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ABSTRACT: 
Parallel and distributed simulation tools are emerging that offer the ability to perform detailed, packet-level 
simulations of large-scale computer networks containing millions of end hosts and routers.  This paper 
examines the synchronization mechanism that is required to ensure the correct execution of such 
parallel/distributed network simulation tools.  Specifically, a variation of the classical null message 
synchronization algorithm is described as well as an analytical model to assess the efficiency and 
scalability of this synchronization protocol.  An implementation of this protocol is developed using an 
approach to realizing parallel network simulations that reuses existing sequential simulation models.  The 
implementation is based on the popular ns-2 network simulation tool, and is used to validate the accuracy 
of the analytic model for large parallel network simulations.  The performance of the network simulator is 
evaluated, and compared with an alternate synchronization mechanism based on global reduction 
computations.  Based on results from experiments on large-scale network simulations, the efficiency of the 
null message protocol is verified.  These results suggest that this protocol yields scalable parallel 
performance when the simulated network can be partitioned among the parallel processors to maintain 
good load balance, lookahead and a relatively constant number of inter-processor cross-links as the model 
size and number of processors are increased in proportion. 
 
NOTES: 
Earlier versions of portions of this paper appeared in the PADS 2004 and MASCOTS 2003 conferences. 



1.  Introduction 
 
Simulation is widely recognized as an essential tool to analyze networks. Although analytic methods are 
useful in many situations, the complexity of modern networks combined with the inability to apply 
simplifying assumptions in many analysis problems limit the applicability of purely analytic approaches.  
For example, it is well-known that Markovian traffic assumptions are often inappropriate and can lead to 
misleading results.  Even when analytic methods can be used, simulation is often used to validate the 
analysis.  It can be used to gain insight into the behavior of particular protocols and mechanisms under a 
variety of network conditions. 

In certain cases, simulations of small to medium sized networks may be sufficient to gain critical 
insights into the behavior of the network.  However, in other cases, simulation is needed to understand the 
detailed effects of a new protocol, policy, service, attack, or application when it is widely deployed on a 
large network such as the Internet.  Interactions between such a newly proposed mechanism, and the 
intensity and variety of competing traffic on the Internet are important considerations in gaining such an 
understanding.  For example, if one wished to understand the effect of enabling multicast on a large 
Internet Service Provider (ISP), much larger simulations with a variety of competing traffic are needed to 
gain credible evidence regarding the effect of this proposed change. 

This paper examines the tools necessary for this latter class of research questions, namely, those 
that require simulations of large networks.  Specifically, we are interested in quantitatively characterizing 
the ability of modern parallel simulation systems to perform detailed simulations of computer networks. 
We focus primarily on packet-level simulations that model the transmission and queuing of individual 
packets as they travel through the network.  Such packet-level simulation is extensively used for protocol 
design and evaluation.  It is widely used by many network simulation tools such as ns-2 [1], GloMoSim 
and its commercial version Qualnet [2], and Opnet [3], among many others. 

Most studies performed today using packet level simulations are limited to experiments modeling 
hundreds to thousands of network nodes (e.g., routers and end host computers).  A critical reason behind 
this limitation in configuration size is that the amount of computation time and memory required to perform 
simulations of much larger networks is prohibitive.  The goal of this paper is to explore the limits of packet 
level simulation using parallel computation techniques and to address conservative synchronization issues 
when dealing with large-scale simulations distributed across many processors. 

First, we will discuss network simulators and how their general architecture can often limit the 
modeling of large-scale networks.  We then introduce methods for overcoming sequential simulator limits 
through parallel and distributed simulation techniques that allow for increased network model sizes, 
reduced execution time or both.  We continue the discussion on parallel simulation techniques by further 
exploring conservative synchronization protocols that often accompany parallel discrete event network 
simulations.  An analytical model for an optimized null message algorithm is then presented and verified, 
and results of an empirical performance evaluation study presented demonstrating scalability for large-scale 
network simulations modeling up to a million network nodes (routers and end hosts) distributed over 
hundreds of processors. 
 
2.  Scalability Limits of Network Simulators 
 
In practice, two factors that typically limit the scale of packet level simulations that can be performed are 
the amount of memory required and the amount of computation time needed to complete each simulation 
run.  Because the simulator requires a certain amount of memory to represent the state of each node, 
memory requirements increase at least linearly with the number of nodes.  Memory requirements may 
increase faster than linearly in some simulators, e.g., to represent routing tables [4].  Thus, the total amount 
of physical memory on the computer performing the simulation acts as a limiting factor on the number of 
nodes that can be represented.   

At the same time, the amount of time required to complete a packet level simulation usually 
increases in proportion with the amount of traffic that must be simulated.  This is because packet-level 
simulators are usually based on a discrete event paradigm where the computation consists of a sequence of 
event computations.  Events in a packet-level simulation represent actions associated with processing a 
packet such as transmitting the packet over a link.  Thus the execution time in a packet level simulation is 
proportional to the number of packets that must be processed.  Assuming the modeler is only willing to 



wait a certain amount of time for the 
simulation to complete, this places a limit 
on the amount of traffic that can be 
simulated. 

The preceding observations 
imply specific limits on the scale (size 
and amount of traffic) that can practically 
be modeled by a given simulator using a 
specific hardware platform.  A notional 
diagram illustrating these scalability 
limitations is shown in figure 1. In this 
figure we normalize the execution time 
constraint by requiring that the simulation 
execute in real time, i.e., simulating S 
seconds of network operation requires no 
more than S seconds of wallclock time.  
Each shaded area in Figure 1 represents a 
class of network simulators.  Sequential 
simulation methods provide a baseline.  
Our experiments indicate that 
contemporary network simulators such as 

ns-2 with suitable optimizations to reduce memory consumption are able to simulate on the order of tens to 
hundreds of thousands of packet transmissions (transmission of a single packet over a single 
communication link) per second of wallclock time for networks containing thousands to tens of thousands 
of nodes on a modern workstation or personal computer. 

