
Scalable Simulation of Electromagnetic Hybrid Codes
Kalyan Perumalla1, Richard Fujimoto2, Homa Karimabadi3

1 Oak Ridge National Laboratory, Oak Ridge, TN, USA
2Georgia Institute of Technology, Atlanta, GA, USA

3SciberQuest Inc, Solana Beach, CA, USA

Abstract. New discrete-event formulations of physics simulation models are
emerging that can outperform models based on traditional time-stepped
techniques. Detailed simulation of the Earth’s magnetosphere, for example,
requires execution of sub-models that are at widely differing timescales. In
contrast to time-stepped simulation which requires tightly coupled updates to
entire system state at regular time intervals, the new discrete event simulation
(DES) approaches help evolve the states of sub-models on relatively
independent timescales. However, parallel execution of DES-based models
raises challenges with respect to their scalability and performance. One of the
key challenges is to improve the computation granularity to offset
synchronization and communication overheads within and across processors.
Our previous work was limited in scalability and runtime performance due to
the parallelization challenges. Here we report on optimizations we performed
on DES-based plasma simulation models to improve parallel performance. The
mapping of model to simulation processes is optimized via aggregation
techniques, and the parallel runtime engine is optimized for communication and
memory efficiency. The net result is the capability to simulate hybrid particle-
in-cell (PIC) models with over 2 billion ion particles using 512 processors on
supercomputing platforms.

1. Introduction
New discrete-event approaches are being developed to speed up simulations of
inhomogeneous physical systems in order to efficiently accommodate the variety of
spatial and temporal scales in such systems. The new discrete-event approaches are
being proposed in place of traditional time-stepped approaches in order to overcome
the worst-case limitations imposed by the fastest processes in the system. Parallel
execution of these discrete-event models is challenging due to a combination of their
characteristics, including fine-grained event computation and dynamic inter-entity
event communication patterns. In this paper, we document our optimizations to a
discrete-event model of a one-dimensional hybrid shock simulation that uses a
particle-in-cell method to simulate electromagnetic fields in a plasma environment.
In our earlier work, we reported results from a preliminary parallel implementation on
a cluster of workstations. The previous implementation uncovered several avenues
for improvement, including computation granularity issues, memory usage
requirements and inter-processor communication overheads. Our new
implementation incorporates optimizations to the discrete event model
implementation to enable efficient parallel/distributed execution, and enabled scaling
it to supercomputing platforms.
The rest of the document is organized as follows. Section 2 provides the motivation
and background to this work. The one-dimensional hybrid shock application is
outlined in Section 3. The optimizations to the parallel implementation are described

in Section 4, followed by a parallel execution performance study in Section 5. Finally,
Section 6 outlines the status and future work.

