
Optimistic Parallel Discrete Event Simulations of
Physical Systems using Reverse Computation

Yarong Tang, Kalyan Perumalla, Richard Fujimoto Georgia Tech
Homa Karimabadi, Jonathan Driscoll, Yuri Omelchenko SciberNet Inc.

Abstract

Efficient computer simulation of complex physical
phenomena has long been challenging due to their multi-
physics and multi-scale nature. In contrast to traditional
methods using time-stepped execution, we describe an
approach using optimistic parallel discrete event
simulation (PDES) and reverse computation techniques.
We show that reverse computation can significantly
reduce the execution time of a plasma simulation
computation without requiring a significant amount of
additional memory compared to conservative execution
techniques. We describe an application-level reverse
computation technique that is efficient and suitable for
many complex scientific simulations involving floating
point operations.

1. Introduction
Parallel Discrete Event Simulation (PDES) has been an

active research area in the high performance computing
community for many years. Synchronization techniques
for PDES systems are usually classified into two principal
categories: conservative approaches that avoid violating
the local causality constraint and optimistic approaches
that allow violations to occur, but provide a mechanism to
recover. The operation to recover a previous state in an
optimistic parallel simulation is known as a rollback, and
involves undoing incorrect computations.

A widely used technique for implementing rollback is
state-saving that saves the values of state variables prior to
an event computation and restores them by referring to
these saved values upon rollback. Copy state saving
creates an entire copy of a process’s state, while
incremental state saving keeps a log of changes to
individual state variable. A relatively new technique for
rollbacks, reverse computation [1], realizes rollbacks by
performing the inverses of the individual operations
executed in the event computation. These techniques have
been exploited in small- or large-scale parallel
simulations.

However, advances in PDES research to date have had
little impact in space physical science, where multi-
physics and multi-scale physical systems are modeled by
partial differential equations and particles. Traditionally,
simplified models of such physical systems have been
simulated using time-driven or time-stepped approaches
[2]. The inherent limitations of the time stepped approach
prevents the simulation of more complex physical systems

that are important in plasma physics and other areas of
science. Even the latest techniques developed in time-
stepped research such as adaptive mesh refinement (AMR)
[3] are constrained by excessive computational
requirements and necessity to update all cells within a
given patch based on the Courant-Friedrichs-Levy (CFL)
condition in that patch. Discrete event simulation was
recently used to model spatially discretized physical
systems [4] where it was shown that this approach not
only alleviates the constraint of the CFL condition but also
provides a significant performance advantage over the
time-stepped approach.

In our work, we extend this work and apply optimistic
parallel discrete event simulation techniques to this
problem. Because memory constraints are often a severe
limitation in the size of the computations that can be
performed, reverse computation offers greater promise
than traditional state saving techniques. We explore the
use of reverse execution for plasma simulations to gain
new insights for such challenging, complex physical
systems. The combination of DES methodology and
reverse computing techniques offer the potential to
dramatically reduce the amount of time required to
perform plasma simulations without incurring a large
penalty in additional memory requirements.

The main contributions in this work can be summarized
as follows. To our knowledge, this is the first work to
apply reverse computation techniques to the parallel
physical system simulations and to show performance
advantages using this approach. In addition, we provide a
simple model and guidelines for creating reverse
simulation codes at the application level that can help
physicists or astrophysicists to develop simulation
prototypes without comprehensive knowledge of PDES
mechanisms.

The remainder of this paper is organized as follows.
The next section discusses related research. Section 3
provides an overview of the physical system we simulate
and the reverse computation approach. Section 4 gives an
in-depth discussion of the reverse computation
implementation and discusses the challenges. Section 5
presents experimental results from a preliminary
performance evaluation study. We conclude by reporting
current and future work in this area and provide guidelines
for reversing parallel physical simulation codes.

