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Abstract 

Federated simulation interfaces such as the High Level 
Architecture (HLA) were designed for interoperability, 
and as such are not traditionally associated with high-
performance computing.  In this paper, we present results 
of a case study examining the use of federated simulations 
using runtime infrastructure (RTI) software to realize 
large-scale parallel network simulators.  We examine the 
performance of two different federated network 
simulators, and describe RTI performance optimizations 
that were used to achieve efficient execution.  We show 
that RTI-based parallel simulations can scale extremely 
well and achieve very high speedup.  Our experiments 
yielded more than 80-fold scaled speedup in simulating 
large TCP/IP networks, demonstrating performance of up 
to 6 million simulated packet transmissions per second on 
a Linux cluster.  Networks containing up to two million 
network nodes (routers and end systems) were simulated. 

1. Introduction 
The parallel discrete event simulation community has 

traditionally realized high-performance simulators using a 
monolithic approach where the parallel simulator is 
constructed “from scratch” and all simulation software is 
designed specifically for a particular simulation 
environment. Examples of parallel network simulators 
using this approach include GloMoSim [1], TeD [2, 3], 
SSFNet [4], DaSSFNet [5], TeleSim [6], and the ATM 
simulator described in [7].  One advantage of this 
approach is that the software can be tailored to execute 
efficiently in a specific environment.  A disadvantage is 
the models must be developed “from scratch,” leading to 
much duplication of effort and lengthy delays in realizing 
the parallel simulator. 

Another approach to parallel/distributed simulation is 
to interconnect existing simulators.  These federated 
simulations may include multiple copies of the same 
simulator (modeling different portions of the system), or 
entirely different simulators. The individual simulators 
that are to be linked may be sequential or parallel.  

SIMNET was perhaps the first system utilizing this 
approach to realize distributed training simulations [8].  
An approach linking multiple copies of the commercial 
CSIM simulator is described in [9].  Industry standards for 
linking simulations have been developed, notably the 
Distributed Interactive Simulation (DIS) [10, 11] and the 
High Level Architecture (HLA) [12] standards.  The 
federated approach offers the benefits of model and 
software reuse, and the potential of rapid parallelization of 
sequential simulators.  It also offers the ability to exploit 
models and software from different simulators in one 
system [13]. 

This paper is concerned with the use of federated 
distributed simulation techniques using industry-wide 
standards to realize scalable parallel network simulations, 
thereby offering the potential to enjoy the benefits of both 
software reuse and high performance.  The effectiveness 
of the federated approach for large-scale network 
simulations has not previously been proven.  Of particular 
concern are the performance overheads incurred due to the 
runtime infrastructure (RTI) software that links the 
simulators, especially for network simulators that have 
fine-grained event computations on the order of 10 
microseconds or less for each event. 

2. Related Work 
Efforts to realize federated simulations for high 

performance computing include the SF-Express project 
that realized a DIS-based system using ModSAF [14], and 
a parallel version of CSIM that was developed for 
simulating queuing networks [9].  Our work differs from 
SF-Express in our focus on network simulations that 
require time synchronization of small granularity events.   
Our work differs from the CSIM system in our focus on 
industry-wide standards and network simulation.  The 
latter introduces significant complexities concerning 
interoperability that do not arise in queuing network 
simulations, e.g., see [15].  Other related work includes the 
backplane software described in [13, 16], and parallel 
simulators based on Opnet [15], and an aviation 
simulation called TAAM [18].  These efforts focus on 



 

interoperability issues, however, and do not address the 
question of large-scale network simulation. 

3. Background 
We briefly review implementation features of the 

monolithic and federated approaches to parallel 
simulation, and highlight some of the performance-critical 
aspects of the federated approach. 

We use HLA terminology throughout this paper.  
Specifically, a parallel/distributed simulation is referred to 
as a federation, which is composed of a number of 
simulators (termed federates) that interact through services 
provided by runtime infrastructure (RTI) software.  The 
RTI is middleware software that lies between the 
operating system and the federates.  It implements a set of 
services defined in the HLA Interface Specification 
(IFSpec).  For our purposes, the most important are the 
Object Management services that provide communication 
primitives, and the Time Management services that 
support synchronization.  See [12, 17] for an introduction 
to the HLA and IFSpec services. 

