
Parallel Vehicular Traffic Simulation using Reverse Computation-based 
Optimistic Execution 

Srikanth B. Yoginath and Kalyan S. Perumalla 
yoginathsb@ornl.gov, perumallaks@ornl.gov 

Oak Ridge National Laboratory 
Oak Ridge, Tennessee, USA 

 
 

Abstract 
Vehicular traffic simulations are useful in 

applications such as emergency management and 
homeland security planning tools.  High speed of 
traffic simulations translates directly to speed of 
response and level of resilience in those applications.  
Here, a parallel traffic simulation approach is 
presented that is aimed at reducing the time for 
simulating emergency vehicular traffic scenarios.  
Three unique aspects of this effort are: (1) exploration 
of optimistic simulation applied to vehicular traffic 
simulation (2) addressing reverse computation 
challenges specific to optimistic vehicular traffic 
simulation (3) achieving absolute (as opposed to self-
relative) speedup with a sequential speed equal to that 
of a fast, de facto standard sequential simulator for 
emergency traffic.  The design and development of the 
parallel simulation system is presented, along with a 
performance study that demonstrates excellent 
sequential performance as well as parallel 
performance. 

1 Introduction 
In applications such as emergency or evacuation 

planning[1, 2], a higher speed of simulation for traffic 
models translates into faster determination of critical 
metrics such as expected evacuation time.  While 
sequential simulators exist for traffic simulation, 
scalable parallel simulations are few.  Among the 
existing parallel traffic simulators, parallelism is 
realized either by functional parallelism[3] 
(parallelizing the steps such as trip planning, 
configuration generation, partitioning, etc.), or by 
synchronous parallel execution (time-stepped 
models)[4-7], or both.  Our focus is to combine the 
speed of discrete event models with parallel execution 
of the actual simulation runtime.  Additionally, despite 
speed concerns, our efforts are in staying at higher 
fidelity with entity-level models, as opposed to 
resorting to aggregate techniques such as fluid or 
network flow models. 

With advances in parallel discrete event simulation 
modeling and the availability of multi-processor 
hardware, high-speed simulation of high fidelity 
models is appearing to be possible now.  Based on this 
premise, we have designed and developed a parallel 
vehicular traffic simulation model called SCATTER-
OPT, standing for an optimistic-parallel version of the 
SCATTER simulation system[8].  This simulator is 
capable of using either conservative or optimistic 
synchronization when executed on parallel platforms. 
Importantly, the parallel execution speedup achieved 
by this simulator is over and above some of the best 
performance achievable sequentially by vehicular 
traffic simulators today.  The performance gains 
reported here, thus, are absolute and not simply self-
relative. 

In the rest of the article, the design, development 
and performance of SCATTER-OPT is described. This 
is started in Section 2 with the design overview of the 
transportation model, documenting the assumptions 
made in modeling the various components of the road 
network system. This is followed by a brief discussion 
on our parallelization approach. Then, we dwell into 
the specifics of the parallel simulation model 
discussing the realization of various vehicular traffic 
system characteristics like, congestion, routing etc. In 
Section 3, the reverse computing algorithms are 
discussed that are used for realizing optimistic 
synchronization. Section 4 is dedicated to a 
performance study, where first the sequential 
simulation runtime performance is compared with that 
of a de facto standard emergency management system 
called the Oak Ridge Emergency Management System 
(OREMS) [1, 9].  This is followed by a parallel 
performance study of SCATTER-OPT, evaluating both 
optimistic and conservative modes of synchronization 
for parallel execution. Section 5 summarizes our 
current work and alludes to future directions. 

2 SCATTER-OPT System 
Our simulation model is implemented in a 

simulator called SCATTER-OPT, which includes a 
discrete event model, and a parallel execution 



framework for vehicular networks.  Parallel discrete 
event simulation of vehicular network operation 
involves the development of a discrete-event model of 
the system coupled with a careful partitioning of the 
model on to multiple processors for optimum run-time 
performance.  In our simulation model, the road 
network is modeled as a graph, in which road segments 
connect intersections.  Each road segment is modeled 
with a few physical attributes (number of lanes and 
length of road segment), kinetic specifications (speed 
limit) and controllers (traffic lights). The traffic lights 
are synchronized in their operation and have a fixed 
period of GREEN time (when the vehicles are allowed 
to enter the road-segment) and a fixed period of RED 
time (when the vehicles are not allowed to enter).  
Traffic lights control the entry of vehicles for every 
road segment of the simulated road network. 

