

Scalable RTI-Based Parallel Simulation of Networks

Kalyan S. Perumalla
Alfred Park

Richard M. Fujimoto
College of Computing, Georgia Tech
Atlanta, Georgia, USA 30332-0280

{kalyan,park,fujimoto}@cc.gatech.edu

George F. Riley
Department of Electrical and Computer

Engineering, Georgia Tech
Atlanta, Georgia, USA 30332

riley@ece.gatech.edu

Abstract

Federated simulation interfaces such as the High Level
Architecture (HLA) were designed for interoperability,
and as such are not traditionally associated with high-
performance computing. In this paper, we present results
of a case study examining the use of federated simulations
using runtime infrastructure (RTI) software to realize
large-scale parallel network simulators. We examine the
performance of two different federated network
simulators, and describe RTI performance optimizations
that were used to achieve efficient execution. We show
that RTI-based parallel simulations can scale extremely
well and achieve very high speedup. Our experiments
yielded more than 80-fold scaled speedup in simulating
large TCP/IP networks, demonstrating performance of up
to 6 million simulated packet transmissions per second on
a Linux cluster. Networks containing up to two million
network nodes (routers and end systems) were simulated.

1. Introduction
The parallel discrete event simulation community has

traditionally realized high-performance simulators using a
monolithic approach where the parallel simulator is
constructed “from scratch” and all simulation software is
designed specifically for a particular simulation
environment. Examples of parallel network simulators
using this approach include GloMoSim [1], TeD [2, 3],
SSFNet [4], DaSSFNet [5], TeleSim [6], and the ATM
simulator described in [7]. One advantage of this
approach is that the software can be tailored to execute
efficiently in a specific environment. A disadvantage is
the models must be developed “from scratch,” leading to
much duplication of effort and lengthy delays in realizing
the parallel simulator.

Another approach to parallel/distributed simulation is
to interconnect existing simulators. These federated
simulations may include multiple copies of the same
simulator (modeling different portions of the system), or
entirely different simulators. The individual simulators
that are to be linked may be sequential or parallel.

SIMNET was perhaps the first system utilizing this
approach to realize distributed training simulations [8].
An approach linking multiple copies of the commercial
CSIM simulator is described in [9]. Industry standards for
linking simulations have been developed, notably the
Distributed Interactive Simulation (DIS) [10, 11] and the
High Level Architecture (HLA) [12] standards. The
federated approach offers the benefits of model and
software reuse, and the potential of rapid parallelization of
sequential simulators. It also offers the ability to exploit
models and software from different simulators in one
system [13].

This paper is concerned with the use of federated
distributed simulation techniques using industry-wide
standards to realize scalable parallel network simulations,
thereby offering the potential to enjoy the benefits of both
software reuse and high performance. The effectiveness
of the federated approach for large-scale network
simulations has not previously been proven. Of particular
concern are the performance overheads incurred due to the
runtime infrastructure (RTI) software that links the
simulators, especially for network simulators that have
fine-grained event computations on the order of 10
microseconds or less for each event.

2. Related Work
Efforts to realize federated simulations for high

performance computing include the SF-Express project
that realized a DIS-based system using ModSAF [14], and
a parallel version of CSIM that was developed for
simulating queuing networks [9]. Our work differs from
SF-Express in our focus on network simulations that
require time synchronization of small granularity events.
Our work differs from the CSIM system in our focus on
industry-wide standards and network simulation. The
latter introduces significant complexities concerning
interoperability that do not arise in queuing network
simulations, e.g., see [15]. Other related work includes the
backplane software described in [13, 16], and parallel
simulators based on Opnet [15], and an aviation
simulation called TAAM [18]. These efforts focus on

interoperability issues, however, and do not address the
question of large-scale network simulation.

3. Background
We briefly review implementation features of the

monolithic and federated approaches to parallel
simulation, and highlight some of the performance-critical
aspects of the federated approach.

