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Abstract 

Efficient computer simulation of complex physical 
phenomena has long been challenging due to their multi-
physics and multi-scale nature. In contrast to traditional 
methods using time-stepped execution, we describe an 
approach using optimistic parallel discrete event 
simulation (PDES) and reverse computation techniques.  
We show that reverse computation can significantly 
reduce the execution time of a plasma simulation 
computation without requiring a significant amount of 
additional memory compared to conservative execution 
techniques. We describe an application-level reverse 
computation technique that is efficient and suitable for 
many complex scientific simulations involving floating 
point operations.  

1. Introduction 
Parallel Discrete Event Simulation (PDES) has been an 

active research area in the high performance computing 
community for many years. Synchronization techniques 
for PDES systems are usually classified into two principal 
categories: conservative approaches that avoid violating 
the local causality constraint and optimistic approaches 
that allow violations to occur, but provide a mechanism to 
recover. The operation to recover a previous state in an 
optimistic parallel simulation is known as a rollback, and 
involves undoing incorrect computations. 

A widely used technique for implementing rollback is 
state-saving that saves the values of state variables prior to 
an event computation and restores them by referring to 
these saved values upon rollback. Copy state saving 
creates an entire copy of a process’s state, while 
incremental state saving keeps a log of changes to 
individual state variable. A relatively new technique for 
rollbacks, reverse computation [1], realizes rollbacks by 
performing the inverses of the individual operations 
executed in the event computation. These techniques have 
been exploited in small- or large-scale parallel 
simulations.   

However, advances in PDES research to date have had 
little impact in space physical science, where multi-
physics and multi-scale physical systems are modeled by 
partial differential equations and particles. Traditionally, 
simplified models of such physical systems have been 
simulated using time-driven or time-stepped approaches 
[2].  The inherent limitations of the time stepped approach 
prevents the simulation of more complex physical systems 

that are important in plasma physics and other areas of 
science. Even the latest techniques developed in time-
stepped research such as adaptive mesh refinement (AMR) 
[3] are constrained by excessive computational 
requirements and necessity to update all cells within a 
given patch based on the Courant-Friedrichs-Levy (CFL) 
condition in that patch. Discrete event simulation was 
recently used to model spatially discretized physical 
systems [4] where it was shown that this approach not 
only alleviates the constraint of the CFL condition but also 
provides a significant performance advantage over the 
time-stepped approach.  

In our work, we extend this work and apply optimistic 
parallel discrete event simulation techniques to this 
problem.  Because memory constraints are often a severe 
limitation in the size of the computations that can be 
performed, reverse computation offers greater promise 
than traditional state saving techniques.  We explore the 
use of reverse execution for plasma simulations to gain 
new insights for such challenging, complex physical 
systems. The combination of DES methodology and 
reverse computing techniques offer the potential to 
dramatically reduce the amount of time required to 
perform plasma simulations without incurring a large 
penalty in additional memory requirements.   

The main contributions in this work can be summarized 
as follows.  To our knowledge, this is the first work to 
apply reverse computation techniques to the parallel 
physical system simulations and to show performance 
advantages using this approach.  In addition, we provide a 
simple model and guidelines for creating reverse 
simulation codes at the application level that can help 
physicists or astrophysicists to develop simulation 
prototypes without comprehensive knowledge of PDES 
mechanisms.       

The remainder of this paper is organized as follows. 
The next section discusses related research. Section 3 
provides an overview of the physical system we simulate 
and the reverse computation approach. Section 4 gives an 
in-depth discussion of the reverse computation 
implementation and discusses the challenges. Section 5 
presents experimental results from a preliminary 
performance evaluation study. We conclude by reporting 
current and future work in this area and provide guidelines 
for reversing parallel physical simulation codes. 

2. Related Work 
A limited amount of research has examined physical 

 



system simulation using parallel discrete event simulation 
techniques.  Perhaps the earliest was the “colliding pucks” 
application developed for the Time Warp Operating 
System (TWOS) [5].  This work, modeling a set of pucks 
traveling over a frictionless plane, was used to benchmark 
an early implementation of the Time Warp protocol.  
Lubachevsky discusses the use of conservative simulation 
protocols to create cellular automata models of Ising spin 
[6].  Other work describes challenges in using discrete 
event simulation techniques for other physical system 
problems [7]. 

