
Parallel Vehicular Traffic Simulation using Reverse Computation-based
Optimistic Execution

Srikanth B. Yoginath and Kalyan S. Perumalla
yoginathsb@ornl.gov, perumallaks@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Abstract
Vehicular traffic simulations are useful in

applications such as emergency management and
homeland security planning tools. High speed of
traffic simulations translates directly to speed of
response and level of resilience in those applications.
Here, a parallel traffic simulation approach is
presented that is aimed at reducing the time for
simulating emergency vehicular traffic scenarios.
Three unique aspects of this effort are: (1) exploration
of optimistic simulation applied to vehicular traffic
simulation (2) addressing reverse computation
challenges specific to optimistic vehicular traffic
simulation (3) achieving absolute (as opposed to self-
relative) speedup with a sequential speed equal to that
of a fast, de facto standard sequential simulator for
emergency traffic. The design and development of the
parallel simulation system is presented, along with a
performance study that demonstrates excellent
sequential performance as well as parallel
performance.

1 Introduction
In applications such as emergency or evacuation

planning[1, 2], a higher speed of simulation for traffic
models translates into faster determination of critical
metrics such as expected evacuation time. While
sequential simulators exist for traffic simulation,
scalable parallel simulations are few. Among the
existing parallel traffic simulators, parallelism is
realized either by functional parallelism[3]
(parallelizing the steps such as trip planning,
configuration generation, partitioning, etc.), or by
synchronous parallel execution (time-stepped
models)[4-7], or both. Our focus is to combine the
speed of discrete event models with parallel execution
of the actual simulation runtime. Additionally, despite
speed concerns, our efforts are in staying at higher
fidelity with entity-level models, as opposed to
resorting to aggregate techniques such as fluid or
network flow models.

With advances in parallel discrete event simulation
modeling and the availability of multi-processor
hardware, high-speed simulation of high fidelity
models is appearing to be possible now. Based on this
premise, we have designed and developed a parallel
vehicular traffic simulation model called SCATTER-
OPT, standing for an optimistic-parallel version of the
SCATTER simulation system[8]. This simulator is
capable of using either conservative or optimistic
synchronization when executed on parallel platforms.
Importantly, the parallel execution speedup achieved
by this simulator is over and above some of the best
performance achievable sequentially by vehicular
traffic simulators today. The performance gains
reported here, thus, are absolute and not simply self-
relative.

In the rest of the article, the design, development
and performance of SCATTER-OPT is described. This
is started in Section 2 with the design overview of the
transportation model, documenting the assumptions
made in modeling the various components of the road
network system. This is followed by a brief discussion
on our parallelization approach. Then, we dwell into
the specifics of the parallel simulation model
discussing the realization of various vehicular traffic
system characteristics like, congestion, routing etc. In
Section 3, the reverse computing algorithms are
discussed that are used for realizing optimistic
synchronization. Section 4 is dedicated to a
performance study, where first the sequential
simulation runtime performance is compared with that
of a de facto standard emergency management system
called the Oak Ridge Emergency Management System
(OREMS) [1, 9]. This is followed by a parallel
performance study of SCATTER-OPT, evaluating both
optimistic and conservative modes of synchronization
for parallel execution. Section 5 summarizes our
current work and alludes to future directions.

2 SCATTER-OPT System
Our simulation model is implemented in a

simulator called SCATTER-OPT, which includes a
discrete event model, and a parallel execution

framework for vehicular networks. Parallel discrete
event simulation of vehicular network operation
involves the development of a discrete-event model of
the system coupled with a careful partitioning of the
model on to multiple processors for optimum run-time
performance. In our simulation model, the road
network is modeled as a graph, in which road segments
connect intersections. Each road segment is modeled
with a few physical attributes (number of lanes and
length of road segment), kinetic specifications (speed
limit) and controllers (traffic lights). The traffic lights
are synchronized in their operation and have a fixed
period of GREEN time (when the vehicles are allowed
to enter the road-segment) and a fixed period of RED
time (when the vehicles are not allowed to enter).
Traffic lights control the entry of vehicles for every
road segment of the simulated road network.

An input file is used to specify parameters such as
the GREEN time period and the RED time period,
along with an initial-offset (i.e. the wait time to the
first GREEN period at simulation start time). Each
road-segment in the simulated transportation network
contains this information.

An intersection, a point at which the road
segments connect to each other, is considered as an
indivisible, independent processing unit for parallel
computing purposes. Every intersection is capable of
generating new vehicle instances that are distinguished
from each other by their unique identifiers. Each
generated vehicle has its physical attributes (e.g.,
length of vehicle) and kinetic attributes (e.g., travel
velocity and acceleration), in addition to its source and
destination intersection information for its current trip.
Every intersection in the road-network is capable of
routing vehicles to their next hop toward their
individual destinations.

