
Scalable Parallel Execution of an Event-based Radio SignalPropagation Model for
Cluttered 3D Terrains

Sudip K. Seal and Kalyan S. Perumalla
Oak Ridge National Laboratory
Oak Ridge, TN 37831, U.S.A.
sealsk, perumallaks@ornl.gov

Abstract—Estimation of radio signal strength is essential
in many applications, including the design of military radio
communications and industrial wireless installations. While
classical approaches such as finite difference methods are well-
known, new event-based models of radio signal propagation
have been recently shown to deliver such estimates faster
(via serial execution) when compared to other methods. For
scenarios with large or richly-featured geographical volumes,
however, parallel processing is required to meet the memory
and computation time demands. Here, we present a scalable
and efficient parallel execution of a recently-developed event-
based radio signal propagation model. We demonstrate its
scalability to thousands of processors, with parallel speedups
over 1000×. The speed and scale achieved by our parallel
execution allow for larger scenarios and faster execution than
has ever been reported before.

Keywords-parallel discrete event simulation; radio signal
propagation

I. I NTRODUCTION

A novel event-based model was recently proposed in
[8], [9] for the prediction of signal strength in radio wave
propagation. The proposed technique has been shown to
yield accurate enough predictions without the high com-
putational overhead of more traditional techniques such as
finite difference time domain (FDTD) or ray-tracing methods
[2], [12]. Validation studies [9] have shown that the new
model is more runtime efficient, albeit in the context of
serial execution, compared to FDTD or ray-tracing methods.
Parallelization of the above technique becomes necessary
due to very large memory and computational time demands
associated with simulations of radio signal propagation over
large or richly-featured geographical areas, particularly when
they need to be carried out in real-time.

A. Motivation

Knowledge of radio signal path loss is of significant
interest in the design and deployment of wireless commu-
nication networks [5]. For example, in military scenarios,
typical geographical terrains of interest are very large and
often include physical features that range from buildings
and mountains to natural reliefs and foliage. FDTD or ray-
tracing models of radio wave propagation in such terrains
is computationally very intensive, more so as the number

of transmitters and receivers are increased. For scenarios
with even a single source and a few receivers, traditional
techniques exhibit large runtimes [9]. In particular, faster
turnaround times are needed for simulated mobile units,
for example, when the transmitters and/or receivers are in
moving vehicles. Efficient real time estimation of radio
signal strength for such scenarios remains an area of on-
going research [4], [7]. The reader is referred to references
such as [8], [9] for additional details behind the motivation.

B. Related Work

In FDTD methods, Maxwell’s equations are discretized
subject to specific boundary conditions and the resulting set
of discrete equations are numerically solved. Ray tracing
methods are based on geometrical optics and are often more
useful in scenarios where the feature sizes of the scatterers
are large compared to the wavelength of the radio signals.
Computing radio channel path loss predictions for deploy-
ment of large wireless networks using FDTD methods re-
quires huge grid sizes to ensure numerical accuracies of the
final solutions. Similarly, in a ray tracing model, the number
of rays need to be proportional to that of signal receivers.
Both make the underlying computational problem very large.
On the other hand, the input data that describes the physical
geometry of the study site is very often of low precision and
prone to large errors. As a result, despite their large compu-
tational overhead, such high-precision techniques are unable
to make accurate predictions. An alternative event driven
approach that is based on a transmission line matrix (TLM)
method was proposed in [8], [9] to bridge the gap between
low precision input data and accuracy considerations. The
authors of [9] have shown empirical runtime performance
results of earlier traditional methods that clearly motivate
the need for alternative models such as their new, event-
based TLM model. A TLM method uses equivalent electrical
networks that are based on the link between field theory and
circuit theory to solve certain types of partial differential
equations stemming in EM field problems. Parallelizing
the event driven TLM approach proposed in [9] renders
the methodology applicable to larger simulations of radio
channel propagation that can include a greater number of
receivers with extended geographical reach. For example,

0

10

20

30

0

10

20

30
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(a)

0

10

20

30

0

10

20

30
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

(b)