Seminal work in optimistic parallel discrete event 
simulation was completed by Jefferson [8].  State saving 
has historically been the dominant approach to enabling 
the rollback of computations.  Use of reverse execution to 
roll back computations was first described in [1]. Their 
reverse execution procedures were automatically 
generated by a compiler.  More recent work using reverse 
execution for parallel network simulations, using manually 
generated code, was reported in [9]. Our work is different 
in that it applies reverse execution techniques in 
simulating physical systems which involves complex 
floating point operations and generates reverse code based 
on application semantics.   

Traditionally, complex physical systems described by 
partial differential equations and particles are modeled by 
time-stepped simulations which appear inadequate for 
today’s complex physical systems in space physics.  The 
authors in [4] recently demonstrated the feasibility of 
discrete event simulations to such complex systems and 
made a great effort in promoting the inter-disciplinary 
research in modeling and simulation. Our study is based 
on their work and further explores the feasibility of an 
advanced parallel synchronization mechanism in such 
systems – reverse computation  

3. Overview 
In this section we briefly describe the computational 

plasma simulation model used here. Details of the DES 
model of this system are presented in [4], and interested 
readers are referred to that work to gain familiarity with 
the physics and DES modeling methodology that were 
applied.  Here, our focus is on use of reverse execution 
techniques in optimistic parallel simulation of this model.  

3.1. Computational Model: PIC Simulation 
One of the great challenges in space physics is to 

understand how the solar wind interacts with the earth’s 
magnetosphere. The work presented in [4] was the first to 
use a DES approach to simulate such complex physical 
systems; there, a feasibility study based on the well-known 
particle-in-cell (PIC) model [10] was described to provide 
the foundation for development of such multi-physics and 
multi-scale simulations. This model is conceptually 
simple, but sufficiently complex for our feasibility study. 

Here, we limit our simulations to a one-dimensional 
electrostatic model using spherical coordinates. 

Figure 1 illustrates a plasma PIC simulation of charging 
a spacecraft immersed in neutral plasma by injecting a 
charged beam from its surface [10]. The spacecraft is 
initially charge-neutral and immersed in the charge-neutral 
plasma of the solar wind. A charged beam is periodically 
injected from the spacecraft surface which then causes the 
surface charge to change. 

 

 
 

Figure 1: Schematic of the PIC model 

3.2. Parallelization 
     In PDES of a PIC model, the simulation domain is 
divided into “cells” with each cell mapped onto one 
logical process (LP).  In our spacecraft model, each cell is 
called a “shell”, and is modeled as a Shell class (we will 
use the terms cell and shell interchangeably).  Two distinct 
regions are shown in figure 1, based on different grid 
spacing. The state of each LP includes the cell field 
variables and the states of all particles within the cell 
boundaries. The dynamic behavior of the system is driven 
by particle movements that are modeled by events. 
Whenever a particle moves across a cell boundary, the 
electric field in the affected cells is updated by keeping 
track of the charge that crosses the boundary [4]. Note that 
the field updates are limited to active cells where events 
are allowed to be scheduled.  
     There are three types of events associated with particle 
movements: ParticleArrivalEvent, ParticleDepartureEvent
and ParticleInjectEvent. The corresponding event handlers 
are outlined in figure 2. When the simulation starts, all 
active cells are initialized, including electric fields and 
particle states (velocities, positions, etc.). In particular, 
each particle’s movement is determined by its MoveTime 
or cell exit time (a time in the future when the particle will 
exit the hosting cell). Whenever a particle is created or 
inserted in a cell, its exit time must be calculated and a 
pair of departure and arrival events scheduled at the exit 
time. In addition, a particle’s exit time needs to be 
recalculated whenever the hosting cell “wakes up”. A 
wakeup happens when a cell’s field changes beyond a 
threshold value, resulting in recalculation of exit times of 
all its particles. 

 



Shell::arrival( ParticleArrivalEvent *e ) { 
      if  ( this cell is active ) {   
    update cell state;  
           insert particle in cell; 
      } else if ( e is a beam particle ) {  
           activate cell;   
      } 
} 
Shell::departure( ParticleDepartureEvent *e ) { 
      if  ( particle bounced from right neighbor ) { 
    bounce particle back; // no cell state change 
       } else { 
           update cell state;  
       } 
} 
Shell::inject( ParticleInjectEvent *e ) { 
       update cell state;  
       insert beam particles; 
} 

 
Figure 2: A simplified PIC model 

 

3.3. Reverse Computation Approach 
The characteristics of this plasma simulation present 

three major challenges concerning the synchronization of 
parallel computation.  The rationale for the parallelization 
approach used here is based on the following 
considerations.  