Concurrent execution of the simulation computation on multiple processors can improve the 
scalability of the simulator both in terms of network size and execution speed, depending on the method 
that is used.  Time parallel simulation methods such as those described in [5-11] parallelize a simulation of 
a fixed sized network by partitioning the simulation time axis into intervals, and assigning a processor to 
simulate the system over its assigned time interval.  These methods increase the execution speed of the 
simulator enabling more network traffic to be simulated in real time, but do not increase the size of the 
network being simulated (see Figure 1).  For example, performance on the order of 1010 simulated packet 
transmissions per second are reported in [11].  Parallel discrete event methods utilize a space-parallel 
approach where a large network is partitioned and the nodes of each partition are mapped to a different 
processor, offering the potential for both network size and execution speed to scale in proportion to the 
number of processors.  As discussed later, several parallel simulators using this approach have been 
developed.  This approach is the primary focus of this paper.  Finally, in addition to these “pure” time and 
space parallel approaches, some approaches combine both time and space parallelism, e.g., see [12]. 
 
3.  Parallel Network Simulation 
 
Several parallel discrete event simulation systems have been developed to improve the scalability of 
network simulations.  The traditional approach to realizing such a system is to create the parallel simulator 
“from scratch,” where all the simulation software is custom designed for a particular parallel simulation 
engine. The simulation engine provides, at a minimum, services for communication and synchronization.  
Examples of parallel network simulators using this approach include GloMoSim [2], TeD [13, 14], SSFNet 
[15], DaSSF [16], TeleSim [17], and the ATM simulator described in [18], among others.  One advantage 
of this approach is the software can be tailored to execute efficiently in a specific environment.  Because 
new models must be developed and validated, this approach requires a significant amount of time and effort 
to create a useable system. 

Another approach to parallel/distributed simulation involves interconnecting existing simulators.  
These federated simulations may include multiple copies of the same simulator (modeling different 
portions of the network), or entirely different simulators. The individual simulators that are to be linked 
may be sequential or parallel.  This approach has been widely used by the military to create simulation 
systems for training or analysis, and several standards have been developed in this regard [19-23]. An 
approach linking multiple copies of the commercial CSIM simulator to create parallel simulations of 
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queues is described in [24].  The federated approach offers the benefits of model and software reuse, and 
provides the potential of rapid parallelization of existing sequential simulators.  It also offers the ability to 
exploit models and software from different simulators in one system [25]. 

Here, we focus on the latter approach.  Specifically, we are concerned with the Parallel/Distributed 
Network Simulator (PDNS) based on the widely used ns-2 network simulation tool.  PDNS uses the 
underlying runtime infrastructure (RTI) software that provides services for communication and 
synchronization (see Figure 2).  The RTI and PDNS software will be described next. 
 
3.1.  RTI-KIT 
 
RTI-Kit is a component of the Federated Simulations Development Kit (FDK).  It provides a set of libraries 
for realizing runtime infrastructure (RTI) software that provides communication and synchronization 
services for parallel/distributed simulations.  Specifically, the MCAST library provides group 

communication services for implementing 
publication/subscription communication 
among simulators (federates).  The current 
version uses reliable, point-to-point 
communication to implement group 
communications.  The TM-Kit library includes 
software to synchronize the computation, as 
will be discussed in greater detail shortly.  The 
other modules shown in figure 2 implement 
mechanisms such as buffer management, 
priority queues, and low level communications 
support.  The RTI-Kit software has been 
extracted from FDK and ported into a 
standalone library tuned for extensibility, high 
performance, and scalability.  This library 
designed specifically for parallel and 
distributed applications is called libSynk/RTI 
[26, 27], and offers all RTI-Kit services 
detailed in figure 2 along with a basic 
RTI/HLA interface for backwards 
compatibility.  Our simulation study utilizes 
libSynk/RTI. 

Synchronization mechanisms for 
parallel discrete event simulation can be 

broadly classified as conservative or optimistic.  The principal responsibility of the synchronization 
mechanism is to ensure that each simulator (called a federate) processes events in time stamp order.  
Conservative mechanisms use blocking to ensure an event (message) is not processed until it can be 
guaranteed no event with a smaller time stamp will later be received.  Optimistic mechanisms allow events 
to be processed out of time stamp order, but use some mechanism (e.g., rollback) to recover from such 
errors.  These synchronization paradigms are discussed in greater detail in [28]. 

The initial version of libSynk/RTI used a synchronization mechanism based on using a distributed 
snapshot algorithm to compute the lower bound on time stamp of future message that might be received by 
processors.  In addition to computing a global minimum, this algorithm must account for messages that 
have been sent, but have not yet been received, i.e., transient messages.  Specifically, a variation of 
Mattern’s algorithm [29] is used for this purpose.  At the heart of this version of TM-Kit is the computation 
of reductions (global minimums) that account for transient messages using message counters.  This 
computation and performance optimizations that have been developed are described in [26].  However, the 
libSynk/RTI software infrastructure can accommodate multiple synchronization schemes developed as 
modules.  Another TM module based on null messages to synchronize the distributed simulation was 
developed with large-scale simulations in mind, as will be described later. 
 
3.2.  PDNS 
 

ns-2 
(pdns) 

RTI 
interface 

RTI 

ns-2 
(pdns) 

RTI 
interface 

RTI Interface 

RTI-Kit 

FM-Lib (low level communications) 

buffer mgt., 
priority 

queues, etc. 

MCAST 
(group 

Comm.) 