We use HLA terminology throughout this paper.
Specifically, a parallel/distributed simulation is referred to
as a federation, which is composed of a number of
simulators (termed federates) that interact through services
provided by runtime infrastructure (RTI) software. The
RTI is middleware software that lies between the
operating system and the federates. It implements a set of
services defined in the HLA Interface Specification
(IFSpec). For our purposes, the most important are the
Object Management services that provide communication
primitives, and the Time Management services that
support synchronization. See [12, 17] for an introduction
to the HLA and IFSpec services.

3.1. Monolithic vs. Federated
In traditional parallel simulators, the simulator kernel

directly handles inter-processor communication.
Typically, the kernel is also closely coupled with time
synchronization algorithms tailored specifically for that
parallel simulator and computation platform. Such direct
communication and close coupling can potentially result
in an optimized, high-performance implementation.

However, in federated simulation, the RTI acts as an
intermediate layer that decouples the federation from
specific implementations of message passing and time
synchronization protocols. Event exchange is generally
achieved via indirect communication using multicast
group semantics. This permits both destination naming
independence as well as messaging optimizations in multi-
destination communication. Time synchronization is also
decoupled from the simulators, and implemented within
the RTI, thus making the federation less dependent on any
specific time synchronization protocol.

Further, the RTIs supporting standards such as the
HLA must accommodate a variety of simulators and
support different synchronization protocols including time
stepped, and conservative and optimistic event driven
execution, possibly all within the same federation
execution. While any given federation typically uses only
a subset of these options, the RTI must support all of
them, leading to increased implementation complexity.
Due to the general nature of a standard such as the HLA,
the RTI cannot exploit application specific characteristics,
e.g., a static topology among simulation processes. Other
potential optimizations, such as lookahead between
specific pairs of processes, are difficult to define in a
general way, and hence are not supported in the HLA.

Thus, certain performance optimizations that might be
possible in a monolithic simulation environment are
difficult or impossible to realize in a general standard.

Our performance study is based on two different
network simulators: pdns and GTNetS. Each of these two
simulators is parallelized by self-federating the simulator
with itself. In other words, the parallel version of pdns is
essentially a federation of multiple copies of sequential ns
(and similarly for GTNetS).

For our current purpose, namely, evaluating RTI-based
parallelization approach, we focus on homogeneous
federations (self-federation), and do not consider a mixture
of dissimilar simulators.

3.2. Federated Implementation

1. TimeAdvanceGrant(T) {
 2. granted = true; grantedtime = T;
 3. }
 4. SendEventToGroup (Event e, Group g) {
 5. e->timestamp = Now + LA;
 6. Update(e, g);
 7. }
 8. Reflect(Event e, Group g) {
 9. Now = e->timestamp;
10. ProcessEvent(e);
11. }
12. MainLoop() {
13. SetLookAhead(LA);
14. While (not end of simulation) {
15. e = local min time-stamped event
16. If (e->timestamp <= grantedtime) {
17. Dequeue(e);
18. Now = e->timestamp;
19. ProcessEvent(e);
20. } else {
21. t = e->timestamp;
22. NextEventRequest(t);
23. granted = false;
24. While(not granted) RTITick();
25. }
26. }
27. }

Figure 1: Outline of NER-based approach. RTITick()
results in zero or more calls to Reflect() to transfer
events from RTI to federate, followed by a call to

TimeAdvanceGrant() to the next safe time. Update() is
called by the federate during event processing to send
events to other processors via group communication.

An HLA RTI must support multiple primitives for
advancing simulation time to accommodate different time
flow mechanisms. Despite the multitude of primitives,
they can be implemented over a single, shared core
functionality, based on the computation of a value called
Lower Bound on Time Stamp (LBTS).

