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ABSTRACT 
Programmable graphics processing units (GPUs) have emerged as 
excellent computational platforms for certain general-purpose 
applications.  The data parallel execution capabilities of GPUs 
specifically point to the potential for effective use in simulations of 
agent-based models (ABM).  In this paper, the computational 
efficiency of ABM simulation on GPUs is evaluated on 
representative ABM benchmarks.  The runtime speed of GPU-
based models is compared to that of traditional CPU-based 
implementation, and also to that of equivalent models in traditional 
ABM toolkits (Repast and NetLogo).  As expected, it is observed 
that, GPU-based ABM execution affords excellent speedup on 
simple models, with better speedup on models exhibiting good 
locality and fair amount of computation per memory element.  
Execution is two to three orders of magnitude faster with a GPU 
than with leading ABM toolkits, but at the cost of decrease in 
modularity, ease of programmability and reusability.  At a more 
fundamental level, however, the data parallel paradigm is found to 
be somewhat at odds with traditional model-specification 
approaches for ABM.  Effective use of data parallel execution, in 
general, seems to require resolution of modeling and execution 
challenges.  Some of the challenges are identified and related 
solution approaches are described. 
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1 INTRODUCTION 
1.1 Motivation and Background 
Agent-based modeling (ABM) has established itself as one of the 
leading modeling approaches [1].  Several applications have been 
shown to benefit from ABM to understand, explain, predict and 
analyze complex processes occurring in many contexts.  While 
some of the agent behaviors are interesting even in small- to 
medium-scale (a few hundreds to a few thousands of agents), there 
is a general desire expressed often by some social scientists to be 
able to experiment with very large counts of agents.  Interesting 
emergent phenomena, for example, are expected to occur when the 
counts are to the tune of one million or so.  There is also the 
relatively unchartered territory of experimentation with even larger 
scenarios with tens of millions of agents, either homogeneous or 
heterogeneous in their individual behaviors, as at the level of 
population counts of entire countries.  Such a large scale presents 
many challenges, not the least of which is the modeling complexity 
itself: developing plausible models that can be reasonably expected 
to deliver useful results.  Besides the great modeling challenge, the 
other significant hurdle to scaling ABM simulations is the wall-

clock time needed to execute a simulation experiment from start to 
completion.  Clearly, execution time should be as small as 
possible, and, ideally, low enough to enable a large number of 
simulation runs to perform a coherent multi-run experiment (e.g., 
by employing parameter sweeps). 

Several ABM simulation tools are available today, each better than 
others in one or more critical aspects, such as ease of 
programming, visualization support, integrated development 
capability, rapid prototyping and so on.  However, one of the 
common limiting aspects is their execution speed.  Most are 
limited to sequential execution, and few tools are currently 
demonstrated to scale to more than the order of 104 agents at 
reasonably low runtimes.  Either memory limitations arise, or the 
runtimes become prohibitively high to be practically useful.  Such 
limitations have not been significant in many useful applications in 
which the outcomes of interest are satisfied by smaller agent 
counts.  However, it is the authors’ understanding that ABM 
research is reaching a point at which there is interest in pushing the 
envelope with respect to scale and speed. 

Interestingly, recent developments on the computational front point 
to the possibility of meeting the goals of increased scale and speed.  
Some of the important platforms relevant to large-scale, high-
speed ABM execution include newer shared-memory platforms 
such as general-purpose programmable graphical processing units 
(GPUs) [2-5] and multi-core versions of traditional central 
processing units (CPUs) (e.g., Intel’s [6]).  These platforms 
provide on the order of tens to hundreds of processing units 
packaged within a small form-factor package for a very reasonable 
market price.  For an even larger scale, distributed-memory 
platforms are relevant, such as many-core installations and 
supercomputers[7].  In this document, the focus is on the shared-
memory platforms, especially on exploiting the data-parallel 
execution capabilities exhibited by GPUs and multi-core CPUs. 