TM-Kit 
(synch.) 

ns-2 
(pdns) 

RTI 
interface 

… 

Figure 2.  PDNS/RTI-KIT architecture 



PDNS is based on the ns-2 simulation tool, and is described in greater detail in [30].  Each PDNS federate 
differs from ns-2 in two important respects.  First, modifications to ns-2 were required to support 
distributed execution.  Specifically, a central problem that must be addressed when federating sequential 
network simulation software in this way is the global state problem. Each PDNS federate no longer has 
global knowledge of the state of the system.  One ns-2 federate cannot directly reference state information 
for network nodes that are instantiated in a different federate.  In general, some provision must be made to 
deal with both static state information that does not change during the execution (e.g., topology 
information), and dynamic information that does change (e.g., queue lengths).  Fortunately, due to the 
modular design of the ns-2 software, one need only address this problem for static information concerning 
network topology, greatly simplifying the global state problem.  PDNS uses a facility called remote links to 
refer to link endpoints that reside in a different processor, and a technique called NixVector routing to 
reduce the size of routing tables that are required to perform the simulation. 
 
By federating sequential simulators such as PDNS via an RTI, one can develop larger models using existing 
software and tools.  This approach favors conservative over optimistic synchronization because one need 
not add a rollback mechanism to the original simulator.  Therefore, conservative synchronization issues 
must be scrutinized to ensure that parallel and distributed network simulations run efficiently over a large 
number of processors.  An inefficient time management (synchronization) implementation or the 
application of an inappropriate synchronization protocol can dramatically reduce performance and prohibit 
instantiation or large-scale network models.  We will now turn our attention to issues with conservative 
synchronization methods provided by the time management module in the RTI-Kit. 

 
4.  Conservative Synchronization Overview 
 
As discussed earlier, in conservative PDES, an event cannot be processed unless it is safe to do so.  Since 
all federates do not have a consistent view of the state of the entire system, federates must exchange 
information to determine when events are safe to process.  Moreover, federates must process events in time 
stamp order so that the local causality constraint is preserved.  This process of synchronizing federates has 
been the subject of much past research [28]. 

Conservative synchronization algorithms can be broadly classified as using global or local 
synchronization computations.  Global algorithms rely on reduction computations such as that described 
earlier to synchronize with other federates in the simulation.  Processors using these algorithms alternate 
between event computations and participation in global synchronization computations.  During the event 
computation phases, the distributed simulation does useful work, and forward progress in simulation time is 
made.  Synchronization computations involve all federates to compute a global minimum value referred to 
as the Lower Bound on Timestamp (LBTS).  The LBTS value is a guarantee that there will be no future 
incoming events that will have a timestamp less than the LBTS value.  This allows federates to safely 
process events in its event queue in time stamp order with timestamps less than the LBTS value.  Although 
each federate computes its own individual LBTS value, the global minimum of LBTS values is computed 
over all federates through the reduction computation and this global minimum is used as the LBTS value by 
all federates.  These global reductions may be performed synchronously, in which case all federates block 
until the reduction computation has completed, or asynchronously, “in the background” while federates 
perform event computations.  The libSynk/RTI implementation uses the latter approach.  By only processing 
those which have a timestamp less than LBTS one can guarantee that each federate only processes events in 
time stamp order.  Well-known examples of algorithms using global synchronization computations include 
YAWNS [31], deadlock detection and recovery [32], and the bounded lag algorithm [33]. 

Local algorithms do not require global synchronization computations.  Rather, such computations 
are performed in an asynchronous manner by different processors based on locally available information.  
A well-known example is the null message algorithm for deadlock avoidance originally developed 
independently by Chandy and Misra [34] and Bryant [35].  The original Chandy-Misra-Bryant (CMB) null 
message algorithm specifies that after processing an event, the federate must send a time stamped message 
containing a lower bound on the time stamp of future messages that can later be sent to neighboring 
federates.  These null messages essentially contain LBTS values between neighboring federates instead of a 
global minimum between all federates in the previous (global synchronization) case.  Consequently, 
simulations utilizing asynchronous null message algorithms are logically composed of federates that 



synchronize locally with other federates with which it directly interacts.  Variants to the original CMB null 
message algorithm to improve efficiency have been devised and evaluated [36-39].   

The focus here is to improve scalability of large-scale network simulations over many processors 
by optimizing the well-known CMB null message algorithm used for time management.  Although previous 
studies have evaluated the performance of conservative synchronization algorithms for inefficiencies and 
overhead (e.g., see [40-42]), the scale of these studies have been, for the most part, limited to modest-sized 
configurations, with most using fewer than 100 processors.  As the number of federates that participate in a 
parallel and distributed simulation increases, performance conclusions based on small-scale simulation 
studies may not apply to a large-scale context and the appropriateness of a particular synchronization 
method can shift from one algorithm to another.  Here, we address scalability concerns in order to compare 
the local CMB null message algorithm with a global reduction-based algorithm for large-scale network 
simulations. 