Here we focus on the NextEventRequest primitive
(abbreviated as NER), which is used by pdns and GTNetS.
NER is the primitive designed for use by conservative
event driven federates, so is the most natural choice for
these implementations. The pseudo code for the main
simulation loop using NER is shown in Figure 1.
Equivalent implementations using other RTI primitives,
namely, TimeAdvanceRequest (TAR) and
FlushQueueRequest (FQR), are possible. Nevertheless,
among the different alternatives, NER is the most critical
with respect to runtime overhead, since it is normally
invoked prior to every local event.

The optimizations we will describe later in the paper
are based on the core LBTS functionality, and hence are
generic in nature. Thus, it is important to note that our
approach is not necessarily limited to the
NextEventRequest primitive, although further work is
needed to more thoroughly evaluate the performance on
the rest of the primitives.

3.3. RTI Overhead
After initialization is completed and the main

simulation loop is entered, the federate periodically enters
the RTI for (a) sending events (b) receiving events, and (c)
synchronizing virtual time. In line 6 of Figure 1 the
Update RTI primitive is used by the federate to send
events. Events are received by the federate using the Re
flect callback on line 8. On line 22, the federate uses
NextEventRequest to request delivery of events and to
advance simulation time. This service will cause the RTI
to deliver the smallest time stamped event from another
federate (if any) that has a timestamp earlier than the
minimum timestamp of any event in the calling federate’s
local event list. The RTI is given CPU cycles on line 24
using the RTITick call (henceforth abbreviated as Tick).
The RTI performs time synchronization and network
processing during this call, and provides incoming
event(s) to the federate via the Reflect callback, and grants
time advances via the TimeAdvanceGrant callback
(henceforth abbreviated as TAG).

Clearly, when inter-federate communication is sparse,
the bulk of the RTI overhead occurs within lines 22 to 24.

4. Performance Optimization
When we began to examine the performance of the

federated pdns and GTNetS simulators, we observed that a
simple 2-processor pdns run exhibited disappointing
performance. This experiment scaled the size of the
simulated network in proportion to the number of
processors. The metrics observed in the initial 2-CPU
pdns run are shown in Table 1.

While we expected to see negligible RTI overhead, and
hence near-linear speedup, we instead observed an average
RTI overhead of over 3.6 microseconds per event.

CPUs Nodes
/ CPU

Events/CPU
(millions)

Run
Time (s)

Mics/
Event

1 3766 73.7 485 6.58
2 3766 73.7 751 10.19

Table 1: Initial performance of pdns on baseline RTI.
Although an RTI overhead of 3.6 microseconds per

event is negligible for traditional RTI-based applications,
it is significant for the fine-grained pdns federation. The
RTI overhead was almost 55% of sequential event
execution time, even with little inter-processor
communication, warranting a closer look at the overhead.

Upon investigation, we discovered different sources of
overhead that, although contributing minor amounts,
eventually added up to the cumulative overhead that was
observed. We now describe each of these sources, and
outline the solutions we adopted to eliminate them and
substantially improve the parallel performance. For
example, in the 2-CPU run of Table 1, as we will see, we
were able to optimize the RTI to reduce the overhead
down from 3.6us (55%) to just 1.2us (18%) per event.

4.1. NLBTS
 One of the first problems we noticed was that the RTI

spent a significant portion of the time trying to advance
simulation time in small increments. The RTI computes a
quantity called Lower Bound on Time Stamp (LBTS) of
future events that may be received by a processor in order
to implement HLA’s timestamp-ordered message delivery
service. The RTI software used in this study computes
LBTS values asynchronously, in the background with
other federate computations. When a federate needs to
advance its simulation time, the RTI initiates an LBTS
computation if the last computed LBTS value is not large
enough to issue the TAG. However, in the presence of a
load imbalance where a lightly loaded processor has
advanced ahead of the others in simulation time, this
processor can inundate the more heavily loaded processor
with LBTS computations. This phenomenon can happen
despite the presence of a large lookahead, and despite the
fact that eventually all processors are loaded similarly.
The fact that one processor is ahead in simulation time of
the others is sufficient to initiate this problem. We have
noticed this phenomenon not only in pdns and GTNetS,
but also in other network simulator federations.

