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Abstract 
In distributed simulations, such as multi-player 
distributed virtual environments (DVE), power 
consumption traditionally has not been a major design 
factor.  However, emerging battery-operated mobile 
computing platforms require revisiting DVE 
implementation approaches for maximizing power 
efficiency.  In this paper we explore some implications of 
power considerations in DVE implementation over 
mobile handhelds connected by wireless networks.  We 
focus on the state dissemination problem in DVEs and 
propose a new power-aware dead reckoning framework 
for power-efficient state dissemination.  We highlight a 
fundamental tradeoff between state consistency and 
power consumption, and present an adaptive dead 
reckoning algorithm that attempts to dynamically 
optimize the tradeoff at runtime.  We present a 
quantitative evaluation of our approach using a synthetic 
DVE benchmark application. 
 

1. Introduction 
 
Traditional distributed interactive simulations such as 

distributed virtual environment (DVE) applications run 
on workstations connected by high-speed networks that 
are not power constrained. However, newly emerging 
interactive applications execute over battery operated 
mobile platforms.  Examples of these applications include 
wireless multiplayer gaming and augmented reality 
systems used for military and civilian applications. One 
important design goal of mobile platforms is to increase 
the lifetime of batteries. 

An important problem in realizing distributed 
simulations for DVE applications concerns dissemination 
of state (ground truth) information in order to ensure 
different users observe a consistent view of the virtual 
world.  This paper describes an approach to minimizing 
the energy consumed for state dissemination by the 
wireless network interface in interactive simulations for 
DVEs, by exploiting application level information. We 
investigate the tradeoff between simulation quality and 
energy savings.  Based on an understanding of this 

underlying tradeoff, we develop a novel power-aware 
state update scheme that maintains distributed simulation 
state consistency while at the same time yields lower 
energy. 

Our approach uses a closely coupled feedback loop 
between the simulation and the device power 
management service to achieve a balance between power 
conservation and simulation quality.  A distinguishing 
characteristic of our approach is its adaptive nature – it is 
designed to dynamically extract maximal suspension time 
without adversely affecting state consistency.  It is 
adaptive because it is able to automatically discover the 
appropriate suspension period of the network interface as 
the simulation proceeds. 

The paper is organized as the follows.  In section 2, 
we characterize power consumption of mobile platforms.  
Section 3 describes our power-efficient state update 
approach using a new power-aware dead reckoning 
algorithm.  In section 4, we report results of a simulation 
study analyzing this approach. Section 5 describes related 
work, followed by conclusions and future work in the 
final sections. 

 

2. Mobile Platform 
 

We review relevant features of mobile wireless 
platforms in order to highlight their implications for 
power-aware state dissemination. 

 
2.1. Hardware 

 
Current mobile computing platforms include devices 

with different form factors and capabilities.  Laptop 
computers equipped with a built-in or attached wireless 
network interface card (WNIC) are commonly available.  
Many of the current Personal Digital Assistant (PDA) 
devices are also capable of wireless network 
communication using WNIC attachments.  Examples 
include the Compaq IPAQ handheld running Windows 
CE or Linux, with a PCMCIA jacket to hold a WNIC.  
When these devices are mobile, their power is limited by 



 

their battery life.  
Wireless networks can be set up to operate in 

infrastructure or ad-hoc mode.  Here, we focus on an 
infrastructure mode of operation, in which a dedicated 
node always remains powered on, and acts as a buffering 
and synchronization point for the rest of the nodes.   

 
2.2. Network Interface Power 
 

Wireless network interface cards consume a 
significant portion of the total power consumed by a 
communicating mobile device.  This fact is confirmed by 
several studies conducted in recent years [1, 3, 10, 11] to 
characterize power consumption of mobile devices via 
direct measurements.  Our own measurement on Compaq 
IPAQ handheld devices with PCMCIA wireless cards 
shows that the wireless network interface card can 
consume up to 50% of the total power. 

 
2.3. Power Modes and Timing 

 
A typical WNIC supports multiple modes of 

operation, with varying levels of power consumption.  
The common modes include the following, roughly in 
descending order of power consumption: Transmit, 
Receive, Idle, Suspended and Off modes.  The Transmit 
and Receive modes consume comparable amounts of 
power, especially in ad-hoc mode.  The Suspended mode 
is a low power mode similar to the Off mode, but 
provides faster resumption than switching on from the 
Off mode.  In ad-hoc mode, the power consumption in 
Idle mode of a Lucent IEEE 802.11 WaveLAN PC card 
is nearly as large as that of receive mode [1]. Results of 
[4] also show that power consumption in an Idle or 
Transmit/Receive state is an order of magnitude higher 
than the power consumption in Suspended mode. 

