems and the satellite links were all modeled in the ns-
2 simulator[1].  A model of the amphibious landing 
scenario existed before our project, and was written using 
the GloMoSim simulator[10] by other groups and 
validated in projects separate from ours.  The ns-2 models 
were written in a combination of C++ and Tcl languages, 
while the GloMoSim models were written in C.  The 
GloMoSim scenario included mobility models for 
movement on the terrain by the mobile entities. 

GloMoSim was an appropriate simulator of choice for 
the mobile portion of the scenario due to its rich set of 
mobile wireless network models.  Similarly, ns-2 
accurately fit the requirements of detailed and flexible 
TCP models for the wired portion of the network. 

For integration purposes, we used our dynamic 
simulation backplane software[5] that facilitates rapid 
integration of network simulators based on existing 
network standards.  The backplane supports dynamic 
binding and transformation of network data among 
heterogeneous simulators. 

3. Network Simulator Interoperability 
One of the key challenges was the integration of the 

scenario models written in different simulators, namely, 
ns-2 and GloMoSim.  The shipboard networks and 
satellite communication models were written in ns-2, 
while the wireless mobile networks of the amphibious-
landing portion were written in GloMoSim.  In order to be 
able to simulate data traffic exchanged across the two 
models, it became necessary to integrate the two network 
models so that end points of network connections 
spanning across the two simulators indeed successfully 
connect with each other, and are able to exchange data 
packets between themselves.  Thus, TCP sources in 
GloMoSim needed to connect to TCP sinks in ns-2 and 
vice versa, and exchange TCP/IP packets between them. 

3.1. TCP Model Interoperability 
For the TCP endpoints in the shipboard networks, the 

ns-2 scenario used the FullTCP model, which is a fairly 
detailed implementation of the TCP standard 
specification.  The corresponding TCP endpoints in 
GloMoSim utilized the built-in TCP model of GloMoSim, 
which is based on actual BSD UNIX source code for TCP 
stack processing. 

While the TCP models in both ns-2 and GloMoSim are 
fairly detailed TCP implementations, and mostly faithful 
to the TCP standards, they possessed sufficiently different 
properties to make their integration challenging.  
Resolving each and every disparity is crucial for correct 
operation – otherwise packets can, at best, mysteriously 
disappear in either simulator.  For example, the TCP input 
packet-processing code in GloMoSim is especially 
challenging, containing at least 29 distinct conditions 
tested on packet contents at different places, any of which 
can cause an incoming TCP packet to be discarded.  In the 
worst case, the simulators can abruptly fail due to failed 
assertions or other runtime errors. 

Some of the important disparities in TCP handling 
between ns-2 and GloMoSim are as follows. 

1. GloMoSim computes checksums on all TCP packets 
it generates.  Hence it expects checksums on the 



packets it receives, and drops the packets whose 
checksums are incorrect.  Ns-2, on the other hand, 
does not deal with checksums.  For packets 
generated by GloMoSim and destined to ns-2, it is 
straightforward to import the packet by just ignoring 
the checksum portion of the header.  However, for 
packets going in the reverse direction, the packet 
transformation process is more complex since 
checksums need to be correctly added to the ns-2 
TCP packet in order to convert to a GloMoSim TCP 
packet.  Failing to do so would consistently cause 
GloMoSim to drop all packets originating from ns-2.  
An easier, but less satisfactory, solution is to turn off 
checksum checks in GloMoSim, which is what we 
adopted, in interest of expediency of 
implementation.  Although turning off checksums 
has the drawback of not dealing correctly with link 
models that simulate data corruption, it did not 
present a problem in our scenario that did not use 
such link models. 

2. To support implementation-specific extensions, TCP 
includes facilities to append optional field values to 
the header.  While GloMoSim utilizes this feature 
and adds certain optional header information, ns-2 
does not contain support for the same, and hence 
gets quite confused if the packet header includes 
optional fields.  The solution is to correctly parse the 
TCP headers in the backplane and strip optional 
fields in GloMoSim-generated TCP packets before 
submitting them to ns-2.  Since optional fields can 
by definition be ignored, correct operation is ensured 
despite discarding those values at the receiver end.  
Again, a less appealing, but more expedient, solution 
that we adopted is turning off the generation of 
optional fields in GloMoSim. 