A VehicleEvent (VE) signifies the arrival of a
vehicle from one intersection to another. Events of this
type are processed by each intersection to generate
additional VEs that act as arrival events on this
intersection’s neighboring intersections. The
dynamically chosen neighboring intersection is the
next hop node toward the destination of the vehicle
contained in a VE.

Information is provided in an input file about the
road network layout (that encompasses intersection co-
ordinates, connecting road-segment characteristics),
traffic light information, source and destination
intersections, traffic generation rate etc. This
information is used to set up and initialize the
simulation process.

2.1 Parallel Decomposition
We use a simulation library to realize both

conservative and reverse-computing based optimistic
parallel discrete event simulation model. The library is
a general-purpose parallel/distributed simulation
kernel, which provides programming interfaces to
develop models that could run on one or more
machines. During parallel simulation, one instance of
the application executable per processor is run on
requested number of processors. Each processor can
host multiple simulation logical processes. Logical
processes are autonomous in the sense they hold and
manage their own events and can be optimistic or
conservative in their event processing. Efficient
communication and virtual time synchronization are
also provided across processors in shared and/or
distributed memory platforms.

A challenge involved in any parallel discrete event
model involves the issue of how to split the discrete
event road-network model among the parallel
processors. An efficient partitioning of the application
process across different processors during parallel
computation fetches better performance. Efficient
partitioning involves recognition of modules of an
application process that could run concurrently, with
minimal, infrequent interaction between each other. In
particular, zero lookahead interaction is to be avoided
for parallel simulation efficiency.

Every lane in road-segment is a spatial resource
that is occupied by vehicles. The vehicles infringe the
road-segment lane space based on their physical
dimensions. A traffic light for every road-segment
controls the periodic entry of the vehicle into the
corresponding road-segment lane. By having a traffic
light for every road-segment, the periodic entry of
vehicles into each road-segment lane is ensured.

Figure 1: Outgoing road-segment with 2 lanes and a

traffic signal component

We make an intersection (node) in the input road-

network graph as a logical process. This would require
grouping the road-segments connecting to each other
via an intersection. There is a choice on how the
segments are mapped relative to their intersection(s).
Either incoming road-segments or out-going road-
segment can be included as part of an intersection
logical process. The former approach, namely,
incoming segments mapped to their destination
intersections, is used in the SCATTER tool. We use

the alternative approach in SCATTER-OPT, namely,
outgoing segments mapped to same logical process as
their source intersection. Thus, in SCATTER-OPT we
consider the node of the road-network graph along
with its outgoing road-segments as a logical process.
Each intersection in the transportation model is a
collection of outgoing segments plus the actual
intersection space itself.

Figure 2: The signal controls the entry of vehicles into

the road-segment

2.2 System Implementation
Traffic Generation

The SCATTER-OPT input file contains the
information of the rate at which vehicles traveling to a
particular destination to be generated. Note that a rate,
rather than individual vehicle identity, is specified in
the file. This is for convenience only; each vehicle is
individually represented and simulated autonomously
(e.g., a single vehicle could get stalled at a traffic
light), and no aggregation is performed. Note also that
the rate is on a per flow-basis, the rate can be different
across different flows. Any desired traffic pattern can
thus be generated in general.

A CreateEvent (CE) type is used for the purpose
of creating a vehicle at each intersection based on the
rate specified in the input file. A CE, when processed,
creates a VE that is rescheduled on the same
intersection, and also creates another CE that is
scheduled to some random time dt in future, to
continue chaining generation of vehicles at specified
input rate. The processing of VE by an intersection
remains same, regardless of its origin.

CreateEvent:
- Create VE at this intersection
- Schedule it to the same intersection at (t +
lookahead)
- Create and schedule CE at (t +dt) to this intersection

Figure 3: CreateEvent processing block

Routing
After generation of a vehicle, each intersection

ensures that a “vehicle-following” scheme is correctly
followed. A vehicle-following scheme ensures
vehicles follow first-in-first-out (FIFO) scheme while
following their individual speeds and accelerations to
the farthest possible distance. Routing of each vehicle
toward its destination is based on Dijkstra’s shortest
path algorithm. The Boost’s Graph Library (BGL) is
used for the purpose of computing shortest paths. The
road-network of the input file is converted into a BGL
graph. For every node the shortest path to every other
node in the network is determined, from which a vector
of parents for each node is obtained. Each intersection
uses this vector recursively to determine the next hop
intersection of the vehicle toward its destination. Based
on the next hop, the intersection determines out-going
road-segment on which the incoming vehicle is routed.