3.1. Monolithic vs. Federated  
In traditional parallel simulators, the simulator kernel 

directly handles inter-processor communication.  
Typically, the kernel is also closely coupled with time 
synchronization algorithms tailored specifically for that 
parallel simulator and computation platform.  Such direct 
communication and close coupling can potentially result 
in an optimized, high-performance implementation. 

However, in federated simulation, the RTI acts as an 
intermediate layer that decouples the federation from 
specific implementations of message passing and time 
synchronization protocols.  Event exchange is generally 
achieved via indirect communication using multicast 
group semantics.  This permits both destination naming 
independence as well as messaging optimizations in multi-
destination communication.  Time synchronization is also 
decoupled from the simulators, and implemented within 
the RTI, thus making the federation less dependent on any 
specific time synchronization protocol. 

Further, the RTIs supporting standards such as the 
HLA must accommodate a variety of simulators and 
support different synchronization protocols including time 
stepped, and conservative and optimistic event driven 
execution, possibly all within the same federation 
execution.  While any given federation typically uses only 
a subset of these options, the RTI must support all of 
them, leading to increased implementation complexity.  
Due to the general nature of a standard such as the HLA, 
the RTI cannot exploit application specific characteristics, 
e.g., a static topology among simulation processes.  Other 
potential optimizations, such as lookahead between 
specific pairs of processes, are difficult to define in a 
general way, and hence are not supported in the HLA.  

Thus, certain performance optimizations that might be 
possible in a monolithic simulation environment are 
difficult or impossible to realize in a general standard. 

Our performance study is based on two different 
network simulators: pdns and GTNetS.  Each of these two 
simulators is parallelized by self-federating the simulator 
with itself.  In other words, the parallel version of pdns is 
essentially a federation of multiple copies of sequential ns 
(and similarly for GTNetS). 

For our current purpose, namely, evaluating RTI-based 
parallelization approach, we focus on homogeneous 
federations (self-federation), and do not consider a mixture 
of dissimilar simulators. 

3.2. Federated Implementation 

1.   TimeAdvanceGrant(T) { 
 2.          granted = true; grantedtime = T; 
 3.   } 
 4.   SendEventToGroup (Event e, Group g) { 
 5.           e->timestamp = Now + LA; 
 6.           Update(e, g); 
 7.   } 
 8.   Reflect(Event e, Group g) { 
 9.            Now = e->timestamp; 
10.           ProcessEvent(e); 
11.   } 
12.  MainLoop() { 
13.           SetLookAhead(LA); 
14.           While (not end of simulation) { 
15.                   e = local min time-stamped event 
16.                   If (e->timestamp <= grantedtime) { 
17.                            Dequeue(e); 
18.                            Now = e->timestamp; 
19.                            ProcessEvent(e); 
20.                    } else { 
21.                            t = e->timestamp; 
22.                            NextEventRequest(t); 
23.                            granted = false; 
24.                            While(not granted) RTITick(); 
25.                    } 
26.            } 
27.    } 

Figure 1: Outline of NER-based approach.  RTITick() 
results in zero or more calls to Reflect() to transfer 
events from RTI to federate, followed by a call to 

TimeAdvanceGrant() to the next safe time.  Update() is 
called by the federate during event processing to send 
events to other processors via group communication. 

An HLA RTI must support multiple primitives for 
advancing simulation time to accommodate different time 
flow mechanisms.  Despite the multitude of primitives, 
they can be implemented over a single, shared core 
functionality, based on the computation of a value called 
Lower Bound on Time Stamp (LBTS). 



