
Scaling Time Warp-based Discrete Event Execution
to 104 Processors on a Blue Gene Supercomputer

Kalyan S. Perumalla
Oak Ridge National Laboratory

1 Bethel Valley Rd
Oak Ridge, Tennessee, USA

perumallaks@ornl.gov

ABSTRACT
Lately, important large-scale simulation applications, such as
emergency/event planning and response, are emerging that are
based on discrete event models. The applications are
characterized by their scale (several millions of simulated
entities), their fine-grained nature of computation (microseconds
per event), and their highly dynamic inter-entity event
interactions. The desired scale and speed together call for highly
scalable parallel discrete event simulation (PDES) engines.
However, few such parallel engines have been designed or tested
on platforms with thousands of processors. Here an overview is
given of a unique PDES engine that has been designed to support
Time Warp-style optimistic parallel execution as well as a more
generalized mixed, optimistic-conservative synchronization. The
engine is designed to run on massively parallel architectures with
minimal overheads. A performance study of the engine is
presented, including the first results to date of PDES benchmarks
demonstrating scalability to as many as 16,384 processors, on an
IBM Blue Gene supercomputer. The results show, for the first
time, the promise of effectively sustaining very large scale
discrete event execution on up to 104 processors.

Categories and Subject Descriptors
I.6.1 [Computing Methodologies]: Simulation and Modeling,
General – parallel simulation, Time Warp, discrete event C.1.2
[Processor Architectures]: Multiple Data Stream Architectures
(Multiprocessors)

General Terms
Performance, Experimentation, Algorithms

Keywords
Parallel discrete event simulation, Time Warp, reverse
computation, state saving, mixed-mode simulation

1. INTRODUCTION
Parallel discrete event simulation (PDES) finds use in many
important application areas. While many PDES techniques have

been studied for the past two to three decades, PDES execution on
large processor counts remains to be demonstrated, especially in
the context of fine-grained event execution. The fine-grained
nature of event execution imposes tight constraints on PDES
techniques with respect to scalability. Additionally, due to
dynamic inter-processor communication patterns and runtime
dependencies that are characteristic of PDES applications, the
possibility of large-scale execution is to be explored by
experimentation with actual software implementation and
benchmarking of PDES engines. This paper fills this need, by
evaluating and documenting the possible performance that can be
achieved using a state-of-the-art PDES engine that incorporates a
large set of PDES techniques in a single software implementation.

Specifically, the overall performance achieved by the PDES
engine, µsik, is reported on up to 16,384 processors of an IBM
Blue Gene supercomputer, with three important PDES
synchronization mechanisms. Some of the recent PDES
advancements exercised in this implementation include a reverse
computation approach for realizing rollback, a fast global time
synchronization algorithm that accounts for transient messages
without using globally blocking barriers, a fast fossil collection
method for (positive- and anti-) event reclamation, and efficient
event-scheduling methods in mixed-mode (conservative plus
optimistic) execution.

The rest of the paper is organized as follows. Motivation for
large-scale, fine-grained PDES execution is presented in Section
2. A brief overview of PDES synchronization modes and relation
to previous work is presented in Section 3. The experiment setup
of the engine and synthetic benchmarks on the Blue Gene
supercomputing platform are described in Section 4. Runtime
performance results are presented in Section 5, followed by a
summary and identification of additional future work in Section 6.

2. MOTIVATION
An increasing number of critical applications are evolving to
warrant high end computing capabilities. Emergency planning &
response, global/local social phenomena prediction & analysis,
defense systems operations & effects, and sensor network-enabled
protection/awareness systems are all representative application
areas. Simulation-based applications in these areas include
detailed vehicular and behavioral simulations, high-fidelity
simulation of communication effects in large sensor networks, and
complex models in social behavioral/agent-based simulations, to
name just a few. The common core of these applications is their
use of discrete event-based modeling approaches. Discrete event
simulations involve evolving the states of the underlying entities
(e.g., vehicles) in asynchronous fashion, in contrast to time-
stepped simulations in scientific computing in which the entire

Copyright © 2007 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
CF’07, May 7–9, 2007, Ischia, Italy.
Copyright 2007 ACM 978-1-59593-683-7/07/0005...$5.00.

mailto:perumallaks@ornl.gov

system state is (logically) updated over fixed intervals (time-steps)
of simulation time.

