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Abstract. New discrete-event formulations of physics simulation models are 
emerging that can outperform models based on traditional time-stepped 
techniques.  Detailed simulation of the Earth’s magnetosphere, for example, 
requires execution of sub-models that are at widely differing timescales.  In 
contrast to time-stepped simulation which requires tightly coupled updates to 
entire system state at regular time intervals, the new discrete event simulation 
(DES) approaches help evolve the states of sub-models on relatively 
independent timescales.  However, parallel execution of DES-based models 
raises challenges with respect to their scalability and performance.  One of the 
key challenges is to improve the computation granularity to offset 
synchronization and communication overheads within and across processors.  
Our previous work was limited in scalability and runtime performance due to 
the parallelization challenges.  Here we report on optimizations we performed 
on DES-based plasma simulation models to improve parallel performance. The 
mapping of model to simulation processes is optimized via aggregation 
techniques, and the parallel runtime engine is optimized for communication and 
memory efficiency.  The net result is the capability to simulate hybrid particle-
in-cell (PIC) models with over 2 billion ion particles using 512 processors on 
supercomputing platforms. 

1. Introduction 
New discrete-event approaches are being developed to speed up simulations of 
inhomogeneous physical systems in order to efficiently accommodate the variety of 
spatial and temporal scales in such systems.  The new discrete-event approaches are 
being proposed in place of traditional time-stepped approaches in order to overcome 
the worst-case limitations imposed by the fastest processes in the system.  Parallel 
execution of these discrete-event models is challenging due to a combination of their 
characteristics, including fine-grained event computation and dynamic inter-entity 
event communication patterns.  In this paper, we document our optimizations to a 
discrete-event model of a one-dimensional hybrid shock simulation that uses a 
particle-in-cell method to simulate electromagnetic fields in a plasma environment.  
In our earlier work, we reported results from a preliminary parallel implementation on 
a cluster of workstations.  The previous implementation uncovered several avenues 
for improvement, including computation granularity issues, memory usage 
requirements and inter-processor communication overheads.  Our new 
implementation incorporates optimizations to the discrete event model 
implementation to enable efficient parallel/distributed execution, and enabled scaling 
it to supercomputing platforms. 
The rest of the document is organized as follows.  Section 2 provides the motivation 
and background to this work.  The one-dimensional hybrid shock application is 
outlined in Section 3.  The optimizations to the parallel implementation are described 



in Section 4, followed by a parallel execution performance study in Section 5. Finally, 
Section 6 outlines the status and future work. 

2. Background and Related Work 
The conventional approach to realizing PIC models with spatial grid elements is to 
use time-stepped execution where the state of the model, e.g., particle position, 
velocity, charge, etc., is updated at fixed time increments.   Discrete event simulation 
offers an alternative approach where particle and field updates are instead only carried 
out on an “as needed” basis, e.g., when field values cross certain thresholds, resulting 
in state updates at irregular (and less frequent) time points. The time interval between 
updates is therefore dictated by the predicted rate of change.  Particle and field update 
“events” are used to denote when state updates occur.  These events are queued and 
continuously processed over time to complete the simulation.  Event-driven PIC 
simulations automatically guarantee that the progression of the system captures 
important state changes while reducing computation of less interesting, “idle” 
information.  Further details of this approach are presented in [1, 2], where 
performance measurements were presented showing as much as two orders of 
magnitude speedup for certain PIC simulations. 
Further increases in speed and scalability can be accomplished by applying parallel 
discrete event simulation (PDES) techniques.  Here, the computation is divided into a 
collection of simulation processes that communicate by exchanging time stamped 
messages (events).  A central question that must be addressed in PDES concerns 
ensuring proper synchronization of the computation.  Unlike time-stepped 
simulations, PDES techniques allow some simulation processes to progress ahead of 
others in simulation time.  This introduces the possibility of synchronization errors 
where a simulation process receives a message (event) with time stamp smaller than 
its current simulation time.  Several approaches have been proposed to address this 
problem [3].  One class, termed conservative synchronization, blocks simulation 
processes to ensure no such synchronization errors occur [4, 5].  By contrast, 
optimistic synchronization techniques allow such errors to occur, but recover using a 
rollback mechanism [6]. 
PDES systems are typically composed of a simulation engine that handles issues such 
as synchronization, and invoking the simulation model entities at appropriate times.  
The µsik system [7] used here is one example of a PDES simulation engine that can 
be configured to handle either conservative or optimistic synchronization methods. 
µsik is based on a micro-kernel approach to parallel simulation engine design where 
fundamental mechanisms necessary for synchronization are implemented within the 
micro-kernel, and the rest of the kernel is built over the micro-kernel.  Both 
conservative and optimistic parallel PIC simulations have been realized utilizing the 
µsik system [1, 2, 8]. 
A limited amount of work has examined the application of PDES techniques to 
physical system simulation.  Perhaps the earliest was the “colliding pucks” 
application developed for the Time Warp Operating System (TWOS) [9]. 
Lubachevsky discusses the use of conservative simulation protocols to create cellular 
automata models of Ising spin [10] and other physical system problems [11]. A 
formal approach to both discrete event and continuous simulation modeling based on 