 

Here we focus on the NextEventRequest primitive 
(abbreviated as NER), which is used by pdns and GTNetS.  
NER is the primitive designed for use by conservative 
event driven federates, so is the most natural choice for 
these implementations.  The pseudo code for the main 
simulation loop using NER is shown in Figure 1.  
Equivalent implementations using other RTI primitives, 
namely, TimeAdvanceRequest (TAR) and 
FlushQueueRequest (FQR), are possible.  Nevertheless, 
among the different alternatives, NER is the most critical 
with respect to runtime overhead, since it is normally 
invoked prior to every local event. 

The optimizations we will describe later in the paper 
are based on the core LBTS functionality, and hence are 
generic in nature.  Thus, it is important to note that our 
approach is not necessarily limited to the 
NextEventRequest primitive, although further work is 
needed to more thoroughly evaluate the performance on 
the rest of the primitives. 

3.3. RTI Overhead 
After initialization is completed and the main 

simulation loop is entered, the federate periodically enters 
the RTI for (a) sending events (b) receiving events, and (c) 
synchronizing virtual time. In line 6 of Figure 1 the 
Update RTI primitive is used by the federate to send 
events.  Events are received by the federate using the Re 
flect callback on line 8.  On line 22, the federate uses 
NextEventRequest to request delivery of events and to 
advance simulation time.  This service will cause the RTI 
to deliver the smallest time stamped event from another 
federate (if any) that has a timestamp earlier than the 
minimum timestamp of any event in the calling federate’s 
local event list.  The RTI is given CPU cycles on line 24 
using the RTITick call (henceforth abbreviated as Tick).  
The RTI performs time synchronization and network 
processing during this call, and provides incoming 
event(s) to the federate via the Reflect callback, and grants 
time advances via the TimeAdvanceGrant callback 
(henceforth abbreviated as TAG). 

Clearly, when inter-federate communication is sparse, 
the bulk of the RTI overhead occurs within lines 22 to 24. 

4. Performance Optimization 
When we began to examine the performance of the 

federated pdns and GTNetS simulators, we observed that a 
simple 2-processor pdns run exhibited disappointing 
performance.  This experiment scaled the size of the 
simulated network in proportion to the number of 
processors.  The metrics observed in the initial 2-CPU 
pdns run are shown in Table 1. 

While we expected to see negligible RTI overhead, and 
hence near-linear speedup, we instead observed an average 
RTI overhead of over 3.6 microseconds per event. 

 

CPUs Nodes 
/ CPU 

Events/CPU 
(millions) 

Run 
Time (s) 

Mics/ 
Event 

1 3766 73.7 485    6.58 
2 3766 73.7 751  10.19 

Table 1: Initial performance of pdns on baseline RTI. 
Although an RTI overhead of 3.6 microseconds per 

event is negligible for traditional RTI-based applications, 
it is significant for the fine-grained pdns federation.  The 
RTI overhead was almost 55% of sequential event 
execution time, even with little inter-processor 
communication, warranting a closer look at the overhead. 

Upon investigation, we discovered different sources of 
overhead that, although contributing minor amounts, 
eventually added up to the cumulative overhead that was 
observed.  We now describe each of these sources, and 
outline the solutions we adopted to eliminate them and 
substantially improve the parallel performance.  For 
example, in the 2-CPU run of Table 1, as we will see, we 
were able to optimize the RTI to reduce the overhead 
down from 3.6us (55%) to just 1.2us (18%) per event. 

4.1. NLBTS 
 One of the first problems we noticed was that the RTI 

spent a significant portion of the time trying to advance 
simulation time in small increments.  The RTI computes a 
quantity called Lower Bound on Time Stamp (LBTS) of 
future events that may be received by a processor in order 
to implement HLA’s timestamp-ordered message delivery 
service.  The RTI software used in this study computes 
LBTS values asynchronously, in the background with 
other federate computations.  When a federate needs to 
advance its simulation time, the RTI initiates an LBTS 
computation if the last computed LBTS value is not large 
enough to issue the TAG. However, in the presence of a 
load imbalance where a lightly loaded processor has 
advanced ahead of the others in simulation time, this 
processor can inundate the more heavily loaded processor 
with LBTS computations.  This phenomenon can happen 
despite the presence of a large lookahead, and despite the 
fact that eventually all processors are loaded similarly.  
The fact that one processor is ahead in simulation time of 
the others is sufficient to initiate this problem.  We have 
noticed this phenomenon not only in pdns and GTNetS, 
but also in other network simulator federations. 

