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1. INTRODUCTION

Simulation is, and will remain, the method of choice for many computer net-
work analysis problems. Although mathematical modeling and analysis is use-
ful in many situations, the complexity of modern networks combined with the
inability to apply simplifying assumptions in many situations (e.g., it is well
known that Markovian traffic assumptions are often inappropriate and can lead
to misleading results) limit the applicability of purely mathematical methods.
Even when such mathematical methods can be used, simulation is often used
to validate the models. An extensive list of networking research that has used
simulation methods is presented in Bajaj et al. [1998]

The modeling and performance analysis of computer networks is particularly
well suited for discrete event simulation techniques. The flow of data packets
through the network can be modeled as a sequence of events occurring at dis-
crete points in time. A packet leaves one end of a communications link at time
T , and will later arrive at the other end of that link at time T +1t. Similarly,
when a packet arrives at a queue connected to an output link, the arrival event
can be modeled by a discrete action at time Tq, and the departure event can be
modeled at another time Tq + 1tq. Finally, protocol endpoints can respond to
the receipt of a data packet and produce an appropriate response packet to be
forwarded to the other endpoint. Each of these actions can easily be modeled.

Discrete event simulators [Fishman 1978; Pooch 1993; Banks 1996] simulate
the behavior of the real world system being investigated by maintaining a model
of the progression of time through the system. This representation of real world
time is called simulation time. The simulator then models the overall behavior
of the system by keeping an ordered set of timestamped events waiting to be
processed. The timestamp of an event is the simulation time at which this event
will occur. The set of future events is kept in order of increasing timestamp. At
the simplest level, a discrete event simulator can simply examine the earliest
unprocessed future event, advance the simulation time to the timestamp value
of that event, and process the event. Processing an event may result in changing
the state of one or more objects, creation of one or more new future events, or
the cancellation of pending future events. The simulation is complete when
there are no remaining unprocessed events or when a certain predetermined
simulation time has been reached.

The construction of a discrete event simulator to model a computer network
is relatively well understood. One needs a method of describing the topology of
the network to be modeled, a method for describing the behavior of the network
elements, a simulation engine that manages and processes the pending events
queue, and a method for observing the behavior of those elements. However,
when constructing a simulator in this fashion one quickly runs into difficulties.

(1) The simulation of any reasonable size network (of more than a few hun-
dred high-speed network elements and a moderate traffic load) can take
excessive amounts of CPU time to execute. Consider the simulation of a
single link modeling an OC48 circuit (2.4 giga-bits per second). Assuming
an average packet size of 1000 bytes, such a circuit would generate up to
600,000 simulation events for every second of simulation time. If we were
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modeling one thousand such links, such a simulation would require more
than an hour to simulate one second of the operation of the network on
contemporary simulators such a ns executing on a modern workstation. It
would take several days to simulate just one minute of operation of this
network.

(2) The memory utilized by a network simulation will grow at least linearly
with the size of the network. For some tools, it can grow quadratically with
the number of network elements being modeled, due to the requirement for
routing tables in each routing node of the simulated network. Even on a
simulation system with large amounts of physical memory (up to 2 GBytes
for example), the maximum size of the network that can be represented is on
the order of a few thousand nodes for a contemporary simulator such as ns..
For many problems, such as modeling the behavior of core Internet routers
processing large numbers of simultaneous flows, much larger models are
needed.

Distributing the execution of the simulation over multiple processors offers
one solution to alleviating these problems. The amount of memory that can
be utilized increases linearly with the number of processors, enabling larger
models to be represented. The computing speed of the simulator, for example,
as measured by the number of simulator events that can be processed per second
of wallclock time, can in principle also increase linearly, allowing more network
flows to be simulated in a given amount of time.

The traditional approach to realizing a parallel network simulator is to cre-
ate a new system “from scratch.” This approach is exemplified by tools such as
TeD [Perumalla et al. 1998], SSFNet [Cowie et al. 2002], GloMoSim [Zeng et al.
1998], TaskKit [Xiao et al. 1999], and ROSSNet [Carothers et al. 2000], among
others. While this approach offers the advantage that the software can be tai-
lored for parallel execution, a major drawback with this approach is the time
required to create the tool. In addition to developing the simulation engine,
network models, and other associated tools, a substantial verification and val-
idation effort is required. Creation of a new parallel network simulator in this
way may require several man-years of effort. Further, from a user’s perspec-
tive, once one has committed to using a specific simulation tool, one is limited
to whatever models and features are provided or can be easily added to that
tool.

This article is concerned with an alternate approach to parallel network
simulation that focuses on reusing existing simulation models and software. A
network model is decomposed into a set of submodels, and existing simulation
tools are used to instantiate each submodel. The models are then integrated,
or federated, using techniques described later in this paper. This federated
approach offers a means of leveraging the substantial investment that has
already been, and continues to be made in developing sequential simulation
tools. Further, by integrating models from different network simulators, one is
offered the possibility of exploiting the models provided by a different tool if
they are not readily available in the tool one has already committed to using. A
key challenge in utilizing the federated simulation approach is to realize a high
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performance implementation. A principal result of the research described here
is to provide evidence that federated simulations can indeed provide a viable
means to realizing efficient, scalable parallel network simulators.

The concept of federated simulations in not new. The SIMNET project [Miller
and Thorpe 1995] and subsequent efforts such as the Distributed Interactive
Simulation (DIS) protocols [Hofer and Loper 1995], Aggregate Level Simulation
Protocol (ALSP) [Wilson and Weatherly 1994], and the High Level Architecture
[Kuhl et al. 1999] have successfully applied this concept to military simulation
applications. Early work in the parallel simulation community used this tech-
nique to create parallel queuing network simulations [Nicol and Heidelberger
1996]. The work described here differs from these efforts in its emphasis on net-
work simulation, which differs from these other applications in several respects.
First, decomposition of the model may not fall along physical entity (e.g., tank,
ship, or queue) boundaries, since one may wish to federate simulators model-
ing the same hardware elements, but different levels of the protocol stack; for
example, one simulator might model the physical layer, while another models
network and transport layers. Network standards may be exploited to define
interfaces among the federates. Second, issues concerning knowledge of global
state information must be resolved. For example, individual network simula-
tors may assume knowledge of the entire network topology in order to compute
routes, an assumption that may no longer satisfied in a federated execution.

The remainder of this article is organized as follows: Section 2 discusses
the basic services needed by the federated simulation environment, including
time management and message exchange. Section 3 addresses the case of ho-
mogeneous federated simulations where a sequential simulator is federated
with itself to create a distributed implementation. This section describes is-
sues that must be addressed in the definition of the submodels and describes
some solutions. Section 4 describes the more general problem of heterogeneous
federations composed of different network simulators. The dynamic simulation
backplane approach for heterogeneous network simulations is described to ad-
dress these issues. Section 5 describes some experimental results evaluating
the performance of our federated simulators on a moderate sized computing
cluster. Finally, Section 6 summarizes the results of this work and suggests
future directions of research.

2. DISTRIBUTED SIMULATION SERVICES

Any distributed simulation needs a basic set of services to manage the overall
advancement of simulation time and to exchange information among the feder-
ates. Here, we adopt the terminology utilized by the High Level Architecture.
The distributed simulation consists of a collection of autonomous simulators, or
federates, that are interconnected using runtime infrastructure (RTI) software.
The RTI implements relevant services required by the federated simulation en-
vironment. The most important services for the purposes of this discussion fall
into two basic categories, Time Management and Data Distribution. The time
management services insure that the simulation time in each of the simulator
instances stays synchronized with the others, and the data distribution services
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allow for the transitioning of event messages from one simulator to another.
Each of these is described in more detail below. Our implementations use the
services provided by the Georgia Tech Federated Simulations Development Kit
[Fujimoto et al. 2001].