2. Background and Related Work
The conventional approach to realizing PIC models with spatial grid elements is to
use time-stepped execution where the state of the model, e.g., particle position,
velocity, charge, etc., is updated at fixed time increments. Discrete event simulation
offers an alternative approach where particle and field updates are instead only carried
out on an “as needed” basis, e.g., when field values cross certain thresholds, resulting
in state updates at irregular (and less frequent) time points. The time interval between
updates is therefore dictated by the predicted rate of change. Particle and field update
“events” are used to denote when state updates occur. These events are queued and
continuously processed over time to complete the simulation. Event-driven PIC
simulations automatically guarantee that the progression of the system captures
important state changes while reducing computation of less interesting, “idle”
information. Further details of this approach are presented in [1, 2], where
performance measurements were presented showing as much as two orders of
magnitude speedup for certain PIC simulations.
Further increases in speed and scalability can be accomplished by applying parallel
discrete event simulation (PDES) techniques. Here, the computation is divided into a
collection of simulation processes that communicate by exchanging time stamped
messages (events). A central question that must be addressed in PDES concerns
ensuring proper synchronization of the computation. Unlike time-stepped
simulations, PDES techniques allow some simulation processes to progress ahead of
others in simulation time. This introduces the possibility of synchronization errors
where a simulation process receives a message (event) with time stamp smaller than
its current simulation time. Several approaches have been proposed to address this
problem [3]. One class, termed conservative synchronization, blocks simulation
processes to ensure no such synchronization errors occur [4, 5]. By contrast,
optimistic synchronization techniques allow such errors to occur, but recover using a
rollback mechanism [6].
PDES systems are typically composed of a simulation engine that handles issues such
as synchronization, and invoking the simulation model entities at appropriate times.
The µsik system [7] used here is one example of a PDES simulation engine that can
be configured to handle either conservative or optimistic synchronization methods.
µsik is based on a micro-kernel approach to parallel simulation engine design where
fundamental mechanisms necessary for synchronization are implemented within the
micro-kernel, and the rest of the kernel is built over the micro-kernel. Both
conservative and optimistic parallel PIC simulations have been realized utilizing the
µsik system [1, 2, 8].
A limited amount of work has examined the application of PDES techniques to
physical system simulation. Perhaps the earliest was the “colliding pucks”
application developed for the Time Warp Operating System (TWOS) [9].
Lubachevsky discusses the use of conservative simulation protocols to create cellular
automata models of Ising spin [10] and other physical system problems [11]. A
formal approach to both discrete event and continuous simulation modeling based on

DEVS (Discrete EVent System Specification), was proposed by Zeigler et al. [12] and
some numerical solutions have been examined based on the DEVS formalism [13].

3. One-Dimensional Hybrid Shock Discrete Event Model
Here we provide a brief description of our DES model. Additional information can be
found in [2]. Electromagnetic hybrid algorithms with fluid electrons and kinetic ions
are ideally suited for physical phenomena that occur on ion time and spatial scales.
Maxwell’s equations are solved by neglecting the displacement current in Ampere’s
law (Darwin approximation), and by explicitly assuming charge neutrality. There are
several variations of electromagnetic hybrid algorithms with fluid electrons and
kinetic ions [14]. Here we use the one-dimensional (1-D) resistive formulation which
casts field equations in terms of vector potential.

Figure 1: Simulation of a shock using the piston method

The model problem uses the piston method where incoming plasma moving with flow
speed larger than its thermal speed is reflected off the piston located on the rightmost
boundary, as illustrated Figure 1,. MA is the shock Mach number and Vdown is the
downstream flow velocity based on the Rankine-Hugonoit condition. This leads to
the generation of a shockwave that propagates to the left in the piston frame of
reference. In this example, we use a flow speed large enough to form a fast
magnetosonic shock. In all the runs shown here, the plasma is injected with a velocity
of 1.0 (normalized to upstream Alfven speed), the background magnetic field is tilted
at an angle of 30o, and the ion and electron betas are set to 0.1. The simulation
domain is divided into cells [1], and the ions are uniformly loaded into each cell. Each
cell is modeled as a Logical Process (LP) in μsik and the state of each LP includes the
cell’s field variables. The main tasks in the simulation are to (a) initialize fields, (b)
initialize particles, (c) calculate the exit time of each particle, (d) sort IonQ, (e) push
particle, (f) update fields, (g) recalculate exit time, and (h) reschedule. This is
accomplished through a combination of priority queues and three main classes of
events.