2. Related Work
A limited amount of research has examined physical

system simulation using parallel discrete event simulation
techniques. Perhaps the earliest was the “colliding pucks”
application developed for the Time Warp Operating
System (TWOS) [5]. This work, modeling a set of pucks
traveling over a frictionless plane, was used to benchmark
an early implementation of the Time Warp protocol.
Lubachevsky discusses the use of conservative simulation
protocols to create cellular automata models of Ising spin
[6]. Other work describes challenges in using discrete
event simulation techniques for other physical system
problems [7].

Seminal work in optimistic parallel discrete event
simulation was completed by Jefferson [8]. State saving
has historically been the dominant approach to enabling
the rollback of computations. Use of reverse execution to
roll back computations was first described in [1]. Their
reverse execution procedures were automatically
generated by a compiler. More recent work using reverse
execution for parallel network simulations, using manually
generated code, was reported in [9]. Our work is different
in that it applies reverse execution techniques in
simulating physical systems which involves complex
floating point operations and generates reverse code based
on application semantics.

Traditionally, complex physical systems described by
partial differential equations and particles are modeled by
time-stepped simulations which appear inadequate for
today’s complex physical systems in space physics. The
authors in [4] recently demonstrated the feasibility of
discrete event simulations to such complex systems and
made a great effort in promoting the inter-disciplinary
research in modeling and simulation. Our study is based
on their work and further explores the feasibility of an
advanced parallel synchronization mechanism in such
systems – reverse computation

3. Overview
In this section we briefly describe the computational

plasma simulation model used here. Details of the DES
model of this system are presented in [4], and interested
readers are referred to that work to gain familiarity with
the physics and DES modeling methodology that were
applied. Here, our focus is on use of reverse execution
techniques in optimistic parallel simulation of this model.

3.1. Computational Model: PIC Simulation
One of the great challenges in space physics is to

understand how the solar wind interacts with the earth’s
magnetosphere. The work presented in [4] was the first to
use a DES approach to simulate such complex physical
systems; there, a feasibility study based on the well-known
particle-in-cell (PIC) model [10] was described to provide
the foundation for development of such multi-physics and
multi-scale simulations. This model is conceptually
simple, but sufficiently complex for our feasibility study.

Here, we limit our simulations to a one-dimensional
electrostatic model using spherical coordinates.

Figure 1 illustrates a plasma PIC simulation of charging
a spacecraft immersed in neutral plasma by injecting a
charged beam from its surface [10]. The spacecraft is
initially charge-neutral and immersed in the charge-neutral
plasma of the solar wind. A charged beam is periodically
injected from the spacecraft surface which then causes the
surface charge to change.

Figure 1: Schematic of the PIC model

3.2. Parallelization
 In PDES of a PIC model, the simulation domain is
divided into “cells” with each cell mapped onto one
logical process (LP). In our spacecraft model, each cell is
called a “shell”, and is modeled as a Shell class (we will
use the terms cell and shell interchangeably). Two distinct
regions are shown in figure 1, based on different grid
spacing. The state of each LP includes the cell field
variables and the states of all particles within the cell
boundaries. The dynamic behavior of the system is driven
by particle movements that are modeled by events.
Whenever a particle moves across a cell boundary, the
electric field in the affected cells is updated by keeping
track of the charge that crosses the boundary [4]. Note that
the field updates are limited to active cells where events
are allowed to be scheduled.
 There are three types of events associated with particle
movements: ParticleArrivalEvent, ParticleDepartureEvent
and ParticleInjectEvent. The corresponding event handlers
are outlined in figure 2. When the simulation starts, all
active cells are initialized, including electric fields and
particle states (velocities, positions, etc.). In particular,
each particle’s movement is determined by its MoveTime
or cell exit time (a time in the future when the particle will
exit the hosting cell). Whenever a particle is created or
inserted in a cell, its exit time must be calculated and a
pair of departure and arrival events scheduled at the exit
time. In addition, a particle’s exit time needs to be
recalculated whenever the hosting cell “wakes up”. A
wakeup happens when a cell’s field changes beyond a
threshold value, resulting in recalculation of exit times of
all its particles.