For our purposes, these modes can be reduced to two: 
Active and Suspended.  It is clear that maximal power 
savings are obtained by maximizing the time the WNIC is 
maintained in the Suspended mode.  Our own 
measurements also show that periodic suspension and 
resumption of the WNIC does indeed substantially 
increase overall device battery life. 

 
2.4. Switching Power Modes 

 
Although switching the WNIC to suspended state can 

save power, the latency for switching to suspended mode, 
and later back to active mode, can be high.  The WNIC is 
unusable during the time it is switching between modes, 
and hence introduces additional message latency for any 
new or undelivered messages.  The suspension-
resumption latency greatly depends on the specific driver 

and operating system.  We have observed latencies on the 
order of 600ms on the Compaq IPAQ handheld platform 
with Lucent Orinoco WNIC. Much lower latencies, 
around 70ms to 100ms, using proprietary WNIC drivers 
are reported in the literature.  The long latencies are most 
likely due to inefficient design of the MAC controller 
chip or the wireless adapter interface. We expect that 50-
100 millisecond switching latency will become standard 
in the near future with more power friendly MAC 
controller design. Beside the latency issue, switching 
modes may interfere with the operation of transport level 
protocols such as TCP. This issue has been identified 
previously, and modifications to the standard TCP state 
machine have been proposed by some researchers to 
work with MAC level power management. Our approach 
can benefit from those efforts by adapting their solution 
to our power aware state update scheme. 

  
2.5. Power Consumption vs. Latency 

 
Suspending the WNIC can result in increased message 

latency and a higher probability of lost packets.  Message 
latency is increased as a result of the extra delay 
introduced by device suspension at either the sender's or 
the receiver's side.  When a mobile host sends a state 
update, its communication device may already have been 
suspended. In order to send the update, either it must wait 
until the proposed suspension time has expired, or it must 
resume the device prior to the expiration of the 
suspension period.   Regardless of which approach is 
used, there will be additional delay to send the message. 
On the receiver side, its communication device may be in 
sleep mode when some other host sends a message to it.  
In this case, the earliest time for it to receive the message 
is after the communication device resumes its operation. 

Naïve power saving approaches that do not properly 
coordinate application requirements with device 
suspension will incur the above undesirable effects and 
may severely degrade the quality of distributed 
interactive simulations in which network delay has a large 
bearing on the quality of the simulation [12].  

 
3. Power-Aware State Updates 

 
In distributed interactive applications, each host is 

responsible for simulating one or more entities whose 
states are broadcast/multicast to other remote hosts by 
messages transmitted over a network. One example is a 
simulated vehicle transmitting its location and speed in a 
distributed driving simulator. Because of network delay, 
at any given time, the state copy maintained by a remote 
host is always behind its true state. This problem is 
defined as space-time consistency when the state 



 

information is spatial in nature. Since the number of state 
updates in a distributed simulation can overwhelm the 
available network bandwidth, techniques have been 
introduced to reduce the amount of state updates without 
great loss of space-time consistency. One widely used 
technique is dead reckoning [13, 14, 15]. 

In the traditional approach to dead reckoning, an 
“error threshold” level is first determined based on the 
maximum state inconsistency tolerable in the simulation 
model.  Whenever the difference between the true local 
state and the remotely tracked state exceeds the error 
threshold, a state update is sent over the network to 
synchronize the local and remote states.  In addition, 
periodic state updates are also sent even if the error 
threshold has not been exceeded. 

Our approach to power-aware state updates is to let the 
application expose an appropriate slack time to the power 
management service so that communication devices can 
be suspended with minimal, bounded impact on space-
time consistency.   

 
3.1. Adapting to Dynamic Behavior 

 
Studies of dead reckoning algorithms have revealed 

that state updates are often highly bursty and 
unpredictable [7].  Due to the complexity and 
unpredictability of state updates in most distributed 
applications, it is nearly impossible to have the 
suspension time pre-determined and guaranteed to work 
effectively throughout the entire simulation.  Sometimes, 
entities may move slowly and the interval between state 
updates is long enough to allow aggressive suspension of 
the communication devices.  However, at some other 
times, the entities may move quickly and send frequent 
state updates, allowing little or no time for suspension.  
An adaptive scheme is required that can dynamically 
determine the best suspension time as the simulation 
proceeds. 