Figure 1. Voltage profile along thez = 15 plane at two different time instants (a)t = 50 s (b) t = 75 s during a simulation with only one voltage
source at the center of a30 × 30 × 30 domain.

while serial execution is sufficient to deal with room-
sized volumes, parallel execution enables signal strength
estimation from city block-sized urban scenarios to even
larger volumes encountered in wider, mountainous terrains.
A number of FDTD and ray-tracing based methods are avail-
able for the simulation of radio signals. But, as mentioned
earlier, inherent lack of precision in the input data renders
such methods largely ineffective. An earlier attempt [1] to
parallelize the discrete event formulation of the TLM-based
method in [8] only exhibited limited scalability, with self-
relative parallel speedup reported upto 25 processors.

C. Model Description

The computational (simulation) domain is modeled by a
three-dimensional (3D) grid. Each grid pointi is a node that
computes the time-varying electrical potentialVi of the wave
that is traveling through the grid. Partial voltagesxij andxji

are defined across each link in the grid that connects two
neighboring nodesi andj in the directionsi→ j andj → i,
respectively. Partial voltages on the links capture information
related to the permittivity and permeability constants of the
medium, which in turn define the rate at which the wave
travels between those two nodes. In this paper, the term
voltage will always be used to refer to the total time-varying
voltage defined at a node (grid point) whilepartial voltage
will always be defined on links between two neighboring
nodes. Note that ann× n× n grid containsn3 grid points
(voltages) andN = 6n3 directional links (partial voltages).
When the power at any point in the simulation domain
falls below a cut-off voltage, a radio antenna cannot detect
it. This effect is captured in terms of athreshold voltage
below which a node is not required to transmit. The TLM
equations, as defined in [9], that govern the propagation of
radio signals in terms of the total and partial voltages defined

above are:

xt+1

ij = Rij

(

V t
i

3
− xt

ij

)

+ Tji

(

V t
j

3
− xt

ji

)

(1)

V t+1

i =

5
∑

k=0

xt+1

ik (2)

wherek corresponds to the indices of the six neighbors of
the grid point indexed byi, andt andt + 1 are consecutive
units of discretized time. The constantsRij andTji are the
reflection and transmission coefficients that correspond to
the linksij andji, respectively. These constants encapsulate
properties such as the permittivity and permeability of the
medium that is modeled by the grid. We will use the term
components of Vi to refer to the partial voltages that add up
to yield Vi through Eqn (2). A computation of the voltage
profile (set of total voltages across all then3 nodes in the
grid [see Fig. 1]) at a time stept requires the availability of
all the partial voltages at the previous time step.

D. Event-driven Execution

Temporal updates of the voltage profile can be eithertime-
driven or event-driven. Time-driven approaches continuously
update the set of partial and total voltages after the passage
of each pre-defined time interval (which is often constrained
by convergence requirements such as the aspect ratio of
finite-difference schemes). In event-driven approaches, the
state of a physical system changes only at certain instants
of time through instantaneous transitions. Anevent is associ-
ated with each such transition. For example, in the aforemen-
tioned problem, an event can be triggered every time a node
exceeds the threshold voltage. Discrete event formulations,
therefore, delink the necessity for a global clock from the
evolution of the physical system and instead views the

same simulation as a set of time-stamped events (containing
temporal information about the physical state variables) that
are processed as efficiently as possible without violating
global causality. When such event-based simulations are
distributed across multiple processors, preserving global
causality becomes very challenging as data dependencies
across processors are no longer guaranteed to be concurrent.
Parallelizations of such discrete event algorithms have been
known to be very complicated, often requiring causality
control mechanisms that are highly challenging to scale
well across a large number of processors. A more detailed
discussion of parallel discrete event simulations (PDES) can
be found in [6], [11].

