
Data Parallel Execution Challenges and Runtime Performance of
Agent Simulations on GPUs

Kalyan S. Perumalla
Brandon G. Aaby

perumallaks@ornl.gov, aabybg@ornl.gov
Oak Ridge National Laboratory

ABSTRACT
Programmable graphics processing units (GPUs) have emerged as
excellent computational platforms for certain general-purpose
applications. The data parallel execution capabilities of GPUs
specifically point to the potential for effective use in simulations of
agent-based models (ABM). In this paper, the computational
efficiency of ABM simulation on GPUs is evaluated on
representative ABM benchmarks. The runtime speed of GPU-
based models is compared to that of traditional CPU-based
implementation, and also to that of equivalent models in traditional
ABM toolkits (Repast and NetLogo). As expected, it is observed
that, GPU-based ABM execution affords excellent speedup on
simple models, with better speedup on models exhibiting good
locality and fair amount of computation per memory element.
Execution is two to three orders of magnitude faster with a GPU
than with leading ABM toolkits, but at the cost of decrease in
modularity, ease of programmability and reusability. At a more
fundamental level, however, the data parallel paradigm is found to
be somewhat at odds with traditional model-specification
approaches for ABM. Effective use of data parallel execution, in
general, seems to require resolution of modeling and execution
challenges. Some of the challenges are identified and related
solution approaches are described.

KEYWORDS
Agent-based Simulation, Parallel Simulation, Emergent Behavior,
Graphical Processing Units, Large-scale Simulation

1 INTRODUCTION
1.1 Motivation and Background
Agent-based modeling (ABM) has established itself as one of the
leading modeling approaches [1]. Several applications have been
shown to benefit from ABM to understand, explain, predict and
analyze complex processes occurring in many contexts. While
some of the agent behaviors are interesting even in small- to
medium-scale (a few hundreds to a few thousands of agents), there
is a general desire expressed often by some social scientists to be
able to experiment with very large counts of agents. Interesting
emergent phenomena, for example, are expected to occur when the
counts are to the tune of one million or so. There is also the
relatively unchartered territory of experimentation with even larger
scenarios with tens of millions of agents, either homogeneous or
heterogeneous in their individual behaviors, as at the level of
population counts of entire countries. Such a large scale presents
many challenges, not the least of which is the modeling complexity
itself: developing plausible models that can be reasonably expected
to deliver useful results. Besides the great modeling challenge, the
other significant hurdle to scaling ABM simulations is the wall-

clock time needed to execute a simulation experiment from start to
completion. Clearly, execution time should be as small as
possible, and, ideally, low enough to enable a large number of
simulation runs to perform a coherent multi-run experiment (e.g.,
by employing parameter sweeps).

Several ABM simulation tools are available today, each better than
others in one or more critical aspects, such as ease of
programming, visualization support, integrated development
capability, rapid prototyping and so on. However, one of the
common limiting aspects is their execution speed. Most are
limited to sequential execution, and few tools are currently
demonstrated to scale to more than the order of 104 agents at
reasonably low runtimes. Either memory limitations arise, or the
runtimes become prohibitively high to be practically useful. Such
limitations have not been significant in many useful applications in
which the outcomes of interest are satisfied by smaller agent
counts. However, it is the authors’ understanding that ABM
research is reaching a point at which there is interest in pushing the
envelope with respect to scale and speed.

Interestingly, recent developments on the computational front point
to the possibility of meeting the goals of increased scale and speed.
Some of the important platforms relevant to large-scale, high-
speed ABM execution include newer shared-memory platforms
such as general-purpose programmable graphical processing units
(GPUs) [2-5] and multi-core versions of traditional central
processing units (CPUs) (e.g., Intel’s [6]). These platforms
provide on the order of tens to hundreds of processing units
packaged within a small form-factor package for a very reasonable
market price. For an even larger scale, distributed-memory
platforms are relevant, such as many-core installations and
supercomputers[7]. In this document, the focus is on the shared-
memory platforms, especially on exploiting the data-parallel
execution capabilities exhibited by GPUs and multi-core CPUs.

1.2 Related Work
Data parallel execution facilities have seen some recent use in
applications that closely resemble ABM simulations. Crowd
simulations, with up to 15 thousand “agents” were simulated and
visualized at interactive speeds on an older generation of NVIDIA
graphical processing units (GeForce 5900) [8, 9]. The authors
report a 10- to 30-fold speedup achieved by GPU-based execution,
as compared to CPU-based execution. Some early work simulated
a probabilistic evolution of a large number of physical system
entities, with Monte Carlo-based Ising Spin model simulations
[10]. Control of a group of airborne vehicles using “Swarm” type
of control [11] was performed on GPUs to meet real-time
constraints. In the OneSAF distributed entity simulation
framework, the GPU platform was used to improve execution
speed, but in a different way [12]. As opposed to speeding up the

mailto:perumallaks@ornl.gov
mailto:aabybg@ornl.gov

individual computation of entity (agent) evolution, the GPUs were
instead used for speeding up the computationally-intensive
collision detection functionality and other global operations.