An input file is used to specify parameters such as 
the GREEN time period and the RED time period, 
along with an initial-offset (i.e. the wait time to the 
first GREEN period at simulation start time). Each 
road-segment in the simulated transportation network 
contains this information. 

An intersection, a point at which the road 
segments connect to each other, is considered as an 
indivisible, independent processing unit for parallel 
computing purposes.  Every intersection is capable of 
generating new vehicle instances that are distinguished 
from each other by their unique identifiers.  Each 
generated vehicle has its physical attributes (e.g., 
length of vehicle) and kinetic attributes (e.g., travel 
velocity and acceleration), in addition to its source and 
destination intersection information for its current trip.  
Every intersection in the road-network is capable of 
routing vehicles to their next hop toward their 
individual destinations. 

A VehicleEvent (VE) signifies the arrival of a 
vehicle from one intersection to another. Events of this 
type are processed by each intersection to generate 
additional VEs that act as arrival events on this 
intersection’s neighboring intersections.  The 
dynamically chosen neighboring intersection is the 
next hop node toward the destination of the vehicle 
contained in a VE. 

Information is provided in an input file about the 
road network layout (that encompasses intersection co-
ordinates, connecting road-segment characteristics), 
traffic light information, source and destination 
intersections, traffic generation rate etc. This 
information is used to set up and initialize the 
simulation process. 

2.1 Parallel Decomposition 
We use a simulation library to realize both 

conservative and reverse-computing based optimistic 
parallel discrete event simulation model. The library is 
a general-purpose parallel/distributed simulation 
kernel, which provides programming interfaces to 
develop models that could run on one or more 
machines. During parallel simulation, one instance of 
the application executable per processor is run on 
requested number of processors.  Each processor can 
host multiple simulation logical processes.  Logical 
processes are autonomous in the sense they hold and 
manage their own events and can be optimistic or 
conservative in their event processing.  Efficient 
communication and virtual time synchronization are 
also provided across processors in shared and/or 
distributed memory platforms. 

A challenge involved in any parallel discrete event 
model involves the issue of how to split the discrete 
event road-network model among the parallel 
processors.  An efficient partitioning of the application 
process across different processors during parallel 
computation fetches better performance.  Efficient 
partitioning involves recognition of modules of an 
application process that could run concurrently, with 
minimal, infrequent interaction between each other.  In 
particular, zero lookahead interaction is to be avoided 
for parallel simulation efficiency. 

Every lane in road-segment is a spatial resource 
that is occupied by vehicles. The vehicles infringe the 
road-segment lane space based on their physical 
dimensions. A traffic light for every road-segment 
controls the periodic entry of the vehicle into the 
corresponding road-segment lane. By having a traffic 
light for every road-segment, the periodic entry of 
vehicles into each road-segment lane is ensured. 

 
Figure 1: Outgoing road-segment with 2 lanes and a 

traffic signal component  

 
We make an intersection (node) in the input road-

network graph as a logical process. This would require 
grouping the road-segments connecting to each other 
via an intersection. There is a choice on how the 
segments are mapped relative to their intersection(s).  
Either incoming road-segments or out-going road-
segment can be included as part of an intersection 
logical process.  The former approach, namely, 
incoming segments mapped to their destination 
intersections, is used in the SCATTER tool.  We use 



the alternative approach in SCATTER-OPT, namely, 
outgoing segments mapped to same logical process as 
their source intersection.  Thus, in SCATTER-OPT we 
consider the node of the road-network graph along 
with its outgoing road-segments as a logical process.  
Each intersection in the transportation model is a 
collection of outgoing segments plus the actual 
intersection space itself. 

 
Figure 2: The signal controls the entry of vehicles into 

the road-segment 

 
2.2 System Implementation 
Traffic Generation 

The SCATTER-OPT input file contains the 
information of the rate at which vehicles traveling to a 
particular destination to be generated.  Note that a rate, 
rather than individual vehicle identity, is specified in 
the file.  This is for convenience only; each vehicle is 
individually represented and simulated autonomously 
(e.g., a single vehicle could get stalled at a traffic 
light), and no aggregation is performed.  Note also that 
the rate is on a per flow-basis, the rate can be different 
across different flows.  Any desired traffic pattern can 
thus be generated in general. 

A CreateEvent (CE) type is used for the purpose 
of creating a vehicle at each intersection based on the 
rate specified in the input file.  A CE, when processed, 
creates a VE that is rescheduled on the same 
intersection, and also creates another CE that is 
scheduled to some random time dt in future, to 
continue chaining generation of vehicles at specified 
input rate. The processing of VE by an intersection 
remains same, regardless of its origin. 

