
TeD � A Language for Modeling Telecommunication Networks

Kalyan Perumalla Richard Fujimoto Andrew Ogielski

College of Computing WINLAB

Georgia Institute of Technology Rutgers University

Atlanta� GA ���������� Piscataway� NJ ����������

fkalyan�fujimotog�cc�gatech�edu ato�winlab�rutgers�edu

Abstract

TeD is a language designed mainly for modeling telecommunication networks� The TeD language speci�

�cation is separated into two parts � ��� a meta language �	� an external language� The meta language

speci�cation is concerned with the high
level description of the structural and behavioral interfaces of

various network elements� The external language speci�cation is concerned with the detailed low�level de�

scription of the implementation of the structure and behavior of the network elements� In this document�

we present an introduction to the TeD language� along with a brief tutorial using an example model of a

simple ATM multiplexer�

� Introduction

TeD is a language designed mainly for modeling telecommunication networks	 The TeD lan�

guage speci
cation is split into two distinct parts � MetaTeD and �external language	
 MetaTeD

de
nes a set of concepts for modeling the dynamic interactions of entities and their compositions� in

an application�independent manner	 MetaTeD is an incomplete language � it is more appropriately

called a �framework	
 When MetaTeD is appropriately combined with any regular general�purpose

programming language� say L� then a complete language is formed	 Such a complete language is called

an L�instance or L��avor of TeD	 For example� see ��� for the description of a C���instance of TeD	

Background

Some of the main objectives in the design of the TeD language are�

� The language should be su�ciently general for modeling current as well as future telecommunication

networks	

� The same language should provide for speci�cation� description as well as simulation of models

�implies simulation�independent description�	

� The language should support object�orientation � encapsulation� inheritance and polymorphism

� to facilitate hierarchical structure and behavior description	

� Models expressed in the language should be amenable to high�performance parallel�distributed

simulation �through automatic or semi�automatic translation�	

� The language should provide support for user�de
nable and extensible libraries	

The result of the design exercise towards the preceding goals is a new� object�oriented� simulation�

independent �small language
 for modeling of telecommunication networks	 Throughout the language

design� emphasis was placed on strong modularity� and the separation of structure from behavior� while at

the same time retaining the ability to analyze the models through parallel simulation	 The TeD modeling

framework has some analogies with VHDL ��� and similar hardware description languages� which have

been very successful in aiding in the construction of complex systems of systems	

Orthogonality of Concepts

In the process of designing the language� it was observed that the set of concepts supported in

this language � such as� elements of dynamic interaction among entities � is orthogonal to the set of

concepts addressed in regular general�purpose programming languages � such as� data types and control

�ow	 Most modeling languages �VHDL� for example� combine these two orthogonal sets of concepts into

one speci
cation language� even though it is often possible to mix and match them together	

Hence� it was decided to carefully separate the two sets of concepts	 The concepts that specify

the relationships and dynamic interactions of the entities in the modeling domain are termed the meta

languageMetaTeD	 MetaTeD is datatype�unaware�	 WhenMetaTeD is suitably combined with any

given regular programming language �called the �external
 language�� a concrete instance of the TeD

language is formed	 For example� a C�� instance of TeD is described in ���	

It is interesting to note that the use of an external language is similar to the concept of outsourcing �

in the context of the language speci
cation� it is wise to utilize the well�researched and well�developed

constructs of other languages� and their well�tested tools� for the purposes of datatypes and control �ow�

instead of inventing and standardizing yet another general purpose language	

In the rest of the document� we shall use the terms TeD and MetaTeD interchangeably where no

ambiguity exists	 Also� by default� we shall use C�� as the external language� following the interface

described in ���� in all the examples	 The external language expressions� declarations and other code

segments appear between pairs of � signs� or between �� and ��	

� A Tutorial

In the following tutorial� the information on the language constructs and semantics is not necessarily

comprehensive� in the interest of clarity of a brief introduction to the language	 Detailed documentation

with examples can be found in ��� and ���	 Figure � illustrates the basic framework underlying the

constructs in TeD� and their relation to each other	 Figure � is an illustration of some of the basic

elements of a TeD model and their relationship with respect to the physical object being modeled	

Entity

The physical and conceptual objects in the telecommunication domain are modeled in terms of entity

descriptions	 Entities are connected to� and interact with each other via channels 	 Channels are the only

means of dynamic interaction between entities	 Information units� called events� �ow through channels	