In their “next generation” levels of operation, these applications
include scenarios characterized by their scale (several millions of
simulated entities), their need for fast simulation of multiple
scenarios (thousands of alternatives explored as fast as possible
for reasoning, understanding and refining the models or
solutions), and their (re)configuration based on large-sized
dynamic data. When the application scenarios are scaled to large
configurations of interest, they warrant the use of parallel discrete
event simulation (PDES). For example, regional- or national-
scale micro-simulation of vehicular traffic (e.g., for accurate
computation of evacuation time or computation of energy
consumption) involve the simulation of 106-107 road intersections
and 107-108 vehicles. Many potential scenarios (e.g., evacuation
routes, or alternative energy incentives) are to be evaluated. All
such considerations together motivate the need for highly scalable
PDES execution capabilities on high performance platforms.

However, computational scalability of PDES systems and
techniques has never been tested on more than 103 processors.
Execution on 103 processors is not yet mainstream in PDES
application areas. Scalability beyond 103 processors has not been
previously explored, and hence practicability and applicability of
ultra-scale parallel execution of PDES applications has been
unknown. Achievement and feasibility demonstration of PDES
on very large configurations helps the simulation applications to
begin to consider the use of such large scenarios in their
respective application domains. The results of our efforts are
motivated by such scenarios, and are aimed at helping expose the
potential of the large-scale simulation capabilities for PDES
applications.

3. BACKGROUND
A principal factor underlying the scalability challenge for PDES is
that synchronizing event execution across processors is non-
trivial, especially in keeping overheads low while achieving
“global time stamp-ordered” execution. In applications of
interest, such as microscopic vehicular simulation or packet-level
Internet simulations, fine-grained event processing adds
significantly to the challenge. In such simulations, event
computation can consume very little wall-clock time, soon after
which synchronization of event timestamps is required among the
rest of the events in the parallel system.

For example, on current-day processors, packet-level models for
Internet Protocol “packet handling” models take as little as 5-10µs
per event for Internet simulations, and similarly, 10-50µs for
updating vehicular states in microscopic models of vehicular
transportation simulations. Correctness of results requires that
events are executed to preserve global timestamp order among all
events, which implies that global parallel synchronization must be
very fast and efficient.

The rationale behind timestamp-ordered processing is that it
permits the models to be accurately simulated, such that events are
processed in the same order as their corresponding actions in the
physical system. To enable such processing order, a simple local
rule to follow is that a processor whose simulation time is at T
should not receive events with timestamps less than T. Hence,
advances of a processor’s current time have to be coordinated and
controlled carefully to prevent events appearing in processor’s

“past.” This requirement gives rise to different synchronization
approaches, and consequently, different algorithms.

3.1. Parallel Event Synchronization
In PDES, broadly three approaches are commonly used:
conservative, optimistic, and mixed-mode synchronization. In all
approaches, it is assumed that each individual entity in the
simulation is represented as a logical process (LP), and logical
processes communicate and synchronize with each other by
sending/receiving time-stamped events.

Conservative: This approach always ensures safe timestamp-
ordered processing of simulation events within each LP [1, 2]. In
other words, an LP does not execute an event until it can
guarantee that no event with a smaller timestamp will later be
received by that LP. The guarantee of correctness is achieved by
blocking the LP execution until all events destined to are
generated and delivered from other LPs and it is safe to execute
the LP’s events.

Optimistic: This approach avoids “blocked waiting” by
optimistically processing the events. When some events are later
detected to have been processed in incorrect order (because new
events with lower timestamps arrive from other LPs), the system
invokes compensation code such as state restoration or reverse
computation. The most well-known optimistic PDES algorithm is
Time Warp[3].

Mixed-mode: This approach combines elements of the previous
two. For example, sometimes it might help to have some parts of
the application execute optimistically ahead, while other parts
execute conservatively (e.g., see [4-6]). In such cases, a
combination of synchronization techniques can be appropriate.

While several algorithms have been proposed in the literature for
PDES, only a few have been shown to be inherently scalable, and
even fewer have been actually tested on very large parallel
platforms. Figure 1 shows the progress of PDES engine
scalability over the past few decades. Examples of the largest
discrete event simulation runs to date include (a) simulations of
Internet-like networks using 1536 processors[7] (b) simulations of
the PHOLD parallel simulation benchmark on 1024 processors[8,
9], and (c) simulations of discrete event models of particle-in-cell
models on 512 processors[10]. Time Warp has previously been
executed on increasing number of processors: 101 in 1980’s[11],
102 in the 1990’s, 103 in early 2000’s. In this paper, we report
scalability to 104 processors, which is represented by the data
point listed for 2006.

Note that all PDES simulations are single parallel runs, in contrast
to replicated independent runs employed by other parallel
simulation approaches such as Monte Carlo methods. PDES is far
being from embarrassingly parallel, with each simulation run
utilizing all available processor count in a single session, with
non-trivial synchronization operations among all processors.

