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ABSTRACT 
Lately, important large-scale simulation applications, such as 
emergency/event planning and response, are emerging that are 
based on discrete event models.  The applications are 
characterized by their scale (several millions of simulated 
entities), their fine-grained nature of computation (microseconds 
per event), and their highly dynamic inter-entity event 
interactions.  The desired scale and speed together call for highly 
scalable parallel discrete event simulation (PDES) engines.  
However, few such parallel engines have been designed or tested 
on platforms with thousands of processors.  Here an overview is 
given of a unique PDES engine that has been designed to support 
Time Warp-style optimistic parallel execution as well as a more 
generalized mixed, optimistic-conservative synchronization.  The 
engine is designed to run on massively parallel architectures with 
minimal overheads.  A performance study of the engine is 
presented, including the first results to date of PDES benchmarks 
demonstrating scalability to as many as 16,384 processors, on an 
IBM Blue Gene supercomputer.  The results show, for the first 
time, the promise of effectively sustaining very large scale 
discrete event execution on up to 104 processors. 

Categories and Subject Descriptors 
I.6.1  [Computing Methodologies]: Simulation and Modeling, 
General – parallel simulation, Time Warp, discrete event C.1.2 
[Processor Architectures]: Multiple Data Stream Architectures 
(Multiprocessors) 

General Terms 
Performance, Experimentation, Algorithms 

Keywords 
Parallel discrete event simulation, Time Warp, reverse 
computation, state saving, mixed-mode simulation 
 

1. INTRODUCTION 
Parallel discrete event simulation (PDES) finds use in many 
important application areas.  While many PDES techniques have 

been studied for the past two to three decades, PDES execution on 
large processor counts remains to be demonstrated, especially in 
the context of fine-grained event execution.  The fine-grained 
nature of event execution imposes tight constraints on PDES 
techniques with respect to scalability.  Additionally, due to 
dynamic inter-processor communication patterns and runtime 
dependencies that are characteristic of PDES applications, the 
possibility of large-scale execution is to be explored by 
experimentation with actual software implementation and 
benchmarking of PDES engines.  This paper fills this need, by 
evaluating and documenting the possible performance that can be 
achieved using a state-of-the-art PDES engine that incorporates a 
large set of PDES techniques in a single software implementation. 

Specifically, the overall performance achieved by the PDES 
engine, µsik, is reported on up to 16,384 processors of an IBM 
Blue Gene supercomputer, with three important PDES 
synchronization mechanisms.  Some of the recent PDES 
advancements exercised in this implementation include a reverse 
computation approach for realizing rollback, a fast global time 
synchronization algorithm that accounts for transient messages 
without using globally blocking barriers, a fast fossil collection 
method for (positive- and anti-) event reclamation, and efficient 
event-scheduling methods in mixed-mode (conservative plus 
optimistic) execution. 

The rest of the paper is organized as follows.  Motivation for 
large-scale, fine-grained PDES execution is presented in Section 
2.  A brief overview of PDES synchronization modes and relation 
to previous work is presented in Section 3.  The experiment setup 
of the engine and synthetic benchmarks on the Blue Gene 
supercomputing platform are described in Section 4.  Runtime 
performance results are presented in Section 5, followed by a 
summary and identification of additional future work in Section 6. 

2. MOTIVATION 
An increasing number of critical applications are evolving to 
warrant high end computing capabilities.  Emergency planning & 
response, global/local social phenomena prediction & analysis, 
defense systems operations & effects, and sensor network-enabled 
protection/awareness systems are all representative application 
areas.  Simulation-based applications in these areas include 
detailed vehicular and behavioral simulations, high-fidelity 
simulation of communication effects in large sensor networks, and 
complex models in social behavioral/agent-based simulations, to 
name just a few.  The common core of these applications is their 
use of discrete event-based modeling approaches.  Discrete event 
simulations involve evolving the states of the underlying entities 
(e.g., vehicles) in asynchronous fashion, in contrast to time-
stepped simulations in scientific computing in which the entire 
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system state is (logically) updated over fixed intervals (time-steps) 
of simulation time. 