2.1 Time Management

There are two well known ways to deal with the requirement for time synchro-
nization in parallel and distributed simulation.

Using optimistic synchronization simulators will process events even with
no guarantee that they will be processed in timestamp order. If an event is
processed out of order (an event with a smaller timestamp is later received
from another simulator), the simulator must provide some way to undo the
effect of the out-of-order event, and return the state of the simulator to that
which existed prior to processing the event. This is called a rollback, and is the
subject of a substantial body of research.

A second approach is called conservative synchronization. In this method,
the simulators must have some method to determine when events are safe
to process. An event is safe when it can be determined that no event will be
later received with an earlier timestamp. In this section we discuss the issues
concerning conservative methods, including time synchronization algorithms
and protocols. A principal advantage of the conservative method is that once
an event has been processed, there is no possibility that it will later be found
to have been processed in an incorrect order. A disadvantage of this method
is the necessity for an efficient method to determine when events are safe.
Each simulator must, before processing any event, determine a lower bound on
the timestamp of any message that will be received in the future. This lower
bound is referred to as the lower bound on timestamp (LBTS). Once the LBTS
value is calculated, each simulator can safely process any pending event with a
timestamp less than or equal to the LBTS value. Conservative synchronization
is the preferred approach for federated simulation because there is not need
to add rollback to the simulators participating in the simulation. Conservative
synchronization is used exclusively in the work described here.

2.1.1 Conservative Time Management Methods. One of the first methods
for determining the LBTS value in a PDES environment was developed in-
dependently by Chandy and Misra [1979] and Bryant [1977]. This method,
known at the Null Message protocol, allows each simulator to make a local
decision regarding the LBTS and thus each simulator can independently and
asynchronously determine the range of safe events. However, this method is
prone to generating a large number of null messages, and can be inefficient.

An alternative approach is to utilize a global synchronization to compute
LBTS values. Mattern [1993] proposes a method to compute LBTS values us-
ing a distributed snapshot computation to determine the minimum timestamp
along a consistent cut of the computation. With Mattern’s method, each simu-
lator maintains a counter of the number of messages sent, minus the number
of messages received since the last LBTS computation. The processes period-
ically enter a barrier, where they report their local minimum timestamp, as
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well as the message counter. When all simulators have arrived at the barrier,
if the sum of all the counters is zero, then all messages sent prior to the barrier
have been received and accounted for in the global minimum computation. If
the counters do not sum to zero, this is an indication of the existence of tran-
sient messages. If this occurs, one can simply enter the barrier repeatedly until
the counters sum to zero. This method is simple, and requires little additional
state in each simulator. A drawback is the potential for each process to enter
the barrier repeatedly.

Fujimoto et al. [2000] uses a butterfly barrier [Brooks 1986] combined with
the running sum message counters proposed by Mattern. This method does not
require all LPs to enter the barrier repeatedly. Instead, LPs that receive a tran-
sient message start an update message through the butterfly, indicating a new
message count. This method performs well when there are not excessive num-
bers of transient messages. This method is used in the experiments described
later.

2.1.2 The Time Management API. The Federated Simulations Develop-
ment Kit (FDK) software used here implements the time management services
defined in the HLA. Specifically, time advancement is achieved using a sim-
ple Request and Grant methodology. In its simplest form, the API requires the
simulation event processing loop to request permission from the time manage-
ment services before processing any simulation event. This service, known as
NextEventRequest or NER, determines the timestamp of the earliest safe event,
ensures that all events with earlier timestamps are delivered to the simulator,
and notifies the simulator of the safe time. Pseudocode for a sample main loop
is shown below.1

while (not done)
RequestedTime = INFINITE_TIME
if (Event List Not Empty ) then

RequestedTime = (Timestamp of earliest event)
end if
GrantedTime = NextEventRequest(RequestedTime)
if (Event List Not Empty ) then

if (Timestamp of earliest event <= Granted Time) then
// Ok to process
(Remove event from Event List)
(Process Event)

end if
end if

end loop;

The pseudocode demonstrates the simplicity of the NextEventRequest ser-
vice. The simulation main loop simply calls the NextEventRequest function be-
fore processing any event. The NER function determines the timestamp of the

1The actual code is a bit more complex than what is shown here, due to the use of a callback function
indicating the granted time.
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smallest safe event and notifies the simulator with a Granted time. If the earli-
est pending event has a timestamp less than or equal to the granted time, the
event can safely be processed. In addition to determining the grant time, the
NER function also ensures that any pending events from other simulators with
timestamps less than or equal to the granted time are delivered to this simu-
lator. This pseudocode also illustrates the fact that, in a federated simulation
environment, an empty event list does not indicate the simulation has com-
pleted. A simulator with an empty event list may in fact receive more events
from other simulators, even though it presently has no pending events.

2.2 Data Distribution

Data distribution is concerned with distributing simulation events among pro-
ducers and consumers during the execution of the federated simulation. Fed-
erated simulations differ from classical parallel simulators in that producers
of simulator events cannot know a priori the consumers of their events. Sim-
ple mechanisms such as specifying the destination process for an event that
are commonly used in classical parallel simulators cannot be used, because the
destination may reside in a different simulator (federate). This problem is often
solved by defining publication/subscription communication services; the HLA
uses such an approach, for example. Subscribers specify interest expressions to
indicate object or interaction class data they wish to consume, while publishers
use other services to declare the type of information they can produce. The RTI
software then ensures messages are routed to the appropriate destinations.

Wired network simulations such as those described earlier contain much
structure that enables one to utilize a much simpler approach to data distribu-
tion than general publication/subscription mechanisms. Specifically communi-
cation links define which simulators need to communicate with which others. As
discussed momentarily, an abstraction called a remote link is defined to enable
federates to refer to objects (in this case links) that represent connections to
nodes that are simulated on another federate.

3. HOMOGENEOUS FEDERATIONS: DEFINING NETWORK SUBMODELS

The federated approach to large-scale network simulation focuses on running
the overall simulations on a clusters of workstations with no state sharing be-
tween the simulators. Each simulator will be given a network topology and
data flow characteristics which describe only a portion of the network being
simulated. One advantage of this approach is that a given simulator need not
use local processor memory to describe network elements which are managed
by other simulators, and thus larger network models can be simulated. Addi-
tionally, models that have already been developed can be composed into larger
models with minimal impact on the model designer. A conceptual overview of
this approach is shown in Figure 1.

Here, we assume the network being simulated is partitioned along physi-
cal component and/or along protocol layer boundaries. This means the model
for a node (e.g., an end host or router), or a protocol layer for a node (e.g., the
TCP implementation within an end node) lies entirely within a single simulator
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Fig. 1. Conceptual overview.

(or federate). Partitioning the simulator in this way enables one to exploit net-
work standards to define the interfaces between simulators. The problem of
partitioning along other boundaries is an area for future research.

In this section, we first outline issues that must be addressed when federat-
ing a sequential network simulator with itself to create a distributed network
simulation package and propose some solutions. We describe our experiences
with applying these solutions to the popular network simulator ns [McCanne
and Floyd 1997]; [Riley et al. 1999], and similar experiences with our newly
developed GTNetS (Georgia Tech Network Simulator) [Riley 2003].

Consider the simple network shown in Figure 2 consisting of four end hosts
(H0–H3) and four network routers (R0–R4), connected with physical commu-
nication links as shown by the solid lines. The simple network model also has
four logical data flow connections consisting of four “TCP Source” to “TCP Sink”
pairs, as shown in the figure. Further consider that the network modeler has
decided to run the complete model in parallel on two systems, simulator A
and B, splitting the model into submodels as shown by the dashed line. From
the point of view of the modeler, there are three basic problems that must be
addressed and solved, specifically:

(1) Defining physical connectivity between submodels
(2) Defining logical connectivity between submodels.
(3) Defining routing between submodels.