Whenever a vehicle enters the intersection, the
departure time (td) is calculated using transit time (tt)
and the vehicle’s wait time at the traffic signal (tw):
td = tt + tw .

(a) Transit time (tt):
Transit time is calculated by solving the quadratic

equation from the Newton’s law of motion for time t. It
takes the velocity and acceleration of the given vehicle
into consideration, S = ut + 1

2 at2 , where, S is the
distance traveled (road-segment length), u is the
velocity of the vehicle; a is the acceleration of the
vehicle, and t is the time to traverse the road-segment
length. This value for departure time is retained only if
the calculated value is greater than the departure time
of the vehicle ahead of this vehicle. The departure
time of the vehicle ahead of this could be obtained by
looking into the EventHistory list held by the road-
segment connecting to the vehicle’s next-hop
intersection.

This transit time has to be reconciled with the
vehicle-following constraints, namely, slow the vehicle
down if one or more vehicles ahead of this vehicle
prevent this vehicle from reaching at the computed
transit time. A sum of departure time of the vehicle
ahead (tdva) and time needed to cover a distance of
vehicle length (vlen) at a speed specified by speed limit
(s), is used as the departure time to ensure the vehicle
following. td = tdva + (vlen /s) .

 (b) Wait time at the Traffic signal (tw)
As mentioned earlier every road-segment has

GREEN time period during which it allows the flow of
traffic through it and RED time period during which no
vehicle is allowed to enter the road-segment. At any

given simulation time, every intersection is capable of
knowing the GREEN time period or RED time period
of any road-segments in the road-network and hence
the wait period on traffic signal for a particular vehicle
is calculated determining when it enters any road-
segment. The departure time for every vehicle is then
calculated as: td = tt + tw .

Each road-segment lane maintains a list named
EventHistory that keeps track of the arrival_time,
departure_time and vehicle_id of every vehicle that
entered and left the intersection.

VehicleEvent:
If(enough space to hold veh in road-segment)
{
 - compute transit time (tt)
 - compute wait time (tw)
 - calculate departure time (td)
 - send vehicle to next hop intersection at td
 - record the event in EventHistory
}

Figure 4: VehicleEvent processing block

Perfect Reversibility Considerations

In what follows, an overriding consideration
behind the modeling approaches and consequential
data structures is to enable perfectly reversible
computation of state changes.

Congestion
As mentioned earlier every road-segment keeps

track of incoming and out-going vehicle events in an
EventList. This is referred by the intersection to
determine the occupancy of any of its road-segments at
a given time. On vehicle arrival, the intersection looks
into the occupancy of the road-segment that connects
to the vehicle’s next-hop intersection. The vehicle is
scheduled to depart the intersection only if enough
space in the road-segment is ascertained to exist at that
point of time. On the other hand if the associated road-
segment is completely occupied, then a congestion
behavior in the road-network is emulated. To realize
this, the vehicle is held in the current intersection as
long as enough space is available in the corresponding
out-going road-segment. The additional time delay
(time spent in waiting for availability of enough space)
that the vehicle experiences in the intersection before
being scheduled for departure directly corresponds to
the congestion in the road network. In the following
paragraphs we discuss different approaches that we
have implemented to realize this behavior.

(a) Simple rescheduling
In this approach, on detecting non-availability of

space in the road-segment the arriving vehicle is re-
scheduled to the same road-segment at the next
GREEN time period (when this road-segment allows
vehicle to pass through it). With this simple technique
the vehicle is (logically) retained in the intersection as
long as there is enough space in the outgoing road
segment to accommodate it, also ensuring that the
vehicle leaves the intersection in the order of its
arrival.

This technique works well for minor congestion in
the transportation network. However, if the arrival rate
of the vehicles is far greater than the departure rate,
then the simulation crawls toward its end. This is due
to the need for regular polling required for
rescheduling the departures; as a result of this polling,
every vehicle suffers multiple reschedules on a single
intersection, this in-turn gives rise to equivalent
number of events.

(b) Rescheduling with initial time adjustment
Needless polling and rescheduling of VEs

degrades the performance in the previous strategy. If it
were possible to ascertain the number of vehicles “in
limbo” that are ahead of any new arriving vehicle, we
can calculate the time taken for that many vehicles to
depart and schedule the vehicle arrival at that time in
future. To this end, we maintain a variable named
nlimbo that keeps track of the number of limbo
vehicles in an intersection that have logically moved
on beyond the road-segment. This variable is used to
calculate the new departure time as

_ nlimbo (/)new d dt vlen s t= × + , where tnew _ d is

the new departure time calculated;vlen is the average
vehicle length; s, is the speed limit on the road-
segment and td is the departure time calculated based
on transit time and wait time.