1.2 Related Work 
Data parallel execution facilities have seen some recent use in 
applications that closely resemble ABM simulations.  Crowd 
simulations, with up to 15 thousand “agents” were simulated and 
visualized at interactive speeds on an older generation of NVIDIA 
graphical processing units (GeForce 5900) [8, 9].  The authors 
report a 10- to 30-fold speedup achieved by GPU-based execution, 
as compared to CPU-based execution.  Some early work simulated 
a probabilistic evolution of a large number of physical system 
entities, with Monte Carlo-based Ising Spin model simulations 
[10].  Control of a group of airborne vehicles using “Swarm” type 
of control [11] was performed on GPUs to meet real-time 
constraints.  In the OneSAF distributed entity simulation 
framework, the GPU platform was used to improve execution 
speed, but in a different way [12].  As opposed to speeding up the 
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individual computation of entity (agent) evolution, the GPUs were 
instead used for speeding up the computationally-intensive 
collision detection functionality and other global operations. 

While all these efforts represent ways of using the parallel 
execution platforms in agent-like environments, the more 
generalized ABM-style execution paradigm remains an open area 
of research.  Challenges exist in effectively dealing with the wide 
variety of aspects [1, 13] in ABM, when viewed in the context of 
parallel execution.  This paper serves to document our insights into 
such generalized ABM execution on data parallel platforms.  In 
order to gain an understanding of the performance differential 
afforded by the data parallel platforms, we first undertook an 
implementation and benchmarking exercise of a few well-known 
ABM experiments.  Based on our experiments, we are able to 
quantitatively document the tremendous gains in runtime 
performance that are possible with certain models.  Additionally, 
the exercise helped reveal the relation of typical ABM primitives 
to their impact on parallelism, exposing some of the fundamental 
issues underlying data parallel execution of general ABM 
execution. 

1.3 Outline 
The rest of the document is organized as follows.  In Section 2, the 
benchmark models are described along with their implementation.  
A performance study using the benchmarks is presented in Section 
3, comparing the GPU-based runtime speed with the speed of 
optimized versions of equivalent CPU-based models.  The GPU-
based runtime is also compared with equivalent models 
implemented using ABM toolkits.  In Section 0, the challenges 
with data-parallel execution, in general, of ABM simulations are 
outlined, and some solution approaches are presented.  Results are 
summarized and future work is outlined in the final Section 5. 

2 BENCHMARKS 
2.1 Models 
The runtime performance of GPU-based ABM execution is 
evaluated using three different models: (1) Mood Diffusion (2) 
Game of Life (3) Segregation.  These models are described next. 

Mood Diffusion: The first is a model of diffusion of mood among 
interacting people[14, 15].  The “mood” of each agent i is modeled 
with a scalar mood value mi.  The rate of change of mood mi of 
agent i is dependent on a homeostatic tendency of the agent to a 
value Mh

i, combined with an influence by the average mood Ma
i of 

its neighbors, and by the influence of regional/global news events 
with intensity Mg

r in the neighborhood r that includes agent i.  The 
equation governing the evolution is given by 
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The mood values of agents are initialized with random values from 
the range [0..1].  In our experiments, for simplicity, the 
homeostatic mood value is set to be the same among all agents.  At 
irregular intervals, mood-altering events are inserted into the grid 
at random locations with varying reach of influence per event. 

  

Figure 1. Snapshots of a 512×512 Grid for Mood 
Diffusion Model. Red Saturation Represents Mood Level 
Game of Life: The second model is the well-known Conway’s 
Game of Life [16], with a 2-dimensional spatial grid of cells 
marked dead or alive.  In our experiments, the grid is initialized 
with a random live cell pattern (a cell is initialized to be alive or 
dead with equal probability).  During evolution, a dead cell with 
exactly three neighboring cells comes alive, while a live cell dies if 
fewer than two or more than three of its neighbors are alive. 

    

Figure 2. Snapshots of Grid for Game of Life.  Black 
Denotes Empty Cells, Blue Live Cells. Red Cells are 
those that Died Recently. Green Just Became Alive. 

Schelling Segregation: The third model is one of the variants of 
the Schelling Segregation Model framework [17].  Red and green 
colored agents are scattered across a 2-dimensional grid.  Agents 
stay put if they are happy, or attempt to move if unhappy with their 
current position.  In our experiments, an agent with a neighborhood 
of at least 30% like-colored agents is happy; it’s unhappy if not.  
When unhappy, an agent attempts to move from its current cell to a 
new random vacant location within a certain region of its vision. 