 
• Lookahead. The simulation is highly dynamic. The 

amount of parallelism can vary dramatically as the 
simulation progresses. Dependencies among events 
are governed by each particle’s exit time, but this time 
can be arbitrarily close into the future. This low level 
of “predictability” results in a low, dynamically 
changing value of lookahead that makes efficient 
execution using conservative synchronization 
techniques difficult.  This suggests that optimistic 
synchronization [8] may be a more natural choice for 
this simulation. 
 

• Memory.  Realistic plasma simulations involve  large  
numbers of events, on the order of billions.  Complex 
data structures are often needed.  This makes 
traditional approaches to optimistic execution using 
state saving problematic: the amount of memory 
required can be prohibitively large.  Further, the 
amount of computation performed for each event 
tends to be relatively small, on the order of 
microseconds on a contemporary CPU.  This suggests 
that the time required for state saving may be 
significant, and hence could significantly degrade 
performance. Both of these factors suggest that 

reverse computation technique is a more suitable 
technique to realize an efficient optimistic execution 
of this plasma simulation code. 

• Floating point.  The reverse computation approach 
proposed in [1] uses an automated approach to 
creating the reverse execution code for each line of 
forward execution code.  For example, a decrement 
statement is generated to undo an increment statement 
in the forward execution code.  This approach 
becomes problematic when floating point arithmetic 
is used because the computation may not be easily 
reversed due to effects such as round-off error.  Here, 
we explore a different approach where the program is 
viewed at a higher level of abstraction, and suitable 
reverse computation code is developed manually. 

 
These factors motivate the approach that was adopted 

for optimistic synchronization using manually derived 
reverse computation code.  We believe this can be used to 
build a foundation for our future work in developing 
scalable parallel simulators for complex physical systems. 

4. Parallel Simulation Code 
Here we use a one-dimensional model of the spacecraft 

electrostatic particle code as an illustrative example to 
discuss some of the challenges in generating the reverse 
code for this physical system simulation.  There are two 
types of distinct physical entities in this simulation: 
particles and cells1. Particles move across cells and each 
cell keeps track of the particles residing within its own 
domain.  The communication between adjacent cells 
occurs via particle movement events that contain 
information of particle physical states. The complex data 
structures housing the particles and physical processes 
being captured require a careful modeling of the system. 
The object-oriented design used here allows one to 
encapsulate physical properties via classes. Extension to 
more complex grid-based systems can also be made based 
on this simplified initial test model. 

Figure 2 sketches the basic operations performed by the 
simulation. The code includes three event handlers, one 
for each type of event. Much of the complexity of the 
event computation is encapsulated within the insert and 
update operations.  An insert operation includes an 
“insert” queue operation (data structures representing 
particles in the cell are organized in a priority queue) and 
computation of the exit time of that particle from the cell 
based on an equation of motion. An update operation may 
trigger an expensive wakeup computation that again scans 
the particle list and updates each particle’s exit time. 

                                                      
1 The spacecraft situated at one end of the spatial coordinate can be 

treated as a special cell that does not keep the physical states of particles. 
We use “cells” thereafter to refer to the regular cells unless otherwise 
specified.   

 



It may be noted that the reverse computation techniques 
introduced in [1] would generate the reverse code for each 
instruction without taking into account the semantics of 
the higher level operations that are being performed.  This 
will clearly lead to inefficiencies for the queue 
management operations used in this code, and as 
mentioned earlier, leads to difficulties concerning the 
reversibility of floating point operations.  The model-
specific approach taken here involves generating the 
reverse code for the application by exploiting knowledge 
of the higher level semantics of the operations being 
performed. We call this approach application-level reverse 
computation.  Here, each cell must manage a large number 
of particles within its domain. The choice of container 
class directly affects the efficiency of the simulation. We 
use the list class because of its efficient insertion and 
deletion operations. However, both insertion and deletion 
are destructive due to pointer assignments and thus 
irreversible. However, it is clear from a higher level 
examination of the operations being performed that 
insertion and deletion are perfect inverse operations of 
each other. Indeed, reverse computation in such queue 
operations are more memory-efficient than state-saving.  