However, the nlimbo variable could not be used
for rescheduling the already rescheduled events, since
with this variable the order of arrival of vehicles is not
taken into consideration. Hence, the time calculated
using the nlimbo variable could be used only to
schedule the newly arrived vehicles from peer
intersections and not to reschedule the vehicles
withheld previously due to congestion. While we
could get better speed-up pushing the initial re-
scheduling time of the arriving vehicle much farther in
future, the later schedules of the same vehicle would be
of constant time; hence this suffers from the same
problem of the former model. Better run-time
performance could be achieved for smaller periods of
congestion, but for longer periods of congestion the

run-time performance would be similar to the previous
model.

 (c) Using a “limbo list”
The best performance is obtained by keeping track

of more information, namely, by maintaining a list
(limbo-list) instead of a single nlimbo variable. Using
this scheme, we were able obtain a faster simulation.
The FIFO limbo-list preserves the order of arrival and
obviates rescheduling congested vehicle events on the
same intersection. Whenever a new vehicle arrives at
the intersection, it is put into the limbo-list. The
intersection ensures that enough space in the outgoing
road segment is available before removing the vehicle
from the limbo-list. If enough space is available, the
intersection schedules the vehicle at the end of the
limbo-list to ensure the FIFO order in traffic flow.

VehicleEvent:
- Insert the incoming vehicle in limbo-list
While (limbo-list not empty)
{
 if (space for veh in road-segment){
 - get the first veh from limbo-list
 - compute transit time(tt)
 - compute wait time (tw).
 - calculate departure time (td)
 - send VE to next hop intersection at td
 - record the event in EventHistory
 } else{
 - create a SelfUpdateEvent (SE)
 - schedule SE at tx
 - break from loop
 }
}

Figure 5: Altered VehicleEvent processing algorithm to
accommodate congestion behavior

If enough space to hold the vehicle is not available

on the outgoing road segment at that point of time, the
vehicle is retained in the limbo-list. The removal of the
vehicle from the limbo-list should be dependent on the
availability of space on the out-going road-segment. To
ensure this, a SelfUpdateEvent (SE) is scheduled to a
future time, when enough space to hold the vehicle in
the outgoing road segment lane is available. This future
time, tx , can be approximated to the departure time of
the second vehicle at the farthest end of the
corresponding outgoing road segment lane, which
ensures spatial availability to hold at least one vehicle
in the road-segment lane.

Thus, by maintaining the additional limbo-list and
with SE, we were able to emulate congestion in the
road-network and as expected, better runtime

performance was also observed. Figure 5 gives the
altered algorithm to process VE, to accommodate
modeling the congestion behavior in the road-network.
Absence of the first step, i.e. the insertion of vehicle
into limbo-list, is the only change in the algorithm used
to process SE arrival.

Memory management
As described above each road-segment maintains a

list to keep track of the events arrived and departed
from that road-segment, we refer to this list as the
EventHistory. As the simulation progresses with time,
the length of the EventHistory grows. This not only
increases the memory requirement for the simulation
run but also degrades the performance, since the list is
used for calculating “number of vehicles in road-
segment” that results in a search with O(n) complexity.
Hence, constant cleanup of the EventHistory is needed
to overcome the memory and performance
inefficiencies. To ensure safe cleanup, only the
elements with vehicle arrival time less than the safe
global time (Lower Bound on Time Stamp – LBTS)
are purged.

(a) Using a periodic timer
If we were to use a timer that would schedule an

event periodically to clear the EventHistory, it would
solve the performance as well as memory problem.
But, events for clearing the EventHistory will be
generated even when the event history is not big
enough. Also an inactive intersection (to which
vehicles haven’t arrived yet) ends up needlessly
performing this clearing operation. Hence, we generate
and process reclaimable events while using a timer;
and this in-turn affects the performance of the
simulation.

(b) Keeping track of length of the EventHistory
Another strategy is to keep track of the length of

EventHistory to initiate the cleanup process. This
strategy works fine but poses a problem when the
vehicle arrival rate is very high. In this case, each
arrival event looks into the length of EventHistory and
schedules a cleanup event. If a check on previously
initiated clean-up process is not made before initiating
a new process, redundant events are created and
processed. This would go on until the point where the
very first arrival actually completes the cleanup
process and updates the length of the EventHistory.