A simple solution is to have each processor participate
in an LBTS computation only when it itself needs a time
advance, thereby forcing the processor that is ahead to
wait. Even if a lightly loaded processor initiates an LBTS
computation, the other processors refrain from eagerly
responding to that computation, but instead participate
only when they themselves run out of local computation.
This simple rule not only tends to reduce the load
imbalance, but also evens out any transient imbalances in
an otherwise well-balanced federation.

The correctness of this optimization is ensured by the

fact that every federate eventually reaches its most
recently granted time, and hence will initiate another
LBTS computation in order to make progress. Due to this
effect, it is impossible for any federate to wait indefinitely,
and overall progress is ensured in the federation.

Of course, a drawback to this solution is that processors
could potentially waste some amount of time waiting for a
time advance. However, the waiting time is not
significant in federates that advance their time at roughly
identical pace.

4.2. Short Circuiting Tick Calls
Another significant portion of the overhead is incurred

by the federates due to the NER and Tick call combination
required before processing each local event. Note that the
RTI keeps an ordered list of timestamp-ordered (TSO)
events, so that they could be delivered in timestamp order
according to NER semantics. The minimum timestamped
event in the RTI’s TSO event list is referred to as
TSOMin. The RTI also keeps the most recently computed
LBTS value in a variable named LBTS. Figure 2 shows
the actions performed for each NER and Tick call.

1. NextEventRequest(T) {
 2. Check for error conditions;
 3. Set up NER pending request state;
 4. Compute & update new local RTI time;
 5. Initiate a new LBTS if necessary;
 6. }
 7. RTITick() {
 8. Check incoming network messages;
 9. Process LBTS messages;
10. While (there is a deliverable TSO event e) {
11. Reflect(e);
12. }
13. If (can issue a time advance grant) {
14. T = grantable time;
15. TimeAdvanceGrant(T);
16. }
17. }

Figure 2: NER and Tick implementation within RTI.
Although the individual operations within NER and

Tick are relatively simple and efficient, it is clear that they
can accumulate if invoked very frequently. For example,
the check for incoming messages takes less than 0.5
microseconds with our shared memory communication
implementation. Similarly, the time to process LBTS
messages is also insignificant when considered in
isolation. However, together they add up to more than 3
microseconds on a 2-CPU execution. Furthermore, the
overhead increases significantly when TCP
communication is used.

In order to address this problem, we analyzed how
often each of the operations was indeed required, and how
often the operations were superfluous. It was found that in

the vast majority of Tick calls, no incoming messages
needed to be processed.

Thus, an effective optimization is to short-circuit Tick
calls to optimize the common case. We call this approach
the “fast-path” implementation of NER and Tick calls. It
optimizes for the case where there are no “deliverable”
events in the RTI’s TSO event queue, and when the
previously computed LBTS is beyond the time advance
requested in the NER call. In other words, in the most
frequent case, NER and Tick are effectively no-ops, doing
nothing more than checking for the no-op condition and
issuing a grant to the requested NER time.

Figure 3 shows the “fast-path” optimization code pre-
pended to their function bodies.

 1. NextEventRequest(T) {
 2. If (T < TSOMin and T < LBTS) {
 3. Mark pending request as NER(T);
 4. return;
 5. }
 6. Execute as usual;
 7. }
 8. RTITick() {
 9. If (NER(T) is pending and
10. T < TSOMin and T < LBTS) {
11. TimeAdvanceGrant(T);
12. return;
13. }
14. Execute as usual ;
15. }

Figure 3: Fast path optimization for NER and Tick
implementation within the RTI.

The lines 2-5 and 9-13 of Figure 3 correspond to the
fast path optimizations. Notice that, as a result of the fast
path code, both the functions return immediately upon
detecting the fast path condition, which is that no RTI
TSO events can be delivered (T < TSOMin), and no new
LBTS computation is required (T < LBTS). The net effect
of this optimization is that the NER, Tick and TAG calls
together degenerate to a fast sequence of three short
function calls.