A simple solution is to have each processor participate 
in an LBTS computation only when it itself needs a time 
advance, thereby forcing the processor that is ahead to 
wait.  Even if a lightly loaded processor initiates an LBTS 
computation, the other processors refrain from eagerly 
responding to that computation, but instead participate 
only when they themselves run out of local computation.  
This simple rule not only tends to reduce the load 
imbalance, but also evens out any transient imbalances in 
an otherwise well-balanced federation. 

The correctness of this optimization is ensured by the 



 

fact that every federate eventually reaches its most 
recently granted time, and hence will initiate another 
LBTS computation in order to make progress.  Due to this 
effect, it is impossible for any federate to wait indefinitely, 
and overall progress is ensured in the federation. 

Of course, a drawback to this solution is that processors 
could potentially waste some amount of time waiting for a 
time advance.  However, the waiting time is not 
significant in federates that advance their time at roughly 
identical pace. 

4.2. Short Circuiting Tick Calls 
Another significant portion of the overhead is incurred 

by the federates due to the NER and Tick call combination 
required before processing each local event.  Note that the 
RTI keeps an ordered list of timestamp-ordered (TSO) 
events, so that they could be delivered in timestamp order 
according to NER semantics.  The minimum timestamped 
event in the RTI’s TSO event list is referred to as 
TSOMin.  The RTI also keeps the most recently computed 
LBTS value in a variable named LBTS.  Figure 2 shows 
the actions performed for each NER and Tick call. 

1.   NextEventRequest(T) { 
 2.           Check for error conditions; 
 3.           Set up NER pending request state; 
 4.           Compute & update new local RTI time; 
 5.           Initiate a new LBTS if necessary; 
 6.   } 
 7.   RTITick() { 
 8.           Check incoming network messages; 
 9.           Process LBTS messages; 
10.          While (there is a deliverable TSO event e) { 
11.                  Reflect(e); 
12.          } 
13.          If (can issue a time advance grant) { 
14.                  T = grantable time; 
15.                  TimeAdvanceGrant(T); 
16.          } 
17.   } 

Figure 2: NER and Tick implementation within RTI. 
Although the individual operations within NER and 

Tick are relatively simple and efficient, it is clear that they 
can accumulate if invoked very frequently.  For example, 
the check for incoming messages takes less than 0.5 
microseconds with our shared memory communication 
implementation.  Similarly, the time to process LBTS 
messages is also insignificant when considered in 
isolation.  However, together they add up to more than 3 
microseconds on a 2-CPU execution.  Furthermore, the 
overhead increases significantly when TCP 
communication is used. 

In order to address this problem, we analyzed how 
often each of the operations was indeed required, and how 
often the operations were superfluous.  It was found that in 

the vast majority of Tick calls, no incoming messages 
needed to be processed. 

Thus, an effective optimization is to short-circuit Tick 
calls to optimize the common case.  We call this approach 
the “fast-path” implementation of NER and Tick calls. It 
optimizes for the case where there are no “deliverable” 
events in the RTI’s TSO event queue, and when the 
previously computed LBTS is beyond the time advance 
requested in the NER call.  In other words, in the most 
frequent case, NER and Tick are effectively no-ops, doing 
nothing more than checking for the no-op condition and 
issuing a grant to the requested NER time. 

Figure 3 shows the “fast-path” optimization code pre-
pended to their function bodies. 

 1.   NextEventRequest(T) { 
 2.           If (T < TSOMin and T < LBTS) { 
 3.                   Mark pending request as NER(T); 
 4.                   return; 
 5.           } 
 6.           Execute as usual; 
 7.   } 
 8.   RTITick() { 
 9.           If (NER(T) is pending and 
10.               T < TSOMin and T < LBTS) { 
11.                   TimeAdvanceGrant(T); 
12.                   return; 
13.           } 
14.          Execute as usual ; 
15.   } 

Figure 3: Fast path optimization for NER and Tick 
implementation within the RTI. 