This problem of redundant event generation is
overcome by making the scheduling of the clean-up
process mutually exclusive, i.e., if an event has already
scheduled a cleanup process, no other event would
schedule one, until the initiated one completes. By
doing so, we reduce many redundant events thus
enhancing the runtime performance of the simulation

model. The cleanup process of EventHistory in
SCATTER-OPT is realized through an event type
called FlushEvent.

3 Synchronization
Broadly speaking, multiple synchronization

techniques exist to perform parallel execution, namely,
conservative and optimistic. SCATTER-OPT is
currently tested to work in both conservative and
optimistic synchronization modes. Reverse
computation technique is used to realize rollback in
optimistic synchronization.

3.1 Reverse Computation (RC)
Optimistic federates differ from their conservative

counterparts in that they do not discard events after
processing them. Instead they keep the events around,
and also maintain copies of simulation states before
modifying them as part of event processing. Since
optimistic federates do not rely on lookahead, they
execute their events without blocking for safety. Thus a
federate will have to roll back its computation if/when
it later receives events whose timestamp is less than its
current simulation time. There are two main parts to
such rollback (1) undo local computation by restoring
the state prior to erroneous event processing (2) undo
all events erroneously sent to other federates. While the
parallel simulation library performs these rollbacks at
the library level, reversal code to restore the
application data structure state, in the event of rollback,
needs to be written and provided by the application.

3.2 RC Algorithm
To recap from previous section, four events are

used to realize the transportation model. They are:
CreateEvent (CE), VehicleEvent (VE),
SelfUpdateEvent (SE) and FlushEvent (FE). The FEs
are utilized for optimization purposes in a safe manner
(reclaiming memory that strictly belongs to past that
cannot be rolled back) and hence do not impact the
correctness of simulation, hence the reversal of FE can
be ignored. The CE is used to generate the traffic at the
specified rate. The only state variable they alter is the
VehicleID counter, which is incremented as vehicles
are generated. Rollback of a CE involves decrementing
this counter. In the experimental road network that we
have considered, source intersections do not have any
incoming events from any other intersections, thus
eliminating the possibility of causality error
occurrences. Hence, in this experimental setup CE
reversal code is never utilized.

The VE and the SE events are responsible for
routing the vehicles from one intersection to another.
Doing so, they alter the states of EventHistory and

limbo-list data-structures at the application level.
Hence, during rollback, reversal of the data structures
to their previous states is necessary for correct
rollback. Further, as discussed earlier, both VE and SE
processing use the same algorithm; the only difference
being that the former inserts the arriving vehicle into
the limbo-list.

In the following, the reversal procedures for VE
and SE processing are similar, unless otherwise noted.

Each VEi may generate one or manyVEij ,
(where j=1,2,3,…) and, may or may not create an SE,
based on the congestion in the network. Hence, for
reversal we should first find out if VEs were generated
and if so, how many were generated.

VehicleEvent (VE) /SelfUpdateEvent(SE)
If(VEs generated)
{
 loop(Number of generated VEs){
 - remove event-record from EventHistory
 - insert Veh into limbo-list (from front)
 }
 if (this event is VE){
 - remove last Veh. from limbo-list
 }
}

Figure 6: Algorithm for application level VehicleEvent
and SelfUpdateEvent reversal

We know that when an intersection generates an

out-going VE, it records that event in the EventHistory
list. Hence, after finding the number of VEs generated,
we need to remove the record for each event generated
in the EventHistory list. Further, the vehicle object in
that VE should be extracted and pushed back into
limbo-list from the end through which it was removed.
While, the SE reversal procedure completes here, the
VE reversal goes a step further and removes only the
last vehicle that was inserted in the limbo-list to
complete its reversal procedure. This takes back the
intersection road segment to the correct state prior to
the processing of this VE.

After arriving at the reversal algorithm,
implementation was found to be a challenge with the
reverse execution interface. The reverse computation
algorithm in the previous sub-section needs to identify
the events that generated specific events and extract
objects from the generated events. Modifications to
the library had to be made to expose the event’s causal
list data structure, so that the application could iterate
through the copy of events sent, to find the necessary
events.

4 Performance Study
4.1 Sequential Performance
Experimental Setup

In this section, we refer to road networks to be
grids of size N×N. The experimental setup contains
N×N intersections, with 2×N sources injecting traffic
from either sides (right and left), to 8 destinations
equally distributed on the top and bottom ends of the
grid. Hence, our N×N grid scenario consists of
(N×N)+(2×N)+8 intersections. Figure 7 shows a
10×10 road network grid, containing 10 sources on left
and right, and 4 destinations at top and bottom, in
addition to 100 interior intersections.