Figure 2: Organization of particle events in PendQ and IonQ priority queues

The ions are stored in either one of two priority queues[2], as shown in Figure 2. Ions
are initialized within cells in an IonQ. As ions move out of the leftmost cell, new ions
are injected into that cell in order to keep the flux of incoming ions fixed at the left
boundary. MoveTime is the time at which an ion moves to an adjacent cell. The
placement and removal of ions in IonQ and PendQ is controlled by comparing their
MoveTimes to the current time and lookahead (lookahead is the shortest delay
between the current simulation time of the cell and the time of any event scheduled
into the future by the cell). Ions with MoveTimes more than current time +
2*lookahead have not yet been scheduled and are kept in the IonQ. A wakeup occurs
when the fields in a given cell change by more than a certain threshold and
MoveTimes of particles in the cell need to be updated. On a wakeup, ions in IonQ
queue recalculate their MoveTimes. Because ions in the IonQ have not yet been
scheduled, a wakeup requires no event retractions. If an ion’s MoveTime becomes
less than current time + 2*lookahead in the future, the ion is scheduled to move, and
is removed from the IonQ and placed in the PendQ. The PendQ is used to keep track
of ions that have already been scheduled to exit, but have not yet left the cell. These
particles have MoveTimes that are less than the current time. Ions in the PendQ with
MoveTimes earlier than the current time have already left the cell and are removed
before cell values such as density and temperature are calculated. Events can happen
at any simulation time and are managed separately by individual cells of the
simulation.

4. Optimizations
As mentioned earlier, our preliminary implementation of a prototype for parallel
execution of the 1-D hybrid shock model was limited in different ways. First, the per-
event overhead incurred due to discrete event processing was found to be large due to
the low granularity of event computation. Secondly, our parallel execution was
constrained by sockets-based communication, which suffered from inefficiencies.
Finally, the discrete event simulation engine itself was in an evolutionary state, and
was consequently not optimized for memory usage. Our optimizations were aimed
along these lines: The mapping from cells to simulation processes is changed to an
aggregate scheme in order to minimize overheads. With communication subsystem
optimizations, runtime performance has been significantly improved. Additionally,
porting to a supercomputer enabled the simulation to scale up to 512 processors. By
specializing the data structure to conservative synchronization (at runtime), the
memory requirements to represent the cells and particles have been reduced. The
largest configurations that can be simulated have been pushed significantly, to include
over 2 billion ion particles overall. Some of these optimizations are described in

detail next.

4.1. Mapping Cells to DES Logical Processes

Figure 3: A suboptimal way of realizing a particle-in-cell DES model.

One way to realize PIC models, shown in Figure 3, is to map each cell to a logical
process (LP). This provides maximum flexibility for load balancing, but makes every
particle-transfer event to go through the (micro-kernel) PDES simulator, making it
inefficient due to lack of optimization for locality of communication. Also, shared
state is disallowed in this scheme, which makes it impossible for neighboring cells to
exchange data via direct access to data structures.

Figure 4: An efficient way of realizing a particle-in-cell DES model.

A more efficient alternative approach is shown in Figure 4. The concept of a “region”
is introduced, which is an aggregate that contains multiple cells. Instead of mapping
one cell per LP, each region is mapped to an LP. It results in memory savings,
because the memory overheads of an LP are not incurred for every cell. Also, it is
more natural to model: each region can be viewed as a sequential engine that
simulates multiple cells. Particles crossing regions (i.e., across sequential engines)
are sent as µsik events across simulation processes (and, by natural implication,
across processors). In our earlier work, we used the one-LP-per-Cell mapping
scheme, which incurred overheads. We re-implemented the model with the new
scheme based on multiple-cells-per-region, which significantly cut down event

scheduling and event processing overheads.

4.2. Communication Subsystem
Our earlier system used Berkeley sockets-based inter-processor communication.
However, sockets have limited buffering capacities, which led to deadlocks on large-
scale configurations due to the fact that large number of events (particle transfers,
field updates) needed to be transferred across processors simultaneously. We have
since then ported our engine to use high-performance communications based on
native MPI implementations of the supercomputer platforms. Moving to MPI helped
use large user-level buffers and avoid deadlocking while also improving the runtime
performance considerably. The availability of control by the application on the size
of the buffers helped us customize the communication based on the largest expected
event message exchange rate in the application.

