

Power-aware State Dissemination in Mobile Distributed Virtual Environments

Weidong Shi, Kalyan Perumalla, Richard Fujimoto
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

{shiw,kalyan,fujimoto}@cc.gatech.edu

Abstract
In distributed simulations, such as multi-player
distributed virtual environments (DVE), power
consumption traditionally has not been a major design
factor. However, emerging battery-operated mobile
computing platforms require revisiting DVE
implementation approaches for maximizing power
efficiency. In this paper we explore some implications of
power considerations in DVE implementation over
mobile handhelds connected by wireless networks. We
focus on the state dissemination problem in DVEs and
propose a new power-aware dead reckoning framework
for power-efficient state dissemination. We highlight a
fundamental tradeoff between state consistency and
power consumption, and present an adaptive dead
reckoning algorithm that attempts to dynamically
optimize the tradeoff at runtime. We present a
quantitative evaluation of our approach using a synthetic
DVE benchmark application.

1. Introduction

Traditional distributed interactive simulations such as

distributed virtual environment (DVE) applications run
on workstations connected by high-speed networks that
are not power constrained. However, newly emerging
interactive applications execute over battery operated
mobile platforms. Examples of these applications include
wireless multiplayer gaming and augmented reality
systems used for military and civilian applications. One
important design goal of mobile platforms is to increase
the lifetime of batteries.

An important problem in realizing distributed
simulations for DVE applications concerns dissemination
of state (ground truth) information in order to ensure
different users observe a consistent view of the virtual
world. This paper describes an approach to minimizing
the energy consumed for state dissemination by the
wireless network interface in interactive simulations for
DVEs, by exploiting application level information. We
investigate the tradeoff between simulation quality and
energy savings. Based on an understanding of this

underlying tradeoff, we develop a novel power-aware
state update scheme that maintains distributed simulation
state consistency while at the same time yields lower
energy.

Our approach uses a closely coupled feedback loop
between the simulation and the device power
management service to achieve a balance between power
conservation and simulation quality. A distinguishing
characteristic of our approach is its adaptive nature – it is
designed to dynamically extract maximal suspension time
without adversely affecting state consistency. It is
adaptive because it is able to automatically discover the
appropriate suspension period of the network interface as
the simulation proceeds.

The paper is organized as the follows. In section 2,
we characterize power consumption of mobile platforms.
Section 3 describes our power-efficient state update
approach using a new power-aware dead reckoning
algorithm. In section 4, we report results of a simulation
study analyzing this approach. Section 5 describes related
work, followed by conclusions and future work in the
final sections.

2. Mobile Platform

We review relevant features of mobile wireless
platforms in order to highlight their implications for
power-aware state dissemination.

2.1. Hardware

Current mobile computing platforms include devices

with different form factors and capabilities. Laptop
computers equipped with a built-in or attached wireless
network interface card (WNIC) are commonly available.
Many of the current Personal Digital Assistant (PDA)
devices are also capable of wireless network
communication using WNIC attachments. Examples
include the Compaq IPAQ handheld running Windows
CE or Linux, with a PCMCIA jacket to hold a WNIC.
When these devices are mobile, their power is limited by

their battery life.
Wireless networks can be set up to operate in

infrastructure or ad-hoc mode. Here, we focus on an
infrastructure mode of operation, in which a dedicated
node always remains powered on, and acts as a buffering
and synchronization point for the rest of the nodes.

2.2. Network Interface Power

Wireless network interface cards consume a
significant portion of the total power consumed by a
communicating mobile device. This fact is confirmed by
several studies conducted in recent years [1, 3, 10, 11] to
characterize power consumption of mobile devices via
direct measurements. Our own measurement on Compaq
IPAQ handheld devices with PCMCIA wireless cards
shows that the wireless network interface card can
consume up to 50% of the total power.