Careful readers may notice that the particle departure 
event handler depicted in figure 2 does not specify any 
deletion operation that matches the insertion operations in 
the particle arrival event handler. In fact, deletions are 
performed aggregately on an as-needed basis. This is done 
because of performance considerations.  Instead of 
deleting each particle at its exiting time, a near-periodic 
deletion operation is used to amortize the cost of deletions 
in queues. It is observed that wakeup events happen 
almost periodically with a frequency determined by 
physical conditions within the simulation; furthermore, 
each wakeup requires a scan of the cell’s particle queue. 
We find that restricting deletion operations only at cell 
wakeup times reduces the total overhead of particle 
deletions without introducing excessive memory usage. 
Since the aggregate deletions are used to clean up the 
obsolete states for particles that have already exited, no 
rollbacks are needed to recover these obsolete states in the 
event of undoing a wakeup. 

Figure 3 shows the reverse code of the simulation 
shown in figure 2. Notice that after decomposing the 
forward code into components based on simulating 
physical processes, the reverse code is relatively easy to 
construct based on the operations shown in figure 3.  The 
next step for generating the complete reverse code is just a 
matter of reversing each physical process. Examples of 
reversing some of the more difficult processes are shown 
in figure 3. 

Shell::undo_arrival( ParticleArrivalEvent *e ) { 
      if  ( cell was activated ) {   
    undo_activate cell;  
        } else if ( cell already active ) {  
           delete particle in cell;  
           undo_update cell state;    
      } 
} 
Shell::undo_departure( ParticleDepartureEvent *e ) { 
      if  ( particle was bounced from right neighbor ) { 
    undo_bounce particle; 
       } else { 
           undo_update cell state; 
       } 
} 
Shell::undo_inject( ParticleInjectEvent *e ) { 
       delete beam particles;  
       undo_update cell state; 
} 

 
  Figure 3: A simplified reverse code of the PIC model  

 
The insert operation appears in both particle arrival and 

injection event handlers. Its effect includes assigning 
memory for the new particle states in the queue and 
scheduling arrival/departure event pairs at each particle’s 
future exiting time. Conversely, the delete operation in the 
reverse code should perform corresponding inverses of 
these processes. Particles in each cell are organized in a 
FILO (first-in last-out) queue, so the delete operation 
always removes the particle at the head of the queue that is 
exactly the same particle that was inserted in the forward 
computation. As for “undoing” event scheduling, it is 
assumed the underlying simulation engine provides the 
application with a primitive for explicitly retracting 
scheduled events; this is very useful to implement the 
delete operation. 

The effect of the activate process is to load an inactive 
cell where previously no particle movements are allowed 
with particles of uniform distribution. Its basic operation is 
in fact multiple particle insertions. Its reverse code can 
utilize the insert-delete pair operations described above.  

The cell state update process is actually the most 
complex process and its reverse code is not trivial. Each 
update performs two major computations: compute the 
cell’s new field values and then update the cell’s particle 
queue. Each cell computes its field locally and keeps track 
of field values at its left and right boundaries by summing 
the charges passing through that boundary. During a cell’s 
field update, an addition of charge at its boundary can be 
simply reversed as a subtraction of the charge at the 
boundary upon rollback. The update on a particle queue, 
however, is not as easy. It requires a check of the wakeup 
condition (i.e., the field change exceeding a threshold) and 

 



paratriggers a wakeup event if necessary. As previously 
described, a cell wakeup is the single most costly 
operation in the plasma simulation. In the event of a 
wakeup, all particles’ states are recomputed based on the 
new cell field values and obsolete particle states are 
erased. The destructive nature of the recomputation is one 
of the principal challenges in generating the reverse code 
for this simulation.  