  

Figure 3. Snapshots of Grid for Segregation of Red and 
Green Agents.  Black Cells are Vacant. 

Graphical snapshots from sample executions of the Mood 
Diffusion, Game of Life and Segregation models are shown in 
Figure 1, Figure 2, and Figure 3, respectively. 

2.2 Implementation 
For each model, two distinct implementations were developed: one 
that executes on a GPU and another equivalent one that executes 
on a traditional CPU.  The CPU-based implementations are 



carefully developed for optimized execution on the CPU, and 
hence represent the closest to the best execution possible with a 
CPU.  To ensure equivalence, initialization routines were modified 
to assign the same initial conditions for agents in GPU, CPU and 
Repast[18]/NetLogo[19] models. 

For the Game of Life model, one additional CPU-based 
implementation was used in benchmarking.  This is the Game of 
Life model included in the Repast ABM system [18], executed in 
the maximal performance mode (command-line mode, with 
graphical output turned off).  The Repast .Net (C#) version, as well 
as Repast J (Java) version, was used for benchmarking.  Similarly, 
for the Segregation model, an additional CPU-based 
implementation is benchmarked, which is the model included in 
the NetLogo [19] system (again, executed in maximal performance 
mode). 

The GPU-based implementation was developed using a “ping-
pong approach” to updating textures with fragment processors, all 
realized using the Open GL graphics interface[2, 3].  In the 
models, it was sufficient to map each agent to one pixel value, and 
map the 2-D grid to a graphics texture.  Agent’s state is mapped to 
red, blue, green or alpha channels of a pixel.  The software 
platform is a combination of Microsoft Visual Studio .Net, and the 
NVIDIA Cg Took Kit [20]. A large fraction of the agent 
functionality is realized as Cg programs that get invoked for every 
agent.  The Cg programs (also called kernels) manipulate the 
agent’s state encoded in a pixel.  Data parallelism is achieved when 
the GPU streams all texture pixels through multiple (fragment) 
processors, and each processor invoking the Cg program for every 
single pixel that is streamed and transformed through it. 

We have also previously benchmarked some of the models with 
the Brook[4, 21] system, and found the performance to be fairly 
similar to that of the Open GL implementation.  The newer CUDA 
[22] system for GPU-based execution is expected to deliver similar 
performance as well, with which we have just started to 
experiment. 

The hardware for GPU-based experiments is a recent NVIDIA 
GeForce 8800 GT unit, and the CPU is an Intel Core2 Duo 2.4 
GHz processor with 4 GB memory.  These hardware components 
represent some of the best mainstream commodity units available 
at a good performance/price ratio.  As of this writing, 3.0 GHz 
“overclocked” CPUs (Intel) are becoming available; however, the 
performance of these faster CPUs relative to the GPU is about 15% 
better on these models. 

3 PERFORMANCE STUDY 
To evaluate runtime performance gains from executing on the 
GPU, a series of runs were made with the CPU and GPU 
implementations.  The performance is evaluated with increasing 
number of agents.  The grid size is increased in powers of 2, from 
16×16 to 512×512.  For the Mood Diffusion and Game of Life 
models, the grid size is increased all the way up to 2048×2048, and 
then to 3750×3750, giving a maximum of over 14 million agents.  
The grid size is limited by the maximum texture size supported by 
the GPU, which, for our platform, was 3750×3750 pixels.  A 
runtime system error in our GPU-based segregation model limits it 
to 262,144 agents, which we are currently investigating and expect 
to fix soon, enabling it to scale to 14 million agents similar to our 
Mood Diffusion and Game of Life models. 