3. Packet fragmentation is another feature in which 
GloMoSim and ns-2 differ.  GloMoSim (partially) 
supports fragmentation of packets, and sets the IP 
header values accordingly.  On the other hand, ns-2 
has little support for packet fragmentation.  A 
comprehensive solution to this incompatibility is 
inherently complex, since it requires addition of the 
missing fragmentation feature to ns-2, which can 
entail significant source code modification.  We 
adopted an ad-hoc solution by ensuring that no 
fragmented packets were ever sent by GloMoSim to 
ns-2. 

4. While both ns-2 and GloMoSim model sequence 
and acknowledgement numbers in TCP headers, the 
numbers are mismatched between the two 
simulators.  Whereas GloMoSim starts its numbers 
at zero, ns-2 generates packets with sequence and 
acknowledgement numbers starting with negative 
one.  Although truly compatible TCP 

implementations should be able to accept and honor 
any starting values for those fields in the headers, it 
was necessary to convert them in the backplane to 
the specific values expected by each simulator for 
correct operation.  Otherwise, connections would 
succeed, but data exchange would fail on both sides 
– either packets would be buffered indefinitely or 
would be discarded promptly, due to mismatched 
sequence numbers. 

5. Window size specifications in TCP headers are 
handled differently in ns-2 and GloMoSim.  While 
GloMoSim has the capability to accept and properly 
process receiver-advertised window size setting, ns-
2 does not.  We addressed this problem by keeping 
the receiver-advertised window size fixed at a 
default value.  Our solution, although expedient, is 
sub-optimal in scenarios that require experimenting 
with window size adjustments at runtime. 

The remaining protocol header values are generated 
and accepted by both simulators in a compatible fashion, 
adhering to the TCP standard.  In both GloMoSim and ns-
2, TCP SYN packets are acknowledged with SYN-ACK 
packets, thus allowing new TCP connection requests to 
complete correctly.  Source and destination port numbers, 
acknowledgements and retransmissions are also modeled 
compatibly. 

The rest of simulator integration was relatively 
straightforward, using well-known techniques for event 
exchange via RTI state update interface, and coordinating 
simulation time advances via RTI time management 
services.  Similarly, it was straightforward to apply proxy 
and remote link techniques[6] for capturing packets 
originating in one simulator destined for sub-networks in 
a different simulator, and re-routing them to the proper 
remote nodes. 

The biggest problem with achieving interoperability 
was not in finding the solution to the problems, but in fact 
in finding the actual sources of the problems.  Although 
the disparities were easy to fix in retrospect, it was 
extremely time consuming to trace backwards in 
execution to find the cause of anomalous simulator 
operation.    Once found, each disparity was relatively 
straightforward to fix. 

3.2. General Model Interoperability 
Although our preceding experiences have been specific 

to TCP model compatibility issues, it is possible to 
extrapolate to other models as well.  Similar semantic 
compatibility issues are bound to arise with ATM network 
models, for example.   

When viewed at a higher level, the interoperability 
issues we encountered with GloMoSim and ns-2 models 
can be abstracted in the context of the general problem of 



integrating different protocol models.  The grand goal of 
interoperable simulations is to enable the user to pick and 
choose models from different simulators, and be able to 
mix and match them as needed by the user.  At the heart 
of the issue is the fact that different models incorporate 
different amount of detail for the same protocol (e.g. 
checksum vs. no checksum, fragmentation vs. no 
fragmentation).  Even in the case of matching amount of 
detail, often, different models have disparate 
implementations for the same features of the same 
protocol (e.g., different initial values for TCP sequence 
numbers, different treatment of TCP window sizes). 

 

Solution Approaches 

One approach to deal with this heterogeneity is to 
require that all models that need to be interoperated fully 
conform to network standard specifications.  For example, 
we can require that both ns-2 and GloMoSim fully 
conform to TCP standards.  Complete conformance to 
standards by definition ensures interoperability.  
However, this can be quite constraining for achieving 
interoperability.  Modifying the models might not be 
straightforward, and can entail significant development 
and testing.  Moreover, this approach curtails potentially 
optimized models that abstract away minor operational 
details of protocols for runtime and memory efficiency of 
simulation. 