DEVS (Discrete EVent System Specification), was proposed by Zeigler et al. [12] and 
some numerical solutions have been examined based on the DEVS formalism [13].   

3. One-Dimensional Hybrid Shock Discrete Event Model 
Here we provide a brief description of our DES model. Additional information can be 
found in [2].  Electromagnetic hybrid algorithms with fluid electrons and kinetic ions 
are ideally suited for physical phenomena that occur on ion time and spatial scales. 
Maxwell’s equations are solved by neglecting the displacement current in Ampere’s 
law (Darwin approximation), and by explicitly assuming charge neutrality. There are 
several variations of electromagnetic hybrid algorithms with fluid electrons and 
kinetic ions [14]. Here we use the one-dimensional (1-D) resistive formulation which 
casts field equations in terms of vector potential. 

 
Figure 1: Simulation of a shock using the piston method 

The model problem uses the piston method where incoming plasma moving with flow 
speed larger than its thermal speed is reflected off the piston located on the rightmost 
boundary, as illustrated Figure 1,. MA is the shock Mach number and Vdown is the 
downstream flow velocity based on the Rankine-Hugonoit condition.  This leads to 
the generation of a shockwave that propagates to the left in the piston frame of 
reference. In this example, we use a flow speed large enough to form a fast 
magnetosonic shock. In all the runs shown here, the plasma is injected with a velocity 
of 1.0 (normalized to upstream Alfven speed), the background magnetic field is tilted 
at an angle of 30o, and the ion and electron betas are set to 0.1.  The simulation 
domain is divided into cells [1], and the ions are uniformly loaded into each cell. Each 
cell is modeled as a Logical Process (LP) in μsik and the state of each LP includes the 
cell’s field variables. The main tasks in the simulation are to (a) initialize fields, (b) 
initialize particles, (c) calculate the exit time of each particle, (d) sort IonQ, (e) push 
particle, (f) update fields, (g) recalculate exit time, and (h) reschedule. This is 
accomplished through a combination of priority queues and three main classes of 
events. 



 
Figure 2: Organization of particle events in PendQ and IonQ priority queues 

The ions are stored in either one of two priority queues[2], as shown in Figure 2. Ions 
are initialized within cells in an IonQ. As ions move out of the leftmost cell, new ions 
are injected into that cell in order to keep the flux of incoming ions fixed at the left 
boundary.  MoveTime is the time at which an ion moves to an adjacent cell. The 
placement and removal of ions in IonQ and PendQ is controlled by comparing their 
MoveTimes to the current time and lookahead (lookahead is the shortest delay 
between the current simulation time of the cell and the time of any event scheduled 
into the future by the cell).  Ions with MoveTimes more than current time + 
2*lookahead have not yet been scheduled and are kept in the IonQ. A wakeup occurs 
when the fields in a given cell change by more than a certain threshold and 
MoveTimes of particles in the cell need to be updated. On a wakeup, ions in IonQ 
queue recalculate their MoveTimes. Because ions in the IonQ have not yet been 
scheduled, a wakeup requires no event retractions. If an ion’s MoveTime becomes 
less than current time + 2*lookahead in the future, the ion is scheduled to move, and 
is removed from the IonQ and placed in the PendQ. The PendQ is used to keep track 
of ions that have already been scheduled to exit, but have not yet left the cell. These 
particles have MoveTimes that are less than the current time. Ions in the PendQ with 
MoveTimes earlier than the current time have already left the cell and are removed 
before cell values such as density and temperature are calculated. Events can happen 
at any simulation time and are managed separately by individual cells of the 
simulation. 