Each of these is addressed separately in the following sections.

ACM Transactions on Modeling and Computer Simulation, Vol. 14, No. 2, April 2004.



124 • G. F. Riley et al.

Fig. 2. Simple network model.

3.1 Defining Physical Connectivity

If the network in Figure 2 were simulated on a single workstation using a serial
simulator, the description of the overall network topology is quite straightfor-
ward. Using the semantics of the network simulator being used, the modeler
would simply define the simulation elements representing each of the eight
nodes, and then define the physical links by referencing those nodes as the
endpoints of the links. The ability to define a network topology of nodes and
interconnecting links is of course a fundamental requirement of any network
simulator.

But now consider splitting the model into submodels A and B (as shown in
the figure) and running those in parallel, by composing two network simulators
A and B. We assume that only those nodes that will be managed by simulator A
will be defined on that simulator, in order to keep the memory requirements for
each system as small as possible. Thus it is obvious that it becomes problematic
to define a simple physical link, such as the link from R0 to R2 in Figure 2. By
our assumption above, simulator A will not have a node entity for node R2 and
would not be able to define that endpoint for the physical link. A similar problem
would exist in submodel B trying to describe the physical link from R2 to R0 and
the link from R2 to R1. The basic problem is that a network simulation package
designed to be run in serial on a single system will assume the existence of a
variable or object representing each and every network element being modeled,
and assume those objects can be referenced by name. When decomposing a
model in to distinct submodels, only those network elements that are within
the same submodel can refer to each other by variable name.

A naming convention is required to specify network elements (in this case,
physical links) that are external to the portion of the network modeled by the
local simulator. Our solution to this problem is to borrow some well known
abstractions from the networking community, namely that of an IP Address and
a Network Mask. The syntax of the topology specification in a network simulator
can be extended to allow the specification of these values for any link endpoint.
In the case where a link connects to a node declared in a different submodel,
then only the local endpoint of the link need be specified. We refer to this as a

ACM Transactions on Modeling and Computer Simulation, Vol. 14, No. 2, April 2004.



A Federated Approach to Distributed Network Simulation • 125

Remote Link, or rlink. At runtime, the physical connectivity of the rlinks can be
determined by matching the network portion of the IP Address. Any two rlinks
with matching network addresses are assumed at runtime to be connected, and
any packet transmitted from one end of the link will be delivered to the other
endpoint, using the data distribution services discussed earlier. Both pdns and
GTNetS support the definition of a remote link with associated an IP Address.

3.2 Defining Logical Connectivity

In our model of Figure 2, we also are modeling four logical data flow connections
consisting of pairs of sources and sinks. A network simulator might allow for the
declaration of an entity which generates data (such as TCPSource0 in our exam-
ple), the declaration of a receiving end of the data flow (such as TCPSink0 in our
example), and some way to specify that the two ends have logical connectivity.

Again assuming that we want to decompose the model into submodels as in
the previous section, we are faced with a similar problem. We again assume that
a submodel will only define and manage data flow endpoints for those nodes
that are managed by the local simulator. Simulator A will be unable to identify
the remote endpoint TCPSink0 of data source TCPSource0 since TCPSink0 is
defined on a different simulator. Since the basic design of simulators such as ns
requires an object representing both endpoints of a connection, we must design
an alternate method to identify remote endpoints.

To solve this problem, we again borrow well-known abstractions from the
networking community, using an IP Address and a Port number. Our solution
allows the specification of an IP Address for a physical link endpoint (as pre-
viously mentioned), and also allowing binding of a logical connection endpoint
to a port number unique within a node. Then, a logical data connection can
be specified by giving the IP Address and port number of the remote endpoint
(which could be defined and managed on a remote simulator). The basic design
of the GTNetS simulator inherently solves this problem, as connections are
always specified using an IP Address and port number.

3.3 Defining Routing Information

The problem of how to determine correct routing paths between submodels in
less obvious than those of the previous sections. Again referring to the model of
Figure 2, consider what the simulator must do when simulating the arrival of
a packet at router R0, with the ultimate destination of end host H2. In a single
system simulation the correct route (the link on which to forward simulated
packets for each possible destination) can be computed a priori using global
knowledge of the topology. In our example, router R0 would have predetermined
that any packet being routed to end host H2 must be forwarded on the link
connected to R2. With global knowledge of the network topology, this is a simple
and straightforward computation (although it can be time consuming for large
topologies).

Once we decide to decompose the model into submodels A and B as in the
previous sections, we are faced with a problem. Without global network topology
information, submodel A does not have sufficient information to make a routing
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decision at routers R0 and R1. Router R0 has two remote links in our example,
only one of which is the correct link to forward packets addressed to end host
H2, but it has insufficient information to determine which one is correct.

We have considered four possible solutions for this problem. The first and
simplest is to put the burden on the modeler to define the appropriate routes.
The model topology specification can be enhanced to specify a list of remote
IP Addresses for each remote link. Anytime a packet is to be forwarded on a
simulated node with multiple remote links, the correct route can be determined
from the list of specified routes. This method currently used in both pdns and
GTNetS. This solution works as long as the appropriate route will not change
over the course of the simulation. Such routing changes could occur due to the
simulation of link failures or node failures in the model.

A second solution involves the use of Ghost Nodes. With this approach, the
entire network topology is instantiated on every simulator, leading to the global
state required to compute routing paths. However, only those nodes mapped
to each simulator are instantiated with the complete state and functionality
needed to model a network node. Those nodes mapped to other simulators are
represented with reduced state placeholders, known as Ghosts, that simply
indicate the existence of the node and a list of the node’s neighbors. The basic
design of the GTNetS simulator supports this approach, but it is not presently
implemented.

A third solution is to start with a single model that specifies the entire
network topology. With global network knowledge, the correct routes between
nodes (even routes between simulators), can be determined automatically by
the simulator without effort on the part of the modeler. However, this method
requires the entire topology to be defined and processed on each simulator,
which is inefficient with respect to memory usage. One approach is the use of a
topology preprocessor, which will be given a complete picture of the simulated
network and will compute the needed routing information. The preprocessor
will then create the submodels (based on either a mapping given by the mod-
eler or by some other optimization), and pass the submodels to the simulators
(with the routing information included). This solution still lacks the ability to
adapt in simulation time to changing network topologies.

A fourth solution is the have the simulator run some existing and well-known
routing protocols while the simulation is running. Simulated network nodes
will start with routing tables generated a priori (with one of the two previous
approaches), and will exchange dynamic routing information in the simulation
(using for example the Border Gateway Protocol BGP [Rekhter and Li 1995])
to adapt to any changes in network topology. This is the approach used by the
SSFNet [Cowie et al. 2002] simulator.

4. HETEROGENEOUS FEDERATIONS: THE DYNAMIC
SIMULATION BACKPLANE

In this section, we turn our attention to the problem of how to construct a
larger simulation from smaller components, with the assumption that these
components may be designed and written in different simulation packages.
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It is clear that the issues raised in the previous section still apply to the
heterogeneous case, however, several additional issues must also be addressed.
Interoperability issues can be broadly classified into three categories:

—Representation. Different simulators may represent the same elements of
the model in different ways. For example, consider two end nodes using the
TCP protocol that are modeled in different simulation packages. One may
represent addresses using a simple integer, while the other might utilize IP
addresses.

—Incomplete Implementation. Simulators often do not implement all aspects
of the network protocol because certain features were not required for its in-
tended uses. This can lead to problems when they are used in federations. For
example, an end node modeled by GloMoSim expects that checksums have
been computed, and discards simulated packets that do not contain properly
computed checksum values. On the other hand, ns does not compute check-
sums, so ns generated packets will be discarded at end nodes modeled by
GloMoSim.