One example irreversible operation is the calculation of 
a particle’s exit time MoveTime. It is calculated by finding 
the roots dt of the quadratic equations [4]: 

0
2
1 2 =−+∗+∗∗ CellWidthPosdtVeldtAcc     (1) 

0
2
1 2 =+∗+∗∗ PosdtVeldtAcc       (2) 

where Acc, Vel, Pos are particle acceleration, velocity 
and position in cell, respectively. Equations (1) and (2) 
represent the right and left exit conditions, respectively.  dt 
is the time difference between the current simulation time 
and the particle’s last movement time. The smallest real 
value of dt is used for MoveTime. An initial inspection of 
the quadratic equations seems to suggest the impossibility 
of applying reverse computation to this process. However, 
if we take the reverse computation approach at the 
application level, we find that the movement of the 
particle is highly reversible. Based on the physical laws  of 
particle motion, the recovery of dt does not  require the 
direct inverse of the quadratic equations. Indeed, as 
illustrated in figure 4, the particle’s acceleration, velocity 
and position states can be simply rolled back by reverse 
computation and then the critical state dt can be 
reconstructed by carrying the forward computation using 
the recovered particle states.  Please note that parameters 
cell_field and dt in the reverse code refer to the rolled-
back cell_field value and the time difference between now 
and the time when the particle moved right before the 
wakeup.  Finally, we note that random number generation 
is essential to this parallel simulation.  Therefore, an 
efficient random number generator (RNG) that is 
reversible and has a long period is required. For this 
purpose, we use the reversible RNG that is described in 
[1]. 

5. Performance Evaluation 
The application-level reverse computation approach is 

best implemented in a system that decouples 
implementation details of the simulation engine from the 
application in order to allow one to focus one’s efforts on 
application semantics. As a result, a simulation engine that 
can support reverse computation at an application level 
and provide efficient management of large numbers of 
events with minimal storage requirement is needed. In 
addition, the simulation engine should have the flexibility 
and extensibility to support future refinement of the 

llel simulation.    

Particle::update_position( double dt ) { 
      Pos += Vel * dt + 0.5 * Acc * dt * dt; 
} 
Particle::update_velocity( double dt ) { 
      Vel += Acc * dt;  
} 
Particle::update_acceleration( double cell_field ) { 
       Acc = cell_field * particle_charge / particle_mass;  
}  
Particle::reverse_position( double dt ) { 
      Pos = Pos - Vel * dt - 0.5 * Acc * dt * dt; 
}  
Particle::update_state( double cell_field, double dt ) { 
       update_position(dt); 

update_velocity(dt); 
update_acceleration(cell_field); 
dt = update_dt(); // solve eq. (1) and (2) 
MoveTime = now + dt; 

} 
Particle::reverse_state( double cell_field, double dt ) { 
       ll_field); update_acceleration(ce

update_velocity( -dt ); 
reverse_position(dt); 
dt = update_dt(); 
MoveTime = now + dt; 

} 

 
  Figure 4: The reverse code example of the particle states  
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The parallel simulation code using reverse execution 

described in the previous section was implemented using 
µsik, a general-purpose parallel/distributed simulation 
engine based on a micro-kernel architecture [11]. µsik 
provides primitives supporting multiple synchronization 
approaches, including optimistic and conservative 
synchronization, as well as means to relax event ordering 
rules and mixing different approaches to synchronization 
within a single parallel execution. It therefore provides the 
capabilities needed for th

ulations described here.  
In a µsik simulation, logical (simulation) processes 

(LP) are fully autonomous entities that communicate via 
events. In our simulation model, each cell is implemented 
as an LP and can choose to run conservatively or 
optimistically.  The conservative implementation of the 
simulation described here performed very poorly, due to 
poor lookahead, and is not discussed further.  We focus on 
optimistic
rollba k. 

. Experiment Configuration 
To demonstrate the feasibility and efficiency of reverse 

computation in the electrostatic plasma simulation, we 

 



carried out all experiments on a Symmetric Multi-
Processor (SMP) machine running Red Hat Linux 7.3 with 
a customized 2.4.18-10smp kernel. The SMP machine is 
equipped with eight Pentium III 550MHz Xeon processors 
tha

om spacecraft surface and 

5.2

on 
mo

synchronization. All the parallel experiments discussed in  

t share 4GB of memory.  
We use normalized units throughout our simulation, 

where length, time and velocity are normalized to electron 
Debye length, electron plasma frequency and electron 
thermal velocity, respectively. The spacecraft is assumed 
to have 500 units in radius and each cell has a width of 
0.24. The solar wind plasma is initially loaded with 
uniformly distributed electrons and protons. We choose 
the initial values of 30 electrons and 30 protons per cell. 
The injected positron beam has energy of 10 kev with an 
injection period of 0.004. Upon initialization, there are up 
to 7000 cells of which the first 70 close to the spacecraft 
are active; as the simulation progresses up to time 60, the 
beam travels further away fr
thus more cells are activated.  