CreateEvent: 
- Create VE at this intersection 
- Schedule it to the same intersection at (t + 
lookahead) 
- Create and schedule CE at (t +dt) to this intersection 

Figure 3: CreateEvent processing block 
 

Routing 
After generation of a vehicle, each intersection 

ensures that a “vehicle-following” scheme is correctly 
followed.  A vehicle-following scheme ensures 
vehicles follow first-in-first-out (FIFO) scheme while 
following their individual speeds and accelerations to 
the farthest possible distance.  Routing of each vehicle 
toward its destination is based on Dijkstra’s shortest 
path algorithm.  The Boost’s Graph Library (BGL) is 
used for the purpose of computing shortest paths.  The 
road-network of the input file is converted into a BGL 
graph. For every node the shortest path to every other 
node in the network is determined, from which a vector 
of parents for each node is obtained. Each intersection 
uses this vector recursively to determine the next hop 
intersection of the vehicle toward its destination. Based 
on the next hop, the intersection determines out-going 
road-segment on which the incoming vehicle is routed. 

Whenever a vehicle enters the intersection, the 
departure time (td) is calculated using transit time (tt) 
and the vehicle’s wait time at the traffic signal (tw): 
td = tt + tw . 

(a) Transit time (tt): 
Transit time is calculated by solving the quadratic 

equation from the Newton’s law of motion for time t. It 
takes the velocity and acceleration of the given vehicle 
into consideration, S = ut + 1

2 at2 , where, S is the 
distance traveled (road-segment length), u is the 
velocity of the vehicle; a is the acceleration of the 
vehicle, and t is the time to traverse the road-segment 
length.  This value for departure time is retained only if 
the calculated value is greater than the departure time 
of the vehicle ahead of this vehicle.  The departure 
time of the vehicle ahead of this could be obtained by 
looking into the EventHistory list held by the road-
segment connecting to the vehicle’s next-hop 
intersection. 

This transit time has to be reconciled with the 
vehicle-following constraints, namely, slow the vehicle 
down if one or more vehicles ahead of this vehicle 
prevent this vehicle from reaching at the computed 
transit time.  A sum of departure time of the vehicle 
ahead (tdva) and time needed to cover a distance of 
vehicle length (vlen) at a speed specified by speed limit 
(s), is used as the departure time to ensure the vehicle 
following. td = tdva + (vlen /s) . 

 (b) Wait time at the Traffic signal (tw) 
As mentioned earlier every road-segment has 

GREEN time period during which it allows the flow of 
traffic through it and RED time period during which no 
vehicle is allowed to enter the road-segment.  At any 



given simulation time, every intersection is capable of 
knowing the GREEN time period or RED time period 
of any road-segments in the road-network and hence 
the wait period on traffic signal for a particular vehicle 
is calculated determining when it enters any road-
segment.  The departure time for every vehicle is then 
calculated as: td = tt + tw . 

Each road-segment lane maintains a list named 
EventHistory that keeps track of the arrival_time, 
departure_time and vehicle_id of every vehicle that 
entered and left the intersection. 

VehicleEvent: 
If(enough space to hold veh in road-segment) 
{ 
  - compute transit time (tt) 
  - compute wait time (tw) 
  - calculate departure time (td) 
  - send vehicle to next hop intersection at td 
  - record the event in EventHistory 
} 

Figure 4: VehicleEvent processing block 

 
Perfect Reversibility Considerations 

In what follows, an overriding consideration 
behind the modeling approaches and consequential 
data structures is to enable perfectly reversible 
computation of state changes. 

Congestion 
As mentioned earlier every road-segment keeps 

track of incoming and out-going vehicle events in an 
EventList. This is referred by the intersection to 
determine the occupancy of any of its road-segments at 
a given time. On vehicle arrival, the intersection looks 
into the occupancy of the road-segment that connects 
to the vehicle’s next-hop intersection. The vehicle is 
scheduled to depart the intersection only if enough 
space in the road-segment is ascertained to exist at that 
point of time. On the other hand if the associated road-
segment is completely occupied, then a congestion 
behavior in the road-network is emulated. To realize 
this, the vehicle is held in the current intersection as 
long as enough space is available in the corresponding 
out-going road-segment. The additional time delay 
(time spent in waiting for availability of enough space) 
that the vehicle experiences in the intersection before 
being scheduled for departure directly corresponds to 
the congestion in the road network.  In the following 
paragraphs we discuss different approaches that we 
have implemented to realize this behavior. 