—Level of Detail. Different simulators may model aspects of the network at
different levels of abstraction, leading to obvious problems. A simple example
is one simulator may model individual packets, while another may model
trains of packets in order to improve execution efficiency. Here, we focus on
packet-level simulators that assume the packet is the atomic unit of data
that is simulated.

We introduce the Dynamic Simulation Backplane, which addresses these
and related issues. Distributed network simulations exchange information us-
ing event messages that typically model the data packets flowing between
the simulated elements. Representational issues are addressed by provid-
ing a common event message-passing interface between distributed simula-
tions. The backplane creates a format for network event messages, which is
defined dynamically by the backplane using registration calls provided by
the simulators. By using the backplane, a simulation engine can exchange
meaningful event messages with other simulators, even when they do not
share a common event message format. The backplane also supports bag-
gage data, which occurs when a given simulator must retain protocol infor-
mation of interest only to anther simulator. The address issues concerning
incomplete protocol implementations, the backplane defines a common API
for simulators to describe which network protocols are supported and which
data elements within each protocol are required or available by that sim-
ulator. A consensus protocol is used to come to an agreement among the
simulators concerning what protocols will be modeled, and to check for in-
compatibilities. The consensus protocol also partially addressed issues that
arise when combining simulators modeling the network at different levels of
detail.

The backplane has been released to the simulation community, and has been
used to implement a heterogeneous emulation environment using QualNet and
pdns [Zhou et al. 2003]. Additionally, the backplane was used to simulate a
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Fig. 3. Dynamic simulation backplane architecture.

military scenario using both GloMoSim [Zeng et al. 1998] and pdns [Perumalla
et al. 2002].

Figure 3 shows the overall architecture of a distributed simulation using
the Dynamic Simulation Backplane. The figure shows a distributed simula-
tion running on three systems. Each simulator sends and receives event mes-
sages from the backplane in native format, using the internal representation
for events that are specific to that simulator’s implementation. The backplane
converts the event messages to a common, dynamic format and forwards the
events to other simulators. The format of the dynamic messages is determined
at runtime, on a message-by-message basis. The backplane uses the services
provided by the Federated Simulations Development Kit library, discussed ear-
lier. The FDK assists the backplane by providing the message distribution and
simulation time management services required by all distributed simulations.
The backplane itself provides services specific to the support for heterogeneous
simulations.

The backplane services fall into three basic categories:

(1) Protocol/Item Registration Services
(2) Consensus Computation, and
(3) Message Importing/Exporting Services.

Each of these is described next.

4.1 Protocol and Item Registration Services

Within the networking community, there are well known and widely adopted
standards for exchanging data packets between end systems. The Request For
Comments (RFC’s) published by the Internet Engineering Task Force (IETF)
define clearly a number of protocols and required data items to be exchanged
by those protocols. For example, RFC791[13] defines the widely used Inter-
net Protocol (IP) and specifies a total of 14 individual data items within the
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protocol. These standards are used as the starting point for our registration
services. Each simulator will register with the backplane the protocols that are
supported, and the data items within those protocols. A unique ASCII string
identifies each protocol within the backplane. An ASCII string unique within
the protocol defines each data item. We emphasize however that the published
standards are simply a starting point, and in no way are all-inclusive. With the
backplane, simulators can register any data item for a protocol, as long as the
ASCII name is unique within the protocol. Simulators can also ignore items
within a published protocol if the particular item has no meaning or use within
that simulator. Additionally, simulators can register completely new protocols
for which there is no standard.

As protocols and data items are registered, each simulator must specify
whether each is required or optional. A required protocol is one for which all
simulators participating in the distributed simulation must provide support,
or the distributed simulation cannot continue. An example of a required pro-
tocol might be the Internet Protocol. If IP were specified as required by any
simulator, then all other simulators must also specify support for IP or the
distributed simulation cannot continue. Data items within a protocol also are
specified as required or optional. While all simulators might support the IP
protocol, they may have differing levels of detail represented. For example, the
Header Checksum data item may be modeled in one simulator, but may have
no meaning in another. If the simulator supporting the header checksum field
has some way to determine a reasonable default value, then that item should be
specified as optional. Other items within IP might be required items, such as the
Destination Address. When registering data items, the simulators also specify
whether or not the data item needs byte-swapping or not. The backplane will
later use this information to insure that all data items exchanged with peers
is in a common byte ordering format. Lastly, simulators specify whether in-
dividual data items should be considered baggage when they are exported to
simulators with no corresponding items. Baggage items are discussed in detail
later.

When registering protocols, each simulator specifies the address of a call-
back function, called the ExportQueryCallback, which the backplane later uses
to determine if that protocol is to be exported for a given event message. Dur-
ing the registration process, simulators will register all protocols that have
some meaning to that simulator. However, any given event message may not
in fact have information for all registered protocols. For example, a given sim-
ulator may support the HTTP protocol, but a given event message may have
only TCP/IP information meaningful. By using the ExportQueryCallback, the
simulator can inform the backplane, on a message-by-message basis, which of
the registered protocols are meaningful, and thus keep the size of the dynamic
event messages to a minimum for each message. The dynamic determination
of the message format is described later.

When registering protocol data items, the simulator specifies the address
of three callback functions, called the ProtocolItemExport callback, Protocol-
ItemImport callback and ItemDefault callback. The ProtocolItemExport callback
is used by the backplane during a message export action to query the simulator
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for the correct value of the corresponding data item. The ProtocolItemImport
callback is used by the backplane to inform the simulator of the correct value
for data items during a message import action. The ItemDefault callback is
used by the backplane to inform the simulator that an optional data item has
not been provided by a peer on a message import. In this case, the simulator
can determine a suitable default value. For each of the three callbacks, a corre-
sponding context pointer is specified, which is returned to the simulator when
the callbacks are executed. The context can be used to provide details specific
to a given item, and allow a single callback function to be used for many data
items. Complete details concerning the message exporting and importing are
given later.

We discuss the operation of the backplane in terms of protocols and data
items within those protocols, since the target application for our research is
the simulation of computer networks. As previously mentioned, a protocol in
this context might be IP, and the data items associated with this protocol might
be Source Address, Destination Address, etc. However, from the point of view
of the backplane, a protocol simply refers to a collection of individual data
items that can be referred to as an aggregate by a single name. If the target
application were an air traffic control application, a protocol could be “Aircraft
Characteristics,” and the individual data items might be “Maximum Cruising
Speed,” “Fuel Consumption Rate,” and items of that nature. For the remainder
of this article, we will continue to use the simulation of computer networks as
the basis for discussion.

4.2 Consensus Computation

After all simulators have specified the protocols and data items needed, a global
consensus protocol is performed to find a minimal subset of required items,
and a maximal set of optional items. The purpose of the consensus protocol is
twofold. First, it ensures that all participating simulators support the required
protocols. Secondly, each protocol and each item within the protocols is assigned
a globally unique Protocol Identifier and Item Identifier, which all participating
simulators are aware of. The identifiers are later used in the creation of the
dynamic message format during message exporting, explained later.

To accomplish the global consensus, each simulator calls a RegistrationCom-
plete function after all protocols and data items have been registered. This
function acts as a barrier, which blocks until all simulators have called the
function. A single system is nominated as the Master system. In our imple-
mentation, each simulator is assigned a unique node identifier in the range
0 · · · (k− 1), where k is the number of participating simulators, and the master
is then chosen as the system with node identifier 0. Each system, other than the
master, reports the list of the registered protocols and data items to the master.
For each reported protocol, the master first determines if some other simulator
has already reported the same protocol. If not, the master adds this protocol
to the list of known protocols. The master also counts the number of simula-
tors reporting a given protocol, and the number of simulators that specify it as
required. The same is done for data items within a protocol.
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Once all simulators have reported all protocols and data items, the master
has a complete view of all reported protocols and items. The first step is to deter-
mine that all participants support the required protocols and data items. The
various anomalies that can be detected by the master during the registration
phase are listed below. Other agreement errors may go undetected until the
simulation is actually running and messages are exchanged.