Figure 7: 10×10 road-network grid (128 intersections)

snapshot of OREMS graphical interface

Also, the traffic lights are specified with an 8-

second cycle time. This cycle time is equally shared
between GREEN and RED time periods. The
intersection transit time is set to 1 second.

SCATTER-OPT, tested sequentially for getting an
idea of its raw sequential speed. To make sure it is
close to the best sequential performance available
today, it is compared with OREMS (Evacuation
Modeling System). OREMS is an aggregate, fluid-
based model, very fast in computing and is used in
actual emergency operations.

Road networks of dimension 10×10, 12×12,
14×14 and 16×16 were used for comparison. The
intersections are connected to their neighbors through
single-lane road-segments of length 1600 meters (1
mile). The lengths of the road-segments are same
throughout the test network, except for the road
segments connecting the sources and sinks, which are
of length 10 meters. For each road network, sources
generate traffic at a rate r vehicles/hour/destination,
where, r = 400, 500, 600, 800 and 900. Larger grid
sizes of the network were not considered for study
since OREMS input format prevents it from executing
beyond a 16×16-sized grid.

Hardware
The sequential performance comparison of

SCATTER-OPT with OREMS was carried out on an
Intel® Core™2 Duo CPU T7700 at 2.4 GHz, with
2GB of memory running Microsoft Windows XP
Professional SP2.

Benchmarks
Simulation runtime in seconds to evacuate traffic

generated at rates as specified in the experimental
setup is plotted against number of vehicles evacuated
for both OREMS and SCATTER-OPT.

0

5

10

15

20

25

60000 70000 80000 90000 100000 110000 120000 130000 140000 150000
Number of vehicles evacuated

S
im

ul
at

io
n

ru
nt

im
e

in
 s

ec
on

ds

OREMS-10X10 SCATTER-OPT-10X10

Figure 8(a): Simulation runtime of OREMS and

SCATTER-OPT against number of vehicles evacuated
plot, for 10×10 grid

0

10

20

30

40

50

60

70

80

100000 120000 140000 160000 180000 200000 220000 240000
Number of vehicles evacuated

Si
m

ul
at

io
n

ru
nt

im
e

in
 s

ec
on

ds

OREMS-16X16 SCATTER-OPT-16X16

Figure 8(b): Simulation runtime of OREMS and

SCATTER-OPT against number of vehicles evacuated
plot, for 16×16 grid

As seen from figure 8, in both 10×10 and 16×16

networks, the discrete event-based SCATTER-OPT
model runtime is smaller than that of OREMS at lower
input traffic rate, but SCATTER-OPT’ runtime slowly
overtakes OREMS’ as the input traffic rate increases.
Similar pattern is observed for grid sizes 12×12 and
14×14. However, the increase in simulation time of
SCATTER-OPT on larger networks is negligible when
compared to runtimes of equivalent high-fidelity

(vehicle-level) simulators. In separate experiments, we
benchmarked the same networks with MITSIM and
TRANSIMS and obtained runtimes that were at least
one order of magnitude higher (i.e., simulations were
10× slower than OREMS and SCATTER-OPT).

4.2 Parallel Performance
Absolute Speedup

To demonstrate the absolute speedup of
SCATTER-OPT, we present the simulation runtime
comparison of OREMS and SCATTER-OPT (with one
and two processors) on the same 16×16 road network
scenario considered for sequential runs in Figure 9.

0

10

20

30

40

50

60

70

80

102400 128000 153600 179200 204800 230400
Number of vehicles evacuated

Si
m

ul
at

io
n

ru
nt

im
e

in
 s

ec
on

ds

OREMS SCATTER-OPT-1Proc SCATTER-OPT-2Proc

Figure 9: Simulation runtime of OREMS and

SCATTER-OPT (using one and two processors)
against number of vehicles evacuated, for 16×16 grid

The serial and parallel SCATTER-OPT runs were

carried out again on the same hardware, but running
Mac OS X 10.4.11 operating system. Note that the
runtimes of single processor runs carried out on Mac
OS X in figure 9 closely correspond to the one taken
on Windows XP in figure 8(b). The reduction in the
simulation runtime with the increase in the number of
processors, demonstrate the absolute gain in speedup
of SCATTER-OPT.

Larger Road-network Scenario
Previously, we considered a constant time of 1

second as the time required for a vehicle to cross any
intersection (the space that connects road-segments).
This is used as the minimum lookahead time period in
conservative synchronization and this time period is
constant across all intersections. Realistically, the
transit time to cross the intersection space could be
either lesser than or greater than 1 second, but is never
constant. In conservative mode, if the lookahead is
large, it is good for the runtime performance since the
simulation can take long strides. On the other hand,
smaller values of lookahead could make the simulation
run slower. The simulation performance would be

worsened for a broad lookahead range, since the
minima of these lookahead values is taken into
consideration while calculating the global virtual time.
With the vehicular traffic modeling, we are bound to
get a range of lookahead values. Hence, the study of
the performance of the simulation model with decrease
in lookahead becomes significant for both conservative
and optimistic synchronization based models.