In their “next generation” levels of operation, these applications 
include scenarios characterized by their scale (several millions of 
simulated entities), their need for fast simulation of multiple 
scenarios (thousands of alternatives explored as fast as possible 
for reasoning, understanding and refining the models or 
solutions), and their (re)configuration based on large-sized 
dynamic data. When the application scenarios are scaled to large 
configurations of interest, they warrant the use of parallel discrete 
event simulation (PDES).  For example, regional- or national-
scale micro-simulation of vehicular traffic (e.g., for accurate 
computation of evacuation time or computation of energy 
consumption) involve the simulation of 106-107 road intersections 
and 107-108 vehicles.  Many potential scenarios (e.g., evacuation 
routes, or alternative energy incentives) are to be evaluated.  All 
such considerations together motivate the need for highly scalable 
PDES execution capabilities on high performance platforms. 

However, computational scalability of PDES systems and 
techniques has never been tested on more than 103 processors. 
Execution on 103 processors is not yet mainstream in PDES 
application areas.  Scalability beyond 103 processors has not been 
previously explored, and hence practicability and applicability of 
ultra-scale parallel execution of PDES applications has been 
unknown.  Achievement and feasibility demonstration of PDES 
on very large configurations helps the simulation applications to 
begin to consider the use of such large scenarios in their 
respective application domains.  The results of our efforts are 
motivated by such scenarios, and are aimed at helping expose the 
potential of the large-scale simulation capabilities for PDES 
applications. 

3. BACKGROUND 
A principal factor underlying the scalability challenge for PDES is 
that synchronizing event execution across processors is non-
trivial, especially in keeping overheads low while achieving 
“global time stamp-ordered” execution.  In applications of 
interest, such as microscopic vehicular simulation or packet-level 
Internet simulations, fine-grained event processing adds 
significantly to the challenge.  In such simulations, event 
computation can consume very little wall-clock time, soon after 
which synchronization of event timestamps is required among the 
rest of the events in the parallel system. 

For example, on current-day processors, packet-level models for 
Internet Protocol “packet handling” models take as little as 5-10µs 
per event for Internet simulations, and similarly, 10-50µs for 
updating vehicular states in microscopic models of vehicular 
transportation simulations.  Correctness of results requires that 
events are executed to preserve global timestamp order among all 
events, which implies that global parallel synchronization must be 
very fast and efficient. 

The rationale behind timestamp-ordered processing is that it 
permits the models to be accurately simulated, such that events are 
processed in the same order as their corresponding actions in the 
physical system. To enable such processing order, a simple local 
rule to follow is that a processor whose simulation time is at T 
should not receive events with timestamps less than T. Hence, 
advances of a processor’s current time have to be coordinated and 
controlled carefully to prevent events appearing in processor’s 

“past.” This requirement gives rise to different synchronization 
approaches, and consequently, different algorithms. 

3.1. Parallel Event Synchronization 
In PDES, broadly three approaches are commonly used: 
conservative, optimistic, and mixed-mode synchronization.  In all 
approaches, it is assumed that each individual entity in the 
simulation is represented as a logical process (LP), and logical 
processes communicate and synchronize with each other by 
sending/receiving time-stamped events. 

Conservative: This approach always ensures safe timestamp-
ordered processing of simulation events within each LP [1, 2]. In 
other words, an LP does not execute an event until it can 
guarantee that no event with a smaller timestamp will later be 
received by that LP.  The guarantee of correctness is achieved by 
blocking the LP execution until all events destined to are 
generated and delivered from other LPs and it is safe to execute 
the LP’s events. 

Optimistic: This approach avoids “blocked waiting” by 
optimistically processing the events. When some events are later 
detected to have been processed in incorrect order (because new 
events with lower timestamps arrive from other LPs), the system 
invokes compensation code such as state restoration or reverse 
computation. The most well-known optimistic PDES algorithm is 
Time Warp[3]. 

Mixed-mode: This approach combines elements of the previous 
two. For example, sometimes it might help to have some parts of 
the application execute optimistically ahead, while other parts 
execute conservatively (e.g., see [4-6]). In such cases, a 
combination of synchronization techniques can be appropriate. 