While all these efforts represent ways of using the parallel
execution platforms in agent-like environments, the more
generalized ABM-style execution paradigm remains an open area
of research. Challenges exist in effectively dealing with the wide
variety of aspects [1, 13] in ABM, when viewed in the context of
parallel execution. This paper serves to document our insights into
such generalized ABM execution on data parallel platforms. In
order to gain an understanding of the performance differential
afforded by the data parallel platforms, we first undertook an
implementation and benchmarking exercise of a few well-known
ABM experiments. Based on our experiments, we are able to
quantitatively document the tremendous gains in runtime
performance that are possible with certain models. Additionally,
the exercise helped reveal the relation of typical ABM primitives
to their impact on parallelism, exposing some of the fundamental
issues underlying data parallel execution of general ABM
execution.

1.3 Outline
The rest of the document is organized as follows. In Section 2, the
benchmark models are described along with their implementation.
A performance study using the benchmarks is presented in Section
3, comparing the GPU-based runtime speed with the speed of
optimized versions of equivalent CPU-based models. The GPU-
based runtime is also compared with equivalent models
implemented using ABM toolkits. In Section 0, the challenges
with data-parallel execution, in general, of ABM simulations are
outlined, and some solution approaches are presented. Results are
summarized and future work is outlined in the final Section 5.

2 BENCHMARKS
2.1 Models
The runtime performance of GPU-based ABM execution is
evaluated using three different models: (1) Mood Diffusion (2)
Game of Life (3) Segregation. These models are described next.

Mood Diffusion: The first is a model of diffusion of mood among
interacting people[14, 15]. The “mood” of each agent i is modeled
with a scalar mood value mi. The rate of change of mood mi of
agent i is dependent on a homeostatic tendency of the agent to a
value Mh

i, combined with an influence by the average mood Ma
i of

its neighbors, and by the influence of regional/global news events
with intensity Mg

r in the neighborhood r that includes agent i. The
equation governing the evolution is given by

() () (h ai
i i i i

g
r i

dm M m M m M
d

m
t

α β γ= − + −+ −) .

The mood values of agents are initialized with random values from
the range [0..1]. In our experiments, for simplicity, the
homeostatic mood value is set to be the same among all agents. At
irregular intervals, mood-altering events are inserted into the grid
at random locations with varying reach of influence per event.

Figure 1. Snapshots of a 512×512 Grid for Mood
Diffusion Model. Red Saturation Represents Mood Level
Game of Life: The second model is the well-known Conway’s
Game of Life [16], with a 2-dimensional spatial grid of cells
marked dead or alive. In our experiments, the grid is initialized
with a random live cell pattern (a cell is initialized to be alive or
dead with equal probability). During evolution, a dead cell with
exactly three neighboring cells comes alive, while a live cell dies if
fewer than two or more than three of its neighbors are alive.

Figure 2. Snapshots of Grid for Game of Life. Black
Denotes Empty Cells, Blue Live Cells. Red Cells are
those that Died Recently. Green Just Became Alive.

Schelling Segregation: The third model is one of the variants of
the Schelling Segregation Model framework [17]. Red and green
colored agents are scattered across a 2-dimensional grid. Agents
stay put if they are happy, or attempt to move if unhappy with their
current position. In our experiments, an agent with a neighborhood
of at least 30% like-colored agents is happy; it’s unhappy if not.
When unhappy, an agent attempts to move from its current cell to a
new random vacant location within a certain region of its vision.

Figure 3. Snapshots of Grid for Segregation of Red and
Green Agents. Black Cells are Vacant.

Graphical snapshots from sample executions of the Mood
Diffusion, Game of Life and Segregation models are shown in
Figure 1, Figure 2, and Figure 3, respectively.

2.2 Implementation
For each model, two distinct implementations were developed: one
that executes on a GPU and another equivalent one that executes
on a traditional CPU. The CPU-based implementations are

carefully developed for optimized execution on the CPU, and
hence represent the closest to the best execution possible with a
CPU. To ensure equivalence, initialization routines were modified
to assign the same initial conditions for agents in GPU, CPU and
Repast[18]/NetLogo[19] models.

For the Game of Life model, one additional CPU-based
implementation was used in benchmarking. This is the Game of
Life model included in the Repast ABM system [18], executed in
the maximal performance mode (command-line mode, with
graphical output turned off). The Repast .Net (C#) version, as well
as Repast J (Java) version, was used for benchmarking. Similarly,
for the Segregation model, an additional CPU-based
implementation is benchmarked, which is the model included in
the NetLogo [19] system (again, executed in maximal performance
mode).