�With the exception of integers� it recognizes integers since it needs to �know� how to �count�� in order to be

able to de�ne parametrized structures �varying number of entities and channels��

Component C

int i, j, k

STATE

int a, b, c

EVENT

CHANNEL

ENTITY

CHANNEL

CHANNEL

CHANNEL

CHANNEL

ARCHITECTURE

BEHAVIOR

Process P { }

Process R { }

Component D

int x, y, z

RESULT

int l, m, n

EVENT

Figure �� Basic framework of an Entity

An output channel of one entity can be connected to the input channel of another entity	 The entity

construct for the simple ATM multiplexer shown in
gure � is as follows�

entity ATMMux � int N �
f

channels
f

in ATMChannel A� �PARAM�N�� ��

out ATMChannel B�
g

g

In the preceding entity declaration� N is a parameter that de
nes the number of inputs	 The multiplexer

is de
ned to have N input channels� A�N�� and one output channel� B	 Each of the channels is of type

ATMChannel� as de
ned later in this section	

The entity declaration is used to de
ne a black�box view of an entity	 The entity could be a direct

model of a real�life object� such as a multiplexer� or of an abstract object� such as a protocol	 The entity

declaration only presents an external structural view of the object� and it does not de
ne any speci
c

behavior of the object	 Entities can have zero or more channels �called the interface channels�� each of

in� out or inout modes	 are typed	 The behavior of an entity is de
ned solely in terms of the entity�s

dynamic reactions to events on its input�mode channels� and the production of events on its output�mode

channels	

An entity� E�� can inherit the structure of another entity� E�	 E� will contain all the interface

channels of E�� in addition to any interface channels de
ned in E�	 Entity E� may �enhance
 its interface

by expanding the channel types of some or all of the inherited interface channels	 Another type of

enhancement is the promotion of the mode of an interface channel from either in or out to inout	

ATM Mux Entity

#sent
#lost

Model in TeD

 dconst{ int S, K; double T; }

 }
 result{ int totsent, totlost; }

}

 channels {

 out ATMChannel B;

entity ATMMux(int N) {

 in ATMChannel A[N];

arch RoundRobin of ATMMux {

}

S K

 behavior{

 process update() {
 ...
 }

 process scan(...) {
 ...
 }

 state{ int qlen, nsent, nlost; }

 }

A[N-1]

A[0]

B

Figure �� Illustration of a physical entity and its model in TeD

Events and Channels

A channel is a port of input or output for an entity	 An output channel of an entity can be mapped

to an input channel of another entity	 An event is a unit of information that �ows through channels	 An

event that is sent on an output channel� say� A in entity X� will appear as an arrival on the input channel�

say� B in entity Y� if channel A is mapped to channel B	

Each event type de
nition consists of the name of the event and the data associated with the event	

Any number of event types can be de
ned per application	 A channel type is de
ned as a set of event

types	 The channel type essentially de
nes that only those events belonging to the de
ned set of event

types are allowed to ��ow
 through a channel of the given type	 In the preceding ATM multiplexer

example� the ATMChannel type can be de
ned as follows�

event ATMCell f� char data� �� �� �g

channel ATMChannel f ATMCell g

The ATMCell declaration speci
es an event type and its associated data	 The ATMChannel declaration

de
nes that any channel of type ATMChannel allows only ATMCell events to �ow through it	 Any number

of event types can be speci
ed in the list of event types for de
ning a channel type	

When a channel type� C�� is declared to inherit another channel type� C�� it implies that C� includes

all the event types of C� in addition to those de
ned for C�	

The same event and channel types can be used in the de
nition of any number of entity types	 In

fact� sharing the same event and channel de
nitions for several entity de
nitions aids in ensuring that

those entities can be interconnected	 By default� external �interface� channels remain unmapped to any

channels� while internal channels map to themselves	 It is valid to send events on unmapped external

channels� such events go into oblivion	 The default mapping �to themselves� of internal channels can be

changed by mapping them to channels of component entities	 Two channels can be mapped to each other

only if they are compatible with each other	

Architecture

The dynamic behavior of each entity is described by its architecture	 The architecture of an entity

is expressed using concurrent process semantics	 It is essentially described in terms of the actions of the

entity upon event arrivals on its input channels� and the production of events on its output channels	

One or more processes can be de
ned to act upon events arriving on the input channels of the entity	