(1) All required protocols are noted as required by all participants, and all
required data items are noted as required by all participants. This is the
ideal case, in that all simulators agree on the required protocols and data
items, and all exchanged messages will contain the required information.

(2) At least one protocol is registered by at least one participant as required,
but also registered by at least one participant as optional. This is less than
ideal, but the simulation can still continue. Those participants registering
optional protocols are not required to report that the protocol exists during
a message export operation, but can accept and represent that information
as it is received from their peers. The simulation may detect a failure at
runtime, if an optional protocol is not included in a message exported to a
peer that lists the protocol as required.

(3) An optional protocol has required data items, but the protocol is not reg-
istered by at least one participant. The simulation may continue, but an
error may be detected at runtime. A required data item of an optional pro-
tocol means that if the protocol is exported, then the required item must be
included. A runtime error will occur if a participant exports data items for
this protocol, but does not export the required data item.

(4) A protocol is registered by at least one participant as required, but the same
protocol is not registered by at least one other participant. In this case, the
overall simulation cannot continue. A required protocol is unknown to at
least one participant, and thus that participant cannot provide data items
for the protocol on message exporting. The master system will inform all
participants of the error and abort the simulation.

Once the master has determined the validity of the protocol and item regis-
trations as described above, each protocol is assigned a unique protocol identi-
fier by simply numbering them starting from 0. Each item within each protocol
is also assigned an identifier, again starting with 0 in each protocol. Once the
master system has assigned the identifiers, the complete set of protocols and
data items is returned to all participants, along with the assigned identifiers.
At this point, all participants agree on the complete set of protocols and data
items, along with the unique integer identifiers assigned to each.

4.3 Message Importing/Exporting Services

Once the registration and global consensus phase of the backplane execution
has completed, the simulation phase of each participant can begin. The back-
plane provides a mechanism for exchanging event messages between simula-
tors. Consider the distributed simulation shown in Figure 4. This simulation
defines a network model to be simulated, consisting of eight nodes and eight
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Fig. 4. Simple distributed simulation.

links as shown. The actual simulation execution is distributed on two systems,
simulators A and B as shown. A data packet event message will need to be
transferred from simulator A to simulator B when a simulated transmit data
packet event is generated at simulator A on link 1. The backplane will export
this event message, by converting it from an internal format specific to simu-
lator A, to a common dynamic format that can be understood by all simulators.
Simulator B will need to import the event message when a simulated receive
data packet event is received on link 1. The message import action is the con-
version of the dynamic format message received from a peer simulator to an
internal representation specific to a given simulator. Details on the exporting
and importing actions are given in the next sections.

4.3.1 Exporting Messages. When a given simulator must transmit a data
packet event to a peer simulator, the ExportMessage function of the backplane
is called. This function calls the ProtocolExistsQuery (PEQ) callback for every
protocol registered by that simulator, to determine if this particular data packet
event contains data items for each protocol. This technique allows a simulator
to register all protocols that are known to that simulator, even if all protocols do
not exist for all data packet events. If the PEQ callback reports that the protocol
is present in the packet, the backplane notes in the dynamic format message
that data items for this protocol are following. Then the ProtocolItemExport
callback is called for every item registered for that protocol, and the reported
value for each item is noted in the dynamic format message. In response to the
ProtocolItemExport callback, a simulator can report that no value exists for a
given item, allowing all possible items for each protocol to be registered, even if
they are not present in all data packets. As data items are copied to the dynamic
format message, they are byte-swapped as needed to a common byte-ordering
representation.

The PEQ callback is called only for those protocols registered by the simula-
tor calling the ExportMessage function. Recall that after the global consensus
computation each simulator has a complete picture of all protocols and all data
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Fig. 5. Baggage example.

items registered by any participant. Clearly, if some simulator has not regis-
tered a given protocol, then that protocol cannot exist in native format data
packet events for that simulator, and thus the protocol is assumed to be absent.

4.3.2 Importing Messages. When a simulator has received a dynamic for-
mat data packet event from a peer, the message must be converted back to
an internal representation for that simulator in order to be meaningful. The
simulator calls the ImportMessage function of the backplane to accomplish this
conversion. This function scans the dynamic format message, and for each pro-
tocol included will determine if this simulator has registered the existence of
the protocol. If the protocol has not been registered, and if any peer specified
the baggage indicator for the protocol, then all items in the protocol become
baggage (as described in the next section). If the protocol was registered, then
the ProtocolItemImport or ItemDefault callback is called for each registered
item. ProtocolItemImport is called for each data item included in the dynamic
message, and ItemDefault is called for each item not included in the dynamic
message. For items present in the dynamic message but not registered by the
simulator, the item may become baggage.

After all of the callbacks for registered data items have been called, the
simulator receiving the dynamic message will have a complete picture, in native
format, of the meaningful content of the message that was exported by the peer,
plus any defaulted data items.

4.3.3 Baggage. Baggage data items are information that must be carried
along with a simulated data packet within a given simulator, but in fact have
no meaning for that simulator. Consider the distributed simulation shown in
Figure 5. For this example, we assume that simulators 1 and 3 have the same
level of detail for the TCP protocol, but that simulator 2 has support for IP only
and no notion of the TCP protocol. Now suppose that the overall simulation is
to model the behavior of a TCP flow from node 1 to node 2. It is clear that when
simulated packets arrive at node 2 in simulator 3, the TCP protocol information
from node 1 must be included for the simulation to function properly. However,
since simulator 2 does not have an internal representation of TCP protocol
items, there must be some way for simulator 2 to retain this information that
was provided by simulator 1. When packets flow from simulator 1 to simulator 2
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Fig. 6. Exporting/importing example.

(on link 1), the backplane will convert the data packets to the dynamic format,
using all of the registered data items from simulator 1 (which will include both
TCP and IP information). When simulator 2 receives the dynamic message,
the backplane will convert the information back to an internal representation
known to simulator 2. Any data item (or protocol) that is included in the dynamic
message but is NOT known to simulator 2 will be retained as baggage. In this
case, the baggage will be all data items from the TCP protocol supplied by
simulator 1. The baggage buffer will be returned to simulator 2 as an output
of the ImportMessage function, and must be retained by simulator 2 as part of
the data packet. Simulator 2 does not need to be aware of the meaning of any
of the baggage, but rather must just carry the baggage along with the packet
as a bag of bits.

The packet will be routed through the simulated network by simulator 2,
and eventually be passed to simulator 3, via link 2. When exporting the data
packet via the ExportMessage function, the baggage buffer is provided to the
backplane, and all baggage items are included in the dynamic format message
sent to simulator 3. When the data packet arrives at simulator 3 (via link 2) it
will contain all of the IP protocol information provided by simulator 2, plus the
TCP protocol information provided by simulator 1 that was carried as baggage.

4.3.4 Importing/Exporting Example. Figure 6 shows a simple example of
message importing and exporting. Simulator 1 has registered three protocols,
TCP, IP, and MAC 802.3, each with several data items as shown. TCP and
MAC have been registered as optional, and IP has been registered as required.
Simulator 2 has registered TCP as optional and IP as required, with three and
four data items respectively, again as shown. The IP/Destination item and the
TCP/Sequence item have been registered as required by both simulators. All
other items are optional. At some point in the distributed simulation, simulator
1 will create a data packet transmission event that must be received by simu-
lator 2. Simulator 1 calls the ExportMessage function of the backplane, which
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creates a dynamic format message as follows. First, the ProtocolExistsQuery
callback is called for the TCP protocol. Assuming that simulator 1 reports that
TCP exists for this message, the ProtocolItemExport callbacks are called for the
Port, Sequence, and Flags items, and the reported values are stored in the dy-
namic message. The process is repeated for the IP and MAC protocols, resulting
in a total of 7 data items being represented in the dynamic message. Any value
for which the byte-swapping specification was included during registration is
byte swapped to a common byte ordering representation. The resulting dynamic
message is then transmitted to simulator 2 by whatever system interconnect
exists between the participants in the distributed simulation.

