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Abstract.  The traditional technique to simulate physical systems modeled by partial differential 
equations is by means of a time-stepped methodology where the state of the system is updated at 
regular discrete time intervals.  This method has inherent inefficiencies.   In contrast, we propose a 
new asynchronous type of simulation based on a discrete-event-driven (as opposed to time-driven) 
approach, where the state of the simulation is updated on a "need-to-be-done-only" basis.  Here we 
report on this new technique, show an example, and briefly discuss additional issues that we are 
addressing concerning algorithm development and their parallel execution. 

 

1  Introduction 

Computer simulations of many important complex physical systems have reached a barrier as 
existing techniques are ill-equipped to deal with the multi-physics, multi-scale nature of such 
systems. An example is the solar wind interaction with the Earth’s magnetosphere. This interaction 
leads to a highly inhomogeneous system consisting of discontinuities and boundaries and involves 
coupled processes operating over spatial and temporal scales spanning several orders of magnitude.  
The brute force method of using full particle models for global simulations of the Earth’s 
magnetosphere, with electron scale resolution everywhere in the simulation domain, is 
computationally infeasible.  Such a computation would require over 107 years on the fastest parallel 
computers [Karimabadi and Omidi, 2002] that are available today. The ideal global code would 
have to take full advantage of the fact that there are regions within the magnetosphere with 
different modeling requirements: resolve electron physics only in the thin layers in the 
magnetosphere where reconnection is operational, resolve ion scales in the regions where the 
boundaries are formed and a lower resolution everywhere else. Such a code does not exist. 

We have taken a new approach to the simulation of such complex systems.  The conventional time-
stepping grid-based PIC models provide the sequential execution of synchronous (time-driven) 
field and particle updates. In a synchronous simulation the distributed field cells and particles 
undergo simultaneous state transitions at regular discrete time intervals.  In contrast to this well 
known technique, we propose a new, asynchronous type of PIC simulation based on a discrete-
event-driven (as opposed to time-driven) approach, where particle and field time updates are 
carried out in space on a "need-to-be-done-only" basis. In these simulations particle and field 
information "events" are queued and continuously executed in time in a manner similar to that 
employed in the theory of cellular automata (CA).  The rational of this approach is not to try to 
describe a complex plasma system by using instance differential equations, but to let the 
complexity emerge by modeling interaction of adjacent plasma cells following elementary rules 
that reflect the underlying laws of physics.  Event-driven PIC simulations automatically guarantee 
that the progression of the system progress over time captures important state changes without 
processing "idle" information.  

 

As shown in Figure 1, a DES system can be broken into two components: (1) the models and (2) 
the parallel simulation executive that manages events and the progression of simulation time 



[Fujimoto, 2000]. Development of next generation plasma codes requires innovations in both 
components. 

 

2. DES Algorithms: Issues and Solutions 

 

2.1 Time integration.  Field equations are discretized in space in the conservation form. 

Each computational mesh cell is assigned discrete states associated with the temporal evolution of 
local field and particle quantities.  Transitions from one temporal state to another are called 
"events". Time integration of each field component is delayed by a time interval depending on the 
magnitude of its predicted rate of change.  Particles are scheduled for advance in each cell based on 
their current velocities, local field magnitude and cell size.  Each computation cell keeps a registry 
of increments to its original state (the state used for the prediction) caused by the neighboring cells 
and reschedules events (time advances) to earlier times if the cell state is significantly altered 
during the predicted time delay.  The DES code programming architecture is drastically different 
from conventional (time-driven) codes.  In particular, each mesh cell has a means of polling its 
neighbors and fetching global simulation information using its local data handlers.  It is also aware 
of its role in establishing communication with remote (distributed) parts of the system or applying 
proper boundary conditions.  A nontrivial problem is to preserve fluxes across mesh cell interfaces. 

In explicit time-driven codes adjacent cells are always advanced with fluxes taken at the same time 
level. DES cells schedule themselves asynchronously and therefore special care must be taken to 
ensure that field quantities in cells with common interfaces are always integrated in time with 
identical fluxes across the common boundaries.  

 

We have developed a library of C++ classes (SciDES) designed to provide a set of discrete-event 
software tools for implementing finite difference and particle-in-cell methods for the solution of 
coupled partial differential equations and equations of particle motion. SciDES standardizes 
fundamental data structures and algorithms for programming distributed time-dependent scientific 
models on block-structured computational domains and formalizes the most essential aspects of the 
distributed physics-based DES models in the form of a pseudo-distributed architecture. This 
pursues several goals.  First, the SciDES API separates the computational physics algorithms from 
the communication issues by abstracting them into well defined concepts (C++ classes) and 
providing all the necessary "go-between" implementation details. Second, it fosters more efficient 
cooperation of computational physicists with computer scientists working on the distributed 
discrete-event engine algorithms since it allows substitution of pseudo-distributed plug-in modules 
by their MPI counterparts in a plug-and-play fashion without breaking the physics core of the code. 
In addition, the ability to run virtual distributed simulations on a single CPU enables testing various 
physical mechanisms that provide important insight into predictive properties of physics-based 
parallel discrete-event simulations.  An example of our SciDES architecture, the class MP DES 
which abstracts the virtual multi-processor DES environment, is shown in Figure 2.  In this diagram 
solid arrows are indicative of inheritance (the “is a” relationship), dark dashed arrows represent 
ownership  (the “has a” relationship) and  light dashed arrows mark class instantiation from 
template classes.   