. Parallel Performance  
Figure 5 shows a snapshot visualization of phase space 

structures for the solar wind electrons, protons and beam 
particles from a time-stepped simulation and the optimistic 
PDES simulation. Both simulations are run up to 60 time 
units, and with the same simulation parameters except 
using different random number generators (RNG).  The 
PDES used a specialized reversible RNG in contrast to the 
generic single-stream RNG used in the time-stepped 
simulation. Despite this difference, the two phase space 
structures at the end of the simulations are rather close in 
form. The result from the PDES execution with reverse 
computation is verified to accurately capture the main 
features of movement for all three species of particles at 
the end of the simulation. In particular, we can see that the 
beam front in both simulations has propagated to the same 
distance and beam particles display a similar shape in 
phase space. It is also evident that the electron phase space 
has a finer resolution in the PDES case for up to 4000 
cells.  This is the result of its fine time-scale based on 
individual particles.   A minor difference to note is that, in 
the PDES case, the phase space does not extend all the 
way to the right wall, whereas in the time-stepped model, 
it does. This is because we model an expanding box in 
PDES but not in time-stepped model.  Overall, the results 
helped serve as validation of our optimistic simulati

del against the original sequential simulation model. 
The speedup of DES over TDS has been discussed in 

great detail in [4]. In our work, we focus on further 
improving the DES performance by realizing 
parallelization in the simulation and utilizing optimistic 

   

 
Figure 5:  Validation by phase space comparison of 
time-stepped simulation and PDES with reverse 
computation.  
 

the following section were run with the same physical 
parameters and resulted in the same number of committed 
events as the sequential runs.  

Figure 6:  PDES vs. sequential DES 
 
Figure 6 shows the parallel speedup in terms of 

 



execution time for up to 8 processors. The sequential data 
is measured by running the parallel code on a single 
processor.  It should be noted that the single processor 
execution incurs neither rollbacks nor state saving 
overhead.  Because µsik was designed for both efficient 
sequential and parallel execution, we believe these 
measurements reflect the performance one could expect to 
see using a reasonably efficient sequential simulation 
engine.   

We observe that the optimistic parallel execution 
achieves a nearly linear speedup up to 4 processors, but 
the performance improvement is somewhat less in going 
from 4 to 8 processors.  This phenomenon is largely due to 
the fact that there is relatively little computation per 
particle event.  As the computation is distributed over 
more and more processors, the amount of computation 
between event communications decreases, resulting in 
reduced speedup.  We expect that this problem will not 
persist if a larger, more complex physical model such as a 
three dimensional plasma code were used. An initial test 
with an increased simulation time of 2 units did show 
better speedup performance due to the fact that the longer 
the simulation runs, the more cells are activated, resulting 
in more balanced computation for each processor. 

   

 
Figure 7:  Event rate distribution  

 
A second factor that results in less than optimal 

performance concerns the distribution of the workload.  
Figure 7 shows the amount of computation assigned to 
each processor in each of the runs. Here, the load is 
distributed by first dividing the physical area encompassed 
by the simulation into two regions (as illustrated in figure 
1) with the initially active cells closer to the spacecraft in 
the “heavy activity” region, and other cells forming the 
“less active” region. Cells in the active regions are evenly 
grouped and distributed among the available processors, 
while other cells are grouped into sub-regions or “blocks” 
and distributed among processors in a round-robin fashion. 

All simulations shown in figure 7 have a fixed “block” 
size. We observe that during the lifetime of each 
simulation, the processor load shows significant variation 
as more and more cells become active. Upon simulation 
termination, the simulation with the largest number of 
processors tends to be the least balanced. The imbalance is 
inherent of such simulations due to their highly dynamic 
nature and the static load-balancing scheme. Further 
investigation of characteristics of electrostatic plasma 
simulations is needed to aid in the development of a more 
efficient load-balancing algorithm for this application that 
can lead to better parallel performance for large numbers 
of processors.       

5.3. Efficiency  
Intuitively, grid-based physical systems such as the 

electrostatic plasma simulation studied here have the 
desirable features of locally solved field values and 
queuing/dequeuing operations that are time-reversible, but 
the evolution of the system itself (beam injections, cell 
wakeups in our case) is not time-reversible. However, with 
the application-level reverse computation illustrated 
above, we have shown that numerical operations in the 
electrostatic plasma simulation chosen for this study are 
truly reversible, despite round-off errors and irreversible 
evolution processes. The most important discovery from 
our study is that application-level reverse computation  
may be quite efficient for these scientific simulations. 