While several algorithms have been proposed in the literature for 
PDES, only a few have been shown to be inherently scalable, and 
even fewer have been actually tested on very large parallel 
platforms.  Figure 1 shows the progress of PDES engine 
scalability over the past few decades.  Examples of the largest 
discrete event simulation runs to date include (a) simulations of 
Internet-like networks using 1536 processors[7] (b) simulations of 
the PHOLD parallel simulation benchmark on 1024 processors[8, 
9], and (c) simulations of discrete event models of particle-in-cell 
models on 512 processors[10].  Time Warp has previously been 
executed on increasing number of processors: 101 in 1980’s[11], 
102 in the 1990’s, 103 in early 2000’s.  In this paper, we report 
scalability to 104 processors, which is represented by the data 
point listed for 2006. 

Note that all PDES simulations are single parallel runs, in contrast 
to replicated independent runs employed by other parallel 
simulation approaches such as Monte Carlo methods.  PDES is far 
being from embarrassingly parallel, with each simulation run 
utilizing all available processor count in a single session, with 
non-trivial synchronization operations among all processors. 

For an overview of traditional as well as discussion of recent 
parallel/distributed simulation techniques and advances, the reader 
is referred to [12]. 



 
Figure 1: Progress of PDES engine scalability over time 
In this context, research at our institution is focused along two 
tightly coupled directions.  The first is in the development of a 
common, scalable core among PDES applications, and the second 
is in building applications on top of the scalable common core.  In 
the first item, we have developed a range of novel PDES 
techniques (e.g., reverse computation-based optimistic 
synchronization, and scalable algorithms for virtual time 
synchronization) and also have developed software 
implementations of some of these.  Earlier, these have been 
evaluated on up to 1536 processors, but their scalability to the 
scale of the systems such as the IBM Blue Gene with 104 
processors has been unknown.  In the second item, we have 
developed new models for some of the applications, designed with 
the overriding goal of parallel execution, right from inception.  
This paper is focused on the former, namely, on the performance 
of scalable PDES engines. 

3.2. Related Work 
The theory underlying the PDES synchronization protocols has 
been worked out well in the past.  For example, the famous paper 
by David Jefferson on Time Warp[3] is seminal in many ways 
with respect to optimistic parallel simulation.  The translation of 
the elegant theory into a practical implementation requires 
systems engineering work, such as efficient scheduling 
mechanisms, reducing memory footprints for optimal cache 
performance, and many additional critical details.  The TWOS[13] 
and GTW[14] optimistic simulation systems are representative of 
early systems to address such details in order to take the concept 
of Time Warp to actual implementation.  Specialized algorithms 
suited for symmetric shared memory multiprocessors helped 
increase the potential of Time Warp-style synchronization 
protocols up to the order of 102 processors.  To move beyond 102 
processors required additional systems work, as there remain 
many places where PDES engines needed to be optimized.  
Inefficiency, even in a few of them, could bring down the overall 
PDES execution efficiency.  These include the costs of rollback 
support (state saving), global virtual time (GVT) computation, and 
fossil collection.  Unknowns include questions such as how much 
overhead is involved in these operations when scaled to large 
number of processors, and doubts on whether they make the 
overall parallel execution worthwhile. 

Among the few distributed memory Time Warp implementations 
reported are a small number of systems reported in mid 1990’s on 
modest-sized cluster configurations such as up to 102 processors 
(e.g. Carothers’96 Ph.D. thesis), and the DSIM simulator tested 
recently on 103 processors[9]. 

In addition to the systems costs, there is the lingering concern 
about Time Warp instabilities: At what processor counts will we 
see the theoretically contemplated (e.g., [15]) instabilities?  Will 
instabilities appear in scenarios at scales of interest in some of our 
important applications (e.g., a million logical processes for 
simulating one million road intersections)? 
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two decades or more (e.g., scheduling, flow control, bounded 
optimism, reverse computation, mixed mode, etc.), each of which 
is a complex endeavor in and by itself.  Their use together in a 
single encompassing system such as µsik has not been evaluated.  
It remained unclear if at all such a unifying engine could in fact be 
developed without sacrificing performance. 