4.3. µsik Engine Enhancements
Since the PDES engine was designed to support both conservative as well as
optimistic methods of synchronization in parallel execution, it was organized to
accommodate the general case. However, the generality in the initial versions of the
engine resulted in overheads of optimistic synchronization encroaching into
conservative execution as well (e.g., the causal list maintenance among events,
required for rollbacks, in the form of several pointer variables per event). This
overhead is unnecessary in purely conservative execution, such as our 1-D hybrid
simulation. The improvement here was to dynamically allocate space for event causal
list pointers only upon first reference for the same within each event. This
automatically ensures resilience to arbitrary combinations of optimistic and
conservative logical processes. A 40% memory savings was realized by this dynamic
allocation approach. Since every particle (ion) arrival or departure is represented as
an event, this translated directly into increase in the number of particles that can be
simulated in a given amount of memory.

5. Performance Study
We now turn to a study of scalability and runtime performance. All performance data
reported here are collected on the San Diego Supercomputing Center’s IBM DataStar
supercomputer (www.sdsc.edu/user_services/datastar). The DataStar is a cluster of
IBM P655 nodes, each node with 8 Power4 1.5GHz processors and 16GB memory
(shared by the 8 processors). The nodes are connected by an IBM Federation Switch
providing low latency and high bandwidth communication. The performance on up to
512 processors is shown in Figure 5. The observed performance is significantly better
than previously reported, as a cumulative result of all the optimizations. Since the
amount of concurrency is dependent on the simulated number of cells, we
experimented with three configurations: small (150 cells/CPU), medium (1,500
cells/CPU) and large (40,000 cells/CPU). The total number of cells is scaled with the
number of processors.
It is observed that the speedup with small configuration is less than that with medium-
sized configuration. This is due to lack of enough concurrency with the smaller
number of cells, making parallel synchronization overheads dominate. On the other

http://www.sdsc.edu/user_services/datastar

hand, we observe lower speedup with large-sized configuration than that with the
medium-sized. This turns out to be due to the large amount of inter-processor event
communication inherent in the larger run, imposing greater messaging overhead in the
parallel run. To confirm this, we instrumented the code to obtain measures of inter-
processor event types and their counts. It was observed that the number of “notify”
events increases with the number of cells, which contributes significantly to the
messaging overheads.

1

10

100

1000

1 10 100 1000
Number of CPUs

Sp
ee

du
p

Linear/Ideal Cells/CPU=1500
Cells/CPU=150 Cells/CPU=40000

Figure 5: Runtime speedup of region-based Hybrid Shock code on varying no. of CPUs.

The next observation is on memory requirements. Each Ion takes approximately 150
bytes to be represented, and each cell has 100 ions. For 40,000 cells per CPU, the
memory consumed to represent all the ions is
150bytes/ion*100ions/cell*40,000cells/CPU=600MB per CPU. Also, MPI buffers at
each CPU have to be allocated sufficiently large to prevent deadlocks. In a 2 billion
ion simulation on 512 CPUs, with a conservative estimate of one million incoming
ions into a CPU between synchronization steps, an MPI buffer of size
2bloat/byte*400bytes/message*106messages=800MB is required at each CPU to
avoid full buffers. The extra “bloat” factor of 2 on byte size is used to portably
accommodate potential memory cost due to MPI pack/unpack data type conversions
& representations. With these metrics, the number of particles has been increased
linearly with the number of processors, reaching 20 million cells and over 2 billion
ions in the largest execution using 40,000 cells per CPU on 512 CPUs.
Although this configuration is a bit large for the 1-D case, we are interested in
observing the scaling properties of our system, with the goal of achieving efficient
parallel execution for two-dimensional (2-D) and three-dimensional (3-D) versions as
well. In a 2-D shock simulation, the number of cells and particles would be
reasonable for some of the bigger runs. We in fact verified our expectation of similar
performance on 2-D by observing a speedup of 194 on 256 processors and 248 on 512
processors on a configuration with 400 cells/CPU, and 10,000 ions/cell.