2.3. Power Modes and Timing

A typical WNIC supports multiple modes of

operation, with varying levels of power consumption.
The common modes include the following, roughly in
descending order of power consumption: Transmit,
Receive, Idle, Suspended and Off modes. The Transmit
and Receive modes consume comparable amounts of
power, especially in ad-hoc mode. The Suspended mode
is a low power mode similar to the Off mode, but
provides faster resumption than switching on from the
Off mode. In ad-hoc mode, the power consumption in
Idle mode of a Lucent IEEE 802.11 WaveLAN PC card
is nearly as large as that of receive mode [1]. Results of
[4] also show that power consumption in an Idle or
Transmit/Receive state is an order of magnitude higher
than the power consumption in Suspended mode.

For our purposes, these modes can be reduced to two:
Active and Suspended. It is clear that maximal power
savings are obtained by maximizing the time the WNIC is
maintained in the Suspended mode. Our own
measurements also show that periodic suspension and
resumption of the WNIC does indeed substantially
increase overall device battery life.

2.4. Switching Power Modes

Although switching the WNIC to suspended state can

save power, the latency for switching to suspended mode,
and later back to active mode, can be high. The WNIC is
unusable during the time it is switching between modes,
and hence introduces additional message latency for any
new or undelivered messages. The suspension-
resumption latency greatly depends on the specific driver

and operating system. We have observed latencies on the
order of 600ms on the Compaq IPAQ handheld platform
with Lucent Orinoco WNIC. Much lower latencies,
around 70ms to 100ms, using proprietary WNIC drivers
are reported in the literature. The long latencies are most
likely due to inefficient design of the MAC controller
chip or the wireless adapter interface. We expect that 50-
100 millisecond switching latency will become standard
in the near future with more power friendly MAC
controller design. Beside the latency issue, switching
modes may interfere with the operation of transport level
protocols such as TCP. This issue has been identified
previously, and modifications to the standard TCP state
machine have been proposed by some researchers to
work with MAC level power management. Our approach
can benefit from those efforts by adapting their solution
to our power aware state update scheme.

2.5. Power Consumption vs. Latency

Suspending the WNIC can result in increased message

latency and a higher probability of lost packets. Message
latency is increased as a result of the extra delay
introduced by device suspension at either the sender's or
the receiver's side. When a mobile host sends a state
update, its communication device may already have been
suspended. In order to send the update, either it must wait
until the proposed suspension time has expired, or it must
resume the device prior to the expiration of the
suspension period. Regardless of which approach is
used, there will be additional delay to send the message.
On the receiver side, its communication device may be in
sleep mode when some other host sends a message to it.
In this case, the earliest time for it to receive the message
is after the communication device resumes its operation.

Naïve power saving approaches that do not properly
coordinate application requirements with device
suspension will incur the above undesirable effects and
may severely degrade the quality of distributed
interactive simulations in which network delay has a large
bearing on the quality of the simulation [12].

3. Power-Aware State Updates

In distributed interactive applications, each host is

responsible for simulating one or more entities whose
states are broadcast/multicast to other remote hosts by
messages transmitted over a network. One example is a
simulated vehicle transmitting its location and speed in a
distributed driving simulator. Because of network delay,
at any given time, the state copy maintained by a remote
host is always behind its true state. This problem is
defined as space-time consistency when the state

information is spatial in nature. Since the number of state
updates in a distributed simulation can overwhelm the
available network bandwidth, techniques have been
introduced to reduce the amount of state updates without
great loss of space-time consistency. One widely used
technique is dead reckoning [13, 14, 15].

In the traditional approach to dead reckoning, an
“error threshold” level is first determined based on the
maximum state inconsistency tolerable in the simulation
model. Whenever the difference between the true local
state and the remotely tracked state exceeds the error
threshold, a state update is sent over the network to
synchronize the local and remote states. In addition,
periodic state updates are also sent even if the error
threshold has not been exceeded.

Our approach to power-aware state updates is to let the
application expose an appropriate slack time to the power
management service so that communication devices can
be suspended with minimal, bounded impact on space-
time consistency.

3.1. Adapting to Dynamic Behavior

Studies of dead reckoning algorithms have revealed

that state updates are often highly bursty and
unpredictable [7]. Due to the complexity and
unpredictability of state updates in most distributed
applications, it is nearly impossible to have the
suspension time pre-determined and guaranteed to work
effectively throughout the entire simulation. Sometimes,
entities may move slowly and the interval between state
updates is long enough to allow aggressive suspension of
the communication devices. However, at some other
times, the entities may move quickly and send frequent
state updates, allowing little or no time for suspension.
An adaptive scheme is required that can dynamically
determine the best suspension time as the simulation
proceeds.