E. Parallel Execution Challenge

FDTD and related techniques conform to time-driven
algorithms. Parallelization of the newer TLM-based model
built on barrier methods results in the processors becoming
too tightly coupled, thereby, diminishing the returns of
the event-based paradigm. Parallelizing event-based algo-
rithms, while relieving the tight coupling, exhibit a different
challenge, most notably distributed causality preservation.
The state-of-the-art solution to parallel event-based models
is the use of optimistic simulation techniques employing
“reverse computation” as the rollback method, for maximal
parallelism with minimal overhead. Problems such as our
parallel event-based execution of TLM are best suited to
utilize such as method. We use such reverse computing
techniques to minimize the now well-understood overheads
associated with traditional PDES approaches [3], [11]. An-
other important parallelization challenge is the treatment of
3D, which imposes interesting dynamics coupled with event-
based behavior and domain decomposition. Our interest is in
supporting full 3D scenarios with multiple domain decompo-
sition schemes that scale across thousands of processors. As
such, in addition to those that are already inherent to PDES,
the challenges undertaken in this work include designing and
developing an efficient, perfectly-reversible parallelization of
the novel serial model in [9], and realizing full 3D support
under different parallel domain decomposition schemes.

F. Contributions in this paper

To the best of our knowledge, this paper presents the first
parallel discrete event formulation of radio signal propaga-
tion that scales to thousands of processors. Our approach
is based on a reverse computing technique with full 3D
support for realistic scenarios. Though our algorithm can
efficiently support multiple domain partitioning schemes,the
results presented here are based on only one due to space
limitations. It may also be noted that our algorithm exhibits
potential for vector processing. In addition, its applicability
is not confined to only TLM-based problems such as the
one described above. Finite differencing parabolic partial
differential equations (e.g., diffusion equations) that arise

in a multitude of scientific applications, can also be solved
within the parallel execution framework presented here. We
implement our algorithm on a Cray XT4 platform and
demonstrate its scalability to thousands of processors with
speedups over 1000×. This enables real-time deployment ca-
pability with turn around times that are commensurate with
time scales for mobile wireless signal strength predictions.

The rest of the paper is organized as follows. Section II
describes the parallel discrete event scheme underlying our
algorithm. Our experimental setup and performance results
are discussed in Sections III and IV followed by a discussion
of the future scope of this work in Section V.

II. PARALLEL DISCRETEEVENT SCHEME

A. Domain Decomposition

It is clear from Eqn (1) and Eqn (2), which we will refer
to as theforward equations, that a good parallel domain
decomposition for this problem is one in which: (a) for each
xij that is local to a processor,xji is also local and (b) for
eachVi that is local to a processor, as many components of
Vi are local as is possible. Guided by this observation, we
block partition the 3D grid acrossP processors arranged
in a CartesianPx × Py × Pz topology. Each processor is
therefore responsible forn3/PxPyPz = n3/P voltages (one
for each local node). For each local node, a processor is
responsible for the six partial voltages defined on the links
connecting it to its nearest neighbors along the positivex,
y andz directions only. Thus, each processor is responsible
for 6n3/P = N/P number of partial voltages.

For ease of presentation, we use a 2D example in Fig.
2(a) to illustrate the following notation that will be adopted
in the remainder of this paper:

• XL : set of all partial voltages local to a processor [bold
arrows in Fig. 2(a)].

• VL : set of all total voltages local to a processor [black
circles in Fig. 2(a)].

• VR : set of all remote total voltages required for the
computation of allxij ∈ XL [gray circles in Fig. 2(a)].

• VU : VL ∪ VR.
• XR : set of all remote partial voltages required for the

computation of allV ∈ VU [dashed arrows in Fig. 2(a)].

The preceding parallel domain decomposition guarantees
that (a) for each local partial voltagexij ∈ XL, the reverse
partial voltage is also local, i.e.,xji ∈ XL (b) for each
total voltageVi ∈ VL, its components along the positive
directions are guaranteed to belong toXL (c) the number
of sending and receiving processors are both constants (d)
the partial voltages defined on links that cut a processor’s
domain boundaries along the positive directions are local
and (e) the inter-processor communication bandwidth is
proportional to the surface area of each block partition and,
hence,O

(

N2/3

P 2/3

)

.

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

P0 tsim

tsim

sue tce sue tce sue tce sue

P1

(b)

Figure 2. (a) A 2D illustration of the unique setVU (set of filled circles), the local setXL (set of bold arrows) and remote setXR (set of dashed arrows)
for the processor responsible for the solid square in the center. (b) Optimistic parallel discrete event processing in an example with two processors.