The GPU-based implementation was developed using a “ping-
pong approach” to updating textures with fragment processors, all
realized using the Open GL graphics interface[2, 3]. In the
models, it was sufficient to map each agent to one pixel value, and
map the 2-D grid to a graphics texture. Agent’s state is mapped to
red, blue, green or alpha channels of a pixel. The software
platform is a combination of Microsoft Visual Studio .Net, and the
NVIDIA Cg Took Kit [20]. A large fraction of the agent
functionality is realized as Cg programs that get invoked for every
agent. The Cg programs (also called kernels) manipulate the
agent’s state encoded in a pixel. Data parallelism is achieved when
the GPU streams all texture pixels through multiple (fragment)
processors, and each processor invoking the Cg program for every
single pixel that is streamed and transformed through it.

We have also previously benchmarked some of the models with
the Brook[4, 21] system, and found the performance to be fairly
similar to that of the Open GL implementation. The newer CUDA
[22] system for GPU-based execution is expected to deliver similar
performance as well, with which we have just started to
experiment.

The hardware for GPU-based experiments is a recent NVIDIA
GeForce 8800 GT unit, and the CPU is an Intel Core2 Duo 2.4
GHz processor with 4 GB memory. These hardware components
represent some of the best mainstream commodity units available
at a good performance/price ratio. As of this writing, 3.0 GHz
“overclocked” CPUs (Intel) are becoming available; however, the
performance of these faster CPUs relative to the GPU is about 15%
better on these models.

3 PERFORMANCE STUDY
To evaluate runtime performance gains from executing on the
GPU, a series of runs were made with the CPU and GPU
implementations. The performance is evaluated with increasing
number of agents. The grid size is increased in powers of 2, from
16×16 to 512×512. For the Mood Diffusion and Game of Life
models, the grid size is increased all the way up to 2048×2048, and
then to 3750×3750, giving a maximum of over 14 million agents.
The grid size is limited by the maximum texture size supported by
the GPU, which, for our platform, was 3750×3750 pixels. A
runtime system error in our GPU-based segregation model limits it
to 262,144 agents, which we are currently investigating and expect
to fix soon, enabling it to scale to 14 million agents similar to our
Mood Diffusion and Game of Life models.

3.1 Runtime Speedup
In the following performance charts, speedup is computed as the
ratio TCPU/TGPU, where TGPU is the total execution time on the GPU
and TCPU is the total execution time on the CPU, for the same
number of iterations (time-steps). Thus, a speedup of 30 implies
that the simulation completes on the GPU 30 times faster than on
the CPU. Also, in all the figures, the amount of variability is
negligible (less than 5%) across multiple repeated runs; hence error
bars are omitted for readability.

0.1 0.5
2.0

6.5

12.8

29.1
30.8

18.4

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Sp
ee

du
p

Figure 4. Speedup of GPU compared to CPU for Mood
Diffusion Model

For the Mood Diffusion model, the runtime speedup obtained by
the GPU-based implementation compared to optimized CPU-based
implementation is shown in Figure 4.

0.1 0.3
1.3

4.7

10.3

12.5
13.4

16.1

0.0

5.0

10.0

15.0

20.0

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Sp
ee

du
p

Figure 5. Speedup of GPU compared to CPU for Game
of Life Model

The GPU-based model executes significantly faster than the CPU-
based model, delivering a peak of over 30-fold reduction in
runtime for 4.2 million agents. A drop is seen beyond 4.2 million
agents, the cause of which is undetermined as of this writing and is
under investigation. Hardware artifact beyond 2048×2048 output
texture size is one of the suspects.

The speedup obtained by Game of Life on GPU vs. CPU is shown
in Figure 5. The execution shows excellent scaling with the
number of agents, giving 16-fold speedup for 14 million agents.

3.2 Performance Effects due to Conditional
Statements

The lower speedup of Game of Life compared to Mood Diffusion
(16× vs.30×) deserves some explanation. The data parallel
execution mechanism in the GPU suffers from lowered
performance when conditional statements are executed by the
fragment processors of the GPU. Data parallelism artifacts force
all processors to incur the combined cost of the true and false
branches of the conditional statement, instead of the cost of the
actual branch taken alone. The CPU on the other hand is better
able to deal with conditional statements. Branch/value prediction
is another aspect in which the CPU and GPU differ; the CPU
seems to employ a prediction framework and hardware support,
which apparently helps deliver better performance.

0.1 0.4 1.5

5.5

16.7

30.7

38.6
40.8

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Sp
ee

du
p

Figure 6. Speedup of GPU compared to CPU for
“Unconditional GOL” Test

The fact that the conditionals are the primary contributor to the
lower amount of GPU/CPU speedup is verified by the speedup
graph shown in Figure 6. The Game of Life model is modified
such that no conditional statement is executed (by inserting an
“early return” into the model). As expected, the performance of
the modified model increased to over 40×. Although the modified
model is not very useful as a model itself, it nonetheless serves to
verify the performance penalty imposed by the conditional
statements.