Shell::arrival(ParticleArrivalEvent *e) {
 if (this cell is active) {
 update cell state;
 insert particle in cell;
 } else if (e is a beam particle) {
 activate cell;
 }
}
Shell::departure(ParticleDepartureEvent *e) {
 if (particle bounced from right neighbor) {
 bounce particle back; // no cell state change
 } else {
 update cell state;
 }
}
Shell::inject(ParticleInjectEvent *e) {
 update cell state;
 insert beam particles;
}

Figure 2: A simplified PIC model

3.3. Reverse Computation Approach
The characteristics of this plasma simulation present

three major challenges concerning the synchronization of
parallel computation. The rationale for the parallelization
approach used here is based on the following
considerations.

• Lookahead. The simulation is highly dynamic. The

amount of parallelism can vary dramatically as the
simulation progresses. Dependencies among events
are governed by each particle’s exit time, but this time
can be arbitrarily close into the future. This low level
of “predictability” results in a low, dynamically
changing value of lookahead that makes efficient
execution using conservative synchronization
techniques difficult. This suggests that optimistic
synchronization [8] may be a more natural choice for
this simulation.

• Memory. Realistic plasma simulations involve large
numbers of events, on the order of billions. Complex
data structures are often needed. This makes
traditional approaches to optimistic execution using
state saving problematic: the amount of memory
required can be prohibitively large. Further, the
amount of computation performed for each event
tends to be relatively small, on the order of
microseconds on a contemporary CPU. This suggests
that the time required for state saving may be
significant, and hence could significantly degrade
performance. Both of these factors suggest that

reverse computation technique is a more suitable
technique to realize an efficient optimistic execution
of this plasma simulation code.

• Floating point. The reverse computation approach
proposed in [1] uses an automated approach to
creating the reverse execution code for each line of
forward execution code. For example, a decrement
statement is generated to undo an increment statement
in the forward execution code. This approach
becomes problematic when floating point arithmetic
is used because the computation may not be easily
reversed due to effects such as round-off error. Here,
we explore a different approach where the program is
viewed at a higher level of abstraction, and suitable
reverse computation code is developed manually.

These factors motivate the approach that was adopted

for optimistic synchronization using manually derived
reverse computation code. We believe this can be used to
build a foundation for our future work in developing
scalable parallel simulators for complex physical systems.

4. Parallel Simulation Code
Here we use a one-dimensional model of the spacecraft

electrostatic particle code as an illustrative example to
discuss some of the challenges in generating the reverse
code for this physical system simulation. There are two
types of distinct physical entities in this simulation:
particles and cells1. Particles move across cells and each
cell keeps track of the particles residing within its own
domain. The communication between adjacent cells
occurs via particle movement events that contain
information of particle physical states. The complex data
structures housing the particles and physical processes
being captured require a careful modeling of the system.
The object-oriented design used here allows one to
encapsulate physical properties via classes. Extension to
more complex grid-based systems can also be made based
on this simplified initial test model.

Figure 2 sketches the basic operations performed by the
simulation. The code includes three event handlers, one
for each type of event. Much of the complexity of the
event computation is encapsulated within the insert and
update operations. An insert operation includes an
“insert” queue operation (data structures representing
particles in the cell are organized in a priority queue) and
computation of the exit time of that particle from the cell
based on an equation of motion. An update operation may
trigger an expensive wakeup computation that again scans
the particle list and updates each particle’s exit time.

1 The spacecraft situated at one end of the spatial coordinate can be

treated as a special cell that does not keep the physical states of particles.
We use “cells” thereafter to refer to the regular cells unless otherwise
specified.