In our formulation, the partial voltages which are mapped
to a processor are evolved through two types of event
processing, namely,self-update events (sue) and threshold-
cross events (tce). An example with two processors is shown
in Fig. 2(b). Self-update events are processed at integral
time-stampst while threshold-cross events are processed at
half-integer time-stampst + 1

2
. When a self-update event

is processed, eachxij ∈ XL is updated though Eqn (1).
Those local updates for which the results vary by more
than a pre-defined threshold value are sent to the appropriate
destination processors in a message timestamped witht+ 1

2
.

This style of sending conditionally will be referred to asse-
lective sends. The receiving processors process the arrival of
the updates as threshold-cross events. Processing a threshold
cross event involves modifying the setXR according to the
updates received. Note that such selective sends result in an
asynchronous communication pattern. A numerically correct
self-update ofXL requires concurrent values ofVi, Vj ∈ VU .
However,Vi andVj may depend on remote partial voltages
xik ∈ XR. Thus, correctness of self-updates depend upon
the concurrency of the setsXL, XR andVU .

In our approach, forward execution is carried outop-
timistically, i.e., each processor continues to execute for-
ward in simulation time under the assumption that the
set XR that contains the remote data necessary for local
forward computations (via self-update events) are locally-
usable, correct values until a threshold cross event with a
more recent timestamp is processed. As part of processing
such a threshold-cross event, a rollback to the appropriate
simulation time in the past is initiated.

The state variables defined by the setsXL, XR and
VU contain complete information about the local portion
of the domain for which a processor is responsible. These
sets are stored as arrays. Note that|VU | = Θ(N/P)
and |XL ∪ XR| = Θ(N/P). In addition, two pointers,
labeledread andwrite pointers are maintained. At any given
simulation timet, each processor maintains the following

state variables:V t−2

U , Xt−1

L andXt−1

R that are pointed to by
the read pointer andV t−1

U , Xt
L andXt

R that are pointed to by
the write pointer (see Fig. 3(a)). The above two pointers are
maintained by each processor in order to facilitate reverse
computing for rollbacks, as will become clearer in the next
section. Operations performed during a forward execution
overwrite the arrays pointed to by the write pointers. In Fig.
3, the arrays that are overwritten are indicated by the gray
boxes pointed to by the write pointers.

B. Forward Execution

Forward execution of our discrete event approach in terms
of self-update and threshold-cross events are shown in Fig.
3(a). The following operations execute the forward code:

1) SWAP (read,write) : The pointers to the read and write
copies of the state variables are swapped.

2) UPDATE-V t−1

U : V t−1

U is computed usingXt−1

L and
Xt−1

R through Eqn (2).
3) COMPUTE-Xt

L : Xt
L is computed from theXt−1

L and
V t−1

U using Eqn (1).
4) SELECTIVE-SEND : To each processor that needs

xt
ij ∈ Xt

L, sendxt
ij iff | xt

ij − xt−1

ij |≥ δ, whereδ is
a pre-defined threshold. All such partial voltages that
are destined for a particular destination are collected
and sent in a single message.

5) COPY-XR : Copy Xt−1

R to Xt
R.

6) PROCESS-TCE : This operation is performed if and
only if there is a pending threshold-cross event. The
operation SWAP (XR, XT) is performed when the
pending threshold-cross event has a current time-
stamp. In this operation, partial voltagesxt

ij ∈ Xt
T that

are received from the sending processors are swapped
with the corresponding values inXt

R (see Fig. 3(a)).
A threshold-cross event with a future time-stamp is
held in queue to be processed later. If the pending
threshold-cross event has a past time-stamp, then a
rollback is carried out to restore the state variables to

X
t−2
L

X
t
T X

t+1
T

X
t+1
TX

t
T

V
t−2
U

X
t−1
R

3

3

X
t−1
L

read write

X
t
L

X
t
R

V
t−1
U

3

3

read write

1
SWAP(read,write)

1

t + 1t

4 4

X
t
R

X
t
L

V
t−1
U V

t
U

X
t+1
L

X
t+1
R

X
t−2
R

V
t−2
U

X
t−1
L

X
t−1
R

6

5

2

2

2

2

6

5

V
t−3
U

(a)