Another alternative could be to let the runtime 
infrastructure such as our backplane implement and 
supply the missing features, and provide the necessary 
additions and conversions among the different model 
variants.  This enables plugging in different models 
without fear of missing functionality.  However, a major 
drawback of this approach is that the integrating 
infrastructure itself can end up becoming model-heavy, 
with a large repository of fallback protocol features 
incorporated to accommodate all possible combinations of 
models.  The infrastructure thus asymptotically 
approaches becoming a model-rich simulator all by itself. 

For any given protocol in general, it appears that the 
best approach would not be evident until it is attempted to 
integrate some representative or prevalent models. 

4. Simulated Network Topology and 
Data Specification 

Another problem that we faced was that we had to 
contend with multiple data formats for input and output 
specification of both network node configuration and 
network traffic data.  The ns-2 portion of the scenario (the 
shipboard assets, satellite links, and corresponding wired 
ground equipment) was coded in the Otcl language, as are 
all ns-2 scripts.  The wireless portion of the scenario was 
given in a Scenario Description File (SDF) format[12] 

which specifies fixed and mobile wireless 
communications devices, device mobility, and the data 
exchanged among the devices. 

In order to describe an integrated simulation across 
differing simulators, there must be some method for each 
simulator to be aware of and be able to refer to devices 
defined in the other simulators.  Connection endpoints 
that are on different, and possibly dissimilar, simulators 
must be known to each other to specify endpoint 
addresses.  Secondly, the specification of the simulation 
in two different languages puts an undue burden on the 
user, requiring detailed knowledge of multiple simulation 
environments. 

Our solution to these problems was twofold – one was 
to develop a unified specification interface, and the 
second was to develop conversion tools to convert 
individual formats to the unified interface. 

First, we developed a unified interface to both ns-2 and 
GloMoSim scenarios, by extending the ns-2 configuration 
to be a union of ns-2 and GloMoSim configuration 
parameters. These extensions include specification of all 
information required in the GloMoSim scenario 
configuration files.  The single ns-2 interface to both ns-2 
and GloMoSim enabled the user to describe and execute a 
heterogeneous simulation using a single description file, 
containing both ns-2 and GloMoSim information in a 
common format.  The drawback of this approach is that it 
is not simulator-neutral, and favors one simulator as the 
master over another.  A more satisfactory approach would 
be to adopt a more standardized method for configuring 
network simulators (say, an XML-based standard 
topology, traffic and mobility specification). 

 Secondly, we implemented an SDF to Otcl conversion 
tool, which reads the GloMoSim-specific SDF file, and 
produces an ns-2/Otcl format file containing network 
configuration and data flow descriptions matching those 
in the SDF.  The tool helped us avoid manual conversion 
of the rather voluminous data from the SDF file to the 
Otcl format.  Although this effort is work in progress, the 
current implementation possesses sufficient functionality 
to produce a reasonable subset of the total information 
found in the SDF. 

5. Network Monitoring, Analysis and 
Reconfiguration 

As described previously, the on-line simulation loop 
consists of network monitoring tools feeding into analysis 
engines that in turn spawn on-line simulations to evaluate 
and pick from multiple alternative scenarios, and the best 
configuration is effected on the live network via a 
network management/reconfiguration tool.  In our 
particular military network scenario, we utilized a data 
collection tool called CoralReef developed by CAIDA 



[14] for sniffing and filtering the relevant data traffic on 
the local area networks.  The summarized traces obtained 
from CoralReef were used to feed into multiple 
simulation instances.  For an initial proof-of-concept 
capability, we employed manual observation and manual 
scenario generation for the analysis portion of the control 
loop.  For the reconfiguration phase, we were unable to 
effectuate actual reconfiguration of the network, primarily 
due to constraints on access to the network test-bed 
hardware.   However, we do not foresee any significant 
hurdles in actually employing the reconfiguration 
recommendations if sufficient privileges are available to 
operate on an actual operating network. 