 



As a way of testing this new methodology, we show in Figure 3 a one-dimensional simulation of a 
fast magnetosonic shock. For this test, we developed a DES equivalent of a time-stepped resistive 
hybrid code.  Figure 3 shows the comparison of the results between the traditional time-stepped and 
our event-stepped simulation.  We have plotted the y and z (transverse) components of the 
magnetic field, the total magnetic field, and the plasma density versus x after the shock has 
separated from the piston on the right hand side. The match between the two simulations is 
remarkable as DES captures the (i) correct shock speed, and (ii) details of the wavetrain associated 
with the shock. This match is impressive considering the fact that the differences seen in Figure 3 
are within statistical fluctuations associated with changes in the noise level in hybrid codes. 

 

2.2 Parallelization. 

 

The parallelization of asynchronous (event-driven) continuous PIC models presents a number of 
challenges. As in conventional (time-driven) simulations, it is realized by decomposing the global 
computation domain into subdomains.  In each subdomain, the individual cells and particles are 
aggregated into containers, which are mapped to distributed parallel processors in a way that 
achieves maximum load balancing efficiency.  The parallel execution of conventional (time-
driven)simulations is commonly achieved by copying field information from the inner lattice cells 
to the ghost cells of the neighboring subdomains and exchanging out-of-bounds particles between 
the processors at the end of each update cycle.  In contrast, in parallel asynchronous PIC 
simulations both particle and field events are not synchronized by the global clock (i.e. they do not 
take place at the same time levels throughout the simulation domain), but occur at arbitrary time 
intervals, which may introduce synchronization problems if some processors are allowed to get 
ahead in time of other processors (the "optimistic" approach) [Jefferson 1985].  As a result, a 
processor may receive an event message from a neighbor with a simulation time stamp that is in its 
own past, thus causing a causality error. On the other hand, parts of a distributed discrete-event 
simulation can be forced to execute synchronously with remote tasks corresponding to the 
neighboring subdomains (the "conservative" approach).  If so, the parallel speed-up critically 
depends on the underlying domain decomposition technique and additional predictive ("look-
ahead") properties of the simulation in question. Regardless of the approach taken, it is important to 
note that DES computations offer substantial efficiencies compared to conventional explicit time-
driven simulations due to the reduction in the amount of computation that mist be performed. 

 

The following are some of the important issues that must be addressed in parallel discrete event 
simulations of continuous systems: 

• Synchronization: This is by far the paramount issue to be carefully resolved for achieving 
the best parallel execution performance.  Broadly there are two approachescommonly used - 
conservative and optimistic. 

o Conservative:  This approach always ensures safe timestamp-ordered processing.  
However, runtime performance is critically dependent on a priori determination of 
an application property called lookahead, which is roughly dependent on the degree 
to which the computation can predict future computations without global 
information.  In one conservative approach, events that are beyond the next 



lookahead window are blocked until the window advances sufficiently far to cover 
those events.  Typically the lookahead property is very hard to extract in complex 
applications, as it tends to be implicitly defined in the source code 
interdependencies.  The appeal of this approach however is that it is one of the 
easiest schemes to implement if the lookahead is somehow specified by the 
application. 

o Optimistic: This approach avoids blocked waiting by optimistically processing the 
events beyond the lookahead window.   When some events are later detected to have 
been processed in incorrect order, the system invokes compensation code such as 
state restoration or reverse computation.  Since blocking is not used, the lookahead 
value is not as important, and could even be specified to be zero without affecting 
the runtime performance.  While this approach eliminates the problem of lookahead 
extraction, it has a different challenge – namely, support for compensating code. 

o Combination: Sometimes it might help to have some parts of the application 
execute optimistically ahead (e.g., parts for which lookahead is low are hard to 
extract), while other parts execute conservatively (e.g., parts for which lookahead is 
large, or for which compensation code is difficult to generate).  In such cases, a 
combination of conservative and optimistic synchronization techniques can be 
appropriate. 

• Load Balancing: As with any parallel/distributed application, the best performance is 
obtained when the load is evenly balanced across all resources.  In parallel simulation in 
particular, load imbalance can have a very adverse effect.  This is because typically the 
slowest processor can hold back the progress of simulation (virtual) time, which in turn 
slows down even those processors which are relatively lightly loaded. 

o Automated/Adaptive:  Automated schemes are preferable for load-balancing at 
runtime.  These schemes vary with the particular synchronization approach used. 

o Support Primitives: In order to permit automated/adaptive load balancing by the 
system, it is important to provide appropriate primitives to the application, so that 
application-level entities can be moved across processors easily by the system in a 
transparent manner as needed. 

• Modeling and Runtime Interface: To be able to decouple the implementation details of 
the parallel simulation executive from the application/models, it is best to define the model-
simulation interface in an implementation-independent fashion.  This not only helps avoid 
reimplementation of models whenever the engine is changed, but also permits 
experimentation with multiple synchronization and load-balancing approaches for the same 
application.  Additionally, it enables engine-level optimizations to remain transparent to the 
application, so that the application-developer is not burdened or sidetracked with such 
issues during model development. 

 

With the preceding issues in mind, we are carefully developing appropriate interfaces and 
implementations of our parallel execution engine.  A brief description of our approach follows: 

• The synchronization issue is being resolved by providing a transparent interface that does 
not mandate one synchronization approach over another.  The underlying implementation is 
also being developed such that different model entities can chose different synchronization 
(conservative or optimistic execution style), as is most appropriate for them. 



• The load balancing issue is being addressed by the use of an “indirect messaging” interface 
layer that decouples application entities from their processor mapping. 

• The modeling and runtime interface is also kept abstract and flexible, so that radically 
alternative implementations can be implemented underneath the interface.   
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Figure 2.  The MPDES class collaboration diagram. The MPDES object encapsulates the global 
simulation geometry properties and defines the table of virtual DES processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