 
3.2. Algorithm Rationale 

 
As discussed earlier, the larger the delay that the 

simulation can tolerate, the greater the power it can save 
by suspending and resuming the communication device.  
In order to determine a proper suspension period based 
on simulated model information, we developed a new 
state update approach for entity simulations that can 
dynamically determine a local suspension time under a 
given consistency constraint.  In a simulation involving 
many hosts, each host may have its own local suspension 
period, and the actual suspension time used by the power 
management service may be decided according to the 
global minimum among all the hosts' suspension periods.  

Why does a local suspension need to consider the 
suspension period of other hosts?  This is because each 
host also receives state updates published by other hosts. 
Assume that a host x simulates a slowly moving entity 
that has a large tolerance on suspension interval and 
another host y simulates a more rapidly moving entity 
with only a low tolerance on suspension interval.  If host 
x only considers its own suspension period determined by 
its simulation of the slowly moving entity and uses that 
for its suspend-resume time, its consistency error for the 
data published by host y will be high because of the extra 
transmission delay caused by x's suspension.  This means 
that the actual suspension interval must be computed in a 
global fashion.  The actual suspension time also depends 
to a great extent on the network topology of the 
simulation environment. 

The tolerable latency value determined by a host can 
be given as a hint to its power management service.  As 
such the local communication device need not be 
suspended for exactly that amount of time.  The actual 
suspension interval also depends on the hint values 
provided by other hosts participating in the simulation.  

 
3.3. Algorithm 
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Figure 1. Illustration of power-aware dead reckoning 
algorithm operation 

We now describe our power-aware dead reckoning 
algorithm executed at each node.  Let Ptrue(t) be the true 
position of an entity at time t, Pdr(t) be the entity's dead 
reckoned position, and d be the dead reckoning threshold.  
A second, smaller, dead reckoning threshold d' is defined 
that is used to trigger generation of state updates earlier in 
order to compensate for the increased latency due to the 
use of power-aware messaging.  In the experiments 
described later, d' is set to 0.75*d.  The d and d' values 
are used to compute h, the maximum latency requested by 
the application.  The value of h is viewed as a hint that is 
provided to the power-aware messaging system.  The 



 

variables k and step are parameters used to control the 
rate at which h is modified to adapt to changing latency 
requirements.  The operation of our dead reckoning 
scheme is depicted in Figure 1. 

The state update algorithm described next assumes a 
reliable message transport mechanism is used, and 
receivers send an acknowledgement for each message.  
Relaxation of this assumption is an area of future 
research. 

1. Update Ptrue(t)  and Pdr(t)  with usual 
dead reckoning  

2. If there is no outstanding publication of 
state update waiting to be acked   { 

3.   If  | Ptrue(t)  - Pdr(t)  | > d'   { 
4.     If local host’s communication device 

        is powered off,  resume it 
    Send Ptrue(t)  to other host(s) 

5.     Set tpub = t 
6.     Mark that there is an outstanding 

             state publication not acked yet 
  } else  { 

7.     h = h + k*step; 
8.     If  h> MAX_SUSPENTION_TIME 
9.         Let h=MAX_SUSPENSION_TIME 

  } 
}  else  { 

10.   If | Ptrue(t)  - Pdr(t)  | > d and there is 
     an un-acked state publication { 

11.     Set h = t – tpub 
12.     Send threshold-triggering event 

    to all other hosts 
  } 
} 

13. Post the new h value to the underlying 
messaging mechanism. 

Figure 2. Power-aware dead reckoning algorithm 
executed by each host 

3.4. Discussion 
 

In each simulation cycle, the host executes the steps 
specified in Figure 2.  For simplicity, assume that each 
host is responsible for simulating a single entity and 
publishing its state to the other hosts.  Like the traditional 
dead reckoning algorithm, each host keeps track of both 
the entity’s true position as well as its dead reckoned 
position.  In each simulation cycle, the host first updates 
the entity’s true position and dead reckoned position 
using a standard dead reckoning algorithm (step 1).  Then 
it calculates the distance between the two positions.  If 
the distance is greater than d' and there is no outstanding 
state update waiting to be acknowledged, the host sends 
its own entity’s state to all receivers monitoring the 
vehicle and marks that there is an outstanding state send 
(steps 4 and 6). 