 

(a) Simple rescheduling 
In this approach, on detecting non-availability of 

space in the road-segment the arriving vehicle is re-
scheduled to the same road-segment at the next 
GREEN time period (when this road-segment allows 
vehicle to pass through it).  With this simple technique 
the vehicle is (logically) retained in the intersection as 
long as there is enough space in the outgoing road 
segment to accommodate it, also ensuring that the 
vehicle leaves the intersection in the order of its 
arrival. 

This technique works well for minor congestion in 
the transportation network.  However, if the arrival rate 
of the vehicles is far greater than the departure rate, 
then the simulation crawls toward its end. This is due 
to the need for regular polling required for 
rescheduling the departures; as a result of this polling, 
every vehicle suffers multiple reschedules on a single 
intersection, this in-turn gives rise to equivalent 
number of events. 

(b) Rescheduling with initial time adjustment 
Needless polling and rescheduling of VEs 

degrades the performance in the previous strategy.  If it 
were possible to ascertain the number of vehicles “in 
limbo” that are ahead of any new arriving vehicle, we 
can calculate the time taken for that many vehicles to 
depart and schedule the vehicle arrival at that time in 
future. To this end, we maintain a variable named 
nlimbo that keeps track of the number of limbo 
vehicles in an intersection that have logically moved 
on beyond the road-segment.  This variable is used to 
calculate the new departure time as 

_ nlimbo ( / )new d dt vlen s t= × + , where tnew _ d  is 

the new departure time calculated;vlen  is the average 
vehicle length; s, is the speed limit on the road-
segment and td is the departure time calculated based 
on transit time and wait time. 

However, the nlimbo variable could not be used 
for rescheduling the already rescheduled events, since 
with this variable the order of arrival of vehicles is not 
taken into consideration. Hence, the time calculated 
using the nlimbo variable could be used only to 
schedule the newly arrived vehicles from peer 
intersections and not to reschedule the vehicles 
withheld previously due to congestion.  While we 
could get better speed-up pushing the initial re-
scheduling time of the arriving vehicle much farther in 
future, the later schedules of the same vehicle would be 
of constant time; hence this suffers from the same 
problem of the former model. Better run-time 
performance could be achieved for smaller periods of 
congestion, but for longer periods of congestion the 



run-time performance would be similar to the previous 
model.  

 (c) Using a “limbo list” 
The best performance is obtained by keeping track 

of more information, namely, by maintaining a list 
(limbo-list) instead of a single nlimbo variable.  Using 
this scheme, we were able obtain a faster simulation. 
The FIFO limbo-list preserves the order of arrival and 
obviates rescheduling congested vehicle events on the 
same intersection. Whenever a new vehicle arrives at 
the intersection, it is put into the limbo-list. The 
intersection ensures that enough space in the outgoing 
road segment is available before removing the vehicle 
from the limbo-list. If enough space is available, the 
intersection schedules the vehicle at the end of the 
limbo-list to ensure the FIFO order in traffic flow. 

VehicleEvent: 
- Insert the incoming vehicle in limbo-list 
While (limbo-list not empty) 
{ 
  if (space for veh in road-segment){ 
    - get the first veh from  limbo-list 
    - compute transit time(tt) 
    - compute wait time (tw). 
    - calculate departure time (td) 
    - send VE to next hop intersection at td 
    - record the event in EventHistory  
   } else{ 
    - create a SelfUpdateEvent (SE) 
    - schedule SE at tx 
    - break from loop 
  } 
} 

Figure 5: Altered VehicleEvent processing algorithm to 
accommodate congestion behavior 

 
If enough space to hold the vehicle is not available 

on the outgoing road segment at that point of time, the 
vehicle is retained in the limbo-list. The removal of the 
vehicle from the limbo-list should be dependent on the 
availability of space on the out-going road-segment. To 
ensure this, a SelfUpdateEvent (SE) is scheduled to a 
future time, when enough space to hold the vehicle in 
the outgoing road segment lane is available. This future 
time, tx , can be approximated to the departure time of 
the second vehicle at the farthest end of the 
corresponding outgoing road segment lane, which 
ensures spatial availability to hold at least one vehicle 
in the road-segment lane. 

Thus, by maintaining the additional limbo-list and 
with SE, we were able to emulate congestion in the 
road-network and as expected, better runtime 

performance was also observed. Figure 5 gives the 
altered algorithm to process VE, to accommodate 
modeling the congestion behavior in the road-network. 
Absence of the first step, i.e. the insertion of vehicle 
into limbo-list, is the only change in the algorithm used 
to process SE arrival. 