It may be noted that the reverse computation techniques
introduced in [1] would generate the reverse code for each
instruction without taking into account the semantics of
the higher level operations that are being performed. This
will clearly lead to inefficiencies for the queue
management operations used in this code, and as
mentioned earlier, leads to difficulties concerning the
reversibility of floating point operations. The model-
specific approach taken here involves generating the
reverse code for the application by exploiting knowledge
of the higher level semantics of the operations being
performed. We call this approach application-level reverse
computation. Here, each cell must manage a large number
of particles within its domain. The choice of container
class directly affects the efficiency of the simulation. We
use the list class because of its efficient insertion and
deletion operations. However, both insertion and deletion
are destructive due to pointer assignments and thus
irreversible. However, it is clear from a higher level
examination of the operations being performed that
insertion and deletion are perfect inverse operations of
each other. Indeed, reverse computation in such queue
operations are more memory-efficient than state-saving.

Careful readers may notice that the particle departure
event handler depicted in figure 2 does not specify any
deletion operation that matches the insertion operations in
the particle arrival event handler. In fact, deletions are
performed aggregately on an as-needed basis. This is done
because of performance considerations. Instead of
deleting each particle at its exiting time, a near-periodic
deletion operation is used to amortize the cost of deletions
in queues. It is observed that wakeup events happen
almost periodically with a frequency determined by
physical conditions within the simulation; furthermore,
each wakeup requires a scan of the cell’s particle queue.
We find that restricting deletion operations only at cell
wakeup times reduces the total overhead of particle
deletions without introducing excessive memory usage.
Since the aggregate deletions are used to clean up the
obsolete states for particles that have already exited, no
rollbacks are needed to recover these obsolete states in the
event of undoing a wakeup.

Figure 3 shows the reverse code of the simulation
shown in figure 2. Notice that after decomposing the
forward code into components based on simulating
physical processes, the reverse code is relatively easy to
construct based on the operations shown in figure 3. The
next step for generating the complete reverse code is just a
matter of reversing each physical process. Examples of
reversing some of the more difficult processes are shown
in figure 3.

Shell::undo_arrival(ParticleArrivalEvent *e) {
 if (cell was activated) {
 undo_activate cell;
 } else if (cell already active) {
 delete particle in cell;
 undo_update cell state;
 }
}
Shell::undo_departure(ParticleDepartureEvent *e) {
 if (particle was bounced from right neighbor) {
 undo_bounce particle;
 } else {
 undo_update cell state;
 }
}
Shell::undo_inject(ParticleInjectEvent *e) {
 delete beam particles;
 undo_update cell state;
}

 Figure 3: A simplified reverse code of the PIC model

The insert operation appears in both particle arrival and

injection event handlers. Its effect includes assigning
memory for the new particle states in the queue and
scheduling arrival/departure event pairs at each particle’s
future exiting time. Conversely, the delete operation in the
reverse code should perform corresponding inverses of
these processes. Particles in each cell are organized in a
FILO (first-in last-out) queue, so the delete operation
always removes the particle at the head of the queue that is
exactly the same particle that was inserted in the forward
computation. As for “undoing” event scheduling, it is
assumed the underlying simulation engine provides the
application with a primitive for explicitly retracting
scheduled events; this is very useful to implement the
delete operation.

The effect of the activate process is to load an inactive
cell where previously no particle movements are allowed
with particles of uniform distribution. Its basic operation is
in fact multiple particle insertions. Its reverse code can
utilize the insert-delete pair operations described above.

The cell state update process is actually the most
complex process and its reverse code is not trivial. Each
update performs two major computations: compute the
cell’s new field values and then update the cell’s particle
queue. Each cell computes its field locally and keeps track
of field values at its left and right boundaries by summing
the charges passing through that boundary. During a cell’s
field update, an addition of charge at its boundary can be
simply reversed as a subtraction of the charge at the
boundary upon rollback. The update on a particle queue,
however, is not as easy. It requires a check of the wakeup
condition (i.e., the field change exceeding a threshold) and

paratriggers a wakeup event if necessary. As previously
described, a cell wakeup is the single most costly
operation in the plasma simulation. In the event of a
wakeup, all particles’ states are recomputed based on the
new cell field values and obsolete particle states are
erased. The destructive nature of the recomputation is one
of the principal challenges in generating the reverse code
for this simulation.