The processes may generate events on output channels as part of their computation�action	

The architecture of an entity can also be expressed as a composition of interacting components 	

Components are nothing but entities themselves �logically enclosed
 inside the bigger entity	 The entity

format of Figure � is thus recursive in the components	 The channels of the components can be arbitrarily

mapped among each other or to the channels of the enclosing entity	 Thus� the behavior of an entity can

be described in terms of its structure �components� or dynamics �processes�� or a combination of both	

While the entity construct describes the entity�s external input�output view� the architecture con�

struct describes the internal behavioral part of the object being modeled	 More than one architecture

can be de
ned on�for an entity� however� exactly one of them must be chosen and bound to the entity

for simulation�based analysis	

The architecture of an entity is divided into the following sections�

� Parameters� A set of integer variables that are used in de
ning parametrized strucutures�templates

of entities and architectures	

� Deferred Constants� A set of items whose values could be di�erent for di�erent instances of

entity� even if the instances are of the same entity and architecture types	

� State� A set of variables that together form a part of the abstract state of the modeled entity	

� Large State� A set of variables that are similar to the state variables� with the di�erence that the

memory size of these variables could be signi
cant	

� Internal Channels� A set of channels that are used for communication among the internal

processes and components of an architecture	

� Processes� A set of threads of computation that act on the events arriving on the interface and

internal channels� or that act upon time advances	

� Components� A set of entities that logically form subentities of an entity�s behavior	

� Result� A set of values that are an abstraction of the �result
 of �execution
 of the model	

The two concepts � process and component � facilitate expressing the behavior	 A process is a

set of statements that are executed upon event arrival on an input channel	 A component is just another

entity� also called a sub�entity� thus� part of the behavior of the �enclosing� entity is delegated in terms of

this �enclosed� entity	 Any number of processes and components can be used in the architecture	 Also�

processes and components can both be used together in the same architecture	

Structural and behavior descriptions of an entity can be inherited by other similar entities� thus

allowing object�oriented hierarchy�based design and development	 An architecture of an entity can inherit

from another architecture of the same entity type or from an architecture of an entity type that is inherited

by the given entity type	 An inheriting architecture inherits all the items of the inherited architecture �

parameters� deferred constants� state� large state and result variables� processes and component blocks	

Inherited properties can be specialized� rede
ned or overridden by the inheriting entity	 Thus� channels

are shared across inherited entities� state is shared across inherited architectures� and� processes can be

overridden by inheriting architectures	

To illustrate the concept of an architecture� consider the multiplexer shown in
gure �	 The multi�

plexer uses a
nite bu�er of size S� and the output link of the multiplexer is capable of transferring K cells

in one cell arrival time on an input link	 Since the current bu�er occupancy is the only state information

required� a variable qlen is used to represent the state	 Additional measures� such as the number of cells

dropped due to bu�er over�ow� can also be added to the state	 To model the multiplexer�s behavior�

two processes are de
ned � one process� scan� acts on cell arrivals on the input channels and enqueues

them into the bu�er� while another process� update� models the transfer of cells from the bu�er onto the

output link	 The architecture construct for this behavior of the simple ATM multiplexer is as follows�

architecture RoundRobin of ATMMux � int N �
f

dconstf� int S� K� double T� �g
statef� int qlen� nsent� nlost� �g
behavior
f

process �� scan� A ��
process �� update�

g
resultf� int totsent� totlost� �g

g

The initialization of the dconst� state and result variables are not de
ned here in the interest of brevity

�consult ��� for complete source code and documentation�	

Process

Processes are the leaf elements in the behavior tree de
ned by a hierarchy of entities	 These are

threads of computation acting on behalf of the entities that own them	 The owner entity�s channels

�internal and external� and state variables are accessible by the entity�s processes	 The basic functionality

of processes consists of combinations of two types of actions� computation �using the state variables��

and synchronization �using channels or Time�	 Computation is some sequence of operations performed

on the state variables	 Synchronization is some sequence of actions on the channels or Time	 Processes

can be categorized into two types based on their channel�synchronization method	

� Arrival�driven processes are those that wait for activity on a set of channels� and perform a single

set of computation actions upon arrival of events on those channels	 Such processes are said to

occupy zero Time	

� Self�driven processes are those that contain combinations of one or more computation and syn�

chronization actions	 Such processes are said to occupy positive Time	

Computation actions are speci
ed using action statements in the external language	 Synchronization

actions are speci
ed using the wait statement	 The wait on channel�vars causes the process to wait

until at least one event arrives on at least one channel in the list of channels given by channel�vars 	 The

wait for expression statement causes the process to wait for the amount of time given by the expression	