Memory management 
As described above each road-segment maintains a 

list to keep track of the events arrived and departed 
from that road-segment, we refer to this list as the 
EventHistory. As the simulation progresses with time, 
the length of the EventHistory grows. This not only 
increases the memory requirement for the simulation 
run but also degrades the performance, since the list is 
used for calculating “number of vehicles in road-
segment” that results in a search with O(n) complexity. 
Hence, constant cleanup of the EventHistory is needed 
to overcome the memory and performance 
inefficiencies. To ensure safe cleanup, only the 
elements with vehicle arrival time less than the safe 
global time (Lower Bound on Time Stamp – LBTS) 
are purged.  

(a) Using a periodic timer 
If we were to use a timer that would schedule an 

event periodically to clear the EventHistory, it would 
solve the performance as well as memory problem. 
But, events for clearing the EventHistory will be 
generated even when the event history is not big 
enough.  Also an inactive intersection (to which 
vehicles haven’t arrived yet) ends up needlessly 
performing this clearing operation. Hence, we generate 
and process reclaimable events while using a timer; 
and this in-turn affects the performance of the 
simulation. 

(b) Keeping track of length of the EventHistory 
Another strategy is to keep track of the length of 

EventHistory to initiate the cleanup process. This 
strategy works fine but poses a problem when the 
vehicle arrival rate is very high. In this case, each 
arrival event looks into the length of EventHistory and 
schedules a cleanup event. If a check on previously 
initiated clean-up process is not made before initiating 
a new process, redundant events are created and 
processed. This would go on until the point where the 
very first arrival actually completes the cleanup 
process and updates the length of the EventHistory. 

This problem of redundant event generation is 
overcome by making the scheduling of the clean-up 
process mutually exclusive, i.e., if an event has already 
scheduled a cleanup process, no other event would 
schedule one, until the initiated one completes. By 
doing so, we reduce many redundant events thus 
enhancing the runtime performance of the simulation 



model. The cleanup process of EventHistory in 
SCATTER-OPT is realized through an event type 
called FlushEvent. 

3 Synchronization 
Broadly speaking, multiple synchronization 

techniques exist to perform parallel execution, namely, 
conservative and optimistic. SCATTER-OPT is 
currently tested to work in both conservative and 
optimistic synchronization modes. Reverse 
computation technique is used to realize rollback in 
optimistic synchronization. 

3.1 Reverse Computation (RC) 
Optimistic federates differ from their conservative 

counterparts in that they do not discard events after 
processing them. Instead they keep the events around, 
and also maintain copies of simulation states before 
modifying them as part of event processing. Since 
optimistic federates do not rely on lookahead, they 
execute their events without blocking for safety. Thus a 
federate will have to roll back its computation if/when 
it later receives events whose timestamp is less than its 
current simulation time.  There are two main parts to 
such rollback (1) undo local computation by restoring 
the state prior to erroneous event processing (2) undo 
all events erroneously sent to other federates. While the 
parallel simulation library performs these rollbacks at 
the library level, reversal code to restore the 
application data structure state, in the event of rollback, 
needs to be written and provided by the application. 

3.2 RC Algorithm 
To recap from previous section, four events are 

used to realize the transportation model.   They are: 
CreateEvent (CE), VehicleEvent (VE), 
SelfUpdateEvent (SE) and FlushEvent (FE). The FEs 
are utilized for optimization purposes in a safe manner 
(reclaiming memory that strictly belongs to past that 
cannot be rolled back) and hence do not impact the 
correctness of simulation, hence the reversal of FE can 
be ignored. The CE is used to generate the traffic at the 
specified rate.  The only state variable they alter is the 
VehicleID counter, which is incremented as vehicles 
are generated. Rollback of a CE involves decrementing 
this counter.  In the experimental road network that we 
have considered, source intersections do not have any 
incoming events from any other intersections, thus 
eliminating the possibility of causality error 
occurrences.  Hence, in this experimental setup CE 
reversal code is never utilized. 

The VE and the SE events are responsible for 
routing the vehicles from one intersection to another.  
Doing so, they alter the states of EventHistory and 

limbo-list data-structures at the application level.  
Hence, during rollback, reversal of the data structures 
to their previous states is necessary for correct 
rollback.  Further, as discussed earlier, both VE and SE 
processing use the same algorithm; the only difference 
being that the former inserts the arriving vehicle into 
the limbo-list. 

In the following, the reversal procedures for VE 
and SE processing are similar, unless otherwise noted. 