4. PDES EXECUTION ON THE IBM 
GENE 
Here we describe the details on the µsik engine for high
performance PDES execution, and describe the porting process of 
the engine to the Blue Gene platform. 

4.1. µsik PDES Engine 
µsik is a PDES engine[8] that we des
kernel” approach to accommodating a wide range of PDES 
synchronization techniques, including conservative, optimistic and 
mixed-mode.  Several applications have been built using PDES as 
their core, including: the SCATTER system for discrete event 
based modeling of large-scale vehicular mobility systems[16, 17]; 
the PDES2 (PDES of PDES) system for virtual execution of large-
scale PDES applications for performance prediction; physical 
system simulations such as discrete event modeling of Spacecraft 
Charging and other plasma physics phenomena[10, 18, 19]; and, 
Neurological simulations based on Hodgkin-Huxley models of 
neuron activity[20].  Currently, it is perhaps the only scalable 
engine capable of supporting mixed mode PDES execution. 

µsik includes a unified system architecture for incorpo
multiple types of simulation processes.  The processes hold 
potential to employ a variety of synchronization mechanisms, and 
could even alter their choice of mechanism dynamically.  
Supported mechanisms include traditional lookahead-based 
conservative and state saving-based optimistic execution 
approaches.  Also supported are newer mechanisms such as 
reverse computation-based optimistic execution and aggregation-
based event processing, all within a single parsimonious 
application programming interface. 
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processor are shown in Figure 2.  The engine kernel maintains 
three main priority queues each of which contain references to 
logical processes.  The queues are ordered by timestamp values of 
the processes.  The Committable priority queue holds the logical 
processes ordered by the earliest timestamp at which events in 
each process could be committed (for example, fossil collected).  
Similarly, the Processable priority queue holds the logical 
processes ordered by their earliest events that could be executed.  
The Emittable priority queue holds the logical processes ordered 
by the earliest timestamps that could be generated in the future by 
each logical process.  The least emittable timestamp at a processor 
is taken into account in computing the global virtual time (GVT) 
algorithm.  In fact, a generalized version of GVT, namely, lower 
bound on incoming timestamp (LBTS) is used in global time 
synchronization in µsik. 

Logical processes are user-defin
the PDES application (e.g., intersections in a road network).  
Additionally, the engine uses internal logical processes which 
themselves are also ordained by timestamp-ordered processing of 
their events, except that these internal “kernel LPs” of the engine 
are used for parallel communication and synchronization 
operations.  For example, one kernel process per processor is 
created to house anti-messages for Time Warp, and to fossil 
collect them efficiently at runtime when GVT sweeps past them 
(simply by “committing” the anti-messages).  Flow control is also 
implemented in these kernel processes – message sends that fail 
due to destination buffers being full will be held and re-sent by the 
kernel process mapped to that destination processor. 

4.2. The Blue Gene Supercomputer 
The scaling experiments reported in this paper were performed o
the Blue Gene supercomputer, called the Blue Gene Watson 
(BGW), housed at the IBM T. J. Watson Research Center.  As 
with the Blue Gene architecture, it consists of 16 racks, each rack 
consisting of 1024 nodes, each node consisting of two cores, each 
core being of type PowerPC-440.  In a compute node (CN) 
configuration, one core computes while the other core services the 
network.  In a virtual node (VN) configuration, both cores are 
used as compute nodes, giving an effective total of 32,768 
processors that can be used in the largest computing configuration 
on the BGW.  As of this writing, BGW is rated second in the Top 
500 supercomputer installations. 