When simulator 2 receives the dynamic message, it in turn calls the Im-
portMessage function of the backplane, which converts the dynamic message
to a format internal to simulator 2. It does this by using the ProtocolItemIm-
port callbacks that were specified for TCP/Sequence, TCP/Port, IP/Source, and
IP/Destination, and passing the values (byte swapped as necessary) reported for
those fields by simulator 1. Since no value for TCP/Window, IP/TTL, or IP/Flags
was specified by simulator 2, the ItemDefault callbacks for each of those items
is called, allowing simulator 2 to determine a suitable default value. Since sim-
ulator 2 has no representation for TCP/Flags or MAC 802.3 (or any MAC layer),
the simulator will create baggage items for those if they were specified as bag-
gage by simulator 1 when registered. If the baggage flag was not specified, the
items are simply discarded.

One of the strengths of the backplane design is that it allows simulators to
interact at differing levels of abstraction and still exchange meaningful event
messages. In the above example, simulator 1 has less detail in TCP and IP
than does simulator 2, but has more detail for the MAC layer. Simulators can
interact and exchange messages (provided all required protocols and items are
present) through calcuation of reasonable defaults for optional data items and
abstracting away optional protocol layers.

4.4 Backplane Overhead

In order to determine the CPU overhead associated with the exporting of data
items to the dynamic message format and the importing of data items from
the dynamic message format, we created a simple microbenchmark. A small
driver program using the backplane services was implemented, which mea-
sured the overall ExportMessage and ImportMessage time, as a function of the
total number of protocols and data items registered.

The results are shown in Table I. The amortized time per registered item
varies depending on the mix of protocols and items, but is on the order of one-
half microsecond per item. This benchmark was run on a 200-Mhz Pentium Pro
system running Linux.

In order to measure the overall overhead of the backplane, our paral-
lel/distributed ns software (pdns) was modified to use the backplane for event
messages being sent between the instances of the ns simulators. A simple dis-
tributed simulation consisting of three local area networks was constructed, and
each of the LANs was assigned to a different processor. The pdns simulators
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Table I. Micro–Benchmark Results

Protocols Items per Protocol Overhead per Item µ seconds
1 1 0.77
1 10 0.39

10 1 0.58
10 10 0.38
10 100 0.38

100 1 0.38
100 10 0.41

Table II. Homogeneous Simulation Results

Simulation CPU Time CPU Time
Seconds (Backplane) (No Backplane)

10.0 1.7 Sec 1.7 Sec
100.0 14.5 Sec 15.0 Sec

1000.0 144.5 Sec 154.0 Sec

used the backplane to export and import messages to peer simulators, even
though they share a common event message representation. The simulation
modeled FTP data flows between a pair of endpoints on different simulators,
and the simulation was run for varying amounts of simulation time. For a com-
parison point, the same simulation was run on the unmodified pdns, without
using the backplane.

The results are shown in Table II. Given the small overhead measured in the
micro-benchmark, the difference between the ns to ns run using the backplane
versus the same run without the backplane should be negligible, which it is. In
fact, the backplane version runs slightly faster due to the fact that the backplane
produces smaller event messages than the standard ns. The standard ns uses
rather large events, where the backplane exports and sends to peers only the
used portion of any given event message.

4.5 Splitting the Protocol Stack

The previous paragraphs discuss the cross-protocol stack method of heteroge-
neous simulation. In that method, the protocol stack is homogeneous within
a single simulator. In other words, packets are exchanged between simulators
only at the lowest supported protocol stack layer. As packets move up or down
the stack, they always stay within a single simulator.

An alternative method, and one providing potentially more flexibility, is
the split–protocol stack method. In this method, heterogeneous simulators ex-
change event messages across layers of a single protocol stack. An example
of this method is shown in Figure 7. Here, simulator 1 processes event mes-
sages for the HTTP and TCP layers of the protocol stack, and then passes those
partially processed messages to simulator 2 for the lower layers of the stack.
When receiving messages, simulator 2 processes the lower layers (MAC and IP),
and then passes the message (using the backplane) to simulator 1 for further
processing.
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Fig. 7. Split protocol stack method.

This method provides the flexibility to mix and match simulation functional-
ity in a way that more closely suits the needs of the simulationist. Of course, the
two methods described above can be combined, using the split protocol stack
model in two or more simulators; connected using the across protocol stack
method between other simulators. However, this method introduces a severe
limitation on the overall performance of the distributed simulation, namely the
presence of a zero-lookahead message exchange.

4.5.1 Lookahead. In a conservatively synchronized, distributed discrete
event simulation, one of the primary factors affecting the performance of the
simulation is the presence (or absence) of lookahead between the individual
simulators. The lookahead between a pair of simulators is defined as a lower
bound on the amount of simulation time that advances as messages are ex-
changed between the simulators. In a typical distributed network simulation
using the across protocol stack method, there is naturally some nonzero (and po-
tentially quite large) lookahead between any two simulators. Since messages
are exchanged between simulators as packets are transmitted on some com-
munication medium, the transmission time and propagation delay create a
naturally nonzero lookahead value. Unfortunately, there is no corresponding
natural delay as messages are exchanged between layers of a single protocol
stack. Exchanging messages between simulators modeling different layers of
the same protocol stack results in a zero-lookahead exchange, with resulting
poor performance.

Our solution to the zero-lookahead problem is to nominate one of the two
simulators as the master, which will represent both simulators in the over-
all distributed simulation environment. We chose the simulator modeling the
lower layers of the protocol stack, but this choice is somewhat arbitrary. We
implemented a simple shared-memory interface between the master and slave
simulators to allow a quick and efficient exchange of information between the
two. The master will participate in all of the time management computations
of the distributed simulation, and represent both simulators in this compu-
tation. The remainder of this section discusses the shared-memory interface
and algorithms for time management in this environment. In all of this dis-
cussion, the master is the simulator modeling the lower layers of the protocol
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stack, and the slave is the simulator modeling the upper layers. The processing
model for this split protocol environment is that, assuming the zero-lookahead
message passing between the master and the slave, there can be no parallel
event processing between the two. Either the master can process an event, or
the slave can; but neither can process events simultaneously with the other
(ignoring the issues of simultaneous timestamp events). Since we are stuck
with serial event processing between the master and the slave, our approach
is to minimize the waiting time between the two. Additionally, we propose
running the two processes on a dual CPU system, such that one process can
be processing events while the other is spin-waiting on permission to process
events.

The shared-memory interface consists of:

—Two unidirectional circular message passing queues, one for passing mes-
sages from the slave to the master (S2M), and a second for passing messages
from the master to the slave M2S). Unidirectional circular queues are ideal
for message passing in this environment since they require no interlocking
of shared variables or critical section processing.

—NERCount. An integer counter specifying the number of times the slave has
requested permission to advance simulation time to a new value.

—TAGCount. An integer counter specifying the number of times the master
has granted the slave permission to advance simulation time to a new value.

—NERTime. A floating point value specifying the simulation time advance
requested by the slave.

—TAGTime. A floating point value specifying the simulation time advance
granted by the master.

—SmallestM2S. A floating point value specifying the smallest timestamped
event sent by the master to the slave since the last time advance grant to
the slave. This is initialized to a value larger than any possible event in the
system.

With the above shared variables, our model is that the slave has permission to
process events if NERCount equals TAGCount, and the master has permission
if it does not. We describe the processing of events at the slave first since it is
the simpler of the two, followed by the processing at the master.