While there has been much research comparing optimistic and conservative synchronization 
protocols, there has been comparatively little work devoted to comparing the performance of local and 
global conservative synchronization algorithms for large numbers of processors.  Bagrodia and Takai 
provide extensive performance comparisons, but do not consider large numbers of processors [36].  Nicol 
describes scalability through analysis of model characteristics, partitioning, workload balance, and model 
complexity in a broad PDES context [43].  However, our work specifically analyzes the detailed costs 
associated with the operation of a lazy null message algorithm.  Further, we show that better scalability can 
be achieved using CMB, compared to global reduction algorithms, in scaled network models with constant 
fan-in/fan-out.  This is performed with an emphasis on quantitative results supporting our findings.  Nicol 
and Liu [44] combine asynchronous channel scanning and synchronous global barrier algorithms with a 
good amount of experimental data examining fan-in/fan-out and lookahead up to 8 processors.  We discuss 
performance implications on larger configurations, specifically comparing lazy null message-based and 
global reduction-based algorithms.  These algorithms are applied to regular and irregular network models 
with varying load distributions and asymmetric lookahead values, on up to 128 processors.  Nicol also 
presents models to provide a lower-bound on the performance of a synchronous global reduction algorithm 
that can apply to large numbers of federates [45, 46]. Our analytic model differs from this work in its focus 
on scalability concerns for the CMB algorithm.  While analyzers described in [47] illustrate speedup 
differences between local and global algorithms, our focus lies in identifying detailed CMB performance 
characteristics, such as null message send frequency and overhead, and applied to analytical models for 
large-scale network simulation.  Synchronization challenges are described by Naroska and Schwiegelshohn 
[48] for large number of processes.  While their work focuses on VLSI design, we focus on network 
simulations.  The work presented in [49] contains models that exclude lookahead values [50].  However, 
their approach requires extensive knowledge of various metrics and has no means to measure the effect of 
increasing scale. 
 
5.  Analytical Models for CMB 
 
Synchronization based on the CMB algorithm depends upon null messages exchanged only between 
neighboring federates.  The frequency and time stamp of these null messages dictate the behavior and 
performance of the simulation; this simple observation will drive the formulation of the analytical CMB 
model.  We will iteratively build this model.  The end result will be a model for a version of the CMB null 
message algorithm that can approximate simulator performance in structured large-scale network 
simulations.   

In the following we assume the parallel simulator consists of a collection of federates that 
communicate by exchanging messages.   Additionally, we relax the constraints assumed in the original null 
message algorithm.  Specifically, a federate need not send messages in time stamp order.  We do assume 
that the communication channel delivers messages in the same order in which they were sent (FIFO).  
These assumptions imply that all simulation time information for computing new LBTS values resides in 
the time stamps of null messages. 
 
5.1.  Effect of Null Messages on Simulation Behavior 
 
Lookahead is one of the most important factors to achieving good performance in conservative PDES.  
Each federate is allowed to process events without re-synchronizing with other federates up to its LBTS 



value.  In general, conservative PDES performs well when the difference between successive LBTS values 
is large relative to the simulation time between successive events, because each federate can process many 
events before it must re-synchronize with other processors. 

In a traditional CMB algorithm, after an event is processed, null messages are sent to every output 
channel to neighboring federates.  It is well known that overly eager null message transmission schemes 
produce an excessive number of null messages, leading to other algorithms that improve CMB performance 
by sending null messages less often.  However, a sufficient number of null messages must be sent in order 
to avoid deadlock.  The frequency of null message sends can have a large effect on performance.  As the 
number of null messages increases, the overhead to synchronize increases proportionately, and less useful 
work is accomplished each second of wallclock time.  Lookahead, null message frequency, time advance 
conditions, and remote communication are all contributing factors in the analytical model characterizing the 
performance of algorithms based on null messages. 
 
5.2.  A Lazy CMB Null Message Algorithm 
 
This variant of the CMB algorithm, which is traditionally referred to as lazy CMB, attempts to minimize the 
number of null messages by only sending them when absolutely necessary.  Specifically, null messages are 
only sent when the federate reaches the end of its safe processing time, i.e., only when the federate must 
block.  Failing to send null messages while in this blocked state could lead to deadlock situations.   

Figure 3 shows the progression of the simulation using the lazy CMB algorithm where each 
federate has the same lookahead.  Note that “LBTS” in the figure represents when a new LBTS value is 
computed for time management.  This lazy null message execution resembles that of a time-stepped 
simulation since each federate is in perfect synchrony with each other.  With a minimal number of null 

messages exchanged between federates, this scheme appears 
to be an efficient synchronization protocol.  One can 
calculate the number of null messages NΦ sent as: 
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where m is the number of federates, n is the number of 
output channels per federate, and s is the length of the run in 
simulation time. The number of execution windows (s 
divided by lookahead), gives the number of rounds or time-
steps for which null messages are sent.  Multiplying this 
result by the number of output channels yields the number of 

null messages sent each round.  The product of this result and the total number of federates gives the total 
number of null messages exchanged during the entire simulation.  It is important to emphasize that formula 
1 pertains to a CMB algorithm applied to a regular, structured network model.  In other words, the 
lookahead of each federate is assumed to be the same.  

In our sample simulation, let m = 8, n = 2, s = 25, and lookahead = 0.2 seconds.  By equation 1, the 
total number of null messages would be 2,000.  We can modify equation 1 to approximate the number of 
synchronization messages (NΨ) sent when using global reductions based on a butterfly barrier (assuming 
that m is a multiple of 2): 
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�
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s
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This equation indicates the same simulation using global reductions and a butterfly barrier mechanism 
results in 3,000 synchronization messages.  More generally, if the number of output channels does not 
increase with the number of federates, the number of null messages in CMB increases linearly with the 
number of federates, yielding lower overhead than the approach using global reductions. 

It is important to note, however, that minimizing the number of null messages does not necessarily 
maximize performance. In particular, a modest load imbalance may lead to large waiting times that could 
be avoided by sending additional null messages.  To see this, consider the example in figure 4, showing two 
federates A & B with output channels between them.  Here, federate A determines that it can no longer 
process events safely.  Federate A sends a null message to federate B and blocks.  However, federate B is 
busy processing events within its own LBTS limit.  Further, when federate B completes processing these 
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events, it can process the null message from federate A, 
compute a new LBTS value, and begin processing events 
based on this new value, all without sending a null 
message to federate A.  Because no new null message is 
sent to federate A, federate A will remain blocked.  A null 
message will be sent to federate A only after federate B 
has finished processing these new events and is forced to 
block. Moreover, the delay to transmit this null message 
from federate A to federate B further increases the amount 
of time federate A remains blocked. 