5. Performance Study
We now present a performance analysis of federated

execution, to demonstrate the relevance of RTI-based
federated approaches to high-performance
parallel/distributed simulation. We do this using the two
network simulators mentioned previously, namely, pdns
and GTNetS, each of which has been parallelized using our
HLA RTI implementation. The HLA software in question
implements a subset of the HLA Interface Specification
(version 1.3). It utilizes one notable simplification of the
IFSpec: attribute-handle-value pair sets are not
implemented, in favor of a simpler mechanism to pass
attribute values to the RTI.

5.1. Network Configuration
The network topology, traffic, and parameters were

based on the benchmark specification developed by the
research group at Dartmouth College [4]. The
benchmarks were developed as a set of baseline models
for the network modeling and simulation community. The
benchmark configurations were developed with the
intention of facilitating the demonstration of network
simulator scalability. To aid in scalability studies,
replication and expansion can be used on the original
smaller network topology to easily create larger sized
networks.

Topology
Each portion of the network is referred to as a Campus

Network (CN). Figure 4 shows the schematic for a typical
CN. Each CN consists of 4 servers, 30 routers, and 504
clients for a total of 538 nodes. The CN is comprised of 4
separate networks. Net 0 consists of 3 routers, where node
0:0 is the gateway router for the CN. Net 1 is composed
of 2 routers and 4 servers. Net 2 consists of 7 routers, 7
LAN routers, and 294 clients. Net 3 contains 4 routers, 5
LAN routers, and 210 clients.

Figure 4: Basic campus network (CN) model.

Net 0 is connected to Net 2 and Net 3 via standalone
routers. Net 1 is connected directly to Net 0 through a
single link. All non-client links have a bandwidth of
2Gb/s and have a propagation delay of 5ms with the
exception of the Net 0 to Net 1 links, which have a
propagation delay of 1ms. Clients are connected in a
point-to-point fashion with their respective LAN router
and have links with 100Mb/s bandwidth and 1ms delay.

Multiple CNs may be instantiated and connected
together to form a ring topology. This aspect of the
network allows the baseline model to be easily scaled to
arbitrarily large sizes. Multiple CNs are interconnected
through a high latency 200ms 2Gb/s link via their Net 0

gateway router.

Traffic
In our performance study, we focus on pure TCP traffic

requested by clients from server nodes. All TCP traffic is
“external” to the requesting CN clients, i.e., all the clients
generate TCP traffic to/from servers in an adjacent CN in
the ring (CN i communicates with CN i+1, etc.). Also, we
use the short transfer case of the baseline model, in which
clients request 500,000 bytes from a random Net 1 server.
The TCP sessions start at time selected from a uniform
distribution over the interval from 100 and 110 seconds of
simulation time.

5.2. Scaling Methodology
The experiments described here scale the size of the

simulated network in proportion to the number of
processors used. This is a widely accepted approach for
scalability studies in the high performance computing
community. It also circumvents the problem of having a
sequential machine with enough memory to execute the
entire model, which would not be possible for the large
simulations that are considered here.

A principal performance metric used here is the number
of simulated “packet hops” that can be processed by the
simulator in one second of wallclock time. A “packet
hop” represents the transmission of a packet from one
node (a router or end node system) to another over a link
in the network. Network simulators will typically require
more than one event to simulate a packet hop. For
example, pdns and GTNetS both require exactly two
simulator events to model a packet hop.