Each VEi  may generate one or manyVEij , 
(where j=1,2,3,…) and, may or may not create an SE, 
based on the congestion in the network.  Hence, for 
reversal we should first find out if VEs were generated 
and if so, how many were generated. 

VehicleEvent (VE) /SelfUpdateEvent(SE) 
If(VEs generated) 
{ 
  loop(Number of generated VEs){ 
    - remove event-record from EventHistory 
    - insert Veh into limbo-list (from front) 
  } 
  if (this event is VE){ 
    - remove last Veh. from limbo-list 
  } 
} 

Figure 6: Algorithm for application level VehicleEvent 
and SelfUpdateEvent reversal 

 
We know that when an intersection generates an 

out-going VE, it records that event in the EventHistory 
list. Hence, after finding the number of VEs generated, 
we need to remove the record for each event generated 
in the EventHistory list.  Further, the vehicle object in 
that VE should be extracted and pushed back into 
limbo-list from the end through which it was removed.  
While, the SE reversal procedure completes here, the 
VE reversal goes a step further and removes only the 
last vehicle that was inserted in the limbo-list to 
complete its reversal procedure. This takes back the 
intersection road segment to the correct state prior to 
the processing of this VE. 

After arriving at the reversal algorithm, 
implementation was found to be a challenge with the 
reverse execution interface.  The reverse computation 
algorithm in the previous sub-section needs to identify 
the events that generated specific events and extract 
objects from the generated events.  Modifications to 
the library had to be made to expose the event’s causal 
list data structure, so that the application could iterate 
through the copy of events sent, to find the necessary 
events. 



4 Performance Study 
4.1 Sequential Performance 
Experimental Setup 

In this section, we refer to road networks to be 
grids of size N×N.  The experimental setup contains 
N×N intersections, with 2×N sources injecting traffic 
from either sides (right and left), to 8 destinations 
equally distributed on the top and bottom ends of the 
grid. Hence, our N×N grid scenario consists of 
(N×N)+(2×N)+8 intersections.  Figure 7 shows a 
10×10 road network grid, containing 10 sources on left 
and right, and 4 destinations at top and bottom, in 
addition to 100 interior intersections. 

 
Figure 7: 10×10 road-network grid (128 intersections) 

snapshot of OREMS graphical interface 

 
Also, the traffic lights are specified with an 8-

second cycle time.  This cycle time is equally shared 
between GREEN and RED time periods.  The 
intersection transit time is set to 1 second. 

SCATTER-OPT, tested sequentially for getting an 
idea of its raw sequential speed. To make sure it is 
close to the best sequential performance available 
today, it is compared with OREMS (Evacuation 
Modeling System). OREMS is an aggregate, fluid-
based model, very fast in computing and is used in 
actual emergency operations. 

Road networks of dimension 10×10, 12×12, 
14×14 and 16×16 were used for comparison.  The 
intersections are connected to their neighbors through 
single-lane road-segments of length 1600 meters (1 
mile).  The lengths of the road-segments are same 
throughout the test network, except for the road 
segments connecting the sources and sinks, which are 
of length 10 meters.  For each road network, sources 
generate traffic at a rate r vehicles/hour/destination, 
where, r = 400, 500, 600, 800 and 900.  Larger grid 
sizes of the network were not considered for study 
since OREMS input format prevents it from executing 
beyond a 16×16-sized grid. 

Hardware 
The sequential performance comparison of 

SCATTER-OPT with OREMS was carried out on an 
Intel® Core™2 Duo CPU T7700 at 2.4 GHz, with 
2GB of memory running Microsoft Windows XP 
Professional SP2. 

Benchmarks 
Simulation runtime in seconds to evacuate traffic 

generated at rates as specified in the experimental 
setup is plotted against number of vehicles evacuated 
for both OREMS and SCATTER-OPT. 
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Figure 8(a): Simulation runtime of OREMS and 

SCATTER-OPT against number of vehicles evacuated 
plot, for 10×10 grid 
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Figure 8(b): Simulation runtime of OREMS and 

SCATTER-OPT against number of vehicles evacuated 
plot, for 16×16 grid 

 
As seen from figure 8, in both 10×10 and 16×16 

networks, the discrete event-based SCATTER-OPT 
model runtime is smaller than that of OREMS at lower 
input traffic rate, but SCATTER-OPT’ runtime slowly 
overtakes OREMS’ as the input traffic rate increases. 
Similar pattern is observed for grid sizes 12×12 and 
14×14.  However, the increase in simulation time of 
SCATTER-OPT on larger networks is negligible when 
compared to runtimes of equivalent high-fidelity 



(vehicle-level) simulators. In separate experiments, we 
benchmarked the same networks with MITSIM and 
TRANSIMS and obtained runtimes that were at least 
one order of magnitude higher (i.e., simulations were 
10× slower than OREMS and SCATTER-OPT). 