4.3. Porting to the Platfor
µsik is designed to execute on top of a ran
networks such as TCP/IP, Myrinet/GM, System V shared 
memory, MPI, and any combinations of the same.  To permit 
maximum flexibility, selection of network routes can be 
postponed all the way to runtime, as opposed to being fixed at 
compile time.  This flexibility in our software created problems on 
porting to the Blue Gene, since there is no support for socket 
libraries, shared memory and so on.  We addressed this problem 
by introducing conditional compilation macros to compile out any 
and all references to sockets and multi-threading libraries in the 
µsik code.  µsik is written using ANSI C and C++.  We used the 
Blue Gene’s native compilers to compile µsik code: blrts_xlc 
(for C) and blrts_xlC (for C++).  Some of the important 
compiler flags that we used are: 

 -O2 –qtune=440 –qarch=44

The software implementation was also cus
Gene execution environment by setting certain compile-time 
macro parameters of µsik (such as MAXPE for maximum number 
of processors) as appropriate, and eliminating or circumventing all 
O(n2) data structures, where n is the number of processors used in 
simulation. 

We experimented with the use of the -O
the goal of reaping its performance improvements.  However, its 
use resulted in incorrect execution in which the processors failed 
to synchronize, so we had to revert back to the -O2 optimization 
flag.  Unfortunately, we did not have time on the Blue Gene to 
spend on debugging exactly where -O4 was creating problems in 
the code.  In future work, we intend to debug and resolve this 
problem to take advantage of -O4 optimizations (such as compiler 
assistance to exploit dual floating point units that are especially 
available on the Blue Gene). 

We were bitten by the well known performanc
Gene, namely, that a double word misalignment trap induces 
wasted CPU time with thousands of cycles of delay in servicing 
the misaligned loads/stores.  We ran into this problem early on 
when porting µsik to the BGW.  Processing time per event 
dramatically increased, from 8µs to 67µs per event, and overall 
event processing rate plummeted!  We fixed this by padding 
structures in time management header fields to be integer 
multiples of 8 bytes.   Before the fix was applied, coerced casts of 
structures for layered event header processing made the execution 
trap on double precision timestamp fields.  Locating the exact 
source of the problem in source code was extremely challenging 
as the offending memory addresses were difficult to trace back to 
source code, even when symbolic debugging information was 
turned on during compilation.  We were able to track down the 
source of the problem via the web-based Remote Administration 
Services (RAS) interface of the Blue Gene, in combination with 
object dumps. 

Efficient implementation of optimistic parallel simulation engi
(e.g., using Time Warp) is already a complex endeavor.  The 
complexity increases when the functionality of mixed-mode 
execution is added, and increases even further when newer 
techniques such as reverse computation are incorporated for low-
overhead rollback.  Software engineering complexity is amplified 
because execution on very large scale induces wider code 
coverage, exposure of memory leaks and other inefficiencies.  Our 
porting of the µsik engine to Blue Gene scale indeed touched upon 
our solutions to all such challenges in our implementation.  Over 
the course of the experiments, our algorithms were found to be 
well suited to address these challenges.  For example, our scalable 
time synchronization algorithm[21] for computation of Global 
Virtual Time (GVT) or Lower Bound on Incoming Time Stamp 
(LBTS) served well to continue scaling from 101 to 104 processors 
seamlessly, taking into account transient messages without using 
blocking barriers.  This algorithm works by executing iterations of 
reductions across all processors, each reduction attempting to 
account for any time-stamped messages in flight unaccounted for 
by a distributed snapshot.  When after any iteration it is found that 



there are no more transient messages that remain unaccounted for 
in flight, the globally reduced timestamp value across all 
processors gives the global virtual time.  Although the theoretical 
logarithmic complexity of each iteration in the algorithm is 
known, the number of iterations is not necessarily bounded, which 
depends on runtime behavior (e.g., network speed).  Nevertheless, 
it was empirically confirmed from the results of the experiments 
that the number of iterations was always small (averaging less 
than 2).  This is probably attributable to the fact that the Blue 
Gene architecture has a set of fast interconnection networks for 
global communication. 