X
t
L

V
t−2
U

X
t−1
R

X
t−1
L

read write

X
t
L

X
t
R

V
t−1
U

read write

5
SWAP(read,write)

5

33

t t + 1
2

X
t
T

X
t−2
R

X
t−2
L

V
t−3
U

3

2

4

4

1

V
t−1
U V

t
U

V
t−2
U

X
t+1
L

X
t−1
L

X
t+1
R

X
t−1
R

X
t
R

3

1

2

4

4

X
t−1
T

(b)

Figure 3. (a) Forward execution. (b) Reverse execution. Numbers on the arrows indicate the order in which the indicated steps are executed in a forward
event or its reversal. The gray boxes indicate the arrays pointed to by the write pointer before they are overwritten by the arrays in the white boxes.

their values at that time. We discuss rollbacks in the
next section.

C. Reverse Execution

In our implementation, restoration of state upon rollbacks
is realized through reverse computing. Recall that when
a rollback is initiated by a threshold-cross event that is
processed at time-stampt+ 1

2
, the physical system needs to

be restored to that corresponding to simulation timet which
is defined by the arraysV t−2

U , Xt−1

L andXt−1

R pointed to by
the read pointers and the arraysV t−1

U , Xt
L andXt

R pointed
to by the write pointers. The following operations perform
the reverse execution as illustrated in Fig. 3(b):

1) UNDO-PROCESS-TCE: Note that due to the most
recent SWAP (read,write) operation in the forward
execution, the arraysV t−1

U andXt
L currently pointed

to by the read pointer hold the same elements as
the arraysV t−1

U and Xt
L when it was pointed to by

the write pointer in the preceding time-stamp (see
Fig. 3(b)). The arrayXt

R, however, may need to be
restored explicitly since the most recent threshold-
cross event, if there was one, could have swapped out
some of its elements withXt

T . Thus, reversing the
forward threshold-cross event involves swapping back
the values ofXt

R with those inXt
T thereby restoring

Xt
R.

2) RESTORE-XR : The Xt
R is copied to the arrayXR

pointed to by the write pointer. This reverses the
operation in step 5 of Section II-B and restoresXt−1

R .
3) RESTORE-Xt−1

L : Note that in the forward execution,
the local partial voltagesXt

L are computed fromXt−1

L

andV t−1

U . Therefore, we need a functiong such that
Xt−1

L = g(Xt
L, V t−1

U). To find g, we treatxt−1

ij and

xt−1

ji as two unknowns and solve the following two
forward equations:

xt
ij = Rij

[

V t−1

i

3
− xt−1

ij

]

+ Tji

[

V t−1

j

3
− xt−1

ji

]

xt
ji = Rji

[

V t−1

j

3
− xt−1

ji

]

+ Tij

[

V t−1

i

3
− xt−1

ij

]

which can be re-written as:

MXt−1 =
1

3
MV t−1 −Xt

where

M =

(

Rij Tji

Tij Rji

)

, Xt−1 =

(

xt−1

ij

xt−1

ji

)

V t =

(

V t−1

i

V t−1

j

)

, Xt =

(

xt
ij

xt
ji

)

The above equation can be solved to yield:

Xt−1 =
1

3
V t−1 −MXt

where we have used the fact thatM−1 = M (see Ap-
pendix). Thus, the reversal equation to restoreXt−1

L

usingXt
L andV t−1

U is:

xt−1

ij ←

[

V t−1

i

3
−Rijx

t
ij − Tjix

t
ji

]

(3)

At this point, the read pointers point to the correct
values ofV t−1

U , Xt
L andXt

R and write pointers point
to the correct values ofXt−1

L andXt−1

R . The correct
values ofV t−2

U still need to be restored.