91

659

4,595

72

376

1,915

1

5
10 12 13 16

1

10

100

1,000

10,000

10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Sp
ee

du
p

Repast J/GPU Repast .Net/GPU CPU/GPU

Figure 7. Speedup of GPU compared to Repast for
Game of Life Model

In order to gauge the performance differential between the GPU-
based model and ABM tool kit-based model, we benchmarked the
GPU execution against an equivalent version implemented in the
Repast tool kit. The speedup delivered by the GPU-based model is
shown in Figure 7. As expected, our GPU-based model ran three
to four orders of magnitude faster than the Repast versions. The
Repast runtimes for agent populations larger than 512×512 are
omitted in the figure as they were very large (extrapolated runtime
being in millions of seconds).

3.3 Performance Effects due to Locality
The increase in speedup with increasing agent count is noteworthy.
While the GPU exhibits relatively constant runtime cost with
increasing texture size (and hence, the number of agents), the
ABM tool kits typically suffer from at least linear (and sometime
quadratic) increase in runtime cost.

0.2 0.8 3.2

11.2

29.3

54.5 53.1

68.2

0.3 1.2
4.4

13.1

26.4

34.8

42.8 44.7

0.4 1.5
5.1

11.0
16.6

25.5
29.2 28.9

0.7 2.2
6.0

9.6 11.4
15.5 15.9 16.2

0.8 2.1 4.6 5.9 6.5

16.6 16.8

0.6 1.4 2.7 3.3 3.5
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Sp
ee

du
p

Vision=1 Vision=2 Vision=4
Vision=8 Vision=16 Vision=32

Figure 8. Speedup of GPU model compared to CPU for
Segregation Model

The speedup chart for the Schelling Segregation model is shown in
Figure 8, giving the ratio of GPU model speed and CPU model
speed. Figure 9 shows the speedup of the GPU-based model
compared to its equivalent model written in NetLogo. For the
GPU-based implementation, a lock-free data-parallel algorithm
called Select-Backoff (described later in Section 0) is used to
parallelize this model. The Segregation model includes a free
parameter, which is the area of vision of each agent. A vision
value equal to v represents the number of cells in each direction to
which the agent is willing to move if the agent is unhappy with its
current location. Thus, given a vision v, the number of cells that
the agent must consider for relocation is up to (2v+1)2-1. For the
largest vision value shown (v=32), each unhappy agent potentially
considers up to 4223 cells around it.

Clearly, the larger the vision value, the greater is the processing
requirement of each agent per iteration. Perhaps more importantly,
the amount of locality decreases quadratically with increasing
vision distance. It is well known that GPUs perform extremely
well when the application exhibits good locality, and delivers
significant speedup compared to a traditional CPU. The better
performance of GPUs in such cases is due to various optimizations
specific to GPUs, including asynchronous memory operations, and
better system tuning for 2-dimensional locality. However, when
locality decreases, the performance edge of GPUs over CPUs
decreases; this is partly due to the relatively larger sizes of L1 and
L2 caches of CPUs. These effects are clearly seen with the

segregation model, with increasing agent vision distance. On
scenarios with low vision distance (consequently, high locality), a
speedup of almost 70× is observed. Towards the poorer end, a
vision of 16 brings the speedup down to 16×. It is nonetheless
noteworthy that a speedup, rather than slowdown, is still observed
even on such a large vision value that requires the agents to
consider a very large number of neighboring agents. Note also that
the performance effects of vision distance are not so pronounced
until the large scenarios containing 0.25 million agents are
considered.

0

100

200

300

400

500

600

700

800

900

1,000 10,000 100,000 1,000,000 10,000,000

Number of Agents

Sp
ee

du
p

Vision=1 Vision=2

Figure 9. GPU speedup compared to NetLogo for
Segregation Model

3.4 Frame Rates and Interactivity
The previous performance charts serve to illustrate the speedup
that could be achieved when ABM simulations are executed on
GPUs as opposed to on CPUs, either with optimized CPU
execution or with traditional CPU-based ABM toolkits. Let us
now consider absolute speed of these simulations, for an
understanding of their relation to real-time needs. The metric of
interest is the number of iterations (time steps) that could be
executed within one wall-clock second.

1

10

100

1000

10000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Fr
am

e
R

at
e

(lo
g

sc
al

e)

Game of Life Mood Diffusion Segregation (Vision=1) Segregation (Vision=32)

Figure 10. Number of iterations per wall-clock second
(absolute frame rate) achieved with the models on GPU

Clearly, a frame rate of 30 frames per second (fps) is sufficient for
interactivity. However, faster than 30fps is desirable for models in
which not every frame needs to be visualized (i.e., flushed to the
screen), or in which periodic snapshots are to be displayed to
verify satisfactory progress towards the desired goals for emergent

phenomena. Such faster-than-real-time speed is clearly achieved
with models such as Game of Life and Mood Diffusion, even on
the largest grid sizes. Figure 10 shows the frame rates achievable
with GPU-based and CPU-based executions. With the GPU, the
largest configurations of 14 million agents are seen to be delivered
at the surprisingly high rate (over 7000fps with 1024 agents, to
over 70fps with 14 million agents).