5.3. Simulation Platform
All our experiments are executed on a large Linux

cluster consisting of 16 machines. Each machine is a
Symmetric Multi-Processor (SMP) machine with eight
550MHz Pentium III XEON processors. The eight CPUs
of each machine share 4 GB of RAM. Each processor
contains 32KB (16KB Data, 16KB Instruction) of non-
blocking L1 cache and 2MB of full-speed, non-blocking,
unified L2 cache. An internal core interconnect utilizes a
5-way crossbar switch connecting two 4-way processor
buses, two interleaved memory buses, and one I/O bus.
The operating system is Red Hat Linux 7.3 running a
customized 2.4.18-10smp kernel.

The 16 SMP machines are connected to each other via
a Dual Gigabit Ethernet switch with EtherChannel
aggregation. Our RTI software uses shared memory for
communications within an SMP, and TCP/IP for
communication across SMPs.

Note that, in the following sections, the performance
metrics are consistent across multiple runs, and hence
error bars are not shown.

5.4. RTI Primitive Timings
Execution times for key RTI primitives are shown in

Table 2. The first two lines report the time required for
each invocation of NER and Tick, as discussed earlier.
UpdateAttributeValues is an HLA service to send a
message. ReflectAttributeValues is a callback from the
RTI that is invoked to deliver a message to the federate.
The reported times indicate the execution time required in
the RTI to deliver the message, and the amount of time in
the federate (for pdns) to process incoming event.

Primitive Portion Average Time
(microsecs)

NextEventRequest RTI 1.99
RTITick RTI 3.03
UpdateAttributeValues RTI 36.61
ReflectAttributeValues RTI 21.28
ReflectAttributeValues pdns 37.13

Table 2: Micro timing measures with pdns on 16 CPUs,
7 CN/CPU, for RTI primitives after optimizations.

5.5. Performance after Optimizations
 The individual and cumulative performance

improvements provided by the NLBTS and fast path
optimizations are shown in Figure 5 and Figure 6 for pdns,
and in Figure 7 for GTNetS. The 1-processor data point in
the figures corresponds to executing the parallel version
on a single CPU.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Number of Processors

A
ve

ra
ge

 R
TI

 o
ve

rh
ea

d
pe

r e
ve

nt
 (u

s)

Unoptimized Fastpath
NLBTS Fastpath+NLBTS

Figure 5: Decrease in overhead per pdns event with
each optimization on a single 8-CPU machine with
shared memory inter-processor communication.

The benefits of NLBTS optimization are more
pronounced when all communication is performed via
shared memory, as seen in Figure 5. In this case, due to
the high speed of shared memory messaging, each LBTS

computation completes rapidly, and hence provides more
opportunity for the lightly loaded processor to initiate
many more LBTS computations. However, this effect is
less severe when TCP communication is introduced when
scaling to a large number of processors, as see in Figure 6.
The number of LBTS computations is automatically
reduced due to longer messaging delay, and hence the
reduction in overhead is negligible beyond 16 processors.

On the other hand, the fast path optimization fetches
significant savings in overhead in all processor
configurations. The savings are in fact greater on a larger
number of processors, partly because it avoids the high
cost frequent network polling.

Similar performance improvement trends are seen with
GTNetS as well, as shown in Figure 7.

0

10

20

30

40

50

16 32 48 64 80 96 112 128
Number of Processors

A
vg

. R
TI

 o
ve

rh
ea

d
pe

r e
ve

nt
 (u

s)

Unoptimized Fastpath
NLBTS Fastpath+NLBTS

Figure 6: Decrease in overhead per pdns event with

each optimization on multiple 8-CPU machines.

0

5

10

15

20

25

30

0 20 40 60 80
Number of Processors

A
vg

. R
TI

 o
ve

rh
ea

d
pe

r e
ve

nt
 (u

s)

Unoptimized Fastpath
NLBTS Fastpath+NLBTS

Figure 7: Decrease in overhead per GTNetS event with

each optimization on multiple 8-CPU machines.
It is clear from the data that the optimizations are

necessary in order to lower the overall amortized runtime
overhead of each event. As a net result, the RTI overhead
levels off at around 3-4 microseconds per event, even
when the number of processors is increased up to the

maximum available number of processors.