A solution to this problem is to have each 
federate send null messages more frequently.  One must 

generate more null messages, but not so many that the system is burdened with an excessive number.  This 
is discussed next. 
 
5.3.  An Optimized Null Message Algorithm 
 
One approach to generating additional null messages is to designate that each federate should send null 
messages every f units of simulation time advance, where f is less than the federate’s lookahead (continuing 
to assume, for the moment, that all links have the same lookahead; we will relax this assumption later).  By 
increasing the frequency of null messages sent to neighbors, potentially long blocking times can be avoided. 

A second optimization is to eliminate null messages that carry no new useful information.  For 
example, if two successive null messages carry the same time stamp it is clear there is no reason to send the 
second.  Thus, we can cancel (suppress) any superfluous null messages that convey no new information, by 
not sending those messages at all.   

To include these two changes, we can modify equation 1 to yield: 
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where c is the proportion of null messages cancelled and f is the frequency at which null messages are sent.  
Here, f is used in place of the lookahead value in equation 1.  Due to the non-deterministic nature of the 
modified lazy null message algorithm, equation 3 provides only a lower-bound estimate on the number of 
null messages sent if lookahead is used for f.  The quantity c cannot equal 1 nor can f equal 0 (which means 
all null messages are cancelled or no null messages are sent, respectively).  If either of these conditions 
were true, then the deadlock avoidance guarantee of the CMB algorithm would be violated. 

We now turn to the more general case of non-uniform lookahead on output channels.  It is useful 
to construct an analytical model for which the simulation models are irregular.  Here, we assume a 
lookahead value is assigned to each link.  Increased concurrency in simulation execution can be gained 

using local synchronization if there exists a 
non-trivial difference in lookahead for multiple 
output channels per federate.  By tailoring null 
messages to specific lookahead values for each 
output channel, we can offer better LBTS 
guarantees which are not artificially limited by 
other output channels on a federate which have 
smaller lookaheads.  In the case of different 
lookahead values for different output channels 
to different federates, formula 3 can be 
modified to yield: 
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where fjk represents either the minimum 
lookahead on the outgoing channel to federate 
jk or the frequency of null message sends.  
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From a federate j, if there are multiple outgoing links to a neighboring federate x, they are consolidated into 
a single output channel with the lookahead assigned as the minimum of all outgoing links to x.  In figure 5, 
a sample federate topology is constructed where the lookahead on all output links between federates is 10, 
with the exception of the link between federate A and federate B.  Although the lookahead is 10 between 
federates A & E and federates B & C, we can see that both federate C and federate E receive null message 
updates from federates A & B at 1 time unit intervals.  Therefore, the “localized effect” of non-uniform 
lookahead must be carefully considered before applying an estimate using equation 4.  Equation 4 is 
applicable even in the case where all lookahead values are the same among all output channels, in which 
case the equation would then be equivalent to equation 3. 

Equations 1-4 include lookahead and null message frequency to give an approximation of the 
number of null messages sent during the course of the simulation.  As mentioned earlier, the number of null 
messages is useful, but it does not in itself offer an estimate on the efficiency of the synchronization 
algorithm.  In addition to blocking, the type of communication used by the hardware platform on which the 
simulator executes (e.g. shared memory vs. Ethernet) and other related factors provide a better 
approximation on the overhead of a null message algorithm. 
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Equation 5 represents an overhead index for the lazy null message algorithm. Here a represents the 
number of different types of remote communication used in the simulation, p is the percentage and w is the 
weight given to a specific type of remote communication.  The quantity w is a normalization factor for 
different communication media.  For instance, if we had remote communication over both shared memory 
(w1) and Ethernet (w2), a possible normalization would be w1=1 and w2=10 to represent shared memory 
being faster by an order of magnitude compared to Ethernet.  The natural logarithm is applied to represent 
the index as a monotonically increasing function of the product of the types of remote communication used 
and the average amount of null messages sent and received per federate. 

Utilizing these equations, one could compute not only the number of null messages that would be 
sent over all federates, but also the relative messaging overhead incurred with a particular null message 
algorithm or simulation scenario.  This can be particularly useful when attempting to predict performance 
of a new scenario against an established baseline (e.g., scaled experiments). 

As mentioned earlier, it is important to emphasize that raw null message numbers sometimes may 
not always provide the best approximation for synchronization overhead.  Other factors such as load 
imbalance can also reduce parallel and distributed simulator performance.  However, the analytic model 
allows for a simple synchronization overhead estimation with good accuracy as we will show later in our 
validation study. 
 
5.4.  Synchronizing Large-Scale Network Simulations 
 
Equation 5 predicts that the overhead associated with these variations of the null message algorithm will 
remain relatively constant as a simulation scales, assuming the number of output channels for each federate 
does not increase with the number of federates, and all other factors (such as relative amount of remote 
communication and lookahead) remain unchanged.  On the other hand, time management algorithms using 
global reduction operations have larger overheads as the simulation scales to a larger number of processors. 

Notice that the only change from equation 1 to equation 2 is the substitution of log2m for n.  For a 
global algorithm, the number of synchronization messages increases at a rate of mlog2m, compared to a rate 
of m for CMB.  In addition, this cost for synchronous algorithms does not include the penalty of jointly 
interrupting and restarting all federates that increases linearly as the number of federates increases, 
contributing to the overhead of time management for every LBTS computation. 
 
6.  Applying the Analytical Null Message Model to Predict Overhead 

 
Using the analytical model formulated in the previous section, we can forecast null message activity and 
overhead indices.  These indicators can then be used to predict behavior and performance for different 
simulation models.  We will first estimate null message activity and overhead and then verify our numbers 



through experimental measurements.  In our experimental performance study, one federate corresponds to 
one physical processor (CPU). 
 