6. Status and Future Work
To our knowledge, the performance results reported here represent some of the largest
executions of parallel discrete event-based physics simulation models. The
techniques used here are fully extendable to multiple dimensions and non-uniform
meshes. We are currently developing a uni-dimensional infrastructure with adaptive
logical mapping capabilities. Our immediate application areas include global kinetic
simulations of the Earth’s magnetosphere and particle acceleration due to turbulence
at fast magnetosonic shocks. Given the generality of the technique, however, we
expect future applications to a wide variety of physics based simulations.

Acknowledgements
This work has been partly supported at Georgia Tech by NSF grant ATM-0326431
and by the NSF ITR Grant No. 0539106 at SciberQuest, Inc. The use of computing
facilities at the San Diego Supercomputing Center is gratefully acknowledged.

References
[1] H. Karimabadi, J. Driscoll, Y. Omelchenko and N. Omidi, "A New Asynchronous

Methodology for Modeling of Physical Systems: Breaking the Curse of Courant
Condition," Journal of Computational Physics, vol. 205(2), 2005.

[2] H. Karimabadi, J. Driscoll, Y. Omelchenko, K. S. Perumalla, R. M. Fujimoto, and N.
Omidi, "Parallel Discrete Event Simulation of Grid-based Models: Asynchronous
Electromagnetic Hybrid Code," Springer LNCS Proceedings, pp. 580-588, 2005.

[3] R. M. Fujimoto, Parallel and Distributed Simulation Systems: Wiley Interscience, 2000.
[4] K. Chandy and J. Misra, "Asynchronous distributed simulation via a sequence of parallel

computations," in Communications of the ACM, vol. 24, 1981.
[5] K. M. Chandy and J. Misra, "Distributed Simulation: A Case Study in Design and

Verification of Distributed Programs," IEEE Transactions on Software Engineering, vol.
SE-5(5), pp. 440-452, 1978.

[6] D. Jefferson, "Virtual Time," ACM Transactions on Programming Languages and
Systems, vol. 7(3), pp. 404-425, 1985.

[7] K. S. Perumalla, "µsik - A Micro-Kernel for Parallel/Distributed Simulation Systems,"
Workshop on Principles of Advanced and Distributed Simulation, 2005.

[8] Y. Tang, K. S. Perumalla, R. M. Fujimoto, H. Karimabadi, J. Driscoll, & Y. Omelchenko,
"Optimistic Parallel Discrete Event Simulations of Physical Systems using Reverse
Computation," Workshop on Principles of Advanced and Distributed Simulation, 2005.

[9] P. Hontalas, et al., "Performance of the Colliding Pucks Simulation on the Time Warp
Operating System," Distributed Simulation, 1989.

[10] B. D. Lubachevsky, "Efficient Distributed Event-Driven Simulations of Multiple-Loop
Networks," Communications of the ACM, vol. 32(1), pp. 111-123, 1989.

[11] B. Lubachevsky, "Several Unsolved Problems in Large-Scale Discrete Event
Simulations," Workshop on Parallel and Distributed Simulation, 1993.

[12] B. P. Zeigler, et al, Theory of Modeling & Simulation, 2nd ed: Academic Press, 2000.
[13] J. Nutaro, "Parallel Discrete Event Simulation with Application to Continuous Systems,"

in Department of Electrical and Computer Engineering, vol. Ph.D. Tucson, AZ:
University of Arizona, 2003, pp. 182.

[14] H. Karimabadi, H. D. Krauss-Varban, J. Huba and H. X. Vu, "On Magnetic Reconnection
Regimes and Associated Three-Dimensional Asymmetries: Hybrid, Hall-less Hybrid and
Hall-MHD Simulations," Journal of Geophysical Research, vol. 109, pp. 1-21, 2004.

	1. Introduction
	2. Background and Related Work
	3. One-Dimensional Hybrid Shock Discrete Event Model
	4. Optimizations
	4.1. Mapping Cells to DES Logical Processes
	4.2. Communication Subsystem
	4.3. µsik Engine Enhancements

	5. Performance Study
	6. Status and Future Work
	Acknowledgements
	References