When the application sends a state update, the update 
is not transmitted immediately if the host's network 
interface is in sleep mode.  If this is the case, the host first 
resumes its communication device and then sends the 
state information. Before a state update is acknowledged, 
the host continues to use the old state for calculating 
Pdr(t).  This is different from the traditional dead 
reckoning scheme where Pdr(t)   is modified immediately 
using the new published state.  Since the host still uses 
the old state for calculating Pdr(t), the disparity between 
Ptrue(t)   and Pdr(t)   will continue to grow until the state 
publication is acknowledged. If the difference between 
the true position and the dead reckoned position exceeds 
the true dead reckoning threshold (d), and the state 
publication is still not acknowledged, a new local 
suspension interval hint (h) is calculated (step 11). At 
step 12, the application posts the new value of h to the 
underlying messaging layer that performs the actual 
message transmission and power management.  The 
interval between state publication and its 
acknowledgment depends on the transmission delay and 
receiver suspension delay.  Since transmission delay is 
much less than the suspension period, the dominating 
factor is the receiver suspension period. 

In our scheme, the suspension interval hint (h) is 
increased linearly when there is no state publication.  The 
rate of its growth depends on the value of the parameter 
k. Step 8 is necessary for recovery of the suspension hint. 
One approach to setting k is to assign a constant value.  
Next, we will discuss a way to dynamically determine k, 
yielding a better trade-off between power saving and 
accuracy. 

During the simulation, each host receives state updates 
from other hosts.  In doing so, each host also tracks how 
many state updates are received “late” due to suspension 
of its local communication device. Receipt of a state 
publication is considered as late if it is received after the 
dead reckoning threshold (d) is exceeded.  Because each 
host receives both state updates and their associated 
threshold-triggering events, it is able to determine 
whether a state publication is received late based on the 
receipt time and the time of threshold triggering event.  
Our dynamic method for determining k requires that each 
host record the interval between the last two late receipts 
of state publications.  If the interval is smaller than a 
threshold (say, one second), the value of k will be 
decreased; otherwise it will be increased.  The value of k 
may also increase periodically if there is no late receipt of 
state update messages.  Adaptively changing k allows a 
more aggressive power reduction mechanism without 
greatly degrading consistency. 

 



 

4. Performance Study 
 

We explore the performance of our power aware dead 
reckoning and messaging scheme first with a set of 
simulation studies using application traces. 

 
4.1. Experimental Setup 

 
A simulation of the power-aware distributed 

simulation system was developed to evaluate its 
effectiveness. We used a simple interactive application 
with traced user inputs to model the distributed 
simulation.  Our model simulates a set of hosts, each 
responsible for simulating one vehicle entity controlled 
by a user.  Each host publishes the state of its simulated 
entity to all the other hosts using first order dead 
reckoning.  The user controls the vehicle through 
keystrokes.  The user-changeable attributes are speed and 
direction.  By pressing a key, a user can speed up the 
vehicle.  Releasing the same key stops the acceleration 
and the vehicle maintains its current speed.  The 
magnitude of speed change depends on the interval 
between key press and key release.  Speed reduction 
works the same way, but using a different key.  For 
changing direction, when a user presses a special key, the 
vehicle starts to spin either clockwise (or counter-
clockwise depending on the key pressed).  When the key 
is released, the vehicle stops spinning and maintains its 
current direction.  The simulation is capable of running 
with either synthetic input traces or traces from real user 
input.  Each entry in the trace specifies which key is 
pressed or released and at what time, with millisecond 
precision. 

The underlying network topology and power aware 
messaging protocol are also modeled.  A simple model is 
used for the MAC level data transmissions.  Link 
throughput was set to 11Mbps and latency is set to 500us, 
corresponding to the characteristics of wireless cards 
based on the IEEE 802.11b standard. 

We conducted several simulations using different 
consistency requirements, different human input rates, 
different minimal suspension time threshold, and 
different entity movement speeds.  The performance 
metric of interest is the accumulated suspension period 
for each host.  The accumulated suspension period is a 
useful metric because it is platform-independent, making 
it possible to interpret the results in a platform-neutral 
fashion.  It represents the amount of time a host maintain 
its network interface in sleep mode. The suspension time 
can be converted into power savings using a power model 
constructed from real measurement.  In the simulation, 
we used the power model defined in [1]. The ratio of 
power consumption for transmit, receive, and idle modes 

is 1.5:1.2:1.0. The model is based on actual power 
measurements on Lucent wireless LAN cards. 