4.2 Parallel Performance 
Absolute Speedup 

To demonstrate the absolute speedup of 
SCATTER-OPT, we present the simulation runtime 
comparison of OREMS and SCATTER-OPT (with one 
and two processors) on the same 16×16 road network 
scenario considered for sequential runs in Figure 9. 
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Figure 9: Simulation runtime of OREMS and 

SCATTER-OPT (using one and two processors) 
against number of vehicles evacuated, for 16×16 grid 

 
The serial and parallel SCATTER-OPT runs were 

carried out again on the same hardware, but running 
Mac OS X 10.4.11 operating system. Note that the 
runtimes of single processor runs carried out on Mac 
OS X in figure 9 closely correspond to the one taken 
on Windows XP in figure 8(b). The reduction in the 
simulation runtime with the increase in the number of 
processors, demonstrate the absolute gain in speedup 
of SCATTER-OPT. 

Larger Road-network Scenario 
Previously, we considered a constant time of 1 

second as the time required for a vehicle to cross any 
intersection (the space that connects road-segments).  
This is used as the minimum lookahead time period in 
conservative synchronization and this time period is 
constant across all intersections. Realistically, the 
transit time to cross the intersection space could be 
either lesser than or greater than 1 second, but is never 
constant.  In conservative mode, if the lookahead is 
large, it is good for the runtime performance since the 
simulation can take long strides.  On the other hand, 
smaller values of lookahead could make the simulation 
run slower. The simulation performance would be 

worsened for a broad lookahead range, since the 
minima of these lookahead values is taken into 
consideration while calculating the global virtual time. 
With the vehicular traffic modeling, we are bound to 
get a range of lookahead values. Hence, the study of 
the performance of the simulation model with decrease 
in lookahead becomes significant for both conservative 
and optimistic synchronization based models. 

 
Figure 10: Distribution of intersections across 

processors or federates 

 
Experimental Setup 

The experimental setup contains N×N 
intersections, with 2×N sources injecting traffic from 
either sides (right and left), to 2×N destinations equally 
distributed on the top and bottom ends of the grid. 
Hence, our N×N grid scenario consists of 
(N×N)+(2×N)+(2×N) intersections. For the optimistic 
and conservative performance comparison purposes, 
we have considered a 64×64 network grid, with 128 
sources generating traffic at 400 
vehicles/hour/destination rate, toward 128 destinations.  

Event Load Distribution 
The input network grid is divided into blocks of 

rows, and intersections (including the sources), falling 
in each block run on one federate, the destination 
intersections are equally divided among all federates.  
For example: a 64×64 road-network grid, when divided 
among two federates, each federate gets 64×32 
intersections and 64 sources (32 left and 32 right) and 
64 (32 top and 32 bottom) sinks. Figure 10, shows the 
distribution of intersections among two federates.  

Road-segment Length Fixation 
It was observed as the distance between the 

intersections increases, the number of rollbacks 
reduced significantly.  Further, no rollbacks were 
recorded when the road-segment length was 1600 
meters.  Hence, to study the effect of reverse 
computing on the system, the distance between all the 
intersections was fixed to 1000 meters (1 kilometer). 



Hardware 
The parallel runs to study the conservative and 

optimistic runtime performances were carried out on 
Oak Ridge Institutional Clusters (OIC). The OIC 
cluster consists of a unique bladed architecture from 
Ciara Technologies called VXRACK.  The VXRACK 
contains 80 usable nodes.  Each node has Dual Intel® 
3.4GHz Xeon EM64T processors, 4GB of memory and 
dual Gigabit Ethernet interconnects. All nodes run Red 
Hat Linux Enterprise WS v4 operating system. 

Benchmarks 
Here, we discuss the performance of the model 

that simulates the evacuation of around 6.5 million 
vehicles generated from 128 sources, through 4096 
intersections toward 128 destinations. Figure 11(a) and 
11(b) presents observed simulation runtimes (in hours) 
for parallel runs across number of processors used. The 
two curves seen in these figures pertain to the runtimes 
of the parallel runs using conservative and optimistic 
synchronization. 