For an overview of traditional as well as discussion of recent
parallel/distributed simulation techniques and advances, the reader
is referred to [12].

Figure 1: Progress of PDES engine scalability over time
In this context, research at our institution is focused along two
tightly coupled directions. The first is in the development of a
common, scalable core among PDES applications, and the second
is in building applications on top of the scalable common core. In
the first item, we have developed a range of novel PDES
techniques (e.g., reverse computation-based optimistic
synchronization, and scalable algorithms for virtual time
synchronization) and also have developed software
implementations of some of these. Earlier, these have been
evaluated on up to 1536 processors, but their scalability to the
scale of the systems such as the IBM Blue Gene with 104
processors has been unknown. In the second item, we have
developed new models for some of the applications, designed with
the overriding goal of parallel execution, right from inception.
This paper is focused on the former, namely, on the performance
of scalable PDES engines.

3.2. Related Work
The theory underlying the PDES synchronization protocols has
been worked out well in the past. For example, the famous paper
by David Jefferson on Time Warp[3] is seminal in many ways
with respect to optimistic parallel simulation. The translation of
the elegant theory into a practical implementation requires
systems engineering work, such as efficient scheduling
mechanisms, reducing memory footprints for optimal cache
performance, and many additional critical details. The TWOS[13]
and GTW[14] optimistic simulation systems are representative of
early systems to address such details in order to take the concept
of Time Warp to actual implementation. Specialized algorithms
suited for symmetric shared memory multiprocessors helped
increase the potential of Time Warp-style synchronization
protocols up to the order of 102 processors. To move beyond 102
processors required additional systems work, as there remain
many places where PDES engines needed to be optimized.
Inefficiency, even in a few of them, could bring down the overall
PDES execution efficiency. These include the costs of rollback
support (state saving), global virtual time (GVT) computation, and
fossil collection. Unknowns include questions such as how much
overhead is involved in these operations when scaled to large
number of processors, and doubts on whether they make the
overall parallel execution worthwhile.

Among the few distributed memory Time Warp implementations
reported are a small number of systems reported in mid 1990’s on
modest-sized cluster configurations such as up to 102 processors
(e.g. Carothers’96 Ph.D. thesis), and the DSIM simulator tested
recently on 103 processors[9].

In addition to the systems costs, there is the lingering concern
about Time Warp instabilities: At what processor counts will we
see the theoretically contemplated (e.g., [15]) instabilities? Will
instabilities appear in scenarios at scales of interest in some of our
important applications (e.g., a million logical processes for
simulating one million road intersections)?

 large variety of PDES techniques were proposed over the past

BLUE

igned with a unique “micro-

rating

Figure 2: µsik engine data structures on each processor

A

1980 1990 2000 2006

101 102 103 104 105No. of
Processors

Time
Period

two decades or more (e.g., scheduling, flow control, bounded
optimism, reverse computation, mixed mode, etc.), each of which
is a complex endeavor in and by itself. Their use together in a
single encompassing system such as µsik has not been evaluated.
It remained unclear if at all such a unifying engine could in fact be
developed without sacrificing performance.

4. PDES EXECUTION ON THE IBM
GENE
Here we describe the details on the µsik engine for high
performance PDES execution, and describe the porting process of
the engine to the Blue Gene platform.

4.1. µsik PDES Engine
µsik is a PDES engine[8] that we des
kernel” approach to accommodating a wide range of PDES
synchronization techniques, including conservative, optimistic and
mixed-mode. Several applications have been built using PDES as
their core, including: the SCATTER system for discrete event
based modeling of large-scale vehicular mobility systems[16, 17];
the PDES2 (PDES of PDES) system for virtual execution of large-
scale PDES applications for performance prediction; physical
system simulations such as discrete event modeling of Spacecraft
Charging and other plasma physics phenomena[10, 18, 19]; and,
Neurological simulations based on Hodgkin-Huxley models of
neuron activity[20]. Currently, it is perhaps the only scalable
engine capable of supporting mixed mode PDES execution.

µsik includes a unified system architecture for incorpo
multiple types of simulation processes. The processes hold
potential to employ a variety of synchronization mechanisms, and
could even alter their choice of mechanism dynamically.
Supported mechanisms include traditional lookahead-based
conservative and state saving-based optimistic execution
approaches. Also supported are newer mechanisms such as
reverse computation-based optimistic execution and aggregation-
based event processing, all within a single parsimonious
application programming interface.