One example irreversible operation is the calculation of
a particle’s exit time MoveTime. It is calculated by finding
the roots dt of the quadratic equations [4]:

0
2
1 2 =−+∗+∗∗ CellWidthPosdtVeldtAcc (1)

0
2
1 2 =+∗+∗∗ PosdtVeldtAcc (2)

where Acc, Vel, Pos are particle acceleration, velocity
and position in cell, respectively. Equations (1) and (2)
represent the right and left exit conditions, respectively. dt
is the time difference between the current simulation time
and the particle’s last movement time. The smallest real
value of dt is used for MoveTime. An initial inspection of
the quadratic equations seems to suggest the impossibility
of applying reverse computation to this process. However,
if we take the reverse computation approach at the
application level, we find that the movement of the
particle is highly reversible. Based on the physical laws of
particle motion, the recovery of dt does not require the
direct inverse of the quadratic equations. Indeed, as
illustrated in figure 4, the particle’s acceleration, velocity
and position states can be simply rolled back by reverse
computation and then the critical state dt can be
reconstructed by carrying the forward computation using
the recovered particle states. Please note that parameters
cell_field and dt in the reverse code refer to the rolled-
back cell_field value and the time difference between now
and the time when the particle moved right before the
wakeup. Finally, we note that random number generation
is essential to this parallel simulation. Therefore, an
efficient random number generator (RNG) that is
reversible and has a long period is required. For this
purpose, we use the reversible RNG that is described in
[1].

5. Performance Evaluation
The application-level reverse computation approach is

best implemented in a system that decouples
implementation details of the simulation engine from the
application in order to allow one to focus one’s efforts on
application semantics. As a result, a simulation engine that
can support reverse computation at an application level
and provide efficient management of large numbers of
events with minimal storage requirement is needed. In
addition, the simulation engine should have the flexibility
and extensibility to support future refinement of the

llel simulation.

Particle::update_position(double dt) {
 Pos += Vel * dt + 0.5 * Acc * dt * dt;
}
Particle::update_velocity(double dt) {
 Vel += Acc * dt;
}
Particle::update_acceleration(double cell_field) {
 Acc = cell_field * particle_charge / particle_mass;
}
Particle::reverse_position(double dt) {
 Pos = Pos - Vel * dt - 0.5 * Acc * dt * dt;
}
Particle::update_state(double cell_field, double dt) {
 update_position(dt);

update_velocity(dt);
update_acceleration(cell_field);
dt = update_dt(); // solve eq. (1) and (2)
MoveTime = now + dt;

}
Particle::reverse_state(double cell_field, double dt) {
 ll_field); update_acceleration(ce

update_velocity(-dt);
reverse_position(dt);
dt = update_dt();
MoveTime = now + dt;

}

 Figure 4: The reverse code example of the particle states

e parallel physical system
sim

 execution using our reverse handlers to support
c

5.1

The parallel simulation code using reverse execution

described in the previous section was implemented using
µsik, a general-purpose parallel/distributed simulation
engine based on a micro-kernel architecture [11]. µsik
provides primitives supporting multiple synchronization
approaches, including optimistic and conservative
synchronization, as well as means to relax event ordering
rules and mixing different approaches to synchronization
within a single parallel execution. It therefore provides the
capabilities needed for th

ulations described here.
In a µsik simulation, logical (simulation) processes

(LP) are fully autonomous entities that communicate via
events. In our simulation model, each cell is implemented
as an LP and can choose to run conservatively or
optimistically. The conservative implementation of the
simulation described here performed very poorly, due to
poor lookahead, and is not discussed further. We focus on
optimistic
rollba k.