It is important to note that frame rate is limited by the concurrency
afforded by the model. In the Segregation model, for example,
variation in the vision distance is seen to significantly affect the
frame rate, from super-interactive rates (620fps–370fps for the best
case of vision=1) down to relatively slower rates (145fps–3fps for
the worst case of vision=32).

3.5 On-line and Off-line Visualization
For off-line visualization purposes, we make use of a tool called
imdbg, which is quite useful for debugging and testing the texture
values between iterations. We utilized the EasyBMP tool for
continuous animations which are created as a series of bitmaps; the
bitmaps themselves are stitched together into a movie by using
another tool called BMPtoAVI.

In large-scale, long-time simulations, it is not necessary to
visualize each and every iteration that is executed. If the specific
evolution of interest is slow, a high rate of state evolution can be
sustained by computing at GPU rates, while the state is only
periodically paused to be flushed to the screen, say, once every 100
iterations. Since the graphics processor is already built for
rendering, it is relatively straightforward to obtain a first-order
visualization of state evolution using a suitable encoding that maps
state values to pixel colors.

0
20
40
60
80

100

∞ 1000 500 100 50 10k

Ti
m

e
(s

)

N
o

Im
ag

es

Figure 11. Time to Generate Infrequent Snapshot
Images once every k Iterations

A natural question that arises is: how frequently can the GPU-
based state be offloaded from the GPU to either the display and/or
the CPU memory while still maintaining speedup by GPU-based
simulation. To answer this, we performed experiments that read
the current state of the simulation state every k iterations, where k
is varied from 10 to 1000. Figure 11 shows the speedup when k is
varied, where the runtime includes the cost of reading the pixel
values from GPU to CPU memory. The data shows that infrequent
on-line visualization can be used if needed, without any significant
loss of speed to native GPU computation rates. The data shows
that generating an image once every 50 or 100 iterations cost little
more than not generating any image snapshots at all.

4 DATA PARALLEL CHALLENGES
We now identify some of the challenges that arise when ABM
execution in general is mapped onto data-parallel execution
platforms such as GPUs and multi-core processors: The
challenges arise due to the potential conflict between semantics of
ABM primitives and model execution on parallel platforms. Here
we focus only on shared-memory platforms. We abstract the
challenges into four categories: (1) Random Affect (2) Scheduling
Policies (3) Aggregation Operations (4) Asynchrony. Each of
these challenges is described next, together with some solution
approaches.

4.1 Random Affect
One of the biggest challenges in ABM execution on data parallel
platforms concerns the issue of a modeling paradigm that we will
call “Random Affect.” In this paradigm, in general, agents
randomly select other agents and/or other grid cells to affect the
behavior in some fashion. The nature of affecting the chosen
agents/cells (here we will refer to cells and agents collectively on
an equal footing) varies with the particular model under question,
but the underlying fundamental paradigm remains the same. The
type of affect, for example, could be movement, spawning, tagging
and so on.

In many agent models, for example, agents move from one grid
cell to another over the course of simulation. Most typically, the
movement is randomized in some fashion (e.g., moving to a
random destination cell chosen from among all vacant neighboring
cells). Agent movement is an example of such a random affect
operation. Another example of random affect activity is agents
spawning other agents (e.g., Predator-Prey models). To realize
such activity, several agents must, at each iteration, choose
randomized destination cells at which new agents are spawned.
Yet another example of random affect is a “tagging” type of
activity, in which agents randomly select other agents to tag them
in some way, such as infected agents marking other selected agents
as infected in an epidemiological model.

The random affect paradigm in general often calls for such overall
randomized activity to be (a) simultaneously performed by many
agents (b) randomized among all possible source-destination pairs
without bias/advantage for/against any particular agents or cells (c)
successful if the activity is indeed possible. While these conditions
are intuitively obvious and are also easily coded in a sequential
execution context, they are not as easy to ensure and realize
outside sequential execution. Each condition in fact imposes its
own nature of difficulty of realizing in a data parallel execution
context. The principal difficulty is coming up with algorithms that
satisfy all the conditions together.

Randomized Bi-Partite Mapping
An abstraction of the core problem is to create a random bi-partite
graph of the grid elements. This is illustrated in Figure 12, in
which eight sources S1...S8 are being mapped to six potential
destinations D1...D6. In this example, while most sources are
assigned a random destination, sources S4, S6 and S8 remain
unassigned to any destination, and also no source is mapped to
destination D5. However, the property that is maintained in the
graph is that each source is assigned to at most one destination, and
vice versa, and, more importantly, the pairings are random.