5.6. Scalability Study
We now consider the scalability of the federations

using the optimized version of the RTI. As described in
the scaling methodology earlier, the network is scaled with
the number of processors for all our scalability
experiments. Scalability is tested along two fronts: (a)
simulation runtime/speed (b) maximum network size that
can be simulated. Initialization time is excluded in
simulation runtime.

As can be expected with any set of different simulators,
pdns and GTNetS exhibit slightly different speed and
memory characteristics. pdns events execute faster since
they model slightly lesser amount of detail than GTNetS
events, while GTNetS is more memory-efficient than pdns.

Parallel Speedup
The parallel speedup afforded by the simulators is

shown in Figure 8. Both simulators scale very well with
increasing number of processors. pdns exceeds a speedup
of 80 on 128 processors (16 8-CPU machines), while
GTNetS reaches 80-fold speedup on 120 processors (15 8-
CPU machines).

Packet Hop Rate
The simulation speed of pdns is shown in Figure 9 for

simulating 7-CN per CPU. pdns achieves a speed
exceeding 6 million packet hops per second when
executing on 128 processors. GTNetS clocks
approximately 3 million packet hops per second on 120
processors for the same network model.

0
10
20
30
40
50
60
70
80
90

0 16 32 48 64 80 96 112 128
Number of Processors

Sp
ee

du
p

pdns GTNetS

Figure 8: Scalability of runtime.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

0 32 64 96 128
Number of Processors

Pa
ck

et
 h

op
s

pe
r s

ec
on

d

Figure 9: Scalability of pdns showing over 6 million

packet hops per second on 128 processors.

0

100000

200000

300000

400000

500000

0 16 32 48 64 80 96 112 128
Number of Processors

To
ta

l s
im

ul
at

ed
 n

od
es

Figure 10: Scalability of pdns showing almost half a

million simulated nodes on 128 processors.

0

500000

1000000

1500000

2000000

2500000

0 16 32 48 64 80 96 112 128
Number of Processors

To
ta

l s
im

ul
at

ed
 n

od
es

Figure 11: Scalability of GTNetS showing nearly 2

million simulated nodes on 120 processors.

Network Size
The increasing network sizes shown in Figure 10 and

Figure 11 are interesting when considered in conjunction
with packet hop rates shown in Figure 9. Not only the
packet hop rate but also the network size increases linearly
with number of processors. This demonstrates scalability

along each dimension without affecting the scalability
along the other dimension.

pdns reaches the memory limit (4GB) on each 8-CPU
box when simulating one 7-CN (3766 nodes) per CPU.
GTNetS simulates over 20,000 nodes per CPU.

6. Future Work
The fast path optimization method could potentially be

applied to other RTI primitives. For example, the FQR
primitive could be optimized for optimistic simulations
such as TeD and Telesim, and the TAR primitive could be
tuned for efficient time-stepped simulations such as
vehicular traffic simulations.

More generally, the fast path and NLBTS optimizations
are examples of the types of improvements that can be
performed on an RTI implementation. We believe it is
possible to generalize such optimizations, and make them
automatically detected and tuned by the RTI at runtime,
depending on the dynamics of the executing federation.
We are investigating adaptive mechanisms for
automatically tuning different optimizations based on
performance monitoring at runtime.

7. Conclusions
We have demonstrated that HLA-like federated

simulation interfaces, although originally defined for
interoperability and ease of integration, can also be
efficiently implemented for high performance. The
parallel execution performance can rival that of monolithic
approaches, delivering extremely good speedups even in
the challenging case of fine-grained event processing.
Using our optimized RTI implementation, we are able to
achieve some of the largest packet-level network
simulations to date.

An interesting corollary to our work is that the use of
un-optimized RTI implementations can convey the
incorrect notion that RTI-based federated execution is
inherently slow. Our initial performance runs using an un-
optimized RTI implementation substantiate such a false
notion. Our subsequent optimizations and the resulting
excellent speedup demonstrate that federated simulation
interfaces can indeed be implemented efficiently.