The main internal data structures of µsik maintained on each

ed model-level processes used in

n

m
ge of inter-processor

0d .

tomized for the Blue

4.4. Debugging Execution
4 optimization flag with

4.5. Debugging Performance
e pitfall on the Blue

4.6. Overall Parallel Execution Challenge
 ne

processor are shown in Figure 2. The engine kernel maintains
three main priority queues each of which contain references to
logical processes. The queues are ordered by timestamp values of
the processes. The Committable priority queue holds the logical
processes ordered by the earliest timestamp at which events in
each process could be committed (for example, fossil collected).
Similarly, the Processable priority queue holds the logical
processes ordered by their earliest events that could be executed.
The Emittable priority queue holds the logical processes ordered
by the earliest timestamps that could be generated in the future by
each logical process. The least emittable timestamp at a processor
is taken into account in computing the global virtual time (GVT)
algorithm. In fact, a generalized version of GVT, namely, lower
bound on incoming timestamp (LBTS) is used in global time
synchronization in µsik.

Logical processes are user-defin
the PDES application (e.g., intersections in a road network).
Additionally, the engine uses internal logical processes which
themselves are also ordained by timestamp-ordered processing of
their events, except that these internal “kernel LPs” of the engine
are used for parallel communication and synchronization
operations. For example, one kernel process per processor is
created to house anti-messages for Time Warp, and to fossil
collect them efficiently at runtime when GVT sweeps past them
(simply by “committing” the anti-messages). Flow control is also
implemented in these kernel processes – message sends that fail
due to destination buffers being full will be held and re-sent by the
kernel process mapped to that destination processor.

4.2. The Blue Gene Supercomputer
The scaling experiments reported in this paper were performed o
the Blue Gene supercomputer, called the Blue Gene Watson
(BGW), housed at the IBM T. J. Watson Research Center. As
with the Blue Gene architecture, it consists of 16 racks, each rack
consisting of 1024 nodes, each node consisting of two cores, each
core being of type PowerPC-440. In a compute node (CN)
configuration, one core computes while the other core services the
network. In a virtual node (VN) configuration, both cores are
used as compute nodes, giving an effective total of 32,768
processors that can be used in the largest computing configuration
on the BGW. As of this writing, BGW is rated second in the Top
500 supercomputer installations.

4.3. Porting to the Platfor
µsik is designed to execute on top of a ran
networks such as TCP/IP, Myrinet/GM, System V shared
memory, MPI, and any combinations of the same. To permit
maximum flexibility, selection of network routes can be
postponed all the way to runtime, as opposed to being fixed at
compile time. This flexibility in our software created problems on
porting to the Blue Gene, since there is no support for socket
libraries, shared memory and so on. We addressed this problem
by introducing conditional compilation macros to compile out any
and all references to sockets and multi-threading libraries in the
µsik code. µsik is written using ANSI C and C++. We used the
Blue Gene’s native compilers to compile µsik code: blrts_xlc
(for C) and blrts_xlC (for C++). Some of the important
compiler flags that we used are:

 -O2 –qtune=440 –qarch=44

The software implementation was also cus
Gene execution environment by setting certain compile-time
macro parameters of µsik (such as MAXPE for maximum number
of processors) as appropriate, and eliminating or circumventing all
O(n2) data structures, where n is the number of processors used in
simulation.

We experimented with the use of the -O
the goal of reaping its performance improvements. However, its
use resulted in incorrect execution in which the processors failed
to synchronize, so we had to revert back to the -O2 optimization
flag. Unfortunately, we did not have time on the Blue Gene to
spend on debugging exactly where -O4 was creating problems in
the code. In future work, we intend to debug and resolve this
problem to take advantage of -O4 optimizations (such as compiler
assistance to exploit dual floating point units that are especially
available on the Blue Gene).

We were bitten by the well known performanc
Gene, namely, that a double word misalignment trap induces
wasted CPU time with thousands of cycles of delay in servicing
the misaligned loads/stores. We ran into this problem early on
when porting µsik to the BGW. Processing time per event
dramatically increased, from 8µs to 67µs per event, and overall
event processing rate plummeted! We fixed this by padding
structures in time management header fields to be integer
multiples of 8 bytes. Before the fix was applied, coerced casts of
structures for layered event header processing made the execution
trap on double precision timestamp fields. Locating the exact
source of the problem in source code was extremely challenging
as the offending memory addresses were difficult to trace back to
source code, even when symbolic debugging information was
turned on during compilation. We were able to track down the
source of the problem via the web-based Remote Administration
Services (RAS) interface of the Blue Gene, in combination with
object dumps.