The lines 2-5 and 9-13 of Figure 3 correspond to the 
fast path optimizations.  Notice that, as a result of the fast 
path code, both the functions return immediately upon 
detecting the fast path condition, which is that no RTI 
TSO events can be delivered (T < TSOMin), and no new 
LBTS computation is required (T < LBTS).  The net effect 
of this optimization is that the NER, Tick and TAG calls 
together degenerate to a fast sequence of three short 
function calls. 

5. Performance Study 
We now present a performance analysis of federated 

execution, to demonstrate the relevance of RTI-based 
federated approaches to high-performance 
parallel/distributed simulation.  We do this using the two 
network simulators mentioned previously, namely, pdns 
and GTNetS, each of which has been parallelized using our 
HLA RTI implementation.  The HLA software in question 
implements a subset of the HLA Interface Specification 
(version 1.3).  It utilizes one notable simplification of the 
IFSpec: attribute-handle-value pair sets are not 
implemented, in favor of a simpler mechanism to pass 
attribute values to the RTI. 



 

5.1. Network Configuration 
The network topology, traffic, and parameters were 

based on the benchmark specification developed by the 
research group at Dartmouth College [4].  The 
benchmarks were developed as a set of baseline models 
for the network modeling and simulation community. The 
benchmark configurations were developed with the 
intention of facilitating the demonstration of network 
simulator scalability.  To aid in scalability studies, 
replication and expansion can be used on the original 
smaller network topology to easily create larger sized 
networks. 

Topology 
Each portion of the network is referred to as a Campus 

Network (CN).  Figure 4 shows the schematic for a typical 
CN.  Each CN consists of 4 servers, 30 routers, and 504 
clients for a total of 538 nodes.  The CN is comprised of 4 
separate networks.  Net 0 consists of 3 routers, where node 
0:0 is the gateway router for the CN.  Net 1 is composed 
of 2 routers and 4 servers.  Net 2 consists of 7 routers, 7 
LAN routers, and 294 clients.  Net 3 contains 4 routers, 5 
LAN routers, and 210 clients. 

 

 
Figure 4: Basic campus network (CN) model. 

Net 0 is connected to Net 2 and Net 3 via standalone 
routers.  Net 1 is connected directly to Net 0 through a 
single link.  All non-client links have a bandwidth of 
2Gb/s and have a propagation delay of 5ms with the 
exception of the Net 0 to Net 1 links, which have a 
propagation delay of 1ms.  Clients are connected in a 
point-to-point fashion with their respective LAN router 
and have links with 100Mb/s bandwidth and 1ms delay. 

Multiple CNs may be instantiated and connected 
together to form a ring topology.  This aspect of the 
network allows the baseline model to be easily scaled to 
arbitrarily large sizes.  Multiple CNs are interconnected 
through a high latency 200ms 2Gb/s link via their Net 0 

gateway router. 

Traffic 
In our performance study, we focus on pure TCP traffic 

requested by clients from server nodes.  All TCP traffic is 
“external” to the requesting CN clients, i.e., all the clients 
generate TCP traffic to/from servers in an adjacent CN in 
the ring (CN i communicates with CN i+1, etc.).  Also, we 
use the short transfer case of the baseline model, in which 
clients request 500,000 bytes from a random Net 1 server.  
The TCP sessions start at time selected from a uniform 
distribution over the interval from 100 and 110 seconds of 
simulation time. 

5.2. Scaling Methodology 
The experiments described here scale the size of the 

simulated network in proportion to the number of 
processors used.  This is a widely accepted approach for 
scalability studies in the high performance computing 
community.  It also circumvents the problem of having a 
sequential machine with enough memory to execute the 
entire model, which would not be possible for the large 
simulations that are considered here. 