4.5.2 Slave Processing. When the slave has permission to process events
(NERCount equals TAGCount), it simply advances it local simulation time to
TAGTime, and processes any event with a timestamp less than or equal to the
TAGTime value. In actuality, with this model there in no possibility that an
event with a timestamp less than TAGTime exists, since if there were it would
have been processed on a previous iteration. All events with timestamp equal
to TAGTime are processed (which may result in new events with timestamp
equal to TAGTime being exported and passed to the master via the M2S queue).
When all such events have been processed, the slave stores the timestamp of
the earliest unprocessed event in NERTime, and advances NERCount by one.
At this point, the slave has asked permission to advance time to NERTime,
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and permission to process events has been passed to the master. The slave will
spin, waiting for NERCount to be equal to TAGTime, indicating permission has
been given back to the slave to repeat the process. While spinning, the slave
will monitor the M2S queue, removing messages (and or course importing to
internal format using the backplane importing services), and placing them in
the queue of unprocessed events in timestamp order. The processing of the
event importing while spinning gives some amount of parallelism between the
master and slave processes.

4.5.3 Master Processing. The master spins waiting for NERCount not
equal to TAGCount, indicating the slave has finished processing for this cy-
cle. The master must participate in a global time management algorithm, such
as that discussed in Perumalla and Fujimoto [2001] to determine a lower bound
on the timestamp of all unprocessed messages (plus lookahead) in the entire
system (not including the slave processes). This value is called the lower bound
on timestamp (LBTS). To determine an LBTS value, all simulators report the
timestamp of their smallest unprocessed event to a global consensus protocol,
which computes the global minimum. The value reported by the master to the
consensus protocol is determined as follows:

(1) Ensure the S2M queue is empty. If it is not, remove all pending messages
from the slave and place them in the queue of unprocessed events (in times-
tamp order). There is no possibility of a race condition here since at this
point the slave no longer has permission to process events, and is simply
spinning waiting for permission. The S2M queue should normally be empty
at this point, since the master is monitoring the queue while it is waiting
for permission to process events.

(2) Report the minimum of the master’s own smallest unprocessed event, the
NERTime requested by the slave, and SmallestM2S which represents the
smallest timestamp sent by the master to the slave in the master’s most
recent processing cycle.

Once the LBTS value is known, the master can process all pending events
with timestamp less than or equal to the minimum of the LBTS value, NER-
Time, and SmallestM2S. In other words, the LBTS value sets an upper bound on
the simulation time advancement of the master/slave pair, but the master/slave
pair must process events serially between them. Processing of these events by
the master may cause event messages to be exported and passed to the slave
using the M2S queue. Each time an event is passed to the slave, the Small-
estM2S value is set to the minimum of the current SmallestM2S value and the
timestamp of the message being processed. When the master has processed all
eligible events, the TAGTime value is set to the minimum of the NERTime,
SmallestM2S, and the LBTS value. The TAGCount value is then advanced by
one, returning permission to the slave.

The net effect of this shared memory approach and the alternating permis-
sion protocol is that the local event queues of the master and slave processes
appear to the federation as a single event queue. At any point in time, only the
smallest event of the two event queues can safely be processed, which mimics
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Fig. 8. Simulation configuration with four GloMoSim/ns pairs and 4 pdns’s.

the behavior that would be obtained if the two queues were merged to a single
queue.

We experimented with the split protocol stack simulation using GloMoSim
and ns. The protocol stack is split between TCP and IP layers, with ns simu-
lating the upper portion of the protocol stack and GloMoSim simulating the
lower portion. Each GloMoSim/ns pair simulates a wireless network that con-
tains a number of wireless nodes. These wireless networks are connected to
each other through a backbone network, which is simulated by a number of
pdns simulators. Figure 8 shows a simulation configuration that consists of
four GloMoSim/ns wireless networks and four pdns backbone networks. Each
GloMoSim/ns pair connects to exactly one pdns, and the pdns’s are fully con-
nected to each other. There is FTP traffic between wireless nodes in a wireless
network, and also FTP traffic between wireless networks that goes through the
pdns backbone.

We ran the simulation on a multiprocessor shared-memory system, and each
GloMoSim, ns and pdns process was running on a separate processor. One
processor was assigned to each pdns backbone network, and a pair of processors
was assigned to each GloMoSim/ns pair. The number of processors assigned
was increased linearly as the number of wireless networks being modeled was
increased.

In the experiments we varied two parameters to measure the time to com-
plete the simulation. The two parameters are (1) number of wireless networks
(i.e., number of GloMoSim/ns pairs, which equals to the number of pdns simu-
lators in between, since each GloMoSim/ns pair connects to exactly one pdns)
and (2) the percentage of local traffic in the total FTP workload. Note that the
total traffic grows linearly with the number of wireless networks modeled. For
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Fig. 9. Simulation with 200 wireless nodes in each wireless network.

example, if the total traffic of 1 wireless networks is 1 MB, then the total traffic
of 8 wireless networks is 8 MB, including both the local traffic in the same wire-
less network and the traffic between wireless networks that goes through the
backbone. By growing the traffic linearly with the number of wireless networks
being simulated, and by expanding the number of processors in the federation
at the same time, a “perfect” speedup ratio would be indicated by identical
running times for each of the simulations.

Figure 9 shows the performance when the number of wireless nodes in each
wireless network is fixed at 200. The baseline case is one wireless network
where 100 percent of the traffic is local traffic. We can see that as the num-
ber of wireless networks increases, the time it takes to complete the simu-
lation does increase, but the increase is reasonably small. Generally speak-
ing, larger local traffic percentages lead to better speedup. This is expected,
since a large amount of local traffic increases the number of local events at
a given simulator that can be processed in a single lookahead window. At
the other extreme, even when only 10 or 30 percent of the traffic is local
traffic, running eight wireless networks plus eight pdns backbones still only
takes about 2.5 times as the time to run two wireless networks plus two pdns
backbones.

5. FEDERATED SIMULATION EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our federated approach, we developed a
scalable version of the Campus Network topology (shown in Figure 10) devel-
oped by Nicol [2002]. In the figure, the ovals represent 4 individual 100 Mbps
local area networks with a total of 42 clients. The four end hosts in network 1
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Fig. 10. Campus network topology.

are the TCP servers. For all experiments discussed here, each of the 504 clients
creates a TCP connection to a randomly selected server in an adjacent cam-
pus network, and sends a bulk data transfer of 500,000 bytes. The transfer
starts at a random time between time 0.0 and 1.0. The simulations termi-
nate after 20 simulated seconds (all TCP flows have completed by that time).
The experiments were run using both Georgia Tech Network Simulator and
pdns.

To measure the performance speedup of the federated approach, we first
created a baseline experiment, using a single processor and a sequential simu-
lation. This experiment consisted of four campus networks, for a total of 2152
nodes and 2016 flows. The baseline experiment was run using both pdns and
GTNetS and the execution time of the simulations (not including any initial-
ization time) was recorded. Then we ran the federated simulations, varying the
number of CPUs between 2 and 30. In the federated simulation, the size of the
topology and number of flows was scaled linearly with the number of CPUs as-
signed to the federated simulation. In other words, the topology for the 16 CPU
case was 16 times as large as the sequential case, and the overall simulation
performed 16 times as much work. The speedup factor was then calculated as
follows: Let Ts be the execution time of the sequential run, and Tk be the execu-
tion time of the federated simulation on k processors (again not including any
initialization or setup time). The speedup factor S is S = Ts/Tk × k. Thus, if
the 2 processor case runs exactly as fast the sequential case, the speedup factor
is 2 representing perfect speedup (remembering that twice as much work is
done). If the 2 processor case runs twice as long as the sequential case, then the
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Fig. 11. GTNetS speedup.

speedup factor is 1, indicating no advantage was gained by adding the second
CPU.