Efficient implementation of optimistic parallel simulation engi
(e.g., using Time Warp) is already a complex endeavor. The
complexity increases when the functionality of mixed-mode
execution is added, and increases even further when newer
techniques such as reverse computation are incorporated for low-
overhead rollback. Software engineering complexity is amplified
because execution on very large scale induces wider code
coverage, exposure of memory leaks and other inefficiencies. Our
porting of the µsik engine to Blue Gene scale indeed touched upon
our solutions to all such challenges in our implementation. Over
the course of the experiments, our algorithms were found to be
well suited to address these challenges. For example, our scalable
time synchronization algorithm[21] for computation of Global
Virtual Time (GVT) or Lower Bound on Incoming Time Stamp
(LBTS) served well to continue scaling from 101 to 104 processors
seamlessly, taking into account transient messages without using
blocking barriers. This algorithm works by executing iterations of
reductions across all processors, each reduction attempting to
account for any time-stamped messages in flight unaccounted for
by a distributed snapshot. When after any iteration it is found that

there are no more transient messages that remain unaccounted for
in flight, the globally reduced timestamp value across all
processors gives the global virtual time. Although the theoretical
logarithmic complexity of each iteration in the algorithm is
known, the number of iterations is not necessarily bounded, which
depends on runtime behavior (e.g., network speed). Nevertheless,
it was empirically confirmed from the results of the experiments
that the number of iterations was always small (averaging less
than 2). This is probably attributable to the fact that the Blue
Gene architecture has a set of fast interconnection networks for
global communication.

Many other optimizations were brought into play by the execution

5. PERFORMANCE RESULTS
 scaling to 16384

PHOLD application,

number of time-

ecuted under strictly safe

od when scaling to

hat optimistic methods

e chart

on 104 processors (e.g., scalable fossil collection of anti-message
handles via special logical processes). The optimistic runs, for
example, used reverse computation as the rollback mechanism,
which eliminated the significant memory overheads of state
saving needed for saving logical process state. We believe the
reduced footprint due to reverse computation helped enable the
low per-event overhead observed in our experiments. Further
confirmation work is needed (e.g., by instrumentation for cache
miss statistics), but our prior experience along these lines[22]
indicates that this is probably the case. Similarly, the memory
footprint reduction is also aided by fast, logarithmic operation on
fossil collection data structures for usual (positive) event
processing as well as for anti-message handling. Since a major
source of memory overheads is event buffers, and our kernel-LP
implementation for flow control and anti-messages help reclaim
anti-messages as fast as possible, both at the sender side as well as
at the receiver side across distributed memory boundaries.

Here we present the runtime performance results
processors by using up to 8 racks of the BGW in virtual node
(VN) mode (8 racks × 1024 nodes per rack × 2 processors per
node).

5.1. Benchmark Application
For the performance study, we used the
which is a de facto standard PDES benchmark. The PHOLD
application helps test functionality and performance
simultaneously, while providing easily controllable configurations
that are easy to understand yet challenging to parallelize
effectively. It provides for a powerful way to control a wide
variety of PDES application characteristics, and often serves as a
worst case benchmark to help debug, verify and stress-test PDES
engines. This benchmark is widely used in PDES as an easily
developed, yet complex enough, test application.

In PHOLD, logical processes (LPs) juggle a fixed
stamped events among themselves; each LP sends a time-stamped
event to a randomly selected destination LP with an exponentially
distributed simulation time increment. For the experiments, we
chose a configuration that included 1 million LPs and 10 million
events being juggled by all LPs (which implies that there are at
least 10 million events at any given moment in the entire
simulation). Although µsik has earlier been used to simulate
scenarios with 1 million LPs and 1 billion events[8] on the IBM
DataStar machine at the San Diego Supercomputing Center, USA,
we chose a more modest sized configuration for the IBM Blue
Gene as a preliminary effort. The safety of lower number of
events was chosen as a guaranteed fit within the low memory

availability on each BGW node; this was done in order to
minimize wastage of failed runs within the precious, limited
allocation hours to which we had access on the BGW machine.

In order to allow for concurrency, every event is scheduled with a
minimum simulation time increment of 1.0, which is added to the
exponentially distributed time increment with a mean of 1.0.
Destination logical process is chosen with 90% locality (i.e., 10%
of events cross processor boundaries).

In conservative mode, events are ex
timestamp order. Every LP processes all its events in non-
decreasing order of event timestamps. Execution is blocked for
safety if/as necessary, and safety and progress are both ensured
using global virtual time computation. In optimistic mode, LPs
process their events almost independently of progress of other
LPs’ timelines. Time Warp-based rollback schemes (using anti-
messages and reverse computation) are used to correct any
incorrect execution, such that eventually the entire execution
guarantees total global timestamp order, giving the same results as
a conservative parallel execution. In mixed mode, all LPs with
even identifiers execute conservatively, and all LPs with odd
identifiers execute optimistically.