6. Performance Evaluation 
We now present our preliminary performance study 

aimed at analyzing and optimizing the real-time 
performance of the scenario execution, and understanding 
the limits on the scale of larger scenarios that can be 
simulated in real-time for on-line control. 

6.1. Low-latency communication 
In order to achieve scalable real-time performance, it 

was clear that low latency inter-processor communication 
support was necessary for fast parallel execution.  To this 
end, we chose the commonly available shared-memory 
symmetric multiprocessor (SMP) platform, and 
implemented a fast shared-memory communication 
mechanism.  Our communication algorithm was carefully 
designed to be both portable and efficient, and has been 
tested on multiple platforms including SGI, Sun, HP and 
Intel SMPs.  On our target platform, which is Linux on 
Intel processors, round-trip latency is observed to be 5-7 
microseconds (for messages up to 4 Kilo bytes) on an 
Intel 8-way SMP box with 550MHz processors, with a 
total of 4 GB of memory. 

During initialization, the UNIX System V interface is 
utilized for portably mapping shared memory segments 
among processes.  Since system calls for synchronization 
are expensive (typically consuming dozens of 
microseconds per call), we avoided using system calls 
beyond initialization phase.  Instead, we devised and used 
a pair-wise buffer pool scheme that allows efficient 
synchronization for message exchanges among processors 
without incurring system call penalty. 

6.2. Simulator Pre-Initialization for 
Static Network Configuration 

Initializing the simulator even before flow data is 
obtained from network monitors can save simulator 
initialization time, thus reducing the overall time to 
simulate the scenarios.  If the simulated network is static 
in nature (i.e., network size and topology doesn’t change 

over time, but only the data traffic changes), then the 
simulator can proceed with initialization of routing tables 
and other data structures even before receiving flow data 
information from the monitors.  Since routing table 
computation can be a time-consuming operation, pre-
computing it concurrently with network data monitoring 
eliminates initialization time from the main control loop, 
and hence helps reduce overall control loop latency.  
While, this optimization is possible for static network 
configurations, the same may not always be possible for 
networks with dynamically changing connectivity, such 
as in mobile networks.  In the specific scenarios used in 
our project, since the connectivity did not often change 
within the ns-2 portion of the network models, we were in 
fact able to apply this optimization and thus eliminate ns-
2’s expensive runtime overhead of route computation. 

In general, however, to achieve satisfactory real-time 
performance, it is necessary to address the effect of route 
computation during initialization.   Approaches such as 
Nix Vector [5] can help compute only the routes that are 
actually needed during simulation by the specific 
scenario, thereby avoiding up-front runtime cost.  This 
becomes especially true in the case of large network 
configurations simulated for relatively short periods of 
operation. 

The GloMoSim portion of the network used dynamic 
routing models (Bellman-Ford) due to the ad-hoc mobile 
nature of the wireless network devices which makes 
network route setup happens inherently at runtime as part 
of actual simulation, and could not be easily optimized via 
pre-initialization or on-demand route computation. 

6.3. On-line vs. real-time 
It is worth noting the difference between on-line 

simulations and strict real-time simulations.  In traditional 
real-time simulations (e.g. emulation), each and every 
event is executed when wall clock time reaches the 
timestamp of that event.  In on-line simulations, on the 
other hand, individual events need not be constrained by 
wall clock time.  Instead, it is sufficient if t seconds of 
simulated time is simulated in t’  seconds of wall clock 
time where t’ <= t .  This means that, even though bursts 
in simulation load might violate time constraints in strict 
real-time simulations, it is possible to even out such bursts 
over time in on-line simulations.  Hence, in our 
performance study, for the purposes of on-line 
simulations, we consider a simulation to meet real-time if 
it completes simulation of t seconds of simulated time in 
less than or equal to t seconds of wall clock time, without 
regard to any relation between intermediate points in wall 
clock and simulated times. 

Note that every real-time simulation can always serve 
as an on-line simulation, but not necessarily vice versa. 



6.4. Scalability of Real-time Execution 
While our initial set of scenarios consisted of relatively 

smaller network configurations, larger-scale scenarios are 
envisioned to include multiple instantiations of the 
smaller scenarios, from regional to world scale.  In 
anticipation of scenarios with larger network 
configurations, we undertook testing the scalability of the 
simulation tools.  We devised a series of experiments to 
evaluate scalability limits with increasing network size 
and data traffic. 