The difficulty of the bi-partite mapping problem arises from the
facts that (a) the compositions of the source agent/cell set and
destination agent/cell set vary dynamically from one iteration to
the next, and (b) the mapping from sources to destinations must be
randomized across iterations, to avoid introducing any artificial
bias into the model. For example, in the segregation problem, the
two partitions are: occupied cells on one partition, and vacant cells
on the other partition. In fact, a more specific partition would
include in the first partition only those occupied cells that are
unhappy, and, consequently, would like to move from their current
position.

S1 D1
S2

D2
S3

D3S4
S5 D4
S6

D5
S7

D6S8

Figure 12. Example of a bi-partite assignment between
sources and destinations

In the data-parallel execution context, the problem of creation of a
random bi-partite graph at every iteration is comprised of two sub-
problems:

1. Exclusion: Ensure that exactly one destination is
assigned to any given source. In a data parallel context,
a perfect algorithm is impossible to ensure this, so this
problem must sometimes be relaxed to one that ensures
that each source is mapped to at most one (instead of
exactly one) destination (cell).

2. Information Propagation: For a given source-destination
pair, convey the destination identifier to the source cell
and the source identifier to the destination cell.

Noteworthy is that these two considerations hold even when only
immediate neighborhood is considered for random movement. In
other words, the bi-partite problem is independent of connectivity
among source and destination cells.

The first sub-problem, in fact, is the more difficult one to resolve.
The latter concern (information propagation) is somewhat less
problematic in data-parallel executions which have both scatter and
gather memory operation support (e.g., CUDA[22]). On platforms
with only gather (but no scatter) support, it is still possible to
couple the information sharing with one-to-one mapping solution.

While traditional multi-threaded data-parallel programs solve the
information propagation problem using synchronization primitives
such as locks and semaphores, the very fine-grained nature of
computation in ABM simulation seems to indicate that lock-free
solution would be much better suited for this mapping problem;
lock-based solutions will incur significant overhead for updating
data structures and are also prone to initiating non-local writes that
are detrimental to cache performance.

Lock-free Select-Backoff Algorithm
We designed a novel two-pass algorithm for generating such a bi-
partite mapping that is randomized across iterations in an ABM
execution. The pseudo code for the algorithm is shown in Figure
13. In the first pass, all destinations select a source at random. In
the second pass, every source checks how many destinations have
selected itself as their source. If the source detects that exactly one
destination has selected this source, then the source accepts that
assignment and keeps it. If less than one destination or more than
one destination, selected this source, the source rejects all
assignments (i.e., stays unmapped). The destinations also, in the
second pass, need to determine if their selected source has
accepted or rejected their selection. Each destination determines
such acceptance/rejection of its selection by evaluating the same
conditions as the source does, essentially duplicating the
computation of the selected source but within the context of the
destination.

Pass 1: For each agent Aij
 If Aij is a source
 Do nothing
 Else (Aij is a destination)
 Within the neighborhood of vision v,
 Randomly select a source
 S (tentative)
Pass 2: For each agent Aij
 If A is a source ij

 Within the neighborhood of vision v,
 Find the number of destination agents
 who have picked Aij as their source
 If the number is exactly equal to 1
 Mark self as mapped to that
 Unique destination
 Else (Aij is a destination)
 If this agent has a source selected
 S(tentative)
 Examine the neighborhood of S to
 verify that Aij is the only
 destination that selected S
 If Aij is unique in selection of S
 Mark self as mapped to that S

Figure 13. Lock-free randomized bi-partite algorithm
We used this algorithm to model movement in the data parallel
execution of segregation model on the GPU, with varying values
of vision, as described in Section 2.

4.2 Scheduling Policies and Behavioral
Semantics

Often, agent-based models are specified with the notion of
sequential execution and/or synchronized execution. For example,
the segregation model contains an inherently serialized mode of
migration across cells. The randomization procedure of mapping
between empty cells to cells that desire to relocate is sequential in
nature. If this specification is relaxed in favor of a data parallel
setting, the overall emergent phenomenon materializes at very low
rates. For example, if agent movement is restricted to a vision of
1, segregation is seen to occur at a greatly reduced rate.
Segregation is observed to occur much faster when the vision
encompasses a good fraction of the larger grid. However, the
farther the vision, the more inherently sequential the specification
becomes. The tight dependency among agents in Segregation
model has already been previously mentioned in Ref [1].

For models with such serial execution semantics built into their
behavior specification, one cannot hope to obtain satisfactory
parallel speedup. Ideally, for effective parallelization, behavioral
models have to be expressed in an execution-independent fashion.
Perhaps the source of serial nature of conventional ABM is
historical, due to social scientists experimenting manually by hand
with various possible models (e.g., pebble games). Now that ABM
is computer-aided, execution-decoupled specifications of
asynchronous behavior might be more appropriate.