5.2. Problem Scaling Method
In our tests, we used the strong scaling meth
larger number of processors. The problem size remained fixed
while the number of processors was increased. We have also used
weak scaling in our experiments in the past, and envision
experimenting with weak scaling in future on the Blue Gene as
well. We believe that strong scaling represents a more
challenging problem than weak scaling, and consequently, we
expect even better scalability results with weak scaling, compared
to the strong scaling results reported here.

As an illustrative point, it is well known t
such as Time Warp exhibit instabilities resulting in poor
performance on large numbers of processors when the event load
per processors decreases. Strong scaling reduces event load as
number of processors is increased to a point where the event load
became too low per processor on 8 racks. Thus, as expected, we
observed this phenomenon of low performance when scaling from
8192 to 16384 processors. We believe that performance of
optimistic and mixed mode execution would improve on 16384
processors, and beyond, when the number of logical processes and
events per logical process is scaled according to weak scaling.
Time allocation constraints on the BGW machine prevented us
from performing weak scaling and other experiments. We intend
to perform these additional experiments in the near future.

The observed runtime speedup is shown in Figure 3. Th
shows that conservative mode scaled well all the way up to 16384
processors of 8 racks. Mixed mode and optimistic modes scaled
fairly well up to 8192 processors of 4 racks. At 8 racks, optimistic
execution became sufficiently lightly loaded to encourage foray
into unstable optimistic regions, which resulted in overheads
overtaking the gains from optimism. Mixed mode execution
performed better than purely optimistic execution because of the
constraints by conservative processes.

5.3. Runtime Performance

1000

3000

5000

7000

9000

11000

13000

15000

17000

0 5,000 10,000 15,000 20,000
#Processors

Sp
ee

du
p

Conservative Mixed Optimstic

Figure 3: Parallel execution speedup with strong
scaling

The flip side of degraded performance of Time Warp beyond 8192
processors is the surprising positive outcome that Time Warp in fact
is feasible on up to 8192 processors with only a few hundred LPs
(128 in this case) per processor. While other previous work has
shown that Time Warp can work efficiently with very large number
of LPs (e.g., one million LPs on 4 processors[23]), our results show
that significant level of strong scaling is also now possible and
conceivable to be exploited in applications that need it.

0

5

10

15

20

25

30

35

40

45

50

0 5,000 10,000 15,000 20,000
#Processors

M
ic

ro
se

co
nd

s
pe

r E
ve

nt

Conservative Mixed Optimstic

Figure 4: Average time to process each event
The average time to process each event is shown in Figure 4. This
time includes application-specific computation as well as engine-
induced overheads for synchronization, event scheduling,

allocation/de-allocation and other operations. The results show very
low event overhead, even for fine grained event computation,
placing it within effective reach of fine-grained PDES applications.

0

100

200

300

400

500

600

2,048 4,096 8,192 16,384
#Processors

M
ill

io
ns

 o
f e

ve
nt

s/
se

co
nd

Conservative Mixed Optimstic

Figure 5: Aggregate rate of event execution across all
processors combined

The total event processing rates achieved by all processors
combined are shown in Figure 5. These represent some of the
largest event rates ever registered for PDES. Conservative
simulation delivers the largest aggregate event rate of 530 million
events per wall clock second using 16384 processors. The largest
optimistic simulations deliver 214 million events per wall clock
second using 8192 processors. The largest mixed mode simulations
deliver 243 million events per second using 8192 processors.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5,000 10,000 15,000 20,000
#Processors

Pa
ra

lle
l E

ffi
ci

en
cy

Conservative Mixed Optimstic

Figure 6: Efficiency of parallel execution, assuming full
efficiency for 2000 processor execution

Figure 6 shows the parallel execution efficiency, normalized with
the assumption of unit efficiency on 2000 processors. Super-
linear speedup is observed by conservative parallel simulations.
This is due to either normalization with 2000 processors (which
itself could have an absolute efficiency of less than unity), and/or
due to better caching and lower event scheduling overheads when
the number of logical processes per processor decreases with
increasing number or processors.

6. SUMMARY AND FUTURE WORK
While the previous largest conservative parallel simulation has
been limited to 1536 processors, here we demonstrated that PDES
with conservative execution can scale with excellent speedup on
up to 16384 processors. Similarly, the capability for Time Warp-
style of optimistic parallel simulation has been improved from the
previous largest configuration of 1033 processors to a new level of
8192 processors. Optimistic simulation, however, exhibited
degraded speedup beyond 8192 processors (on 16384 processors),
and requires additional work to tune the system (e.g., for
minimizing the number of LBTS computations) or experiment
with weak scaling.