The efficiency mainly comes from two contributing 
factors: the smaller amount of memory required compared 
to state-saving, particularly, queue operations where no 
additional state is required to perform rollbacks; no the 
fact that the simulation is not constrained by arbitrarily 
small look-ahead values. However, there are still 
important practical issues related to reverse computation.     

Ideally, one would like to apply reverse computation to 
all reversible operations. But reverse computation also 
comes at a cost: if the number of destructive operations is 
sufficiently large and no efficient application-level reverse 
computation can be found, stubbornly employing reverse 
computation can result in worse performance than state-
saving. One such case as pointed out in [1] is when a 
rollback spans several processed events. Merely switching 
pointers to restore a state based on the earliest rolled back 
event incurs a small cost in copy state-saving; while 
reverse computation must roll back one event at a time and 
thus excessive rollbacks can cause performance to degrade 
considerably. The effect of this is particularly severe in 
our simulation when a rollback spans multiple wakeup 
events. 

Our solution to reducing the rollbacks of costly wakeup 
events is by limiting the “optimism” of the parallel 
processing. µsik supplies the simulation applications with 
a convenient facility for our purpose. A “run-ahead” 
parameter can be set by the model at simulation 

 



initialization to limit how far in simulation time each LP 
can run ahead of other LPs during optimistic execution.  
By carefully tuning the run-ahead parameter based on cell 
wakeup frequency, we are able to reduce or eliminate 
consecutive rollbacks of wakeup events. 

In addition to the basic reverse computation techniques 
discussed here, advanced reverse techniques can be 
applied to the plasma simulation. For example, compiler-
supported reverse computation can be used to further 
optimize the parallel performance at run-time. This 
approach is beyond the scope of our discussion and will be 
studied in the future. 

6. Conclusions 
In this work, we have applied reverse execution to 

perform parallel discrete event simulations of a physical 
system.  We demonstrated that application-level reverse 
computation can be used to manually generate efficient 
reverse code. These results suggest that reverse 
computation merits further investigation as an approach 
for parallel/distributed simulation of physical systems 
modeled using a discrete event simulation paradigm. 

As previously mentioned, the PIC simulation 
considered in this paper is only a simplified example of 
reverse execution in simulating physical systems. The 
examples given in section 4 are representative and 
certainly do not encompass the diversity and complexity 
of all physical system simulations. However, the 
underlying reverse  techniques can be used in other grid-
based models without extensive modifications. Here we 
provide some guidelines for the development of parallel 
physical discrete event simulations using reverse 
computation. Since our exploration of reverse computation 
is an on-going research effort, the guidelines provided 
here should be used as a references rather than strict rules 
for applying reverse computation in scientific simulations. 

 
• Reverse computation is well-suited for fine-grained 

applications such as  the 1D electrostatic grid-based 
plasma models.  It is especially useful where efficient 
queue management is needed. But other optimization 
techniques should also be considered in order to fully 
optimize parallel performance. 

• Good knowledge of the application semantics, 
especially the underlying physics, can be beneficial in  
producing reverse code for physical systems. Model-
specific optimization can be quite efficient but 
requires knowledge of application-level operations. 
The simple example of reversing the quadratic 
equation would not have been efficient, if at all 
possible, without knowledge of the physics involved 
(particle’s motion in this case).    

• The modeling process largely determines how 
successfully reverse computation will improve 
parallel performance. Initial analysis in [1] shows that 

complex use of jump instructions such as goto, break 
and continue are difficult to optimize in terms of 
memory usage.  

• In modeling physical systems, one should attempt to 
avoid monolithic code for event handlers and use 
functions calls that are associated with each physical 
process. If an event handler only consists of a long 
sequence of simple instructions, it is difficult to exact 
application semantics and therefore reverse 
computation will degenerate to instruction-by-
instruction reverse execution. Using many small 
function calls that reflect physical processes helps to 
develop reverse codes based on physical properties of 
the system. Another advantage is easier debugging 
and testing for the reverse code. 

 
The work presented here is only an initial step based on 

a simplified physical system.  Yet, the results show 
promise. Our goal is to build a scalable parallel simulator 
for complex physical systems by exploitation of more 
advanced reverse computation techniques. 
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