. Experiment Configuration
To demonstrate the feasibility and efficiency of reverse

computation in the electrostatic plasma simulation, we

carried out all experiments on a Symmetric Multi-
Processor (SMP) machine running Red Hat Linux 7.3 with
a customized 2.4.18-10smp kernel. The SMP machine is
equipped with eight Pentium III 550MHz Xeon processors
tha

om spacecraft surface and

5.2

on
mo

synchronization. All the parallel experiments discussed in

t share 4GB of memory.
We use normalized units throughout our simulation,

where length, time and velocity are normalized to electron
Debye length, electron plasma frequency and electron
thermal velocity, respectively. The spacecraft is assumed
to have 500 units in radius and each cell has a width of
0.24. The solar wind plasma is initially loaded with
uniformly distributed electrons and protons. We choose
the initial values of 30 electrons and 30 protons per cell.
The injected positron beam has energy of 10 kev with an
injection period of 0.004. Upon initialization, there are up
to 7000 cells of which the first 70 close to the spacecraft
are active; as the simulation progresses up to time 60, the
beam travels further away fr
thus more cells are activated.

. Parallel Performance
Figure 5 shows a snapshot visualization of phase space

structures for the solar wind electrons, protons and beam
particles from a time-stepped simulation and the optimistic
PDES simulation. Both simulations are run up to 60 time
units, and with the same simulation parameters except
using different random number generators (RNG). The
PDES used a specialized reversible RNG in contrast to the
generic single-stream RNG used in the time-stepped
simulation. Despite this difference, the two phase space
structures at the end of the simulations are rather close in
form. The result from the PDES execution with reverse
computation is verified to accurately capture the main
features of movement for all three species of particles at
the end of the simulation. In particular, we can see that the
beam front in both simulations has propagated to the same
distance and beam particles display a similar shape in
phase space. It is also evident that the electron phase space
has a finer resolution in the PDES case for up to 4000
cells. This is the result of its fine time-scale based on
individual particles. A minor difference to note is that, in
the PDES case, the phase space does not extend all the
way to the right wall, whereas in the time-stepped model,
it does. This is because we model an expanding box in
PDES but not in time-stepped model. Overall, the results
helped serve as validation of our optimistic simulati

del against the original sequential simulation model.
The speedup of DES over TDS has been discussed in

great detail in [4]. In our work, we focus on further
improving the DES performance by realizing
parallelization in the simulation and utilizing optimistic

Figure 5: Validation by phase space comparison of
time-stepped simulation and PDES with reverse
computation.

the following section were run with the same physical
parameters and resulted in the same number of committed
events as the sequential runs.

Figure 6: PDES vs. sequential DES

Figure 6 shows the parallel speedup in terms of

execution time for up to 8 processors. The sequential data
is measured by running the parallel code on a single
processor. It should be noted that the single processor
execution incurs neither rollbacks nor state saving
overhead. Because µsik was designed for both efficient
sequential and parallel execution, we believe these
measurements reflect the performance one could expect to
see using a reasonably efficient sequential simulation
engine.

We observe that the optimistic parallel execution
achieves a nearly linear speedup up to 4 processors, but
the performance improvement is somewhat less in going
from 4 to 8 processors. This phenomenon is largely due to
the fact that there is relatively little computation per
particle event. As the computation is distributed over
more and more processors, the amount of computation
between event communications decreases, resulting in
reduced speedup. We expect that this problem will not
persist if a larger, more complex physical model such as a
three dimensional plasma code were used. An initial test
with an increased simulation time of 2 units did show
better speedup performance due to the fact that the longer
the simulation runs, the more cells are activated, resulting
in more balanced computation for each processor.

Figure 7: Event rate distribution

A second factor that results in less than optimal

performance concerns the distribution of the workload.
Figure 7 shows the amount of computation assigned to
each processor in each of the runs. Here, the load is
distributed by first dividing the physical area encompassed
by the simulation into two regions (as illustrated in figure
1) with the initially active cells closer to the spacecraft in
the “heavy activity” region, and other cells forming the
“less active” region. Cells in the active regions are evenly
grouped and distributed among the available processors,
while other cells are grouped into sub-regions or “blocks”
and distributed among processors in a round-robin fashion.