The aim of this study is not so much in investigating 
parallel simulation performance, but in empirically 
determining the scale of network sizes and traffic volumes 
that we can realistically expect to simulate in real-time on 
off-the-shelf hardware. 

For the purposes of this study, we focused on the 
shipboard networks portion of the scenarios, and used a 
parallel version of ns-2, called pdns[6].  The shipboard 
sub-networks were naturally partitioned across processors 
by allocating all nodes belonging to the same sub-network 
to the same processor.  Such partitioning naturally 
exposed satellite link latency as the lookahead value 
across processors (approximately 230 milliseconds), since 
networks across ships communicated only via satellite 
links. 

The network is scaled by first starting with our 
baseline scenario of local area networks connected via 
satellite links, including the data traffic generators from 
the scenario.  These data sources generate sufficient 
amount of off-ship traffic to almost always keep the low-
bandwidth satellite link fully saturated.  Additional nodes 
are added by adding nodes within each local area 
network.  Along with each added node, a new data flow is 
added with the newly added node as the flow source, and 
a randomly chosen node as destination node within the 
same local area network as the added node.  Keeping the 
newly added flow local to the ship is important since any 
extra remote communication will result in little increase 
in simulation load, as the satellite link is already fully 
loaded.  Hence, our scaling scheme ensures increasing 
simulation load with increasing network size, which is a 
worst-case condition for network scalability.  This 
roughly corresponds to simulating a plausible future 
scenario in which the number of shipboard systems is 
increased. 

Figure 4 shows the time taken to simulate 300 seconds 
of the network behavior as the total number of nodes in 
the network is increased.  The experiments were run on an 
8-CPU SMP box with each processor being a 550MHz 
Intel Xeon processor, with 4 GB of main memory. 

It is observed that while sequential ns-2 manages better 
than real-time performance until the number of nodes 
nears 700, pdns keeps up with real-time up to 4500 nodes 

and beyond.  This shows that while our initial scenario 
configurations can be easily executed by sequential ns-2, 
larger-scale scenarios will need, and can indeed benefit 
from, parallel execution. 
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Figure 4: Real-time performance of sequential ns-2 
and parallel pdns.   Pdns is observed to deliver seven-
fold increase in network size compared to sequential 
ns-2, showing that thousands of network nodes can be 
simulated in real-time. 

7. Related Work 
While interoperable simulation techniques have been 

the subject of study and implementation in the defense 
community for training and other purposes, little work 
focused on federated simulation of heterogeneous models 
of defense networks.  More generally, very limited work 
so far addressed the problem of rapid integration of 
heterogeneous network models across different network 
simulators.  For example, relatively little is known about 
how to make different TCP models interoperate with each 
other seamlessly across simulators. 

The work most closely related to this problem is [5][8], 
in which heterogeneous simulation is performed by 
transporting network data of a TCP model in one 
simulator over an IP transport model in a different 
simulator.  Here, we address the problem of directly 
interfacing disparate TCP models belonging to different 
simulators.  The direct interfacing raises interoperability 
issues that are in a way different from those in other 
interoperability scenarios.  In previous work, inter-
simulator data exchanged across simulators is treated as 
baggage – the data gets generated in a layer of one 
simulator and is transported over a lower layer model in 
another simulator.  However, when different models 
belonging to the same layer are integrated in a peer-to-
peer fashion, as in the military network scenarios here, 
data can no longer be considered baggage, and hence 



semantic interoperability for exchanged data needs to be 
addressed. 

An approach to on-line network simulation is 
described in [11].  This work uses an approximate parallel 
fixed-point computation to simulate the network, as 
opposed to packet level simulation that is the focus of our 
work.  Simulation interoperability has also been dealt 
with in the SEAMLSS project [12] where an approach 
based on the Department of Defense High Level 
Architecture [13] is used.  This work has not addressed 
the types of interoperability issues (e.g., TCP end nodes 
modeled in different simulators) addressed in this paper. 