3.2. Algorithm Rationale

As discussed earlier, the larger the delay that the

simulation can tolerate, the greater the power it can save
by suspending and resuming the communication device.
In order to determine a proper suspension period based
on simulated model information, we developed a new
state update approach for entity simulations that can
dynamically determine a local suspension time under a
given consistency constraint. In a simulation involving
many hosts, each host may have its own local suspension
period, and the actual suspension time used by the power
management service may be decided according to the
global minimum among all the hosts' suspension periods.

Why does a local suspension need to consider the
suspension period of other hosts? This is because each
host also receives state updates published by other hosts.
Assume that a host x simulates a slowly moving entity
that has a large tolerance on suspension interval and
another host y simulates a more rapidly moving entity
with only a low tolerance on suspension interval. If host
x only considers its own suspension period determined by
its simulation of the slowly moving entity and uses that
for its suspend-resume time, its consistency error for the
data published by host y will be high because of the extra
transmission delay caused by x's suspension. This means
that the actual suspension interval must be computed in a
global fashion. The actual suspension time also depends
to a great extent on the network topology of the
simulation environment.

The tolerable latency value determined by a host can
be given as a hint to its power management service. As
such the local communication device need not be
suspended for exactly that amount of time. The actual
suspension interval also depends on the hint values
provided by other hosts participating in the simulation.

3.3. Algorithm

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11

Time

C
onsistency E

rror

d

trigger a state update

Trigger calculation of
new suspension interval

Suspension interval hint h

d’

Figure 1. Illustration of power-aware dead reckoning
algorithm operation

We now describe our power-aware dead reckoning
algorithm executed at each node. Let Ptrue(t) be the true
position of an entity at time t, Pdr(t) be the entity's dead
reckoned position, and d be the dead reckoning threshold.
A second, smaller, dead reckoning threshold d' is defined
that is used to trigger generation of state updates earlier in
order to compensate for the increased latency due to the
use of power-aware messaging. In the experiments
described later, d' is set to 0.75*d. The d and d' values
are used to compute h, the maximum latency requested by
the application. The value of h is viewed as a hint that is
provided to the power-aware messaging system. The

variables k and step are parameters used to control the
rate at which h is modified to adapt to changing latency
requirements. The operation of our dead reckoning
scheme is depicted in Figure 1.

The state update algorithm described next assumes a
reliable message transport mechanism is used, and
receivers send an acknowledgement for each message.
Relaxation of this assumption is an area of future
research.

1. Update Ptrue(t) and Pdr(t) with usual
dead reckoning

2. If there is no outstanding publication of
state update waiting to be acked {

3. If | Ptrue(t) - Pdr(t) | > d' {
4. If local host’s communication device

 is powered off, resume it
 Send Ptrue(t) to other host(s)

5. Set tpub = t
6. Mark that there is an outstanding

 state publication not acked yet
 } else {

7. h = h + k*step;
8. If h> MAX_SUSPENTION_TIME
9. Let h=MAX_SUSPENSION_TIME

 }
} else {

10. If | Ptrue(t) - Pdr(t) | > d and there is
 an un-acked state publication {

11. Set h = t – tpub
12. Send threshold-triggering event

 to all other hosts
 }
}

13. Post the new h value to the underlying
messaging mechanism.

Figure 2. Power-aware dead reckoning algorithm
executed by each host

3.4. Discussion

In each simulation cycle, the host executes the steps
specified in Figure 2. For simplicity, assume that each
host is responsible for simulating a single entity and
publishing its state to the other hosts. Like the traditional
dead reckoning algorithm, each host keeps track of both
the entity’s true position as well as its dead reckoned
position. In each simulation cycle, the host first updates
the entity’s true position and dead reckoned position
using a standard dead reckoning algorithm (step 1). Then
it calculates the distance between the two positions. If
the distance is greater than d' and there is no outstanding
state update waiting to be acknowledged, the host sends
its own entity’s state to all receivers monitoring the
vehicle and marks that there is an outstanding state send
(steps 4 and 6).