With a lookahead of 1second, a higher runtime in 
the model with optimistic synchronization is seen and 
the conservative mode performs better than optimistic. 
The degradation in the performance of the model using 
optimistic synchronization is attributed to the reversals. 
The performance gain expected due to optimistic 
synchronization is lost due to the higher number (of 
order 106) of reversals. However, with 32 processors 
the runtime of the optimistic curve significantly 
recedes due to very small reversal counts. The bar 
graph in figure11(c) shows the reversal counts 
recorded for simulation runs with varying number of 
processors. Note that the undo counts plotted here 
correspond to VE and SE reversals only.  The FE 
reversal-count is not considered, since no code is 
invoked for its reversal. 

As we reduce the lookahead by a factor of 10, the 
simulation runtime curve for conservative mode starts 
quickly increasing with increase in number of 
processors; this can be attributed to the frequent 
synchronization requirement. With no reversals during 
optimistic synchronization the simulation runtime 
decreases with increase in the number of processors. 

From figure 11(b), we see that with a lookahead of 
0.1, the 16 processors simulation runtime for optimistic 
mode is around 14 hours; the corresponding 
conservative mode value is around 18 hours that 
increased from its lowest of 16.5 hours with 8 
processors.  Hence, using optimistic mode a drop of 
around 2.5 hours (15%) is achieved using 16 
processors over the best simulation conservative mode 
runtime, when the lookahead is 0.1. Similar 

observation with a lookahead of 0.1 can also be made 
in 128×128 grid scenario that models the evacuation of 
around 6.5 million vehicles from 256 sources toward 
256 destinations through 16,384 intersections, as 
shown in figure 12. Thus, in modeling vehicular traffic 
network, where the lookahead is not fixed, optimistic 
synchronization (reverse-computing) provides a better 
promise for timely simulation results. 

64x64 grid, 400 vehs/hr/dest, lookahead=1
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Figure 11(a): Simulation runtime against number of 

processors, with lookahead 1 

64x64 grid, 400 vehs/hr/dest, lookahead=0.1
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Figure 11(b): Simulation runtime against number of 

processors, with lookahead 0.1 

Reversal counts, 64x64 grid, 400 vehs/hr/dest, lookahead=1
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Reversal counts, 64x64 grid, 400 vehs/hr/dest, lookahead=1  
Figure 11(c): Number of reversals against number of 

processors, in 64×64 grid when the lookahead is 1 
 



128x128 grid, 100 vehs/hr/dest, lookahead=0.1
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Figure 12: Simulation runtime against number of 

processors, with lookahead of 0.1 on a 128×128 grid 

 
The simulation results in both optimistic and 

conservative execution have been verified to be correct 
and evacuation time results are repeatable, for both 
sequential and parallel runs (evacuation time shows 
negligible variation among runs with varying number 
of processors, varying flush event periods, and so on). 

5 Summary and Conclusion 
In this paper, we discussed the design, 

development and performance of a parallel discrete 
event vehicular traffic simulation model.  We ensured 
its sequential performance compares to the best of the 
available transportation model (OREMS). We 
incorporated the reverse-computing based optimistic 
synchronization for the PDES model. We compared 
the parallel performance of models using optimistic 
and conservative synchronization techniques fixing the 
input traffic generation rate and varying lookahead 
values.  To our knowledge, this is the first attempt at 
applying optimistic simulation techniques to parallel 
vehicular network simulation.  The perfectly reversible 
formulation of the model is also novel that enables 
reverse computation.  Additionally, the performance 
improvement is challenging due to the requirement of 
low parallel computation overhead needed to compare 
favorably with an extant, fast sequential simulator 
(OREMS).  In that vein, the absolute speedup (i.e., 
speedup compared to OREMS), rather than self-
relative speedup (speedup compared to SCATTER-
OPT on 1-processor) is an additional strength. 

5.1 Future Work 
While current implementation is limited to a single 

lane per direction per road segment, support for 
multiple lanes needs to be added.  Performance on 
generalized networks remains to be evaluated, although 
we expect the challenges to only lie in optimizing 
intersection-to-processor mapping for performance; the 

software is capable of delivering correct results with 
any arbitrary assignment.  Performance of rollback 
using reverse computation could be compared to that 
of state saving. 

An important direction we are currently pursuing 
is in testing the system with much larger networks than 
are presently used in existing systems such as OREMS.  
The current limitation is due to the input network 
format of OREMS, which limits the size of the 
networks to be with in 100×100.  The data structures 
and the parallel simulation library do not have any non-
scalable components as such; hence we believe it will 
scale well to larger networks (e.g., 1000×1000). 
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