4) RESTORE-V t−2

U : Consider the following equations
for a pair(i, j) of nearest neighbors:

xt−1

ij = Rijy
t−2

ij + Tjiy
t−2

ji

xt−1

ji = Tijy
t−2

ij + Rjiy
t−2

ji

whereyt
ij =

(

V t
i

3
− xt

ij

)

. Solving the above equations

for the two unknownsyt−2

ij andyt−2

ji yields:

yt−2

ij = Rijx
t−1

ij + Tjix
t−1

ji

Summing up over all the neighbors of pointi, we get:
∑

k

yt−2

ik =
∑

k

[

Rikxt−1

ik + Tkix
t−1

ki

]

∑

k

(

V t−2

i

3
− xt−2

ik

)

=
∑

k

[

Rikxt−1

ik + Tkix
t−1

ki

]

V t−2

i =
∑

k

[

Rikxt−1

ik + Tkix
t−1

ki

]

Thus, we have:

V t−2

i =
∑

k

[

Rikxt−1

ik + Tkix
t−1

ki

]

(4)

At this point, the read pointer points to the correct
arraysV t−1

U , Xt
L andXt

R and the write pointer points
to the correct arraysV t−2

U , Xt−1

L andXt−1

R .
5) SWAP (read,write) : The read and write pointers are

swapped to restore the state to the previous time-stamp
(see Fig. 3(b)).

Since each partial voltage is updated exactly once, the
runtime for each reversal (steps 1 through 5 above) is
O (N/P), as it is for each forward execution phase.

III. E XPERIMENTAL SETUP

A. Software Platform

We implemented the discrete event execution using the
µsik engine[10]. µsik provides an application program-
ming interface in theC++ language that supports the
concept of logical processes, events for exchanging times-
tamped messages among logical processes, and virtual time-
synchronized delivery of events to logical processes. The
API invokes a callback method into the logical processes
when an event is to be processed. Another callback method
is invoked if and when an event is to be undone, which could
be either due to violation of timestamp order as a result
of optimistic processing or due to cancellation of an event
by the sender of that event. We use the event handler and
undo handler to realize the forward and reverse execution
portions of the updates to partial and total voltages. The
send primitive is used to send threshold crossing events to
remote processors, and also to schedule a self update to
advance the local partial voltages. Specific care is taken to
only pack data corresponding to the local data that have
actually exceeded the threshold since the last update sent

to neighboring processors. This ensures that the number of
updates across processors is minimized while keeping the
performance competitive with non-event-based execution.

Our implementation allows for any number of partial
voltages to be mapped to the same logical process. This
feature is critical to minimize the event processing overhead.
In a simpler scheme adopted before [1], [9], only one grid
point is mapped to a logical process, which can make the
event overhead a significant part of the total runtime. Our
scheme allows for multiple partial voltages to be updated as
a block, making it competitive with an optimized, sequen-
tial execution. Please note that reverse execution is more
challenging in our scheme, as we cannot rely on expensive
state-copying primitives to restore state upon rollback.

For the best performance, we map one logical process
per processor core, which is empirically observed to deliver
better performance compared to when more than one logical
processes are instantiated per core.µsik internally handles
inter-processor communication to exchange timestamped
events across processors and to synchronize global virtual
time. We configuredµsik to use the vendor-supplied Mes-
sage Passing Interface (MPI) implementation native to the
hardware platform.

B. Performance Metric

It is important to note that the traditional “event rate” per-
formance metric of discrete event simulators is not relevant
for the purposes of measuring efficiency in this application.
Since events can be defined in many ways (consequently,
with different granularity), the number of events is mislead-
ing. Instead, we use the more appropriate measure, namely,
the speedup achieved by a parallel execution, relative to the
execution time on the smallest core count that can be used
to execute the scenario.

C. Hardware Platform

Our hardware platform is a Cray XT4 machine in which
each compute node contains a quad-core 2.1 GHz AMD
Opteron processor with 8 GB of memory. The nodes are con-
nected via a high-bandwidth SeaStar interconnect. Internally,
the MPI implementation is based on Cray’s implementation
of Portals 3.3 messaging interface.