First, we used a set of different dead reckoning 
thresholds (i.e., different values for d) and evaluated how 
power conservation is affected by the consistency 
requirement.  The smaller the dead reckoning threshold, 
the tighter the consistency requirement becomes.  For the 
smallest suspension time, we use 50ms, and an average 
user input rate of 1 key per second. The speed of each 
entity is kept constant at 50 pixels per second. The entity 
state is updated every 25ms, and one entity is simulated 
per host.  The simulation stops when 1,000 seconds of 
simulated time has elapsed. This is equivalent to 
generating 40,000 state updates per entity. We collected 
the accumulated suspension time for each host, and 
normalized it against the baseline case where the 
communication device is always powered-on. The results 
also include average simulation error under power 
conservation and the baseline situation. 

 
4.2. Results 

Overall, as expected, tighter consistency requirements 
result in lower power savings, highlighting the tradeoff 
between power conservation and consistency.  For the 
tested scenario, we observe maximal power savings of 
69% when the dead reckoning threshold is 16 pixels and 
a minimal (31%) power savings when the dead reckoning 
threshold is 2.0.  Our scheme is comparable with a 
traditional dead reckoning scheme in terms of 
consistency. Since in our scheme, each host sends its 
entity state at an earlier time than the traditional dead 
reckoning method, in some cases, the observed 
consistency error can actually be smaller than the error 
using traditional dead reckoning. 
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Figure 3. Power savings and consistency error with 
different dead reckoning thresholds (processors=3, 

resume latency=50ms). 
Results in figure 3 suggest that when the dead 

reckoning threshold is small (2 or 4 pixels), the 
consistency error of our scheme is close to the traditional 



 

dead reckoning approach. When it is relatively large (8 or 
16), the consistency error of our scheme is more likely to 
be smaller than the traditional dead reckoning approach.  
This is achieved by using more published entity states. 
Throughput 

 More published entity states imply a larger bandwidth 
requirement. Also, our scheme requires each host to send 
a suspension request to the station before it can actually 
power off its communication device. This adds to the 
bandwidth overhead of our scheme. To investigate the 
overhead, we compared the required transmit throughput 
per host with that of traditional dead reckoning. 
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Figure 4. Throughput overhead of our power-aware 
scheme vs. traditional dead reckoning (processors=3, 

resume latency=50ms). 
As shown in figure 4, the absolute amount of 

throughput overhead of our scheme is small considering 
the amount of power saving that can be achieved.  Also 
power conservation only occurs when the traffic for state 
updates is low.  When the throughput requirement of state 
exchange is close to the maximal throughput the data link 
can sustain, there will be no opportunity to suspend the 
communication device.  The essence of our scheme is to 
discover the right suspension time and interval when such 
an opportunity exists without significantly degrading 
consistency. 
User Input Rate 

We next studied the effect of human key input rate on 
power savings. A real world distributed interactive 
simulation may have a large variance in terms of human 
input rate.  The input rate may be low when the user is 
thinking, but may become high at other times.  To 
examine the effects of input rate on power conservation, 
we observed the effect of two input rates: 1 and 4 
keys/second.  The 4 keys/second represents an extreme 
situation because in a real interactive simulation, human 
users seldom give input at such a high rate.  The results 
are shown in figure 5. 
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Figure 5. Power savings with varying key input rate 
(processors=3, resume latency=50ms). 

The results show that the input rate does have an 
impact on power conservation. The amount of power 
savings decreases when the user input rate is increased. 
The effect is more significant when the dead reckoning 
threshold is low. However, even at 4 keystrokes per 
second and a tight consistency requirement (2 pixels), we 
can still achieve 17% power savings without greatly 
increasing consistency error. 
Fast Mobility 

Another important factor is the speed of the simulated 
entity. Under the same consistency requirement, a fast 
moving entity may have less accumulated suspension 
time than a slow moving entity. In the next simulation, 
we changed entity speed from 50 pixels per second to 500 
pixels per second.  This means about 12 pixels per state 
update. Figure 6 shows the results. 
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Figure 6. Power savings with fast entity mobility. 
(processors=3, resume latency=50ms). 