3.1 Runtime Speedup 
In the following performance charts, speedup is computed as the 
ratio TCPU/TGPU, where TGPU is the total execution time on the GPU 
and TCPU is the total execution time on the CPU, for the same 
number of iterations (time-steps).  Thus, a speedup of 30 implies 
that the simulation completes on the GPU 30 times faster than on 
the CPU.  Also, in all the figures, the amount of variability is 
negligible (less than 5%) across multiple repeated runs; hence error 
bars are omitted for readability. 
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Figure 4. Speedup of GPU compared to CPU for Mood 
Diffusion Model 

For the Mood Diffusion model, the runtime speedup obtained by 
the GPU-based implementation compared to optimized CPU-based 
implementation is shown in Figure 4. 
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Figure 5. Speedup of GPU compared to CPU for Game 
of Life Model 

The GPU-based model executes significantly faster than the CPU-
based model, delivering a peak of over 30-fold reduction in 
runtime for 4.2 million agents.  A drop is seen beyond 4.2 million 
agents, the cause of which is undetermined as of this writing and is 
under investigation.  Hardware artifact beyond 2048×2048 output 
texture size is one of the suspects. 

The speedup obtained by Game of Life on GPU vs. CPU is shown 
in Figure 5.  The execution shows excellent scaling with the 
number of agents, giving 16-fold speedup for 14 million agents. 



3.2 Performance Effects due to Conditional 
Statements 

The lower speedup of Game of Life compared to Mood Diffusion 
(16× vs.30×) deserves some explanation.  The data parallel 
execution mechanism in the GPU suffers from lowered 
performance when conditional statements are executed by the 
fragment processors of the GPU.  Data parallelism artifacts force 
all processors to incur the combined cost of the true and false 
branches of the conditional statement, instead of the cost of the 
actual branch taken alone.  The CPU on the other hand is better 
able to deal with conditional statements.  Branch/value prediction 
is another aspect in which the CPU and GPU differ; the CPU 
seems to employ a prediction framework and hardware support, 
which apparently helps deliver better performance. 

0.1 0.4 1.5

5.5

16.7

30.7

38.6
40.8

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Sp
ee

du
p

 

Figure 6. Speedup of GPU compared to CPU for 
“Unconditional GOL” Test 

The fact that the conditionals are the primary contributor to the 
lower amount of GPU/CPU speedup is verified by the speedup 
graph shown in Figure 6.  The Game of Life model is modified 
such that no conditional statement is executed (by inserting an 
“early return” into the model).  As expected, the performance of 
the modified model increased to over 40×.  Although the modified 
model is not very useful as a model itself, it nonetheless serves to 
verify the performance penalty imposed by the conditional 
statements. 
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Figure 7. Speedup of GPU compared to Repast for 
Game of Life Model 

In order to gauge the performance differential between the GPU-
based model and ABM tool kit-based model, we benchmarked the 
GPU execution against an equivalent version implemented in the 
Repast tool kit.  The speedup delivered by the GPU-based model is 
shown in Figure 7.  As expected, our GPU-based model ran three 
to four orders of magnitude faster than the Repast versions.  The 
Repast runtimes for agent populations larger than 512×512 are 
omitted in the figure as they were very large (extrapolated runtime 
being in millions of seconds). 

3.3 Performance Effects due to Locality 
The increase in speedup with increasing agent count is noteworthy.  
While the GPU exhibits relatively constant runtime cost with 
increasing texture size (and hence, the number of agents), the 
ABM tool kits typically suffer from at least linear (and sometime 
quadratic) increase in runtime cost. 
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Figure 8. Speedup of GPU model compared to CPU for 
Segregation Model 

The speedup chart for the Schelling Segregation model is shown in 
Figure 8, giving the ratio of GPU model speed and CPU model 
speed.  Figure 9 shows the speedup of the GPU-based model 
compared to its equivalent model written in NetLogo.  For the 
GPU-based implementation, a lock-free data-parallel algorithm 
called Select-Backoff (described later in Section 0) is used to 
parallelize this model.  The Segregation model includes a free 
parameter, which is the area of vision of each agent.  A vision 
value equal to v represents the number of cells in each direction to 
which the agent is willing to move if the agent is unhappy with its 
current location.  Thus, given a vision v, the number of cells that 
the agent must consider for relocation is up to (2v+1)2-1.  For the 
largest vision value shown (v=32), each unhappy agent potentially 
considers up to 4223 cells around it. 