4. Optimizations 
As mentioned earlier, our preliminary implementation of a prototype for parallel 
execution of the 1-D hybrid shock model was limited in different ways.  First, the per-
event overhead incurred due to discrete event processing was found to be large due to 
the low granularity of event computation.  Secondly, our parallel execution was 
constrained by sockets-based communication, which suffered from inefficiencies.  
Finally, the discrete event simulation engine itself was in an evolutionary state, and 
was consequently not optimized for memory usage.   Our optimizations were aimed 
along these lines:  The mapping from cells to simulation processes is changed to an 
aggregate scheme in order to minimize overheads.  With communication subsystem 
optimizations, runtime performance has been significantly improved.  Additionally, 
porting to a supercomputer enabled the simulation to scale up to 512 processors.  By 
specializing the data structure to conservative synchronization (at runtime), the 
memory requirements to represent the cells and particles have been reduced.  The 
largest configurations that can be simulated have been pushed significantly, to include 
over 2 billion ion particles overall.  Some of these optimizations are described in 



detail next. 

4.1. Mapping Cells to DES Logical Processes 

 
Figure 3: A suboptimal way of realizing a particle-in-cell DES model. 

One way to realize PIC models, shown in Figure 3, is to map each cell to a logical 
process (LP).  This provides maximum flexibility for load balancing, but makes every 
particle-transfer event to go through the (micro-kernel) PDES simulator, making it 
inefficient due to lack of optimization for locality of communication.  Also, shared 
state is disallowed in this scheme, which makes it impossible for neighboring cells to 
exchange data via direct access to data structures. 

 
Figure 4: An efficient way of realizing a particle-in-cell DES model. 

A more efficient alternative approach is shown in Figure 4.  The concept of a “region” 
is introduced, which is an aggregate that contains multiple cells.  Instead of mapping 
one cell per LP, each region is mapped to an LP.  It results in memory savings, 
because the memory overheads of an LP are not incurred for every cell.  Also, it is 
more natural to model: each region can be viewed as a sequential engine that 
simulates multiple cells.  Particles crossing regions (i.e., across sequential engines) 
are sent as µsik events across simulation processes (and, by natural implication, 
across processors).  In our earlier work, we used the one-LP-per-Cell mapping 
scheme, which incurred overheads.  We re-implemented the model with the new 
scheme based on multiple-cells-per-region, which significantly cut down event 



scheduling and event processing overheads. 

4.2. Communication Subsystem 
Our earlier system used Berkeley sockets-based inter-processor communication.  
However, sockets have limited buffering capacities, which led to deadlocks on large-
scale configurations due to the fact that large number of events (particle transfers, 
field updates) needed to be transferred across processors simultaneously.  We have 
since then ported our engine to use high-performance communications based on 
native MPI implementations of the supercomputer platforms.  Moving to MPI helped 
use large user-level buffers and avoid deadlocking while also improving the runtime 
performance considerably.  The availability of control by the application on the size 
of the buffers helped us customize the communication based on the largest expected 
event message exchange rate in the application. 

4.3. µsik Engine Enhancements 
Since the PDES engine was designed to support both conservative as well as 
optimistic methods of synchronization in parallel execution, it was organized to 
accommodate the general case.  However, the generality in the initial versions of the 
engine resulted in overheads of optimistic synchronization encroaching into 
conservative execution as well (e.g., the causal list maintenance among events, 
required for rollbacks, in the form of several pointer variables per event).  This 
overhead is unnecessary in purely conservative execution, such as our 1-D hybrid 
simulation.  The improvement here was to dynamically allocate space for event causal 
list pointers only upon first reference for the same within each event.  This 
automatically ensures resilience to arbitrary combinations of optimistic and 
conservative logical processes.  A 40% memory savings was realized by this dynamic 
allocation approach.  Since every particle (ion) arrival or departure is represented as 
an event, this translated directly into increase in the number of particles that can be 
simulated in a given amount of memory. 