One of the advantages of data parallel execution is that all agents
can be simultaneously updated without artificial bias/advantage
towards any agents. However, the same feature can become a
disadvantage if some specific scheduling policy is prescribed the
model specification. Any scheduling policy other than random,
independent invocations of agent activity at each step is difficult to
realize efficiently. One solution is to redefine the model, if
necessary, in terms of independent update semantics while still
retaining the semantics of the original emergent behavioral
phenomenon.

4.3 Aggregation Operations
Another challenge that is harder in data parallel (as opposed to
sequential) execution is the implementation of aggregation
operations. Aggregation operations include statistics (e.g.,
averages, counts), instrumentation (e.g., number alive/dead),
termination condition detection (e.g., stop when number alive
reaches equilibrium). While such operations are straightforward to
implement sequentially, new scalable algorithms are required to
implement the same in parallel.

An important, almost universal, parallel operation is the so-called
“parallel scan” or “parallel reduction” operation (e.g., algorithms
optimized for GPUs to run in O(log(n)) time for n agents [23]).
However, care must be taken to ensure that not too many such
operations are invoked for every iteration.

In the Schelling Segregation model, for example, we needed to
perform a parallel reduction operation in order to determine if/how
many agents remain that are unhappy. This count was used to
determine when a reasonably stable situation was reached. Since
agent state is scattered in general, and not all GPU processors can
access all data equally fast, aggregation operations have to be
carefully included into the model for optimal runtime. Too liberal
a use can result in loss of speedup. The tension between the need
for aggregate operations in the model and the cost of executing
aggregate operations on the data parallel platform is one of the
important challenges.

4.4 Asynchrony: Semantics and Execution
ABM simulations are commonly defined in terms of time-stepped
execution, in which time is advanced globally in fixed increments,
and all agents are updated at each time step. However, some ABM
simulations are either inherently asynchronous in their formulation,
or amenable to an alternative, asynchronous execution style for
faster evolution. In such asynchronous execution models, updates
to agents are processed via staggered timestamps across agents
(e.g., [24] and [25]). While it is relatively straightforward to map
synchronous (time-stepped) execution to data parallel platforms,
the mapping of asynchronous execution is not so obvious.
Efficient execution of asynchronous activity requires much more

complex handling. The fundamental issue at hand is the
preservation of correct causal dependencies among agents across
time instants. Correctness requires that agents be updated in time-
stamp order [26]. A time synchronization algorithm is needed to
resolve these challenges. We are currently developing such an
algorithm (e.g., [27, 28]) to ABM specification and execution.

5 SUMMARY AND FUTURE WORK
The data parallel execution capabilities of GPUs are clearly useful
for fast simulation of agent-based models. The empirical results
from our experiments show that high simulation speeds can be
achieved even with very large agent populations. In some of the
largest configurations we tested, more than 14 million agents can
be executed at hundreds of iterations per wall-clock second. The
speeds on the GPU are roughly two to three orders of magnitude
higher than those of extant ABM tool kits. Such phenomenal
performance differential makes it a very compelling argument to
perform further research in making the GPU-based execution more
accessible to ABM researchers. Automated translation
mechanisms and/or new programming interfaces are some of the
potential approaches that could help move from existing models to
scalable platforms.

While the performance gains are promising in representative,
explored models, additional research is needed to address data
parallel issues for more generalized ABM execution. Issues of
correctness and performance have to be resolved, especially to
prevent artificial biases from being introduced due to performance
optimizations. We believe bias would be among the most
important factors that need to be considered when parallelizing
ABM execution. Alternatively, classes of models must be
identified that are resilient to bias and/or “approximated execution”
of agent rule sets. Aside from runtime speedup, other
considerations arise, such as programmability and usability, which
have to be addressed before the GPU platform can be used in the
mainstream for ABM to realize the speed gains. To this end, we
are currently developing a GPU-based ABM framework called
GARFIELD to help mitigate the usability concerns. GARFIELD
currently is able to receive customized input models and present
interactive runtime animation of the evolution of the system.

ACKNOWLEDGEMENTS
Constructive comments by ORNL internal reviewers have helped
improve the presentation. This paper has been authored by UT-
Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S.
Department of Energy. Accordingly, the United States
Government retains and the publisher, by accepting the article for
publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.

REFERENCES
1. North, M.J. and C.M. Macal, Managing Business Complexity:

Discovering Strategic Solutions with Agent-Based Modeling
and Simulation. 2007: Oxford University Press

2. GPGPU. General Purpose Computation Using Graphics
Hardware. 2005; http://www.gpgpu.org.

3. Pharr, M. and R. Fernando, GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-
Purpose Computation. 2005: Addison Wesley Professional

4. Buck, I., et al., Brook for GPUs: Stream Computing on
Graphics Hardware. ACM Transactions on Graphics, 2004.
23(3): p. 777-786.