Figure 10: Distribution of intersections across

processors or federates

Experimental Setup

The experimental setup contains N×N
intersections, with 2×N sources injecting traffic from
either sides (right and left), to 2×N destinations equally
distributed on the top and bottom ends of the grid.
Hence, our N×N grid scenario consists of
(N×N)+(2×N)+(2×N) intersections. For the optimistic
and conservative performance comparison purposes,
we have considered a 64×64 network grid, with 128
sources generating traffic at 400
vehicles/hour/destination rate, toward 128 destinations.

Event Load Distribution
The input network grid is divided into blocks of

rows, and intersections (including the sources), falling
in each block run on one federate, the destination
intersections are equally divided among all federates.
For example: a 64×64 road-network grid, when divided
among two federates, each federate gets 64×32
intersections and 64 sources (32 left and 32 right) and
64 (32 top and 32 bottom) sinks. Figure 10, shows the
distribution of intersections among two federates.

Road-segment Length Fixation
It was observed as the distance between the

intersections increases, the number of rollbacks
reduced significantly. Further, no rollbacks were
recorded when the road-segment length was 1600
meters. Hence, to study the effect of reverse
computing on the system, the distance between all the
intersections was fixed to 1000 meters (1 kilometer).

Hardware
The parallel runs to study the conservative and

optimistic runtime performances were carried out on
Oak Ridge Institutional Clusters (OIC). The OIC
cluster consists of a unique bladed architecture from
Ciara Technologies called VXRACK. The VXRACK
contains 80 usable nodes. Each node has Dual Intel®
3.4GHz Xeon EM64T processors, 4GB of memory and
dual Gigabit Ethernet interconnects. All nodes run Red
Hat Linux Enterprise WS v4 operating system.

Benchmarks
Here, we discuss the performance of the model

that simulates the evacuation of around 6.5 million
vehicles generated from 128 sources, through 4096
intersections toward 128 destinations. Figure 11(a) and
11(b) presents observed simulation runtimes (in hours)
for parallel runs across number of processors used. The
two curves seen in these figures pertain to the runtimes
of the parallel runs using conservative and optimistic
synchronization.

With a lookahead of 1second, a higher runtime in
the model with optimistic synchronization is seen and
the conservative mode performs better than optimistic.
The degradation in the performance of the model using
optimistic synchronization is attributed to the reversals.
The performance gain expected due to optimistic
synchronization is lost due to the higher number (of
order 106) of reversals. However, with 32 processors
the runtime of the optimistic curve significantly
recedes due to very small reversal counts. The bar
graph in figure11(c) shows the reversal counts
recorded for simulation runs with varying number of
processors. Note that the undo counts plotted here
correspond to VE and SE reversals only. The FE
reversal-count is not considered, since no code is
invoked for its reversal.

As we reduce the lookahead by a factor of 10, the
simulation runtime curve for conservative mode starts
quickly increasing with increase in number of
processors; this can be attributed to the frequent
synchronization requirement. With no reversals during
optimistic synchronization the simulation runtime
decreases with increase in the number of processors.

From figure 11(b), we see that with a lookahead of
0.1, the 16 processors simulation runtime for optimistic
mode is around 14 hours; the corresponding
conservative mode value is around 18 hours that
increased from its lowest of 16.5 hours with 8
processors. Hence, using optimistic mode a drop of
around 2.5 hours (15%) is achieved using 16
processors over the best simulation conservative mode
runtime, when the lookahead is 0.1. Similar

observation with a lookahead of 0.1 can also be made
in 128×128 grid scenario that models the evacuation of
around 6.5 million vehicles from 256 sources toward
256 destinations through 16,384 intersections, as
shown in figure 12. Thus, in modeling vehicular traffic
network, where the lookahead is not fixed, optimistic
synchronization (reverse-computing) provides a better
promise for timely simulation results.