5. Performance Study 
We now turn to a study of scalability and runtime performance.  All performance data 
reported here are collected on the San Diego Supercomputing Center’s IBM DataStar 
supercomputer (www.sdsc.edu/user_services/datastar).  The DataStar is a cluster of 
IBM P655 nodes, each node with 8 Power4 1.5GHz processors and 16GB memory 
(shared by the 8 processors).  The nodes are connected by an IBM Federation Switch 
providing low latency and high bandwidth communication.  The performance on up to 
512 processors is shown in Figure 5.  The observed performance is significantly better 
than previously reported, as a cumulative result of all the optimizations.  Since the 
amount of concurrency is dependent on the simulated number of cells, we 
experimented with three configurations: small (150 cells/CPU), medium (1,500 
cells/CPU) and large (40,000 cells/CPU).  The total number of cells is scaled with the 
number of processors. 
It is observed that the speedup with small configuration is less than that with medium-
sized configuration.  This is due to lack of enough concurrency with the smaller 
number of cells, making parallel synchronization overheads dominate.  On the other 
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hand, we observe lower speedup with large-sized configuration than that with the 
medium-sized.  This turns out to be due to the large amount of inter-processor event 
communication inherent in the larger run, imposing greater messaging overhead in the 
parallel run.  To confirm this, we instrumented the code to obtain measures of inter-
processor event types and their counts.  It was observed that the number of “notify” 
events increases with the number of cells, which contributes significantly to the 
messaging overheads. 
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Figure 5: Runtime speedup of region-based Hybrid Shock code on varying no. of CPUs. 

The next observation is on memory requirements.  Each Ion takes approximately 150 
bytes to be represented, and each cell has 100 ions.  For 40,000 cells per CPU, the 
memory consumed to represent all the ions is 
150bytes/ion*100ions/cell*40,000cells/CPU=600MB per CPU.  Also, MPI buffers at 
each CPU have to be allocated sufficiently large to prevent deadlocks.  In a 2 billion 
ion simulation on 512 CPUs, with a conservative estimate of one million incoming 
ions into a CPU between synchronization steps, an MPI buffer of size 
2bloat/byte*400bytes/message*106messages=800MB is required at each CPU to 
avoid full buffers.  The extra “bloat” factor of 2 on byte size is used to portably 
accommodate potential memory cost due to MPI pack/unpack data type conversions 
& representations.  With these metrics, the number of particles has been increased 
linearly with the number of processors, reaching 20 million cells and over 2 billion 
ions in the largest execution using 40,000 cells per CPU on 512 CPUs. 
Although this configuration is a bit large for the 1-D case, we are interested in 
observing the scaling properties of our system, with the goal of achieving efficient 
parallel execution for two-dimensional (2-D) and three-dimensional (3-D) versions as 
well.  In a 2-D shock simulation, the number of cells and particles would be 
reasonable for some of the bigger runs.  We in fact verified our expectation of similar 
performance on 2-D by observing a speedup of 194 on 256 processors and 248 on 512 
processors on a configuration with 400 cells/CPU, and 10,000 ions/cell. 



6. Status and Future Work 
To our knowledge, the performance results reported here represent some of the largest 
executions of parallel discrete event-based physics simulation models.  The 
techniques used here are fully extendable to multiple dimensions and non-uniform 
meshes.  We are currently developing a uni-dimensional infrastructure with adaptive 
logical mapping capabilities.   Our immediate application areas include global kinetic 
simulations of the Earth’s magnetosphere and particle acceleration due to turbulence 
at fast magnetosonic shocks.  Given the generality of the technique, however, we 
expect future applications to a wide variety of physics based simulations. 
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