Clearly, the larger the vision value, the greater is the processing 
requirement of each agent per iteration.  Perhaps more importantly, 
the amount of locality decreases quadratically with increasing 
vision distance.  It is well known that GPUs perform extremely 
well when the application exhibits good locality, and delivers 
significant speedup compared to a traditional CPU.  The better 
performance of GPUs in such cases is due to various optimizations 
specific to GPUs, including asynchronous memory operations, and 
better system tuning for 2-dimensional locality.  However, when 
locality decreases, the performance edge of GPUs over CPUs 
decreases; this is partly due to the relatively larger sizes of L1 and 
L2 caches of CPUs.  These effects are clearly seen with the 



segregation model, with increasing agent vision distance.  On 
scenarios with low vision distance (consequently, high locality), a 
speedup of almost 70× is observed.  Towards the poorer end, a 
vision of 16 brings the speedup down to 16×.  It is nonetheless 
noteworthy that a speedup, rather than slowdown, is still observed 
even on such a large vision value that requires the agents to 
consider a very large number of neighboring agents.  Note also that 
the performance effects of vision distance are not so pronounced 
until the large scenarios containing 0.25 million agents are 
considered. 
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Figure 9. GPU speedup compared to NetLogo for 
Segregation Model 

3.4 Frame Rates and Interactivity 
The previous performance charts serve to illustrate the speedup 
that could be achieved when ABM simulations are executed on 
GPUs as opposed to on CPUs, either with optimized CPU 
execution or with traditional CPU-based ABM toolkits.  Let us 
now consider absolute speed of these simulations, for an 
understanding of their relation to real-time needs.  The metric of 
interest is the number of iterations (time steps) that could be 
executed within one wall-clock second. 

1

10

100

1000

10000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Fr
am

e 
R

at
e 

(lo
g 

sc
al

e)

Game of Life Mood Diffusion Segregation (Vision=1) Segregation (Vision=32)  

Figure 10. Number of iterations per wall-clock second 
(absolute frame rate) achieved with the models on GPU 

Clearly, a frame rate of 30 frames per second (fps) is sufficient for 
interactivity.  However, faster than 30fps is desirable for models in 
which not every frame needs to be visualized (i.e., flushed to the 
screen), or in which periodic snapshots are to be displayed to 
verify satisfactory progress towards the desired goals for emergent 

phenomena.  Such faster-than-real-time speed is clearly achieved 
with models such as Game of Life and Mood Diffusion, even on 
the largest grid sizes.  Figure 10 shows the frame rates achievable 
with GPU-based and CPU-based executions.  With the GPU, the 
largest configurations of 14 million agents are seen to be delivered 
at the surprisingly high rate (over 7000fps with 1024 agents, to 
over 70fps with 14 million agents). 

It is important to note that frame rate is limited by the concurrency 
afforded by the model.  In the Segregation model, for example, 
variation in the vision distance is seen to significantly affect the 
frame rate, from super-interactive rates (620fps–370fps for the best 
case of vision=1) down to relatively slower rates (145fps–3fps for 
the worst case of vision=32). 

3.5 On-line and Off-line Visualization 
For off-line visualization purposes, we make use of a tool called 
imdbg, which is quite useful for debugging and testing the texture 
values between iterations.  We utilized the EasyBMP tool for 
continuous animations which are created as a series of bitmaps; the 
bitmaps themselves are stitched together into a movie by using 
another tool called BMPtoAVI. 

In large-scale, long-time simulations, it is not necessary to 
visualize each and every iteration that is executed.  If the specific 
evolution of interest is slow, a high rate of state evolution can be 
sustained by computing at GPU rates, while the state is only 
periodically paused to be flushed to the screen, say, once every 100 
iterations.  Since the graphics processor is already built for 
rendering, it is relatively straightforward to obtain a first-order 
visualization of state evolution using a suitable encoding that maps 
state values to pixel colors. 
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Figure 11. Time to Generate Infrequent Snapshot 
Images once every k Iterations 

A natural question that arises is: how frequently can the GPU-
based state be offloaded from the GPU to either the display and/or 
the CPU memory while still maintaining speedup by GPU-based 
simulation.  To answer this, we performed experiments that read 
the current state of the simulation state every k iterations, where k 
is varied from 10 to 1000.  Figure 11 shows the speedup when k is 
varied, where the runtime includes the cost of reading the pixel 
values from GPU to CPU memory.  The data shows that infrequent 
on-line visualization can be used if needed, without any significant 
loss of speed to native GPU computation rates.  The data shows 
that generating an image once every 50 or 100 iterations cost little 
more than not generating any image snapshots at all. 