In favor of the RTI-based approach, it is also
noteworthy that the same optimized RTI implementation
was easily reusable for parallelizing multiple different
simulators. We were able to realize efficient parallel
implementations of both pdns and GTNetS simply by
linking the exact same library of our RTI software into
both simulators. While reuse of optimizations is not
nearly as straightforward across different monolithic
parallel simulators, the RTI reuse was natural in our
federated approach.

References
1. Zeng, X., R. Bagrodia, and M. Gerla, GloMoSim: A Library

for Parallel Simulation of Large-Scale Wireless Networks,
in Proceedings of the 1998 Workshop on Parallel and
Distributed Simulation. 1998. p. 154-161.

2. Perumalla, K., R. Fujimoto, and A. Ogielski, TeD - A
Language for Modeling Telecommunications Networks.
Performance Evaluation Review, 1998. 25(4).

3. Poplawski, A.L. and D.M. Nicol, Nops: A Conservative
Parallel Simulation Engine for TeD, in 12th Workshop on
Parallel and Distributed Simulation. 1998. p. 180-187.

4. Cowie, J.H., D.M. Nicol, and A.T. Ogielski, Modeling the
Global Internet. Computing in Science and Engg., 1999.

5. Liu, J. and D.M. Nicol, DaSSF 3.0 User's Manual. 2001.
6. Unger, B., The Telecom Framework: a Simulation

Environment for Telecommunications, in Proceedings of
the 1993 Winter Simulation Conference. 1993.

7. Pham, C.D., H. Brunst, and S. Fdida, Conservative
Simulation of Load-Balanced Routing in a Large ATM
Network Model, in Proceedings of the 12th Workshop on
Parallel and Distributed Simulation. 1998. p. 142-149.

8. Miller, D.C. and J.A. Thorpe, SIMNET: The Advent of
Simulator Networking. Proceedings of the IEEE, 1995.
83(8): p. 1114-1123.

9. Nicol, D. and P. Heidelberger, Parallel Execution for Serial
Simulators. ACM Transactions on Modeling and Computer
Simulation, 1996. 6(3): p. 210-242.

10. IEEE Std 1278.1-1995, IEEE Standard for Distributed
Interactive Simulation -- Application Protocols. 1995, New
York, NY: Institute of Electrical and Electronics Engineers.

11. IEEE Std 1278.2-1995, IEEE Standard for Distributed
Interactive Simulation -- Communication Services and
Profiles. 1995, New York, NY: Institute of Electrical and
Electronics Engineers Inc.

12. Kuhl, F., R. Weatherly, and J. Dahmann, Creating
Computer Simulation Systems: An Introduction to the High
Level Architecture for Simulation. 1999: Prentice Hall.

13. Perumalla, K., et al., Experiences Applying Parallel and
Interoperable Network Simulation Techniques in On-Line
Simulations of Military Networks, in Proceedings of the
16th Workshop on Parallel and Distributed Simulation.
2002. p. 97-104.

14. Brunett, S., et al., Implementing Distributed Synthetic
Forces Simulations in Metacomputing Environments. 1998,
California Institute of Technology, Center for Advanced
Computing Research (CACR-158).

15. Wu, H., R. Fujimoto, and G. Riley, Experiences
Parallelizing a Commercial Network Simulator, in
Proceedings of the Winter Simulation conference. 2001.

16. Riley, G., et al. Distributed Network Simulations using the
Dynamic Simulation Backplane. in International
Conference on Distributed Computer Systems. 2001.

17. Fujimoto, R.M., Time Management in the High Level
Architecture. Simulation, 1998. 71(6): p. 388-400.

18. Bodoh, D., and F. Weiland. Self Federating an Aviation
Simulation using HLA: Is it Feasible? in Proceedings of the
Workshop on Distributed Simulation and Real-Time
Applications, 2001.