All simulations shown in figure 7 have a fixed “block”
size. We observe that during the lifetime of each
simulation, the processor load shows significant variation
as more and more cells become active. Upon simulation
termination, the simulation with the largest number of
processors tends to be the least balanced. The imbalance is
inherent of such simulations due to their highly dynamic
nature and the static load-balancing scheme. Further
investigation of characteristics of electrostatic plasma
simulations is needed to aid in the development of a more
efficient load-balancing algorithm for this application that
can lead to better parallel performance for large numbers
of processors.

5.3. Efficiency
Intuitively, grid-based physical systems such as the

electrostatic plasma simulation studied here have the
desirable features of locally solved field values and
queuing/dequeuing operations that are time-reversible, but
the evolution of the system itself (beam injections, cell
wakeups in our case) is not time-reversible. However, with
the application-level reverse computation illustrated
above, we have shown that numerical operations in the
electrostatic plasma simulation chosen for this study are
truly reversible, despite round-off errors and irreversible
evolution processes. The most important discovery from
our study is that application-level reverse computation
may be quite efficient for these scientific simulations.

The efficiency mainly comes from two contributing
factors: the smaller amount of memory required compared
to state-saving, particularly, queue operations where no
additional state is required to perform rollbacks; no the
fact that the simulation is not constrained by arbitrarily
small look-ahead values. However, there are still
important practical issues related to reverse computation.

Ideally, one would like to apply reverse computation to
all reversible operations. But reverse computation also
comes at a cost: if the number of destructive operations is
sufficiently large and no efficient application-level reverse
computation can be found, stubbornly employing reverse
computation can result in worse performance than state-
saving. One such case as pointed out in [1] is when a
rollback spans several processed events. Merely switching
pointers to restore a state based on the earliest rolled back
event incurs a small cost in copy state-saving; while
reverse computation must roll back one event at a time and
thus excessive rollbacks can cause performance to degrade
considerably. The effect of this is particularly severe in
our simulation when a rollback spans multiple wakeup
events.

Our solution to reducing the rollbacks of costly wakeup
events is by limiting the “optimism” of the parallel
processing. µsik supplies the simulation applications with
a convenient facility for our purpose. A “run-ahead”
parameter can be set by the model at simulation

initialization to limit how far in simulation time each LP
can run ahead of other LPs during optimistic execution.
By carefully tuning the run-ahead parameter based on cell
wakeup frequency, we are able to reduce or eliminate
consecutive rollbacks of wakeup events.

In addition to the basic reverse computation techniques
discussed here, advanced reverse techniques can be
applied to the plasma simulation. For example, compiler-
supported reverse computation can be used to further
optimize the parallel performance at run-time. This
approach is beyond the scope of our discussion and will be
studied in the future.

6. Conclusions
In this work, we have applied reverse execution to

perform parallel discrete event simulations of a physical
system. We demonstrated that application-level reverse
computation can be used to manually generate efficient
reverse code. These results suggest that reverse
computation merits further investigation as an approach
for parallel/distributed simulation of physical systems
modeled using a discrete event simulation paradigm.

As previously mentioned, the PIC simulation
considered in this paper is only a simplified example of
reverse execution in simulating physical systems. The
examples given in section 4 are representative and
certainly do not encompass the diversity and complexity
of all physical system simulations. However, the
underlying reverse techniques can be used in other grid-
based models without extensive modifications. Here we
provide some guidelines for the development of parallel
physical discrete event simulations using reverse
computation. Since our exploration of reverse computation
is an on-going research effort, the guidelines provided
here should be used as a references rather than strict rules
for applying reverse computation in scientific simulations.

• Reverse computation is well-suited for fine-grained

applications such as the 1D electrostatic grid-based
plasma models. It is especially useful where efficient
queue management is needed. But other optimization
techniques should also be considered in order to fully
optimize parallel performance.