6.1.  Baseline Model 

 
Here, we used benchmark networks developed at Dartmouth College as a set of baseline models for the 
network modeling and simulation community [51].  This baseline configuration was created to facilitate and 
demonstrate network simulator scalability. 

Each portion of the network is referred to as a Campus Network (CN).  Figure 6 shows the 
topology for the CN.  Each CN consists of 4 servers, 30 routers, and 504 end hosts for a total of 538 nodes.  

The CN is comprised of 4 separate sub-networks.  Net 0 
consists of 3 routers, where node 0:0 is the gateway router 
for the CN.  Net 1 is composed of 2 routers and 4 servers.  
Net 2 consists of 7 routers, 7 LAN routers, and 294 
clients.  Net 3 contains 4 routers, 5 LAN routers, and 210 
clients. 

All non-end host links have a bandwidth of 
2Gb/s and have a propagation delay of 5ms with the 
exception of the Net 0 to Net 1 links, which have a delay 
of 1ms.  End hosts are connected point-to-point with their 
respective LAN router and have links with 100Mb/s in 
bandwidth and have a delay of 1ms. 

Multiple CNs may be instantiated and connected 
together to form a ring topology.  This aspect of the 
network allows the baseline model to be easily scaled to 
arbitrarily large sizes.  Multiple CNs are interconnected 
through a high latency 200ms “ring” link with 2Gb/s 
bandwidth via their Net 0 gateway router (node 0:0).  The 
baseline model also contains chord links between CN i 
and CN i + 4 where i mod 4 is zero.  A second set of 

chord links exist between CN i and CN i + 10 where i mod 2 is zero and i is less than half of the length of 
the ring.  For our tests, we instantiated 7 CNs per federate, which is the maximum number of CNs 
representable within the total memory available on each processor.  Thus, these experiments scale the size 
of the simulation model in proportion with the number of processors.  Results from experiments containing 
up to 512 processors are reported, corresponding to a simulation modeling over 1.9 million network nodes. 

In our analysis and performance evaluation, we focus on pure TCP traffic transferred to and 
requested by end hosts from server nodes.  We use the short transfer case of the baseline model, where 
clients request 500,000 bytes from a Net 1 server.  TCP sessions start at a time selected from a uniform 
distribution over the interval from 0 and 10 seconds of simulation time.  The baseline model specifies for 
TCP traffic to be requested from the neighboring CN that is one ring link hop away.  This traffic model 
exercises only the ring links and no chord links, consequently, we have modified the traffic scenarios for 
some of our test cases to allow end hosts to request data from any Net 1 server in the ring network at 
random. 

 
6.2.  Scenarios 

 
The baseline model was enhanced to test the effects of irregularity and asymmetry on time 

management performance.  The modifications are intended to exercise irregularity of both traffic and 
topology.  The five scenarios (see Table 1) represent five contrasting configurations, providing a range of 
benchmarks.  Random server selection and varying propagation delay on ring and chord links were 
parameters that were modified to create scenarios used in the performance study. 

Three scenarios were drafted where no chord links were used.  The Baseline model consists of 
standard ring link delays and standard server selection.  Traffic restrictions for Baseline-R are not limited to 
the next neighbor but any server in the ring network.  Baseline-2ms is similar to the previous scenario, but 
has a single 2ms ring link that spans two federates.  The other two scenarios contain chord links to add 
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more paths to the network topology.  Chord-R contains standard 200ms ring and chord delays with random 
server selection.  Chord-Asym contains asymmetric, random chord delays from 10-50ms. 

Table 1.  Benchmark Scenarios 
Scenario Traffic Chord? Special Properties 
Baseline Std. No None 

Baseline-R Rand. No None 
Baseline-2ms Rand. No Single 2ms ring link 

Chord-R Rand. Yes None 
Chord-Asym Rand. Yes Asym. Chord delays 

 
6.3.  Software and Hardware Platforms 

 
The aforementioned PDNS  network simulator was used in the performance study.  libSynk/RTI was used as 
the underlying communications and time management library to manage the PDNS federates.  The five 
benchmark scenarios were tested on two different hardware platforms: 

Intel Pentium III Linux Cluster (P3) – Consists of 16 8-way 550MHz Pentium II Xeon SMP 
machines with 4GB RAM connected via Gigabit Ethernet.  The operating system is Red Hat Linux 7.3 
running a customized 2.4.18-27.7.xsmp kernel.   libSynk/RTI and PDNS (based on ns-2.26) were compiled 
using gcc-3.2.3 with compiler optimizations for the Intel Pentium III architecture. 

Intel Itanium 2 Linux Cluster (IA64) – Consists of 30 2-way 900MHz Itanium 2 SMP machines 
with 6GB RAM connected via Gigabit Ethernet.  The operating system is Red Hat Advanced Workstation 
2.1 running a 2.4.18-e.31smp kernel.  libSynk/RTI and PDNS (based on ns-2.26) were compiled using 
Intel’s ia-64 C/C++ compiler 7.1 (ecc). 

Scalability tests for the Baseline model were also conducted on the Pittsburgh Supercomputing 
Center’s “Lemieux” Compaq Alpha Tru64 Cluster (PSC).  The cluster has 750 4-way 1GHz Alpha ES45 
SMP nodes with 4GB RAM connected via a Quadrics switch.  libSynk/RTI and PDNS (based on ns-2.1b9) 
were compiled using gcc-3.0. 

 
6.4.  Approximating Null Message Transmissions 

 
Using the analytical model for CMB algorithms, the number of null messages sent can be estimated.  Table 
2 shows null message activity estimates for the Baseline scenario along with measurements from the 
parallel simulator.  In this scenario, s=25, lookahead=0.2, f=(0.2/3), n=2, and c=0.5. 