When the application sends a state update, the update
is not transmitted immediately if the host's network
interface is in sleep mode. If this is the case, the host first
resumes its communication device and then sends the
state information. Before a state update is acknowledged,
the host continues to use the old state for calculating
Pdr(t). This is different from the traditional dead
reckoning scheme where Pdr(t) is modified immediately
using the new published state. Since the host still uses
the old state for calculating Pdr(t), the disparity between
Ptrue(t) and Pdr(t) will continue to grow until the state
publication is acknowledged. If the difference between
the true position and the dead reckoned position exceeds
the true dead reckoning threshold (d), and the state
publication is still not acknowledged, a new local
suspension interval hint (h) is calculated (step 11). At
step 12, the application posts the new value of h to the
underlying messaging layer that performs the actual
message transmission and power management. The
interval between state publication and its
acknowledgment depends on the transmission delay and
receiver suspension delay. Since transmission delay is
much less than the suspension period, the dominating
factor is the receiver suspension period.

In our scheme, the suspension interval hint (h) is
increased linearly when there is no state publication. The
rate of its growth depends on the value of the parameter
k. Step 8 is necessary for recovery of the suspension hint.
One approach to setting k is to assign a constant value.
Next, we will discuss a way to dynamically determine k,
yielding a better trade-off between power saving and
accuracy.

During the simulation, each host receives state updates
from other hosts. In doing so, each host also tracks how
many state updates are received “late” due to suspension
of its local communication device. Receipt of a state
publication is considered as late if it is received after the
dead reckoning threshold (d) is exceeded. Because each
host receives both state updates and their associated
threshold-triggering events, it is able to determine
whether a state publication is received late based on the
receipt time and the time of threshold triggering event.
Our dynamic method for determining k requires that each
host record the interval between the last two late receipts
of state publications. If the interval is smaller than a
threshold (say, one second), the value of k will be
decreased; otherwise it will be increased. The value of k
may also increase periodically if there is no late receipt of
state update messages. Adaptively changing k allows a
more aggressive power reduction mechanism without
greatly degrading consistency.

4. Performance Study

We explore the performance of our power aware dead
reckoning and messaging scheme first with a set of
simulation studies using application traces.

4.1. Experimental Setup

A simulation of the power-aware distributed

simulation system was developed to evaluate its
effectiveness. We used a simple interactive application
with traced user inputs to model the distributed
simulation. Our model simulates a set of hosts, each
responsible for simulating one vehicle entity controlled
by a user. Each host publishes the state of its simulated
entity to all the other hosts using first order dead
reckoning. The user controls the vehicle through
keystrokes. The user-changeable attributes are speed and
direction. By pressing a key, a user can speed up the
vehicle. Releasing the same key stops the acceleration
and the vehicle maintains its current speed. The
magnitude of speed change depends on the interval
between key press and key release. Speed reduction
works the same way, but using a different key. For
changing direction, when a user presses a special key, the
vehicle starts to spin either clockwise (or counter-
clockwise depending on the key pressed). When the key
is released, the vehicle stops spinning and maintains its
current direction. The simulation is capable of running
with either synthetic input traces or traces from real user
input. Each entry in the trace specifies which key is
pressed or released and at what time, with millisecond
precision.

The underlying network topology and power aware
messaging protocol are also modeled. A simple model is
used for the MAC level data transmissions. Link
throughput was set to 11Mbps and latency is set to 500us,
corresponding to the characteristics of wireless cards
based on the IEEE 802.11b standard.

We conducted several simulations using different
consistency requirements, different human input rates,
different minimal suspension time threshold, and
different entity movement speeds. The performance
metric of interest is the accumulated suspension period
for each host. The accumulated suspension period is a
useful metric because it is platform-independent, making
it possible to interpret the results in a platform-neutral
fashion. It represents the amount of time a host maintain
its network interface in sleep mode. The suspension time
can be converted into power savings using a power model
constructed from real measurement. In the simulation,
we used the power model defined in [1]. The ratio of
power consumption for transmit, receive, and idle modes

is 1.5:1.2:1.0. The model is based on actual power
measurements on Lucent wireless LAN cards.