A principal performance metric used here is the number 
of simulated “packet hops” that can be processed by the 
simulator in one second of wallclock time.  A “packet 
hop” represents the transmission of a packet from one 
node (a router or end node system) to another over a link 
in the network.  Network simulators will typically require 
more than one event to simulate a packet hop.  For 
example, pdns and GTNetS both require exactly two 
simulator events to model a packet hop. 

5.3. Simulation Platform 
All our experiments are executed on a large Linux 

cluster consisting of 16 machines. Each machine is a 
Symmetric Multi-Processor (SMP) machine with eight 
550MHz Pentium III XEON processors.  The eight CPUs 
of each machine share 4 GB of RAM. Each processor 
contains 32KB (16KB Data, 16KB Instruction) of non-
blocking L1 cache and 2MB of full-speed, non-blocking, 
unified L2 cache. An internal core interconnect utilizes a 
5-way crossbar switch connecting two 4-way processor 
buses, two interleaved memory buses, and one I/O bus. 
The operating system is Red Hat Linux 7.3 running a 
customized 2.4.18-10smp kernel. 

The 16 SMP machines are connected to each other via 
a Dual Gigabit Ethernet switch with EtherChannel 
aggregation.  Our RTI software uses shared memory for 
communications within an SMP, and TCP/IP for 
communication across SMPs. 

Note that, in the following sections, the performance 
metrics are consistent across multiple runs, and hence 
error bars are not shown. 



 

5.4. RTI Primitive Timings 
Execution times for key RTI primitives are shown in 

Table 2.  The first two lines report the time required for 
each invocation of NER and Tick, as discussed earlier.  
UpdateAttributeValues is an HLA service to send a 
message.  ReflectAttributeValues is a callback from the 
RTI that is invoked to deliver a message to the federate.  
The reported times indicate the execution time required in 
the RTI to deliver the message, and the amount of time in 
the federate (for pdns) to process incoming event. 

Primitive Portion Average Time 
(microsecs) 

NextEventRequest RTI   1.99 
RTITick RTI   3.03 
UpdateAttributeValues RTI 36.61 
ReflectAttributeValues RTI 21.28 
ReflectAttributeValues pdns 37.13 

Table 2: Micro timing measures with pdns on 16 CPUs, 
7 CN/CPU, for RTI primitives after optimizations. 

5.5. Performance after Optimizations 
 The individual and cumulative performance 

improvements provided by the NLBTS and fast path 
optimizations are shown in Figure 5 and Figure 6 for pdns, 
and in Figure 7 for GTNetS.  The 1-processor data point in 
the figures corresponds to executing the parallel version 
on a single CPU. 
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Figure 5: Decrease in overhead per pdns event with 
each optimization on a single 8-CPU machine with 
shared memory inter-processor communication. 

The benefits of NLBTS optimization are more 
pronounced when all communication is performed via 
shared memory, as seen in Figure 5.  In this case, due to 
the high speed of shared memory messaging, each LBTS 

computation completes rapidly, and hence provides more 
opportunity for the lightly loaded processor to initiate 
many more LBTS computations.  However, this effect is 
less severe when TCP communication is introduced when 
scaling to a large number of processors, as see in Figure 6.  
The number of LBTS computations is automatically 
reduced due to longer messaging delay, and hence the 
reduction in overhead is negligible beyond 16 processors. 

On the other hand, the fast path optimization fetches 
significant savings in overhead in all processor 
configurations.  The savings are in fact greater on a larger 
number of processors, partly because it avoids the high 
cost frequent network polling. 

Similar performance improvement trends are seen with 
GTNetS as well, as shown in Figure 7. 
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Figure 6: Decrease in overhead per pdns event with 

each optimization on multiple 8-CPU machines. 
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Figure 7: Decrease in overhead per GTNetS event with 

each optimization on multiple 8-CPU machines. 
It is clear from the data that the optimizations are 

necessary in order to lower the overall amortized runtime 
overhead of each event.  As a net result, the RTI overhead 
levels off at around 3-4 microseconds per event, even 
when the number of processors is increased up to the 



 

maximum available number of processors. 