8. Conclusion 
Our case study serves to demonstrate the relevance and 

applicability of both parallel network simulation 
techniques as well as interoperability techniques for 
heterogeneous network simulators in practical 
applications.  This study also identifies the issues and 
challenges that arise in the application of parallel and 
distributed network simulation solutions in a practical 
setting. 

It is interesting to note that the size of networks and 
intensity of data flow in the scenarios of interest are well 
within the capabilities of state-of-the-art parallel 
simulation techniques.  In contrast to general Internet 
research into very large-scale network simulations, the 
military networks of interest appear to be of manageable 
size for fast real-time simulation-based on-line control. 

However, in general, there are open issues that remain 
to be resolved to fully enable seamless interoperability 
and plug-n-play operation of heterogeneous network 
models (e.g. for use in web-based network simulation). 

For satisfactory real-time performance, low-latency 
inter-processor communication mechanism is clearly 
necessary.  Our shared-memory message-passing module 
enabled us to achieve the desired latency on the shared-
memory platform.  However, this limits scalability to the 
number of processors per SMP box.  To achieve an 
additional order-of-magnitude scalability (100 or more 
processors) we are now developing a combination of 
shared-memory and Myrinet-based hierarchical low-
latency communication support.  Although other 
implementations of hierarchical communication libraries 
exist, such as certain MPI implementations, our 
experience showed that they entail unsatisfactory latency 
overheads for simulation applications.  Further work is 

needed to explore the best solution for scalable low-
latency communication for parallel network simulation. 

References 
[1] Richard Fujimoto, Kalyan Perumalla, George Riley, 

Flexible, Efficient Network Emulation – A Backplane 
Approach – web page, 
http://www.cc.gatech.edu/computing/pads/nms. 

[2] Thom McLean, Richard Fujimoto, The Federated-
simulation Development Kit: A Source-Available RTI, 
Spring Simulation Interoperability Workshop, March 2001. 

[3] The Network Simulator – ns2 homepage, 
http://www.isi.edu/nsnam/ns/. 

[4] The OPNET Network Modeler – web page, 
http://www.mil3.com/products/modeler/home.ht
ml. 

[5] George Riley, Mostafa Ammar, Richard Fujimoto, Kalyan 
Perumalla, Donghua Xu, Distributed Network Simulations 
using the Dynamic Simulation Backplane, the International 
Conference on Distributed Computing Systems, April 
2001. 

[6] George Riley, Richard Fujimoto, Mostafa Ammar, A 
Generic Framework for Parallelization of Network 
Simulations, the Seventh International Symposium on 
Modeling, Analysis, and Simulation of Computer and 
Telecommunication Systems, October 1999. 

[7] Boleslaw Szymanski, Yu Liu, Anand Sastry, Kiran 
Madnani, Real-time On-line Network Simulation, 
Technical Report 04-01, Department of Computer Science, 
Rensselear Polytechnic Institute, 2001. 

[8] Donghua Xu, George Riley, Mostafa Ammar, Richard 
Fujimoto, Split Protocol Stack Network Simulations Using 
the Dynamic Simulation Backplane, the 9th International 
Symposium on Modeling, Analysis and Simulation of 
Computer and Telecommunication Systems, August 2001. 

[9] Tao Ye, et al, Network Management and Control Using 
Collaborative On-line Simulation, the International 
Conference on Communications, 2001. 

[10] Xiang Zeng, Rajive Bagrodia, Mario Gerla, GloMoSim: A 
Library for Parallel Simulation of Large-scale Wireless 
Networks, the 12th Workshop on Parallel and Distributed 
Simulations, May 1998. 

[11] B. K. Szymanski, Y. Liu, A.Sastry, and K. Madnani, Real-
Time On-Line Network Simulation, the 5th Workshop on 
Distributed Simulation and Real-Time Applications, pp. 
22-29, August 2001. 

[12] The SEAMLSS Project, http://www.seamlss.com. 
[13] High Level Architecture, Defense Modeling and 

Simulation Office, http://hla.dmso.mil/. 
[14] CAIDA, The CoralReef Software Suite as a Tool for System 

and Network Administrators, 
http://www.caida.org/tools/measurement/coralreef.

 