4 DATA PARALLEL CHALLENGES 
We now identify some of the challenges that arise when ABM 
execution in general is mapped onto data-parallel execution 
platforms such as GPUs and multi-core processors:  The 
challenges arise due to the potential conflict between semantics of 
ABM primitives and model execution on parallel platforms.  Here 
we focus only on shared-memory platforms.  We abstract the 
challenges into four categories: (1) Random Affect (2) Scheduling 
Policies (3) Aggregation Operations (4) Asynchrony.  Each of 
these challenges is described next, together with some solution 
approaches. 

4.1 Random Affect 
One of the biggest challenges in ABM execution on data parallel 
platforms concerns the issue of a modeling paradigm that we will 
call “Random Affect.”  In this paradigm, in general, agents 
randomly select other agents and/or other grid cells to affect the 
behavior in some fashion.  The nature of affecting the chosen 
agents/cells (here we will refer to cells and agents collectively on 
an equal footing) varies with the particular model under question, 
but the underlying fundamental paradigm remains the same.  The 
type of affect, for example, could be movement, spawning, tagging 
and so on. 

In many agent models, for example, agents move from one grid 
cell to another over the course of simulation.  Most typically, the 
movement is randomized in some fashion (e.g., moving to a 
random destination cell chosen from among all vacant neighboring 
cells).  Agent movement is an example of such a random affect 
operation.  Another example of random affect activity is agents 
spawning other agents (e.g., Predator-Prey models).  To realize 
such activity, several agents must, at each iteration, choose 
randomized destination cells at which new agents are spawned.  
Yet another example of random affect is a “tagging” type of 
activity, in which agents randomly select other agents to tag them 
in some way, such as infected agents marking other selected agents 
as infected in an epidemiological model. 

The random affect paradigm in general often calls for such overall 
randomized activity to be (a) simultaneously performed by many 
agents (b) randomized among all possible source-destination pairs 
without bias/advantage for/against any particular agents or cells (c) 
successful if the activity is indeed possible.  While these conditions 
are intuitively obvious and are also easily coded in a sequential 
execution context, they are not as easy to ensure and realize 
outside sequential execution.  Each condition in fact imposes its 
own nature of difficulty of realizing in a data parallel execution 
context.  The principal difficulty is coming up with algorithms that 
satisfy all the conditions together. 

Randomized Bi-Partite Mapping 
An abstraction of the core problem is to create a random bi-partite 
graph of the grid elements.  This is illustrated in Figure 12, in 
which eight sources S1...S8 are being mapped to six potential 
destinations D1...D6.  In this example, while most sources are 
assigned a random destination, sources S4, S6 and S8 remain 
unassigned to any destination, and also no source is mapped to 
destination D5.  However, the property that is maintained in the 
graph is that each source is assigned to at most one destination, and 
vice versa, and, more importantly, the pairings are random. 

The difficulty of the bi-partite mapping problem arises from the 
facts that (a) the compositions of the source agent/cell set and 
destination agent/cell set vary dynamically from one iteration to 
the next, and (b) the mapping from sources to destinations must be 
randomized across iterations, to avoid introducing any artificial 
bias into the model.  For example, in the segregation problem, the 
two partitions are: occupied cells on one partition, and vacant cells 
on the other partition.  In fact, a more specific partition would 
include in the first partition only those occupied cells that are 
unhappy, and, consequently, would like to move from their current 
position. 
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Figure 12. Example of a bi-partite assignment between 
sources and destinations 

In the data-parallel execution context, the problem of creation of a 
random bi-partite graph at every iteration is comprised of two sub-
problems: 

1. Exclusion: Ensure that exactly one destination is 
assigned to any given source.  In a data parallel context, 
a perfect algorithm is impossible to ensure this, so this 
problem must sometimes be relaxed to one that ensures 
that each source is mapped to at most one (instead of 
exactly one) destination (cell). 