Another independent variable in the experiments was the lookahead between
the federates. In this type of distributed simulation, the lookahead is a lower
bound on the simulation time delay for events initiated on one federate but
processed on another. It is well known within the distributed simulation com-
munity that large lookahead values usually lead to good distributed simulation
performance. In our federated campus network topology, the lookahead value
is dominated by the propagation delay along the gateway links connecting the
individual campus networks in a ring. For our experiments, use used lookahead
values of 1 ms, 10 ms, 50 ms, 100 ms, and 200 ms.

All experiments were run on the Ferrari Cluster at Georgia Tech. This cluster
has 16 Linux workstations, running RedHat version 8.0, each with 2 866 Mhz
CPUs and 2 Gb of main memory.2 The workstations are connected with a Gi-
gabit Ethernet network and a Foundry BigIron network switch. As mentioned
previously, we distributed the simulation on a varying number of CPUs between
2 and 30. For the experiments using between 2 and 15 CPUs, we assigned each
of the federates to a single system, using only one of the two CPUs in that sys-
tem. For the experiments using 16 to 30 CPUs, we assigned two federates to
each systems, with the possibility of a single federate on the last system when
the federate count is odd.

The measured speedup values for these experiments are shown in Figure 11
for GTNetS and Figure 12 for pdns. The results show that the performance
of the federated approach scales nearly linearly as the number of federates
increases. For example, both of the simulators show a speedup factor of approx-
imately 15 on the 30 CPU case. There are two interesting things to note in these
measurements. First is the small performance dip when increasing from 15 fed-
erates to 16 federates. As previously mentioned, beginning with 16 federates,

2One of the systems was being repaired when these experiments were conducted, so we only had
15 systems and 30 CPUs available at that time.
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Fig. 12. PDNS speedup.

we assigned two federates per system, using both of the CPUs in each system.
Smaller numbers of federates used only a single CPU in each system. When
using both of the available CPUs in a system for the simulation, any operating
system overhead such as timer interrupts or CPU scheduling algorithms, will
necessarily interfere with the progress of the simulation and slow down the
overall execution slightly. When using only one CPU per system, the operating
system overhead will usually be processed by the idle CPU and not interfere
with the simulation.

Secondly, the speedup factors appear to be largely independent of the looka-
head values in the range of 1 ms to 200 ms. In a properly designed conservative
simulation, one would expect the number of asynchronous LBTS computations
to be approximately 1/L× D, where L is the lookahead value and D is the du-
ration of the simulation in simulated seconds. Thus, for our examples, recalling
that D is 20 seconds in our experiments, we would expect approximately 100
LBTS computations for the 200 ms lookahead case, and 20,000 LBTS compu-
tations for the 1 ms case. Given the relatively small overhead of the LBTS
computations in these experiments (on the order of 100 microseconds per com-
putation), this at first glance seems reasonable. However, this does not convey
the whole story.

Recall that to adjust the lookahead values as above, we adjusted the propa-
gation delay on the gateway links connecting the campus networks in a ring.
Further recall that in these experiments all TCP flows are from one campus
to an adjacent campus in the ring. Thus, a secondary effect of reducing the
lookahead value is to reduce the round trip time of the TCP flows being sim-
ulated. We observed that for the 200 ms lookahead case, the simulated flows
were completing in approximately 16 simulated seconds, where in the 1 ms
lookahead case all flows had completed by simulation time 5 seconds. However,
the overall work performed by the simulator (number of packet transmissions)
is the same in all cases. Each flow still sends 500 packets of 1000 bytes each,
but with smaller round trip times, the TCP connections are able to send them
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Fig. 13. PDNS and GTNetS speedup.

faster. Thus, even though the smaller lookahead values result in more LBTS
computations and smaller lookahead windows, there are more events available
for processing in each lookahead window resulting in more efficiency in the
smaller lookahead cases. This discussion shows that comparing simulator per-
formance is tricky. Even when the simulators are identical, and the simulation
scenarios are nearly identical, there still can be subtle differences that affect
performance in unanticipated ways.

For a final set of experiments, we used a slightly larger computing cluster
at Georgia Tech for some scalability experiments. The Jedi Cluster has 16 in-
dividual Linux systems running RedHat 7.3. Each system has eight CPUs and
4 Gb of main memory. All systems are connected via a Gigabit Ethernet inter-
connect. We used the same campus network scenario as described above, this
time with seven campus networks per federate for the pdns runs (as opposed
to four campus nets per federate in the previous experiments). The GTNetS
experiments used thirty campus networks per federate, since the GTNetS im-
plementation uses a more memory efficient representation for the simulated
topology and can model a larger topology in a single federate. The number of
federates (and CPU’s) was varied from 1 to 128, and again the total workload
of the simulation was increased linearly as the number of federates increased.
The speedup factors were calculated as above.

The speedup results for pdns and GTNetS are shown in Figure 13. This set of
results are for the 200-ms lookahead case. Again, we see linear speedup for both
pdns and GTNetS, up to a total of 128 federates. In fact, the speedup values for
the Jedi cluster are slightly better than those measured on the smaller Ferrari
cluster. This is due to the faster CPU speed on the Ferrari cluster, but with com-
parable interconnect hardware. The faster CPU runs the baseline experiment
substantially faster, but the time management and event distribution overhead
(for the federated experiments) is nearly the same.

Finally, Figure 14 shows the scalability of the overall topology size achievable
with our federated approach. Both pdns and GTNetS show linear scalability
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Fig. 14. PDNS and GNetS topology size.

in topology size, with GTNetS successfully simulating a topology of 1,936,800
nodes (and nearly the same number of TCP flows) with the 120 CPU experiment.
The pdns experiment on 128 CPUs achieved an overall topology size of 482,048
nodes.

6. SUMMARY AND CONCLUSIONS

Ideally, one might envision a simulation environment where one could pick and
choose components from different simulation packages and automatically con-
figure them to create models for large-scale networks that execute efficiently on
a wide variety of platforms ranging from Supercomputers to cluster computers
to networked workstations. While we do not claim to have created such an envi-
ronment, this article attempts to describe some of the challenges, a few solution
approaches, and our experiences in attempting to realize such a capability.

Key issues that arise in homogeneous federations where a single simulator
is federated with itself include dealing with physical and logical interconnec-
tions between simulators, and addressing routing issues. Our experiences with
two self-federated distributed network simulations, PDNS and GTNets have
been positive. Experimental results confirm the ability of the federated simu-
lation approach to achieve large (nearly 2 million network nodes) simulation
topologies with linear efficiency up to 128 federates. We believe a central con-
clusion of this work is that self-federated network simulations represent a vi-
able approach to parallel network simulation. Based on our prior experiences
with parallel network simulation tools that were developed “from scratch,” we
believe the federated approach can yield comparable performance while offer-
ing substantial advantages arising from model and software reuse, provided a
reasonably efficient sequential simulator is used. We note, however, that our
experiences with the self-federated approach has not been uniformly positive
for all network simulators. Widespread use of global state severely limited our
exploitation of this technique to realize a parallel implementation of the Opnet
simulator [Wu et al. 2001].
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To extend these results to heterogeneous federations that include different
simulation packages, a backplane approach was proposed, and two approaches
to federating simulators were realized based on different approaches to parti-
tioning the network model. Key issues in extending these techniques to federate
dis-similar simulators include handling issues concerning differing representa-
tions, incomplete implementation of protocols, and federating simulators using
different levels of abstraction. We have shown that the additional computation
overhead to address the first two issues can be reduced to negligible levels.
We note that while we were able to successfully federate disparate simulators
such as GloMosim and ns, a non-trivial amount of effort was required to iden-
tify and isolate problems. Although the problems, once identified, were easily
addressed, it is clear that we are still far from achieving “plug ’n play” interop-
erability among network simulation packages.
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