Many other optimizations were brought into play by the execution 
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on 104 processors (e.g., scalable fossil collection of anti-message 
handles via special logical processes).  The optimistic runs, for 
example, used reverse computation as the rollback mechanism, 
which eliminated the significant memory overheads of state 
saving needed for saving logical process state.  We believe the 
reduced footprint due to reverse computation helped enable the 
low per-event overhead observed in our experiments.  Further 
confirmation work is needed (e.g., by instrumentation for cache 
miss statistics), but our prior experience along these lines[22] 
indicates that this is probably the case.  Similarly, the memory 
footprint reduction is also aided by fast, logarithmic operation on 
fossil collection data structures for usual (positive) event 
processing as well as for anti-message handling.  Since a major 
source of memory overheads is event buffers, and our kernel-LP 
implementation for flow control and anti-messages help reclaim 
anti-messages as fast as possible, both at the sender side as well as 
at the receiver side across distributed memory boundaries. 

 
Here we present the runtime performance results
processors by using up to 8 racks of the BGW in virtual node 
(VN) mode (8 racks × 1024 nodes per rack × 2 processors per 
node). 

5.1. Benchmark Application 
For the performance study, we used the 
which is a de facto standard PDES benchmark.  The PHOLD 
application helps test functionality and performance 
simultaneously, while providing easily controllable configurations 
that are easy to understand yet challenging to parallelize 
effectively.  It provides for a powerful way to control a wide 
variety of PDES application characteristics, and often serves as a 
worst case benchmark to help debug, verify and stress-test PDES 
engines.  This benchmark is widely used in PDES as an easily 
developed, yet complex enough, test application. 

In PHOLD, logical processes (LPs) juggle a fixed 
stamped events among themselves; each LP sends a time-stamped 
event to a randomly selected destination LP with an exponentially 
distributed simulation time increment.  For the experiments, we 
chose a configuration that included 1 million LPs and 10 million 
events being juggled by all LPs (which implies that there are at 
least 10 million events at any given moment in the entire 
simulation).  Although µsik has earlier been used to simulate 
scenarios with 1 million LPs and 1 billion events[8] on the IBM 
DataStar machine at the San Diego Supercomputing Center, USA, 
we chose a more modest sized configuration for the IBM Blue 
Gene as a preliminary effort.  The safety of lower number of 
events was chosen as a guaranteed fit within the low memory 

availability on each BGW node; this was done in order to 
minimize wastage of failed runs within the precious, limited 
allocation hours to which we had access on the BGW machine. 

In order to allow for concurrency, every event is scheduled with a
minimum simulation time increment of 1.0, which is added to the 
exponentially distributed time increment with a mean of 1.0.  
Destination logical process is chosen with 90% locality (i.e., 10% 
of events cross processor boundaries). 

In conservative mode, events are ex
timestamp order.  Every LP processes all its events in non-
decreasing order of event timestamps.  Execution is blocked for 
safety if/as necessary, and safety and progress are both ensured 
using global virtual time computation.  In optimistic mode, LPs 
process their events almost independently of progress of other 
LPs’ timelines.  Time Warp-based rollback schemes (using anti-
messages and reverse computation) are used to correct any 
incorrect execution, such that eventually the entire execution 
guarantees total global timestamp order, giving the same results as 
a conservative parallel execution.  In mixed mode, all LPs with 
even identifiers execute conservatively, and all LPs with odd 
identifiers execute optimistically. 

5.2. Problem Scaling Method 
In our tests, we used the strong scaling meth
larger number of processors.  The problem size remained fixed 
while the number of processors was increased.  We have also used 
weak scaling in our experiments in the past, and envision 
experimenting with weak scaling in future on the Blue Gene as 
well.  We believe that strong scaling represents a more 
challenging problem than weak scaling, and consequently, we 
expect even better scalability results with weak scaling, compared 
to the strong scaling results reported here. 

As an illustrative point, it is well known t
such as Time Warp exhibit instabilities resulting in poor 
performance on large numbers of processors when the event load 
per processors decreases.  Strong scaling reduces event load as 
number of processors is increased to a point where the event load 
became too low per processor on 8 racks.  Thus, as expected, we 
observed this phenomenon of low performance when scaling from 
8192 to 16384 processors.  We believe that performance of 
optimistic and mixed mode execution would improve on 16384 
processors, and beyond, when the number of logical processes and 
events per logical process is scaled according to weak scaling.  
Time allocation constraints on the BGW machine prevented us 
from performing weak scaling and other experiments.  We intend 
to perform these additional experiments in the near future. 