The experiments also demonstrated the largest mixed mode
simulation to date. The previous largest mixed mode simulations
that we are aware of are only limited to using a core that is only
capable of mixed mode execution but not fully time synchronized.
This is the execution of the JSAF federation using a High Level
Architecture Run Time Infrastructure implementation on up to
1024 processors[24]. True time-synchronized mixed mode
execution has been performed earlier, but on far fewer processors
(up to 16 processors) [25-27].

The feasibility of efficient, low-overhead execution of PDES on
large-scale parallel platforms opens the possibility for executing
very large configurations of important PDES applications. It is
clear that porting, tuning and testing the PDES engine is by itself a
major task, and porting applications is much more challenging.
As follow on to the work reported here, we intend to port our
large-scale PDES applications being built over µsik and study
their performance as well, by building on the promise provided by
this engine benchmarking study.

ACKNOWLEDGEMENTS
This paper has been authored by UT-Battelle, LLC, under contract
DE-AC05-00OR22725 with the U.S. Department of Energy.
Accordingly, the United States Government retains and the
publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for
United States Government purposes.

This effort has been supported by research sponsored by the
Laboratory Directed Research and Development Program of Oak
Ridge National Laboratory, managed by UT-Battelle, LLC, for the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

The author thanks Dr. Sadaf Alam of ORNL for helping with
information on compilation and execution procedures on the
Argonne National Laboratory’s Blue Gene machine. The author
wishes to acknowledge the gracious assistance of IBM researchers
Drs. Fred Mintzer, John Gunnels and Robert Walkup for

facilitating access to the IBM Blue Gene Watson. The BGW
Consortium Days program[28] by IBM provided us with an
opportunity in which our PDES engines and applications could be
ported to and tested on very large scale parallel environment.

REFERENCES
[1] K. M. Chandy and J. Misra, "Asynchronous Distributed

Simulation via a Sequence of Parallel Computations,"
Communications of the ACM, vol. 24, pp. 198-205, 1981.

[2] K. M. Chandy and J. Misra, "Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs,"
IEEE Transactions on Software Engineering, vol. SE-5, pp.
440-452, 1978.

[3] D. Jefferson, "Virtual Time," ACM Transactions on
Programming Languages and Systems, vol. 7, pp. 404-425,
1985.

[4] H. Rajaei, R. Ayani, and L.-E. Thorelli, "The Local Time
Warp Approach to Parallel Simulation," in Workshop on
Parallel and Distributed Simulation, San Diego, California,
United States, 1993.

[5] K. S. Perumalla, "µsik - A Micro-Kernel for
Parallel/Distributed Simulation Systems," in Workshop on
Principles of Advanced and Distributed Simulation,
Monterey, CA, USA, 2005.

[6] V. Jha and R. Bagrodia, "A unified framework for
conservative and optimistic distributed simulation," in
Workshop on Parallel and Distributed Simulation, 1994, pp.
12-19.

[7] R. M. Fujimoto, K. S. Perumalla, A. Park, H. Wu, M.
Ammar, and G. F. Riley, "Large-Scale Network Simulation -
- How Big? How Fast?," in Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
2003.

[8] K. S. Perumalla, "Scalable and Flexible Parallel/Distributed
Simulation Systems: A Micro-Kernel Approach," Oak Ridge
National Laboratory, Technical Memorandum 2005/12/01
2005.

[9] D. Chen and B. K. Szymanski, "DSIM: Scaling Time Warp
to 1,033 Processors," in Winter Simulation Conference,
Orlando, FL, 2005.

[10] K. S. Perumalla, R. M. Fujimoto, and H. Karimabadi,
"Scalable Simulation of Electro-magnetic Hybrid Codes," in
6th International Conference on Computational Science,
Reading, UK, 2006, pp. 41-49.

[11] D. R. Jefferson, B. Beckman, F. Wieland, L. Blume, M.
DiLorento, P. Hontalas, P. Reiher, K. Sturdevant, J. Tupman,
J. Wedel, and H. Younger, "The Time Warp Operating
Systems," in 11th Symposium on Operating Systems
Principles. vol. 21, 1987, pp. 77-93.

[12] K. S. Perumalla, "Parallel and Distributed Simulation:
Traditional Techniques and Recent Advances," in Winter
Simulation Conference, Monterey, California, USA, 2006.