Table 2.  Null Message Send Estimations 
Number of 

CPUs 
Approximation Measurement 

4 1,500 1,424 
8 3,000 2,974 

16 6,000 6,064 
32 12,000 11,890 
64 24,000 23,586 
128 48,000 48,628 
256 96,000 96,034 
512 192,000 193,862 

Table 2 shows that our analytical model predicts the null message counts quite accurately.  The 
discrepancy between the approximation and simulation numbers are due to the estimation of the null 
frequency and null message cancellation rate.  It is difficult to predict the exact interaction between event 
processing and the effects on null message frequency and cancellations, yet the approximation is very close 
to the actual null message activity. 
 
6.5.  Quantifying Simulator Performance 

 
Just as computer hardware designers utilize metrics such as the number of floating point operations a 
machine can process per second of wallclock time, it is useful to have a quantitative metric to characterize 
the performance of packet-level network simulators.  Since the bulk of the simulation computation in a 



packet level simulator involves simulating the transmission and processing of packets as they travel from 
the source, through intermediate nodes (routers), to its destination, it is convenient to use the number of 
Packet Transmissions that can be simulated per Second of wallclock time (or PTS) as the metric to specify 
simulator speed.  This metric is useful because given the PTS rate of a simulator, one can estimate the 
amount of time that will be required to complete a simulation run if one knows the amount of traffic that 
must be simulated, and the average number of hops required to transmit a packet from source to 
destination. 

Specifically, the execution time T for a simulation run can be estimated by the equation  

T

S

N
T

PTS
=                         (6) 

where NT is the number of packet transmissions that must be simulated and PTSS is the number of simulated 
packet transmissions that can be simulated per second of wallclock time by simulator S.  NT depends on 
several factors.  A first order estimate is  

T F F FN N P H= × ×        (7) 
where NF is the number of packet flows that must be simulated, PF is the average number of packet 
transmissions per flow, and HF is the average number of hops a packet must traverse in traveling from 
source to destination.  It is important to note, however, that this is an approximation because it does not 
consider packet losses nor other non-user traffic packets that must be sent by the protocol being used, e.g., 
acknowledgement packets in TCP.  Nevertheless, when these considerations are accounted for, these 
equations provide a reasonable means to estimate execution time. 

When the objective is to achieve real-time performance, the execution time constraint is PTSS 
must be at least as large as  

F F FN R H× ×                   (8) 
where RF is the average rate of packets transmitted (packets per second) per flow, again with the same 
caveats concerning losses and protocol-generated packets.  For example, consider a simulation of 500,000 
active UDP flows in real time where each flow produces traffic at a rate of 1 Mbps.  Assuming 1 KByte 
packets, this translates to 125 packets/second.  If the average path length is 8 hops, the simulator must 
execute at a rate of 500 Million PTS to achieve real time performance. 
 
6.6.  Approximating Null Message Overhead 

 
Utilizing the previous estimation results for the number of null messages sent and equation 3 derived from 
the analytical model, it is possible to estimate the synchronization overhead incurred for each scenario. 

Simply comparing the overhead index for a particular scenario to its corresponding run time 
performance (wallclock seconds) is inadequate.  This is because the elapsed time to run a simulation does 
not accurately gauge the amount of work performed by the network simulator.  Instead, we will utilize the 
PTS metric defined previously to determine work performed by the simulator, and PTS is adequate to 
compare against the overhead index as the PTS rate is directly affected by time management overhead. 

The overhead indices and PTS rates for 32 CPUs are shown in Table 3.  For each of the scenarios, 
it is known that 28 CPUs (87.5%) send null messages through shared memory buffers and the remaining 4 
CPUs (12.5%) communicate via TCP/IP over Ethernet.  Using the values m=32, p1=0.875, p2=0.125, w1=1, 
and w2=10, the overhead index for the Baseline scenario is 6.25.   

Table 3.  Overhead Approximation 
Scenario Overhead Index PTS 
Baseline 6.25 1,512,410 

Baseline-R 8.52 865,385 
Baseline-2ms 10.54 621,008 

Chord-R 9.43 699,848 
Chord-Asym 12.21 684,630 

Clearly, an inverse relationship between the overhead index and PTS metric exists.  The lower the 
overhead costs for the null message algorithm, the higher the performance of the particular scenario.  
However, the Baseline-2ms and Chord-Asym models appear to exhibit conflicting results.  The Chord-Asym 
model has a higher overhead index and still manages to have a higher PTS rate than the Baseline-2ms 



model.  This anomaly illustrates that the overhead index measures only penalties associated with time 
management, not for other performance degrading parameters that are a result of the model itself.  Although 
the overhead index does capture lookahead, it does not consider other factors such as load imbalance and 
the amount of remote communication due to event transmission.  Nevertheless, the overhead index can be 
used as an approximation tool to predict time management efficiency and thus, simulator performance. 

 
6.7.  Scalability of the CMB Algorithm 

 
In section 5.4, we stated that, provided all parameters for the scenario remain constant, the overhead due to 
the null message algorithm does not change as the simulation model increases in proportion with the 
number of processors.  We verify the same experimentally here for the Baseline scenario.  Due to the 
dynamic nature of the other scenarios, it was impossible to keep other factors such as remote 

communication due to events and lookahead constant 
between scalability runs. 

Table 4.  Run times for the Baseline Scenario 
Number of CPUs Null Messages Reductions 

16 784 736 
32 783 747 
128 787 892 
The run time using a CMB null message 

algorithm remains constant when the number of 
processors is increased from 16 to 128, as shown in 
Table 4, indicating the computation does scale as the 
model size is increased in proportion with the number 
of processors.  Execution times based on global 
reductions steadily increase from 16 to 128 processors 
while remaining relatively constant for null messages.  
Figure 7 (“Red” denotes global reductions) shows the 
PTS rate for the two synchronization protocols used in 
the Baseline scenario. 