2. Information Propagation: For a given source-destination 
pair, convey the destination identifier to the source cell 
and the source identifier to the destination cell. 

Noteworthy is that these two considerations hold even when only 
immediate neighborhood is considered for random movement.  In 
other words, the bi-partite problem is independent of connectivity 
among source and destination cells. 

The first sub-problem, in fact, is the more difficult one to resolve.  
The latter concern (information propagation) is somewhat less 
problematic in data-parallel executions which have both scatter and 
gather memory operation support (e.g., CUDA[22]).  On platforms 
with only gather (but no scatter) support, it is still possible to 
couple the information sharing with one-to-one mapping solution. 

While traditional multi-threaded data-parallel programs solve the 
information propagation problem using synchronization primitives 
such as locks and semaphores, the very fine-grained nature of 
computation in ABM simulation seems to indicate that lock-free 
solution would be much better suited for this mapping problem; 
lock-based solutions will incur significant overhead for updating 
data structures and are also prone to initiating non-local writes that 
are detrimental to cache performance. 



Lock-free Select-Backoff Algorithm 
We designed a novel two-pass algorithm for generating such a bi-
partite mapping that is randomized across iterations in an ABM 
execution.  The pseudo code for the algorithm is shown in Figure 
13.  In the first pass, all destinations select a source at random.  In 
the second pass, every source checks how many destinations have 
selected itself as their source.  If the source detects that exactly one 
destination has selected this source, then the source accepts that 
assignment and keeps it.  If less than one destination or more than 
one destination, selected this source, the source rejects all 
assignments (i.e., stays unmapped).  The destinations also, in the 
second pass, need to determine if their selected source has 
accepted or rejected their selection.  Each destination determines 
such acceptance/rejection of its selection by evaluating the same 
conditions as the source does, essentially duplicating the 
computation of the selected source but within the context of the 
destination. 

Pass 1: For each agent Aij 
    If Aij is a source 
        Do nothing 
    Else (Aij is a destination) 
        Within the neighborhood of vision v, 
         Randomly select a source 
             S (tentative) 
Pass 2: For each agent Aij 
    If A  is a source ij

        Within the neighborhood of vision v, 
         Find the number of destination agents 
          who have picked Aij as their source 
        If the number is exactly equal to 1 
            Mark self as mapped to that 
            Unique destination 
    Else (Aij is a destination) 
        If this agent has a source selected 
            S(tentative) 
           Examine the neighborhood of S to 
             verify that Aij is the only 
             destination that selected S 
           If Aij is unique in selection of S 
             Mark self as mapped to that S 

Figure 13. Lock-free randomized bi-partite algorithm 
We used this algorithm to model movement in the data parallel 
execution of segregation model on the GPU, with varying values 
of vision, as described in Section 2. 

4.2 Scheduling Policies and Behavioral 
Semantics 

Often, agent-based models are specified with the notion of 
sequential execution and/or synchronized execution.  For example, 
the segregation model contains an inherently serialized mode of 
migration across cells.  The randomization procedure of mapping 
between empty cells to cells that desire to relocate is sequential in 
nature.  If this specification is relaxed in favor of a data parallel 
setting, the overall emergent phenomenon materializes at very low 
rates.  For example, if agent movement is restricted to a vision of 
1, segregation is seen to occur at a greatly reduced rate.  
Segregation is observed to occur much faster when the vision 
encompasses a good fraction of the larger grid.  However, the 
farther the vision, the more inherently sequential the specification 
becomes.  The tight dependency among agents in Segregation 
model has already been previously mentioned in Ref [1]. 

For models with such serial execution semantics built into their 
behavior specification, one cannot hope to obtain satisfactory 
parallel speedup.  Ideally, for effective parallelization, behavioral 
models have to be expressed in an execution-independent fashion. 
Perhaps the source of serial nature of conventional ABM is 
historical, due to social scientists experimenting manually by hand 
with various possible models (e.g., pebble games).  Now that ABM 
is computer-aided, execution-decoupled specifications of 
asynchronous behavior might be more appropriate. 