The wait until condition statement speci
es that the process shall remain waiting until such time that

the condition evaluates to �true
	 The for clause can be used along with the on clause to achieve a

timeout period on channel activity	 The until clause can be used in conjunction with the on clause to

achieve a wait for a parametrized instant in time for synchronization	

In a given instance of an entity�architecture� the state variables of the architecture are �shared

by all the architecture�s processes	 Read�write con�icts are resolved using the implicit Time instant

of access	 Simultaneous accesses are serialized using the order of declaration of the processes in the

architecture declaration	 As examples of processes� the scan and update processes of the simple ATM

multiplexer are as follows�

process �� ATMMux � RoundRobin � scan	 A�
�
 to
PARAM	N�
�
 � �
���

for	 int i � �� n � ASETSZ	A�� i � n� i�� �
�

if	 STATE	qlen� � DCONST	S� � STATE	qlen����
else STATE	nlost����

�
���

The
rst process scan is executed whenever at least one of the input channels has a data arrival on it	

process �� ATMMux � RoundRobin � update
�

�� if	 STATE	qlen� � � � �
CHANNEL	B� �� EVENT	ATMCell�	���
STATE	qlen�

�
STATE	nsent����

�
��
wait for
DCONST	T��DCONST	K�
�

�

The second process update is scheduled to be executed every one cell emission time period	 This process

calculates and updates the state information de
ning the queue length and the number of cells lost	

Component

An entity that is used as a means of de
ning the behavior of another entity is called a component 	

An entity�s architecture can use one or more components	 The components in an architecture may be

grouped into non�overlapping component blocks according to the logical relationships among them	 The

components in a block can be interconnected among each other� and may also be connected via internal

channels to the processes of the enclosing architecture	 Any number of component blocks can be de
ned

for a given architecture	

The component block de
nition may specify a given entity�architecture type for its component

entity instances� thus� e�ectively binding the instance to that entity type and architecture at compile

time	 Alternatively� the binding can be postponed for later�than�compile�time by using a wild�card

speci
cation	

Temporal Dependencies

When an entity is created� its ��� parameter values are set� ��� deferred constants are initialized� ���

state variables are initialized� ��� large State variables are initialized� ��� result variables are initialized�

��� component entities are created� and ��� component channel mappings are performed	 During the

model execution� in any given entity� processes are executed according to the timeline of activity �any

simultaneity is resolved using declaration order�	

� Remarks

The TeD language has been successfully used in the modeling and parallel simulation of some large

and complex network con
gurations and protocols� such as ATM Private Network to Network Interface

�PNNI� signaling networks ���� multi�cast protocols ��� and wireless networks ���	 The language is being

re
ned and developed further	 Problems that are being addressed include the di�culties of coping with

two di�erent hierarchies �of TeD and the external language�� and the proliferation of external language

macros that provide a TeD interface to runtime simulator services	

References

��� �A VHDL Primer�
 J	 Bhasker� Prentice Hall� ����

��� �MetaTeD � A Meta Language for Modeling Telecommunication Networks�
 K	 S	 Perumalla�

A	 T	 Ogielski� and R	 M	 Fujimoto� Technical Report GIT�CC������� College of Computing� Georgia

Institute of Technology� ����	

��� �A C�� Instance of TeD�
 K	 S	 Perumalla and R	 M	 Fujimoto� Technical Report GIT�CC�������

College of Computing� Georgia Institute of Technology� ����	

��� �A Virtual PNNI Network Testbed�
 K	 S	 Perumalla� M	 Andrews� and S	 Bhatt� Proceedings of the

Winter Simulation Conference� December ����	

��� �Optimistic Parallel Simulation of Reliable Multicast Protocols�
 D	 Rubenstein� J	 Kurose� and

D	 Towsley� Dept	 of Computer Science� University of Massachusetts� November ����	

��� �WiPPET� A Virtual Testbed for Parallel Simulations of Wireless Networks�
 J	 Panchal� O	 Kelly�

J	 Lai� N	 Mandayam� A	 Ogielski� and R	 Yates� WINLAB� Rutgers University�����	