IV. PERFORMANCERESULTS

A. Scenarios

In the experiments, we exercised our scheme with three
grid sizes, corresponding to increasingly larger volumes
encountered in wireless applications. The first is a medium-
sized grid withn = 30, giving 27000 total voltages and
162,000 partial voltages. The second is a larger-sized grid
with n = 80, giving roughly half a million total voltages
and 3 million partial voltages. The third, which is a very
large scenario withn = 130, yields roughly 2 million
total voltages and 13 million partial voltages. These grid

−1 0 0.001 0.01
0

50

100

150

200

250
Speedup for n=30

S
p

e
e

d
u

p

threshold

p=64
p=512
p=4096

(a)

−1 0 0.001 0.01
0

100

200

300

400

500

600

700

800

900

1000
Speedup for n=80

S
p

e
e

d
u

p
threshold

p=64
p=512
p=4096
p=8000

(b)

−1 0 0.001 0.01
0

200

400

600

800

1000

1200

1400
Speedup for n=130

S
p

e
e

d
u

p

threshold

p=64
p=8000
p=17576

(c)

Figure 4. Speedup for various problem sizes,n = 30, 80 and130, with varying threshold and number of processor cores.

sizes were tested with different threshold values, to exercise
the performance effects of selective sends (asynchronous
communications).

B. Speedup Analysis

Speed-up plots for the different scenarios are shown in
Fig. 4. It demonstrates parallel speedups over 1000× for
large scale scenarios on thousands of processors. As de-
scribed before, the communication pattern of our algorithm
is intimately dependent on the threshold voltage value. When
threshold=-1, every self-update event triggers a threshold-
cross event resulting in a very synchronous communication
pattern. This is akin to a time-driven algorithm. As the
threshold increases, communication becomes increasingly
asynchronous due to selective sends. Increasing selectivity
of sends increases concurrent computations while decreasing
the total communication. This, in turn, improves the perfor-
mance of the algorithm. Performance advantages of selective
sends with increasing number of processors can be seen in
Fig. 4 for all three scenarios. When the threshold becomes
large, the wave propagates shorter grid cell distances1. This
effect is seen from the speedups at threshold=0.01 for
n = 80 and n = 130. For relatively large problem sizes
on small number of processors, computations remain highly
concurrent and the computation-to-communication ratio is
large. For such cases, the parallel runtimes remain largely
unaffected by selective sends. This is evident from the near
insensitivity of the speedups for the three scenarios on
p = 64.

Efficiency (defined canonically asspeedup/P) of the
algorithm exhibits very good improvements when problem
sizes are increased for a fixed number of processors. For

1This can be understood by considering the asymptotic limit with
threshold=∞ when the simulation ends after the very first self-update event
(since the difference between the new and old value of the partial voltages
will always be less than∞).

example, efficiency of the parallel execution onp = 512
increases from 34% to 53% when the scenario changes from
a medium sized grid to a large one (n changes from 30 to
80) while it increases to 21% from 4% onp = 4096 for
the same change in the problem size. This trend continues
across all the threshold values that were tested.

C. Implications

The demonstrated parallel speedup of the algorithm makes
it possible for real time prediction of radio signal strength.
For example, a serial computation based prediction for a
scenario withn = 80 (roughly half a million total voltages)
has a turn around time of about 3.5 hours but only about 6
seconds onp = 8000 processors using the above algorithm.
This is well within the scope of real time predictions of
mobile wireless signal strength in cluttered 3D terrains.

V. CONCLUSIONS ANDFUTURE WORK

We presented an efficient parallel implementation of a
recently developed discrete-event based serial algorithmfor
the estimation of radio wave signal strength. We used a
reverse computing based discrete event approach for this
problem, aimed at circumventing other PDES approaches
that are known to suffer from overheads that do not scale
well to large processors counts. We explicitly derived the
reversal equations that were subsequently used for rollbacks
to restore the state of the system to a desired time in
the past. We demonstrated that such reverse computing
based rollbacks can deliver unprecedented speedup for this
problem. To the best of our knowledge, our results are
also among the first to demonstrate 1000× parallel speedup
for any non-synthetic PDES application that is based on
reverse computation. Also, such speedups for EM wave
simulators have never been reported before. We showed
that the algorithm presented in this paper brings real time
signal strength predictions well within the turnaround time

scales needed for mobile wireless deployment simulations
and design problems. Additionally, the effect of varying
threshold values on the performance of the algorithm was
studied systematically to understand their effect on the
performance. The algorithm supports full 3D scenarios with
support for rich heterogeneity.