64x64 grid, 400 vehs/hr/dest, lookahead=1

0

5

10

15

20

25

0 5 10 15 20 25 30 35
Number of processors

Si
m

ul
at

io
n

ru
nt

im
e

in
 h

ou
rs

cons opt
Figure 11(a): Simulation runtime against number of

processors, with lookahead 1

64x64 grid, 400 vehs/hr/dest, lookahead=0.1

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
Number of processors

S
im

ul
at

io
n

ru
nt

im
e

in
 h

ou
rs

cons opt
Figure 11(b): Simulation runtime against number of

processors, with lookahead 0.1

Reversal counts, 64x64 grid, 400 vehs/hr/dest, lookahead=1

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

2 4 8 16 32
Number of processors

N
um

be
r o

f r
ev

er
sa

ls

Reversal counts, 64x64 grid, 400 vehs/hr/dest, lookahead=1
Figure 11(c): Number of reversals against number of

processors, in 64×64 grid when the lookahead is 1

128x128 grid, 100 vehs/hr/dest, lookahead=0.1

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35
Number of processors

Si
m

ul
at

io
n

ru
nt

im
e

in
 h

ou
rs

cons opt
Figure 12: Simulation runtime against number of

processors, with lookahead of 0.1 on a 128×128 grid

The simulation results in both optimistic and

conservative execution have been verified to be correct
and evacuation time results are repeatable, for both
sequential and parallel runs (evacuation time shows
negligible variation among runs with varying number
of processors, varying flush event periods, and so on).

5 Summary and Conclusion
In this paper, we discussed the design,

development and performance of a parallel discrete
event vehicular traffic simulation model. We ensured
its sequential performance compares to the best of the
available transportation model (OREMS). We
incorporated the reverse-computing based optimistic
synchronization for the PDES model. We compared
the parallel performance of models using optimistic
and conservative synchronization techniques fixing the
input traffic generation rate and varying lookahead
values. To our knowledge, this is the first attempt at
applying optimistic simulation techniques to parallel
vehicular network simulation. The perfectly reversible
formulation of the model is also novel that enables
reverse computation. Additionally, the performance
improvement is challenging due to the requirement of
low parallel computation overhead needed to compare
favorably with an extant, fast sequential simulator
(OREMS). In that vein, the absolute speedup (i.e.,
speedup compared to OREMS), rather than self-
relative speedup (speedup compared to SCATTER-
OPT on 1-processor) is an additional strength.

5.1 Future Work
While current implementation is limited to a single

lane per direction per road segment, support for
multiple lanes needs to be added. Performance on
generalized networks remains to be evaluated, although
we expect the challenges to only lie in optimizing
intersection-to-processor mapping for performance; the

software is capable of delivering correct results with
any arbitrary assignment. Performance of rollback
using reverse computation could be compared to that
of state saving.

An important direction we are currently pursuing
is in testing the system with much larger networks than
are presently used in existing systems such as OREMS.
The current limitation is due to the input network
format of OREMS, which limits the size of the
networks to be with in 100×100. The data structures
and the parallel simulation library do not have any non-
scalable components as such; hence we believe it will
scale well to larger networks (e.g., 1000×1000).

Acknowledgements
Constructive comments by ORNL internal

reviewers have helped improve the presentation. This
paper has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the U.S.
Department of Energy. Accordingly, the United States
Government retains and the publisher, by accepting the
article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce
the published form of this manuscript, or allow others
to do so, for United States Government purposes.

References
1. Franzese, O. and L. Han. A Methodology for the

Assessment of Traffic Management Strategies for Large-
scale Emergency Evacuations. in 11th Annual Meeting of
ITS America. 2001.

2. Perumalla, K.S. and B. Bhaduri. On Accounting for the
Interplay of Kinetic and Non-kinetic Aspects in Population
Mobility Models. in European Modeling and Simulation
Symposium. 2006.

3. Fisher, K.M., Transims is Coming! Public Roads, 2000.
63(5): p. 49-51.

4. Laboratory, L.A.N. TRANSIMS. 2001;
http://transims.tsasa.lanl.gov/.

5. Meister, K., et al. A Comprehensive Scheduler for a
Large-scale Multi-agent Transportation Simulation. in
International Conference on Travel Behaviour Research.
2006.

6. Innovative Transportation Concepts, I. VISSIM Simulation
Tool. 2001; http://www.itc-world.com/VISSIMinfo.htm.

7. Cameron, G.D.B. and G.I.D. Duncan, PARAMICS,
Parallel Microscopic Simulation of Road Traffic. Journal
of Supercomputing, 1996. 10(1): p. 25-53.

8. Perumalla, K.S. A Systems Approach to Scalable
Transportation Network Modeling. in Winter Simulation
Conference. 2006. IEEE.

9. Bhaduri, B., C. Liu, and O. Franzese. Oak Ridge
Evacuation Modeling System (OREMS): A PC-Based
Computer Tool for Emergency Evacuation Planning. in
Symposium on GIS for Transportation. 2006.