• Good knowledge of the application semantics,
especially the underlying physics, can be beneficial in
producing reverse code for physical systems. Model-
specific optimization can be quite efficient but
requires knowledge of application-level operations.
The simple example of reversing the quadratic
equation would not have been efficient, if at all
possible, without knowledge of the physics involved
(particle’s motion in this case).

• The modeling process largely determines how
successfully reverse computation will improve
parallel performance. Initial analysis in [1] shows that

complex use of jump instructions such as goto, break
and continue are difficult to optimize in terms of
memory usage.

• In modeling physical systems, one should attempt to
avoid monolithic code for event handlers and use
functions calls that are associated with each physical
process. If an event handler only consists of a long
sequence of simple instructions, it is difficult to exact
application semantics and therefore reverse
computation will degenerate to instruction-by-
instruction reverse execution. Using many small
function calls that reflect physical processes helps to
develop reverse codes based on physical properties of
the system. Another advantage is easier debugging
and testing for the reverse code.

The work presented here is only an initial step based on

a simplified physical system. Yet, the results show
promise. Our goal is to build a scalable parallel simulator
for complex physical systems by exploitation of more
advanced reverse computation techniques.

References

[1] Carothers, C. D., K. Perumalla and R. M. Fujimoto.

Efficient Optimistic Parallel Simulation Using
Reverse Computation. ACM Transactions on
Modeling and Computer Simulation 9(3): 224-253,
1999.

[2] Birdsall, C.K. and A.B. Langdon. Plasma Physics via
Computer Simulation. McGraw-Hill Book Company,
1985.

[3] Dawson, C. and R. Kirby. High Resolution Schemes
for Conservation Laws with Locally Varying Time
Steps. SIAM Journal of Scientific Computing, 2001.
22(6): p. 2256.

[4] Karimabadi, H, Driscoll, J, Omelchenko, Y.A. and N.
Omidi. A New Asynchronous Methodology for
Modeling of Physical Systems: Breaking the Curse of
Courant Condition. J. Computational Physics, 2004,
submitted.

[5] Hontalas, P., B. Beckman, M. DiLorento, L. Blume,
P. Reiher, K. Sturdevant, L. V. Warren, J. Wedel, F.
Wieland and D. Jefferson. Performance of the
Colliding Pucks Simulation on the Time Warp
Operating System. Distributed Simulation, Society for
Computer Simulation International, 1989.

[6] Lubachevsky, B. D. Efficient Distributed Event-
Driven Simulations of Multiple-Loop Networks.
Communications of the ACM 32(1): 111-123, 1989.

[7] Lubachevsky, B. D. Several Unsolved Problems in
Large-Scale Discrete Event Simulations. Workshop
on Parallel and Distributed Simulation, 1993.

[8] Jefferson, D. Virtual Time. ACM Transactions on
Programming Languages and Systems 7(3): 404-425,

1985.
[9] Yuan, G., C. D. Carothers and S. Kalyanaraman.

Large-Scale TCP Models Using Optimistic Parallel
Simulation. Workshop on Parallel and Distributed
Simulation, 2003.

[10] Pritchett, P. L., R. M. Winglee. The Plasma
Environment during particle beam injection into space
plasmas: 1. Electron-beams, J. of Geophysical Res. –
Space Physics, 92 (A7): 7673-7688 JUL 1 1987.

[11] Perumalla, K. µsik - A Micro-kernel for
Parallel/Distributed Simulation. Technical Report
GIT-CERCS-04-20, Center for Experimental
Research in Computer Science, Georgia Institute of
Technology, 2004.

	Abstract
	Introduction
	Related Work
	Overview
	Computational Model: PIC Simulation
	Parallelization
	Reverse Computation Approach

	Parallel Simulation Code
	Performance Evaluation
	Experiment Configuration
	Parallel Performance
	Efficiency

	Conclusions