An important issue that remains a subject of our on-
going investigation is an exhaustive performance comparison
of conventional time-driven parallel approaches with the
event-driven parallel algorithm presented here. Note that
unlike discrete event based schemes, barriered time-driven
algorithms are prone to synchronization overheads. This
point of comparison is particularly poignant in an era of
petascale computers whose synchronization overheads can
drastically hinder the performance of barriered time-driven
codes.

ACKNOWLEDGEMENTS

This paper has been authored by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the U.S. Department of
Energy. Accordingly, the United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide licenseto
publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government
purposes. This research used resources of the National
Center for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science
of the Department of Energy under Contract DE-AC05-
00OR22725.

This effort has been supported by research sponsored by
the Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory, managed by UT-Battelle,
LLC, for the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

REFERENCES

[1] D. Bauer and E. Page. Optimistic Parallel Discrete Event
Simulation of the Event-Based Transmission Line Matrix
Method. InProc. of the Winter Simulation Conference, pages
676–684, 2007.

[2] S. D. Bilbao. Wave and Scaterring Methods for Numerical
Simulations. Wiley, 2004.

[3] C. Carothers, K. S. Perumalla, and R. M. Fujimoto. Efficient
Optimistic Parallel Simulations using Reverse Computation.
ACM Transactions on Computer Modeling and Simulations,
9(3):224–253, 2006.

[4] D. Cavin, Y. Sasson, and A. Schiper. On the Accuracy
of MANET Simulators. InProc. of the Int’l Workshop on
Principles of Mobile Computing, pages 38–43, 2002.

[5] J. Chen and S. Hall. Efficient and Outdoor EM Wave
Propagation in a Compact Terrain Database of the Urban
Canyon Environment. InProc. of the Vehicular Technology
Conference, pages 802–806, 2002.

[6] R. M. Fujimoto. Parallel Discrete Event Simulation. InProc.
of the Winter Simulation Conference, pages 19–28, 1989.

[7] I. Gruber and H. Li. Behavior of Ad Hoc Routing Protocols
in Metropolitan Environments. InProc. of the Vehicular
Technology Conference, pages 3175–3180, 2004.

[8] J. Nutaro. A Discrete Event Method for Wave Simulation.
ACM Transcations on Modeling and Simulations, 16(2):174–
195, 2006.

[9] J. Nutaro, T. Kuruganti, R. Jammalamadaka, T. Tinoco, and
V. Protopopescu. An Event Driven, Simplified TLM Method
for Predicting Path-loss in Cluttered Environments.IEEE
Trans. on Antennas and Propagation, 56(1):189–198, 2008.

[10] K. S. Perumalla. µsik – A Micro-Kernel for Parallel and
Distributed Simulation Systems. InProc. of the Workshop on
Parallel and Distributed Simulation, pages 59–68, 2005.

[11] K. S. Perumalla. Parallel and Distributed Simulation:Tra-
ditional Techniques and Recent Advances. InProc. of the
Winter Simulation Conference, pages 84–95, 2006.

[12] K. A. Remley, A. Weisshaar, and H. R. Anderson. A
Comparison Study of Ray Tracing and FDTD for Indoor
Propagation Modeling. InProc. of the Vehicular Technology
Conference, pages 865–869, 1998.

APPENDIX

In the TLM model, the reflection and transmission coef-
ficients along a linki → j on the grid is defined as (see
[9]):

Rij =
Zi − Zj

Zi + Zj

and Tji =
2Zj

Zi + Zj

(A-I)

where Zi and Zj are material specific impedance values
assigned to the grid pointsi andj. This yields the following
relations:

Rij = −Rji and Rij + Tji = 1 (A-II)

Using Eqn (A-I) and Eqn (A-II) inM , we have:

|M | = RijRji − TjiTij

= RijRji − [(1 −Rij)(1 −Rji)] = −1

Therefore, the inverse ofM is:

M−1 =
1

|M |

[

Rji −Tji

−Tij Rij

]

=

[

−Rji Tji

Tij −Rij

]

=

[

Rij Tji

Tij Rji

]

= M

Hence, for each linkij, M = M−1.