As expected, higher speeds lead to less power saving.  
When both speed and input rate are high, power savings 
decline to as low as 13%. Note that higher speed does not 
always result in larger consistency errors. The rate of 
state updates under 500 pixels per second is much higher 
than the rate of state updates fewer than 50 pixels per 



 

second. Under a dead reckoning threshold of 16, the rate 
of state updates at a speed of 500 pixels per second is 
almost twice the rate of updates at a speed of 50 pixels 
per second. This explains why in some cases, the actual 
consistency error becomes smaller when the speed is 
higher. 
Suspension Time 

In all the preceding studies, we kept the suspension 
time threshold at 50 milliseconds: all suspension attempts 
with a suspension period below 50 milliseconds are 
ignored.  The minimum suspension time threshold is 
important because it changes for different mobile 
platforms, varying from tens of millisecond to hundreds 
of millisecond. We evaluated two additional suspension 
time thresholds, 100 milliseconds and 200 milliseconds. 
The results are shown in figures 7 and 8. 
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Figure 7. Power reduction vs. suspension threshold 
(processors=3). 
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Figure 8. Average consistency error vs. suspension 
threshold (processors=3). 

As shown in the figures, suspension threshold has an 
influence on both consistency and power savings. The 
result shows that smaller suspension thresholds out-
perform larger thresholds in terms of both consistency 
and power conservation in our scheme. 

Scalability with Number of Hosts 
The last experiment explores scalability.  We varied 

the number of simulating hosts from 3 to 8 (input rate 1 
keystroke per second, entity speed 50 pixels per second). 
The results shown in figures 9 and 10 indicate that as the 
number of simulating nodes increases, the amount of 
power saving decreases. About 9% power saving is 
obtained even in the case of eight simulating nodes and a 
tight dead reckoning threshold. This shows that our 
scheme is able to scale to a reasonable number of 
platforms. Another interesting observation is that the 
amount of consistency error remains stable under 
different numbers of simulated nodes showing that our 
scheme maintains adequate quality in the simulation. 
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Figure 9. Power savings with varying number of hosts 
(resume latency=50ms). 
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number of hosts (resume latency=50ms). 

 

5. Related Work 
In recent years, several researchers have proposed 

suspension of the wireless devices during idle periods of 
communication to reduce power consumption [2, 8, 9]. In 
terms of latency, a few power-aware routing schemes 
achieve energy reduction without significant impact on 



 

latency, while others may increase the latency. In most 
schemes, the latency can be bounded through analysis 
[5]. A few studies have tried to use application assistance 
to decide when and how long the network interface can 
be suspended.  The tradeoff between reducing power 
consumption and reducing delay for data is investigated 
in [6]. An alternative approach that does not require 
application involvement is to set a timer with a time-out 
value. When the timer expires and no network activity 
has been detected since the last time-out, the power 
management service may conclude that there is no need 
for communication and hence force shut down the 
network interface. However, without application 
information, it is hard for the power management service 
to decide how long the communication should be 
suspended. For simple applications such as web browsing 
and email, an estimate of suspension period may be 
determined based on application traces. The uniqueness 
of our study is that we focused exclusively on distributed 
interactive simulations in which the communication 
pattern is much less predicable than in previously studied 
applications. 

 

6. Future Work 
 
Our study in this paper represents an initial step 

towards the goal of power-aware runtime infrastructure 
that can be deployed on mobile simulation platforms.  
Clearly, there are many open issues left for further 
investigation.  Among them is to observe how the scheme 
performs with an actual implementation over currently 
available hardware and compare the results with 
simulation. Furthermore, our approach requires base-
station that runs with dedicated power supply. How to 
adapt the approach to work in an ad-hoc environment 
represents a challenge and remains a direction of future 
research. 

 

7. Conclusions 
 
In this paper, we proposed a new power conservation 

scheme for distributed simulations running on mobile 
devices.  The scheme achieves power savings via 
opportunistic suspension/resumption of the 
communication devices. It is designed to meet the 
consistency requirement by using a new state update 
protocol that can heuristically expose estimates of safe 
suspension times to the power management service for 
intelligent suspension/resume.  Results from simulation 
study using both actual and synthetic input traces show 
that our scheme is able to optimize the trade-off between 
state consistency and power savings.    

More generally, power considerations constitute a new 

exciting dimension that needs to be considered in parallel 
and distributed simulation research, especially due to the 
recent proliferation of mobile platform and new mobile 
simulation applications.  The power dimension not only 
bears practical relevance but also raises new technical 
challenges.  We believe the work presented in this paper 
only scratches the surface with respect to potential open 
research. 
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