First, we used a set of different dead reckoning
thresholds (i.e., different values for d) and evaluated how
power conservation is affected by the consistency
requirement. The smaller the dead reckoning threshold,
the tighter the consistency requirement becomes. For the
smallest suspension time, we use 50ms, and an average
user input rate of 1 key per second. The speed of each
entity is kept constant at 50 pixels per second. The entity
state is updated every 25ms, and one entity is simulated
per host. The simulation stops when 1,000 seconds of
simulated time has elapsed. This is equivalent to
generating 40,000 state updates per entity. We collected
the accumulated suspension time for each host, and
normalized it against the baseline case where the
communication device is always powered-on. The results
also include average simulation error under power
conservation and the baseline situation.

4.2. Results

Overall, as expected, tighter consistency requirements
result in lower power savings, highlighting the tradeoff
between power conservation and consistency. For the
tested scenario, we observe maximal power savings of
69% when the dead reckoning threshold is 16 pixels and
a minimal (31%) power savings when the dead reckoning
threshold is 2.0. Our scheme is comparable with a
traditional dead reckoning scheme in terms of
consistency. Since in our scheme, each host sends its
entity state at an earlier time than the traditional dead
reckoning method, in some cases, the observed
consistency error can actually be smaller than the error
using traditional dead reckoning.

0

1

2

3

4

2 4 6 8 10 12 14 16
Dead-reckoning Threshold (pixels)

Po
w

er
 S

av
in

gs
 &

 E
rr

or

Baseline Error Power-aware Error
Power Savings

Figure 3. Power savings and consistency error with
different dead reckoning thresholds (processors=3,

resume latency=50ms).
Results in figure 3 suggest that when the dead

reckoning threshold is small (2 or 4 pixels), the
consistency error of our scheme is close to the traditional

dead reckoning approach. When it is relatively large (8 or
16), the consistency error of our scheme is more likely to
be smaller than the traditional dead reckoning approach.
This is achieved by using more published entity states.
Throughput

 More published entity states imply a larger bandwidth
requirement. Also, our scheme requires each host to send
a suspension request to the station before it can actually
power off its communication device. This adds to the
bandwidth overhead of our scheme. To investigate the
overhead, we compared the required transmit throughput
per host with that of traditional dead reckoning.

0

200

400

600

800

2 4 6 8 10 12 14 16
Dead-reckoning Threshold (pixels)

B
yt

es
/s

ec
on

d

Power-aware Dead-reckoning
Traditional Dead-reckoning

Figure 4. Throughput overhead of our power-aware
scheme vs. traditional dead reckoning (processors=3,

resume latency=50ms).
As shown in figure 4, the absolute amount of

throughput overhead of our scheme is small considering
the amount of power saving that can be achieved. Also
power conservation only occurs when the traffic for state
updates is low. When the throughput requirement of state
exchange is close to the maximal throughput the data link
can sustain, there will be no opportunity to suspend the
communication device. The essence of our scheme is to
discover the right suspension time and interval when such
an opportunity exists without significantly degrading
consistency.
User Input Rate

We next studied the effect of human key input rate on
power savings. A real world distributed interactive
simulation may have a large variance in terms of human
input rate. The input rate may be low when the user is
thinking, but may become high at other times. To
examine the effects of input rate on power conservation,
we observed the effect of two input rates: 1 and 4
keys/second. The 4 keys/second represents an extreme
situation because in a real interactive simulation, human
users seldom give input at such a high rate. The results
are shown in figure 5.

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16
Dead-reckoning Threshold

Po
w

er
 s

av
in

gs

1-key per second 4-key per second

Figure 5. Power savings with varying key input rate
(processors=3, resume latency=50ms).

The results show that the input rate does have an
impact on power conservation. The amount of power
savings decreases when the user input rate is increased.
The effect is more significant when the dead reckoning
threshold is low. However, even at 4 keystrokes per
second and a tight consistency requirement (2 pixels), we
can still achieve 17% power savings without greatly
increasing consistency error.
Fast Mobility

Another important factor is the speed of the simulated
entity. Under the same consistency requirement, a fast
moving entity may have less accumulated suspension
time than a slow moving entity. In the next simulation,
we changed entity speed from 50 pixels per second to 500
pixels per second. This means about 12 pixels per state
update. Figure 6 shows the results.