[13] D. O. Rich and R. E. Michelsen, "An Assessment of the
Modsim/TWOS Parallel Simulation Environment," in
Proceedings of the 1991 Winter Simulation Conference,
1991, pp. 509-518.

[14] S. Das, R. M. Fujimoto, K. Panesar, D. Allison, and M.
Hybinette, "GTW: A Time Warp System for Shared Memory

Multiprocessors," in Proceedings of the 1994 Winter
Simulation Conference, 1994, pp. 1332-1339.

[15] B. D. Lubachevsky, A. Shwartz, and A. Weiss, "Rollback
Sometimes Works... If Filtered," in Proceedings of the 1989
Winter Simulation Conference, 1989, pp. 630-639.

[16] K. S. Perumalla, "A Systems Approach to Scalable
Transportation Network Modeling," in Winter Simulation
Conference, Monterey, CA, 2006.

[17] K. S. Perumalla and B. Bhaduri, "On Accounting for the
Interplay of Kinetic and Non-kinetic Aspects in Population
Mobility Models," in European Modeling and Simulation
Symposium, Spain, 2006.

[18] Y. Tang, K. S. Perumalla, R. M. Fujimoto, H. Karimabadi, J.
Driscoll, and Y. Omelchenko, "Optimistic Parallel Discrete
Event Simulations of Physical Systems using Reverse
Computation," in Workshop on Principles of Advanced and
Distributed Simulation, Monterey, CA, USA, 2005.

[19] Y. Tang, K. S. Perumalla, R. M. Fujimoto, H. Karimabadi, J.
Driscoll, and Y. Omelchenko, "Optimistic Simulations of
Physical Systems using Reverse Computation,"
SIMULATION: Transactions of The Society for Modeling
and Simulation International, vol. 82, pp. 61-73, 2006/01/01
2006.

[20] C. J. Lobb, Z. Chao, R. M. Fujimoto, and S. Potter, "Parallel
Event-Driven Neural Network Simulations Using the
Hodgkin-Huxley Neuron Model," in Workshop on Principles
of Advanced and Distributed Simulation, Monterey, CA,
2005.

[21] K. S. Perumalla and R. M. Fujimoto, "Virtual Time

Synchronization over Unreliable Network Transport," in
Workshop on Parallel and Distributed Simulation, 2001.

[22] C. Carothers, K. S. Perumalla, and R. M. Fujimoto, "Efficient
Optimistic Parallel Simulations using Reverse Computation,"
ACM Transactions on Modeling and Computer Simulation,
vol. 9, pp. 224-253, 1999/07/01 1999.

[23] Y. Garrett, D. C. Christopher, and K. Shivkumar, "Large-
Scale TCP Models Using Optimistic Parallel Simulation," in
Proceedings of the seventeenth workshop on Parallel and
distributed simulation: IEEE Computer Society, 2003.

[24] D. M. Davis, R. F. Lucas, P. Amburn, and T. D. Gottschalk,
"Joint Experimentation on Scalable Parallel Processors,"
Journal of the International Test and Evaluation Association,
vol. Summer 2005, 2005/05/01 2005.

[25] V. Jha and R. Bagrodia, "A Unified Framework for
Conservative and Optimistic Distributed Simulation," in
Proceedings of the 8th Workshop on Parallel and Distributed
Simulation, 1994, pp. 12-19.

[26] R. Bagrodia and W.-T. Liao, "Maisie: A Language for the
Design of Efficient Discrete-Event Simulations," IEEE
Transactions on Software Engineering, vol. 20, pp. 225-238,
1994.

[27] R. L. Bagrodia, "Iterative Design of Efficient Simulations
using Maisie," in Proceedings of the 1991 Winter Simulation
Conference, 1991.

[28] IBM, "Blue Gene Watson Consortium Days," F. Mintzer, Ed.
Yorktown, NY, USA, 2006.

	ABSTRACT
	INTRODUCTION
	2. MOTIVATION
	3. BACKGROUND
	3.1. Parallel Event Synchronization
	3.2. Related Work

	4. PDES EXECUTION ON THE IBM BLUE GENE
	4.1. µsik PDES Engine
	4.2. The Blue Gene Supercomputer
	4.3. Porting to the Platform
	4.4. Debugging Execution
	4.5. Debugging Performance
	4.6. Overall Parallel Execution Challenge

	5. PERFORMANCE RESULTS
	5.1. Benchmark Application
	5.2. Problem Scaling Method
	5.3. Runtime Performance

	6. SUMMARY AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

	Text1: Appears in Proceedings of the ACM Computing Frontiers, Ischia, Italy, May 2007