Table 5.  Large-Scale Run times for the Baseline 
Scenario 

Number of CPUs Null Messages Reductions 
64 420 508 

128 414 523 
256 420 563 
512 436 620 
Table 5 shows the runtimes of the Baseline 

scenario on the Compaq Alpha Tru64 cluster.   The 
corresponding PTS rates are plotted in Figure 8. The 

execution time of the baseline scenario using global reductions increases somewhat as the model scales 
with the number of processors.  In contrast, the null message algorithm performance exhibits a relatively 
constant execution time up to 512 processors.  These experimental results provide strong support to verify 
the overhead model and proposition put forth in section 5.4. 

The experimental results presented in this section have only investigated synchronization behavior 
of a structured, regular network (e.g. Baseline model).  In the next section, we will compare the 
performance of the local and global synchronization algorithms for network models of both regular and 
irregular structure. 
 
7.  Regular and Irregular Network Models 

 
Due to the asynchronous nature of the null message algorithm, synchronization occurs “locally” and 
remains constant even as the simulation model scales.  This is the reason why CMB algorithms tend to scale 
better than schemes based on global reductions, if all other model factors remain constant.  We will show 
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that even with smaller scale network models, an optimized null message algorithm can provide improved 
performance for irregular networks. 

 
7.1.  Simulation Performance of  
        Structured, Regular Networks 

 
First we examine the performance of local 
and global synchronization algorithms in the 
context of relatively regular network models.  
The performance of the Baseline model on 
both the Intel Pentium III and Itanium 2 
cluster is shown in Figure 9 as was discussed 
in the previous section. 

The Baseline-R scenario is another 
network considered as a regular model with 
random server selection.  Figure 10 
illustrates that the trends of the Baseline-R 
scenario do not differ significantly from that 
of the Baseline model.  The random Net 1 
server selection pushes the performance of 
the asynchronous null message algorithm 
ahead of the global reduction algorithm at 16 
CPUs for the P3 data and at 54 CPUs for the 
IA64 data. 

The final regular network is the 
Chord-R scenario shown in figure 11.  
Although the addition of chords add 
asymmetry to the network, the structure and 
regularity of the network model is preserved 
by identical lookahead on all chord and ring 
links.  Similar trends to the first two 
scenarios re-emerge in Chord-R. 

These scalability runs thus far show 
that there exist only small gains in using one 
synchronization algorithm over the other in 
small- to medium-scale regular networks.  
However, previous large-scale simulation 
results suggest that the CMB algorithm with 
a constant number of output channels is 
more appropriate for large-scale simulations 
even in scenarios composed of nearly all 
consistent structure. 
 
7.2. Simulation Performance of  
        Asymmetric, Irregular Networks 

 
The two irregular network scenarios, 
Baseline-2ms and Chord-Asym will highlight 
differences and deficiencies between local 
and global time management algorithms. 

Figure 12 shows a significant difference in PTS rate between the null message algorithm and 
global reductions for the Baseline-2ms network model.  Moreover, the null message trends remain linear 
while the global reduction algorithm yields a much smaller increase in PTS rate as the number of processors 
is increased.  This scenario shows a pathological case for global reductions, as the time management system 
must perform a global synchronization every 2ms of simulation time. 

Figure 9.  Performance of the Baseline Scenario 
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Figure 10.  Performance of the Baseline-R Scenario 
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Figure 11.  Performance of the Chord-R Scenario 
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The Chord-Asym scenario shown in 
Figure 13 demonstrates the benefits of a null 
message algorithm in a typical irregular 
network.  A null message algorithm can take 
advantage of the varying lookahead values for 
each output channel while a global algorithm 
must interrupt execution of the simulation at 
intervals dictated by the global minimum 
lookahead. 
 
8.  Large-Scale Conservative  
     Synchronization Summary 
 
We presented an analytical model for an 
asynchronous lazy null message algorithm for 
synchronization.  The proposed equations can 
be used to approximate null message activity 
and a corresponding overhead index.  In 
particular, the overhead index predicts that the 
optimized null message algorithm ensures no 
appreciable increase in overhead if the fan-
in/fan-out of channels is held constant as the 
simulation is scaled with the number of 
processors. 

We also showed that a null message 
algorithm offers more flexibility for irregular 
and asymmetric network models. An optimized 
CMB algorithm can tailor synchronization 
messages according to output channel 
lookahead values to local neighbors only, in 
contrast to the approach using reduction 
computations in a global synchronization 
algorithm.  These properties prove to be 
advantageous in large-scale network 
simulations. 

 
9.  Future Research 

 
The goal of this paper is to try to characterize quantitatively the capability of parallel simulation tools to 
simulate large-scale networks, and to highlight that the ability now exists to simulate large networks.  This 
is by no means to imply scalable network simulation is a “solved problem”!  Much additional research and 
development is required to effectively exploit these capabilities. 

On the modeling side, creating realistic models of the Internet remains an extremely challenging 
problem.  Some of the key issues that must be addressed are described in [52].  For example, the topology, 
configuration, and traffic of the Internet today is not well understood and is constantly changing, let alone 
the Internet of tomorrow that is targeted by most simulation studies.  Methodologies to effectively validate 
and experiment with large-scale network simulations must be developed.  Much work is required to make 
the parallel simulation tools easily accessible and usable by network researchers who are not experts in 
parallel processing.  Robust parallel performance is needed; modest changes to the configuration of the 
network being simulated may result in severe performance degradations.  These and many other issues 
must be addressed before large-scale network simulation tools can reach their fullest potential. 
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