0
0.05

0.1
0.15

0.2
0.25

0.3

2 4 6 8 10 12 14 16
Dead-reckoning Threshold

Po
w

er
 s

av
in

gs

1-key per second 4-key per second

Figure 6. Power savings with fast entity mobility.
(processors=3, resume latency=50ms).

As expected, higher speeds lead to less power saving.
When both speed and input rate are high, power savings
decline to as low as 13%. Note that higher speed does not
always result in larger consistency errors. The rate of
state updates under 500 pixels per second is much higher
than the rate of state updates fewer than 50 pixels per

second. Under a dead reckoning threshold of 16, the rate
of state updates at a speed of 500 pixels per second is
almost twice the rate of updates at a speed of 50 pixels
per second. This explains why in some cases, the actual
consistency error becomes smaller when the speed is
higher.
Suspension Time

In all the preceding studies, we kept the suspension
time threshold at 50 milliseconds: all suspension attempts
with a suspension period below 50 milliseconds are
ignored. The minimum suspension time threshold is
important because it changes for different mobile
platforms, varying from tens of millisecond to hundreds
of millisecond. We evaluated two additional suspension
time thresholds, 100 milliseconds and 200 milliseconds.
The results are shown in figures 7 and 8.

0

0.2

0.4

0.6

0.8

2 4 6 8 10 12 14 16
Dead-reckoning Threshold

Po
w

er
 s

av
in

gs

50 millisend threshold
100 millisend threshold
200 millisend threshold

Figure 7. Power reduction vs. suspension threshold
(processors=3).

0

1

2

3

2 4 6 8 10 12 14 16
Dead-reckoning Threshold

C
on

si
st

en
cy

Er

ro
r

200 millisend threshold
100 millisend threshold
50 millisend threshold

Figure 8. Average consistency error vs. suspension
threshold (processors=3).

As shown in the figures, suspension threshold has an
influence on both consistency and power savings. The
result shows that smaller suspension thresholds out-
perform larger thresholds in terms of both consistency
and power conservation in our scheme.

Scalability with Number of Hosts
The last experiment explores scalability. We varied

the number of simulating hosts from 3 to 8 (input rate 1
keystroke per second, entity speed 50 pixels per second).
The results shown in figures 9 and 10 indicate that as the
number of simulating nodes increases, the amount of
power saving decreases. About 9% power saving is
obtained even in the case of eight simulating nodes and a
tight dead reckoning threshold. This shows that our
scheme is able to scale to a reasonable number of
platforms. Another interesting observation is that the
amount of consistency error remains stable under
different numbers of simulated nodes showing that our
scheme maintains adequate quality in the simulation.

0
0.2
0.4
0.6
0.8

2 4 6 8 10 12 14 16
Dead-reckoning Threshold

Po
w

er
 S

av
in

gs

3-nodes 4-nodes 5-nodes
6-nodes 7-nodes 8-nodes

Figure 9. Power savings with varying number of hosts
(resume latency=50ms).

0

1

2

3

2 4 6 8 10 12 14 16
Dead-reckoning Threshold

C
on

si
st

en
cy

 E
rr

or

3-node 4-node 5-node
6-node 7-node 8-node

Figure 10. Average consistency error with varying
number of hosts (resume latency=50ms).

5. Related Work
In recent years, several researchers have proposed

suspension of the wireless devices during idle periods of
communication to reduce power consumption [2, 8, 9]. In
terms of latency, a few power-aware routing schemes
achieve energy reduction without significant impact on

latency, while others may increase the latency. In most
schemes, the latency can be bounded through analysis
[5]. A few studies have tried to use application assistance
to decide when and how long the network interface can
be suspended. The tradeoff between reducing power
consumption and reducing delay for data is investigated
in [6]. An alternative approach that does not require
application involvement is to set a timer with a time-out
value. When the timer expires and no network activity
has been detected since the last time-out, the power
management service may conclude that there is no need
for communication and hence force shut down the
network interface. However, without application
information, it is hard for the power management service
to decide how long the communication should be
suspended. For simple applications such as web browsing
and email, an estimate of suspension period may be
determined based on application traces. The uniqueness
of our study is that we focused exclusively on distributed
interactive simulations in which the communication
pattern is much less predicable than in previously studied
applications.