One of the advantages of data parallel execution is that all agents 
can be simultaneously updated without artificial bias/advantage 
towards any agents.  However, the same feature can become a 
disadvantage if some specific scheduling policy is prescribed the 
model specification.  Any scheduling policy other than random, 
independent invocations of agent activity at each step is difficult to 
realize efficiently.  One solution is to redefine the model, if 
necessary, in terms of independent update semantics while still 
retaining the semantics of the original emergent behavioral 
phenomenon. 

4.3 Aggregation Operations 
Another challenge that is harder in data parallel (as opposed to 
sequential) execution is the implementation of aggregation 
operations.  Aggregation operations include statistics (e.g., 
averages, counts), instrumentation (e.g., number alive/dead), 
termination condition detection (e.g., stop when number alive 
reaches equilibrium).  While such operations are straightforward to 
implement sequentially, new scalable algorithms are required to 
implement the same in parallel. 

An important, almost universal, parallel operation is the so-called 
“parallel scan” or “parallel reduction” operation (e.g., algorithms 
optimized for GPUs to run in O(log(n)) time for n agents [23]).  
However, care must be taken to ensure that not too many such 
operations are invoked for every iteration. 

In the Schelling Segregation model, for example, we needed to 
perform a parallel reduction operation in order to determine if/how 
many agents remain that are unhappy.  This count was used to 
determine when a reasonably stable situation was reached.  Since 
agent state is scattered in general, and not all GPU processors can 
access all data equally fast, aggregation operations have to be 
carefully included into the model for optimal runtime.  Too liberal 
a use can result in loss of speedup.  The tension between the need 
for aggregate operations in the model and the cost of executing 
aggregate operations on the data parallel platform is one of the 
important challenges. 

4.4 Asynchrony: Semantics and Execution 
ABM simulations are commonly defined in terms of time-stepped 
execution, in which time is advanced globally in fixed increments, 
and all agents are updated at each time step.  However, some ABM 
simulations are either inherently asynchronous in their formulation, 
or amenable to an alternative, asynchronous execution style for 
faster evolution.  In such asynchronous execution models, updates 
to agents are processed via staggered timestamps across agents 
(e.g., [24] and [25]).  While it is relatively straightforward to map 
synchronous (time-stepped) execution to data parallel platforms, 
the mapping of asynchronous execution is not so obvious.  
Efficient execution of asynchronous activity requires much more 



complex handling.  The fundamental issue at hand is the 
preservation of correct causal dependencies among agents across 
time instants.  Correctness requires that agents be updated in time-
stamp order [26].  A time synchronization algorithm is needed to 
resolve these challenges.  We are currently developing such an 
algorithm (e.g., [27, 28]) to ABM specification and execution. 

5 SUMMARY AND FUTURE WORK 
The data parallel execution capabilities of GPUs are clearly useful 
for fast simulation of agent-based models.    The empirical results 
from our experiments show that high simulation speeds can be 
achieved even with very large agent populations.  In some of the 
largest configurations we tested, more than 14 million agents can 
be executed at hundreds of iterations per wall-clock second.  The 
speeds on the GPU are roughly two to three orders of magnitude 
higher than those of extant ABM tool kits.  Such phenomenal 
performance differential makes it a very compelling argument to 
perform further research in making the GPU-based execution more 
accessible to ABM researchers.  Automated translation 
mechanisms and/or new programming interfaces are some of the 
potential approaches that could help move from existing models to 
scalable platforms. 

While the performance gains are promising in representative, 
explored models, additional research is needed to address data 
parallel issues for more generalized ABM execution.  Issues of 
correctness and performance have to be resolved, especially to 
prevent artificial biases from being introduced due to performance 
optimizations.  We believe bias would be among the most 
important factors that need to be considered when parallelizing 
ABM execution.  Alternatively, classes of models must be 
identified that are resilient to bias and/or “approximated execution” 
of agent rule sets.  Aside from runtime speedup, other 
considerations arise, such as programmability and usability, which 
have to be addressed before the GPU platform can be used in the 
mainstream for ABM to realize the speed gains.  To this end, we 
are currently developing a GPU-based ABM framework called 
GARFIELD to help mitigate the usability concerns.  GARFIELD 
currently is able to receive customized input models and present 
interactive runtime animation of the evolution of the system. 
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