5.6. Scalability Study 
We now consider the scalability of the federations 

using the optimized version of the RTI.  As described in 
the scaling methodology earlier, the network is scaled with 
the number of processors for all our scalability 
experiments.  Scalability is tested along two fronts: (a) 
simulation runtime/speed (b) maximum network size that 
can be simulated.  Initialization time is excluded in 
simulation runtime. 

As can be expected with any set of different simulators, 
pdns and GTNetS exhibit slightly different speed and 
memory characteristics.  pdns events execute faster since 
they model slightly lesser amount of detail than GTNetS 
events, while GTNetS is more memory-efficient than pdns. 

Parallel Speedup 
The parallel speedup afforded by the simulators is 

shown in Figure 8.  Both simulators scale very well with 
increasing number of processors.  pdns exceeds a speedup 
of 80 on 128 processors (16 8-CPU machines), while 
GTNetS reaches 80-fold speedup on 120 processors (15 8-
CPU machines). 

Packet Hop Rate 
The simulation speed of pdns is shown in Figure 9 for 

simulating 7-CN per CPU.  pdns achieves a speed 
exceeding 6 million packet hops per second when 
executing on 128 processors.  GTNetS clocks 
approximately 3 million packet hops per second on 120 
processors for the same network model. 
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Figure 8: Scalability of runtime. 
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Figure 9: Scalability of pdns showing over 6 million 

packet hops per second on 128 processors. 
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Figure 10: Scalability of pdns showing almost half a 

million simulated nodes on 128 processors.  
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Figure 11: Scalability of GTNetS showing nearly 2 

million simulated nodes on 120 processors. 

Network Size 
The increasing network sizes shown in Figure 10 and 

Figure 11 are interesting when considered in conjunction 
with packet hop rates shown in Figure 9.  Not only the 
packet hop rate but also the network size increases linearly 
with number of processors.  This demonstrates scalability 



 

along each dimension without affecting the scalability 
along the other dimension. 

pdns reaches the memory limit (4GB) on each 8-CPU 
box when simulating one 7-CN (3766 nodes) per CPU.  
GTNetS simulates over 20,000 nodes per CPU. 

6. Future Work 
The fast path optimization method could potentially be 

applied to other RTI primitives.  For example, the FQR 
primitive could be optimized for optimistic simulations 
such as TeD and Telesim, and the TAR primitive could be 
tuned for efficient time-stepped simulations such as 
vehicular traffic simulations. 

More generally, the fast path and NLBTS optimizations 
are examples of the types of improvements that can be 
performed on an RTI implementation.  We believe it is 
possible to generalize such optimizations, and make them 
automatically detected and tuned by the RTI at runtime, 
depending on the dynamics of the executing federation.  
We are investigating adaptive mechanisms for 
automatically tuning different optimizations based on 
performance monitoring at runtime. 

7. Conclusions 
We have demonstrated that HLA-like federated 

simulation interfaces, although originally defined for 
interoperability and ease of integration, can also be 
efficiently implemented for high performance.  The 
parallel execution performance can rival that of monolithic 
approaches, delivering extremely good speedups even in 
the challenging case of fine-grained event processing.  
Using our optimized RTI implementation, we are able to 
achieve some of the largest packet-level network 
simulations to date. 

An interesting corollary to our work is that the use of 
un-optimized RTI implementations can convey the 
incorrect notion that RTI-based federated execution is 
inherently slow.  Our initial performance runs using an un-
optimized RTI implementation substantiate such a false 
notion.  Our subsequent optimizations and the resulting 
excellent speedup demonstrate that federated simulation 
interfaces can indeed be implemented efficiently. 

In favor of the RTI-based approach, it is also 
noteworthy that the same optimized RTI implementation 
was easily reusable for parallelizing multiple different 
simulators.  We were able to realize efficient parallel 
implementations of both pdns and GTNetS simply by 
linking the exact same library of our RTI software into 
both simulators.  While reuse of optimizations is not 
nearly as straightforward across different monolithic 
parallel simulators, the RTI reuse was natural in our 
federated approach. 
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