6. Future Work

Our study in this paper represents an initial step

towards the goal of power-aware runtime infrastructure
that can be deployed on mobile simulation platforms.
Clearly, there are many open issues left for further
investigation. Among them is to observe how the scheme
performs with an actual implementation over currently
available hardware and compare the results with
simulation. Furthermore, our approach requires base-
station that runs with dedicated power supply. How to
adapt the approach to work in an ad-hoc environment
represents a challenge and remains a direction of future
research.

7. Conclusions

In this paper, we proposed a new power conservation

scheme for distributed simulations running on mobile
devices. The scheme achieves power savings via
opportunistic suspension/resumption of the
communication devices. It is designed to meet the
consistency requirement by using a new state update
protocol that can heuristically expose estimates of safe
suspension times to the power management service for
intelligent suspension/resume. Results from simulation
study using both actual and synthetic input traces show
that our scheme is able to optimize the trade-off between
state consistency and power savings.

More generally, power considerations constitute a new

exciting dimension that needs to be considered in parallel
and distributed simulation research, especially due to the
recent proliferation of mobile platform and new mobile
simulation applications. The power dimension not only
bears practical relevance but also raises new technical
challenges. We believe the work presented in this paper
only scratches the surface with respect to potential open
research.

8. References

[1]. L.Feeney and M.Nilsson. investigating the energy
consumption of a wireless network interface in an ad hoc
networking environment. In Proc. IEEE INFOCOM, anchorage,
AK, April 2001.
[2]. R.kravets and P.Krishnan. Application-driven power
management for mobile communication. ACM Wireless
Networks, 6(4): 263-277, 2000.
[3]. T.simunic, l.Benini, P.W. Glynn, and G.D. Micheli.
Dynamic power management for portable systems. In Proc.
ACM MOBICOM, pages 11-19, Boston, MA, 2000.
[4]. Michele Zorzi and R.R. Rao, Energy Management in
wireless Communications., Proc.6th WINLAB Workshop on
Third Generation Wireless Information Networks, March, 1997.
[5]. Adaptive Energy-Conserving routing for multi-hop Ad hoc
Networks.
[6]. S. Singh, C.S. Raghavendra. Power efficient MAC protocol
for multi-hop radio networks.
[7]. C. Durbach, J-M. Fourneau. Performance evaluation of a
dead reckoning machanism. Proceedings of the Second
International Workshop on Distributed Interactive Simulation
and Real-Time Applications.
[8]. S. Singh, and C.S. Raghavendra. PAMAS: Power aware
multi-access protocol with signaling for ad hoc networks.
Computer Communication Review 28(3), 5-26.
[9]. S. Singh, M. Woo, and C.S. Raghavendra. Power-aware
routing in mobile ad hoc networks. In Proceedings of the
ACM/IEEE International Conference on Mobile Computing and
Networking, pages 181-190, October, 1998.
[10]. J.-P. Ebert, B, Burns, and A. Wolisz. A trace-based
approach for determining the egergy consumption of a WLAN
network interface. In Proceedings of European Wireless, pp.
230-236, Feb, 2002.
[11]. R. Kravets and P. Krishnan. Power management
techniques for mobile communication. in Porc. of 4th Annual
international Conference on Mobile Computing and Networking
(MOBICOM 98), 1998.
[12]. L. Gautier and C. Diot. Mimaze, a Mulltiuser Game on the
internet. in Proceeding of IEEE Multimedia systems
Conference, June 1998.
[13]. Saunders, R., Formal Expression of Dead Reckoning:
Mathematical and Representation Recommendation, DIS
Workshop, Sept. 1991.
[14]. Lin, K. C., Dead Reckoning in Distributed Interactive
Simulation, DIS Workshop, June 1992.
[15]. Towers, J., and Hines, J., Equations of Motion of the DIS
2.0.3 Dead Reckoning Algorithms, DIS Workshop, Feb. 1994.