5. Owens, J.D., et al. A Survey of General-Purpose Computation
on Graphics Hardware. in Eurographics. 2005.

6. Intel-Corporation. Intel Multi-core Technology. 2007;
http://www.intel.com/multi-core.

7. Top 500 Supercomputing Sites. 2007; http://top500.org.
8. Courty, N. and S.R. Musse. Simulation of Large Crowds in

Emergency Situations Including Gaseous Phenomena. in IEEE
Computer Graphics International. 2005..

9. Reynolds, C. Big Fast Crowds on PS3. 2006;
www.research.scea.com/pscrowd.

10. Tomov, S., et al., Benchmarking and Implementation of
Probability-based Simulations on Programmable Graphics
Cards. Computers and Graphics, 2005. 29(1).

11. Walter, B., et al. UAV Swarm Control: Calculating Digital
Phermone Fields with the GPU. in IITSEC. 2005.

12. Verdesca, M., et al. Using Graphics Processor Units to
Accelerate OneSAF: A Case Study in Technology Transition. in
IITSEC. 2005.

13. Moya, L. and A. Tolk, Towards A Taxonomy of Agents and
Multi-Agent Systems, in Agent-Directed Simulation
Symposium. 2007, ACM: Norfolk, VA, USA.

14. Neumann, R. and F. Strack, The Automatic Transfer of Mood
between Persons. Journal of Personality and Social
Psychology, 2000. 79(2): p. 211-223.

15. Hess, J.D., J.J. Kacen, and J. Kim, Mood-management
Dynamics: The Interrelationship between Moods and
Behaviors. British Journal of Mathematical and Statistical
Psychology, 2006. 59(2): p. 347-378.

16. Gardner, M., Mathematical Games: The fantastic combinations
of John Conway's new solitaire game "Life", in Scientific
American. 1970. p. 120-123.

17. Schelling, T., Micromotives and Macrobehavior. 1978: W. W.
Norton

18. North, M.J., N.T. Collier, and J.R. Vos, Experiences Creating
Three Implementations of the Repast Agent Modeling Toolkit.
ACM TOMACS, 2006. 16(1): p. 1-25.

19. Wilensky, U., NetLogo. 1999, Center for Connected Learning
and Computer-Based Modeling, Northwestern University:
Evanston, IL.

20. Fernando, R. and M.J. Kilgard, The Cg Tutorial: The Definitive
Guide to Programmable Real-Time Graphics. 1 ed. 2003:
Addison Wesley Professional

21. Perumalla, K.S. Discrete Event Execution Alternatives on
General Purpose Graphical Processing Units (GPGPUs). in
IEEE/ACM/SCS PADS. 2006.

22. NVIDIA. NVIDIA CUDA. 2007;
http://developer.nvidia.com/cuda.

23. Sengupta, S., et al., Scan Primitives for GPU Computing, in
Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware. 2007, Eurographics
Association: San Diego, California.

24. Epstein, J., Modeling Civil Violence: An Agent-based
Computational Approach. PNAS, 2002. 99(3): p. 7243-7250.

25. Nutaro, J., Parallel Discrete Event Simulation with Application
to Continuous Systems, in Department of Electrical and
Computer Engineering. 2003, University of Arizona: Tucson,
AZ. p. 182.

26. Perumalla, K.S., Model Execution, in Handbook of Dynamic
System Modeling. 2007, CRC Press.

27. Fujimoto, R.M., Parallel and Distributed Simulation Systems.
2000: Wiley Interscience

28. Perumalla, K.S. Parallel and Distributed Simulation: Traditional
Techniques and Recent Advances. in Winter Simulation
Conference. 2006. INFORMS.

http://www.gpgpu.org/
http://www.intel.com/multi-core
http://top500.org/
http://www.research.scea.com/pscrowd
http://developer.nvidia.com/cuda

	ABSTRACT
	KEYWORDS
	1 INTRODUCTION
	1.1 Motivation and Background
	1.2 Related Work
	1.3 Outline

	2 BENCHMARKS
	2.1 Models
	2.2 Implementation

	3 PERFORMANCE STUDY
	3.1 Runtime Speedup
	3.2 Performance Effects due to Conditional Statements
	3.3 Performance Effects due to Locality
	3.4 Frame Rates and Interactivity
	3.5 On-line and Off-line Visualization

	4 DATA PARALLEL CHALLENGES
	4.1 Random Affect
	Randomized Bi-Partite Mapping
	Lock-free Select-Backoff Algorithm

	4.2 Scheduling Policies and Behavioral Semantics
	4.3 Aggregation Operations
	4.4 Asynchrony: Semantics and Execution

	5 SUMMARY AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

	Text1: In Proceedings of the Spring Simulation Multi-Conference, Ottawa, Canada, April 2008
	Text2: Best Paper Award Winner