The observed runtime speedup is shown in Figure 3.  Th
shows that conservative mode scaled well all the way up to 16384 
processors of 8 racks.  Mixed mode and optimistic modes scaled 
fairly well up to 8192 processors of 4 racks.  At 8 racks, optimistic 
execution became sufficiently lightly loaded to encourage foray 
into unstable optimistic regions, which resulted in overheads 
overtaking the gains from optimism.  Mixed mode execution 
performed better than purely optimistic execution because of the 
constraints by conservative processes. 
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Figure 3: Parallel execution speedup with strong 
scaling 

The flip side of degraded performance of Time Warp beyond 8192 
processors is the surprising positive outcome that Time Warp in fact 
is feasible on up to 8192 processors with only a few hundred LPs 
(128 in this case) per processor.  While other previous work has 
shown that Time Warp can work efficiently with very large number 
of LPs (e.g., one million LPs on 4 processors[23]), our results show 
that significant level of strong scaling is also now possible and 
conceivable to be exploited in applications that need it. 
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Figure 4: Average time to process each event 
The average time to process each event is shown in Figure 4.  This 
time includes application-specific computation as well as engine-
induced overheads for synchronization, event scheduling, 

allocation/de-allocation and other operations.  The results show very 
low event overhead, even for fine grained event computation, 
placing it within effective reach of fine-grained PDES applications. 
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Figure 5: Aggregate rate of event execution across all 
processors combined 

The total event processing rates achieved by all processors 
combined are shown in Figure 5.  These represent some of the 
largest event rates ever registered for PDES. Conservative 
simulation delivers the largest aggregate event rate of 530 million 
events per wall clock second using 16384 processors.  The largest 
optimistic simulations deliver 214 million events per wall clock 
second using 8192 processors. The largest mixed mode simulations 
deliver 243 million events per second using 8192 processors. 
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Figure 6: Efficiency of parallel execution, assuming full 
efficiency for 2000 processor execution 



Figure 6 shows the parallel execution efficiency, normalized with 
the assumption of unit efficiency on 2000 processors.  Super-
linear speedup is observed by conservative parallel simulations.  
This is due to either normalization with 2000 processors (which 
itself could have an absolute efficiency of less than unity), and/or 
due to better caching and lower event scheduling overheads when 
the number of logical processes per processor decreases with 
increasing number or processors. 

6. SUMMARY AND FUTURE WORK 
While the previous largest conservative parallel simulation has 
been limited to 1536 processors, here we demonstrated that PDES 
with conservative execution can scale with excellent speedup on 
up to 16384 processors.  Similarly, the capability for Time Warp-
style of optimistic parallel simulation has been improved from the 
previous largest configuration of 1033 processors to a new level of 
8192 processors.  Optimistic simulation, however, exhibited 
degraded speedup beyond 8192 processors (on 16384 processors), 
and requires additional work to tune the system (e.g., for 
minimizing the number of LBTS computations) or experiment 
with weak scaling. 

The experiments also demonstrated the largest mixed mode 
simulation to date.  The previous largest mixed mode simulations 
that we are aware of are only limited to using a core that is only 
capable of mixed mode execution but not fully time synchronized.  
This is the execution of the JSAF federation using a High Level 
Architecture Run Time Infrastructure implementation on up to 
1024 processors[24].  True time-synchronized mixed mode 
execution has been performed earlier, but on far fewer processors 
(up to 16 processors) [25-27]. 

The feasibility of efficient, low-overhead execution of PDES on 
large-scale parallel platforms opens the possibility for executing 
very large configurations of important PDES applications.  It is 
clear that porting, tuning and testing the PDES engine is by itself a 
major task, and porting applications is much more challenging.  
As follow on to the work reported here, we intend to port our 
large-scale PDES applications being built over µsik and study 
their performance as well, by building on the promise provided by 
this engine benchmarking study. 
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