
Parallel Discrete Event Simulations of

Grid-based Models: Asynchronous

Electromagnetic Hybrid Code⋆

Homa Karimabadi1, Jonathan Driscoll1, Jagrut Dave1,2, Yuri Omelchenko1,
Kalyan Perumalla2, Richard Fujimoto2, and Nick Omidi1

1 SciberNet, Inc., Solana Beach, CA, 92075, USA
{homak,driscoll,yurio,omidi}@scibernet.com

2 Georgia Institute of Technology, Atlanta, GA, 30332, USA
{jagrut,kalyan,fujimoto}@cc.gatech.edu

Abstract. The traditional technique to simulate physical systems mod-
eled by partial differential equations is by means of a time-stepped method-
ology where the state of the system is updated at regular discrete time
intervals. This method has inherent inefficiencies. Recently, we proposed
[1] a new asynchronous formulation based on a discrete-event-driven (as
opposed to time-driven) approach, where the state of the simulation is
updated on a “need-to-be-done-only” basis. Using a serial electrostatic
implementation, we obtained more than two orders of magnitude speedup
compared with traditional techniques. Here we examine issues related to
the parallel extension of this technique and discuss several different par-
allel strategies. In particular, we present in some detail a newly developed
discrete-event based parallel electromagnetic hybrid code and its perfor-
mance using conservative synchronization on a cluster computer. These
initial performance results are encouraging in that they demonstrate very
good parallel speedup for large-scale simulation computations containing
tens of thousands of cells, though overheads for inter-processor commu-
nication remain a challenge for smaller computations.

1 Introduction

Computer simulations of many important complex physical systems have reached
a barrier as existing techniques are ill-equipped to deal with the multi-physics,
multi-scale nature of such systems. An example is the solar wind interaction
with the Earth’s magnetosphere. This interaction leads to a highly inhomoge-
neous system consisting of discontinuities and boundaries and involves coupled
processes operating over spatial and temporal scales spanning several orders of
magnitude. Inclusion of such disparate scales is beyond the scope of existing
codes [2].

⋆ Research was supported by NSF ITR grant 0325046 at SciberNet Inc. and 0326431
at Georgia Institute of Technology. Some of the computations were performed at the
San Diego Supercomputing Center.

We have taken a new approach [1] to the simulation of such complex systems.
The conventional time-stepped grid-based Particle-In-Cell (PIC) models provide
the sequential execution of synchronous (time-driven) field and particle updates.
In a synchronous simulation, the distributed field cells and particles undergo
simultaneous state transitions at regular discrete time intervals. In contrast,
we propose a new, asynchronous type of PIC simulation based on a discrete-
event-driven (as opposed to time-driven) approach, where particle and field time
updates are carried out in space on a “need-to-be-done-only” basis. In these
simulations, particle and field information “events” are queued and continuously
executed in time. The technique has some similarity to Cellular Automata (CA)
in that complex behaviors result from interaction of adjacent cells [3]. However,
unlike CA, the interactions between cells are governed by a full set of partial
differential equations rather than the simple rules as are typically used in CA.
The power of this technique is in its asynchronous nature as well as elimination
of unnecessary computations in regions where there is no significant change in
time. This is in contrast to CA, which are largely based on synchronous execution
(e.g. [4]); to date, asynchronous parallel discrete event simulation of CA have
only been applied to relatively simple phenomena such as Ising spin [5]).

Using a serial electrostatic model, we have shown [1] that the discrete event
technique can lead to more than two orders of magnitude speedup compared
to conventional techniques. In the following, we discuss issues associated with
the extension of this technique to parallel architectures. We then demonstrate,
through a newly developed parallel hybrid code, that parallel processing can
provide an additional order of magnitude improvement in performance.

2 Parallel Computation Issues

Discrete Event Simulation (DES) offers substantial benefits compared to conven-
tional explicit time-driven simulation by reducing the amount of computation
that must be performed. However, by itself, DES is not sufficient to achieve
the desired performance and scalability. Parallel DES (PDES) can help address
this issue. However, the irregular nature of PDES computations leads to diffi-
culties. Synchronization overhead, the number of concurrent computations, load
distribution and event processing rate impact PDES performance significantly
[6].

As in conventional (time-driven) simulations, the parallelization of asynchro-
nous (event-driven) continuous PIC models is realized by decomposing the global
computation domain into subdomains. In each subdomain, individual cells and
particles are aggregated into containers that may be mapped to different proces-
sors. The parallel execution of time-driven simulations is commonly achieved by
copying field information from the inner lattice cells to ghost cells of neighboring
subdomains and exchanging out-of-bounds particles between the processors at
the end of each update cycle. By contrast, in parallel asynchronous PIC simu-
lations both particle and field events are not synchronized by the global clock
(i.e. they do not take place at the same time intervals throughout the simula-

tion domain), but occur at arbitrary time intervals, introducing synchronization
problems. Unless precautions are taken, a process may receive an event message
from a neighbor with a simulation time stamp that is in its past.

In the following, we assume that the parallel simulation is composed of a
collection of Simulation Processes (SPs) that communicate by exchanging time
stamped event messages. Broadly, synchronization approaches may be classified
as conservative or optimistic. Conservative synchronization ensures that each
simulation process never receives an event in its past [8, 9]. Runtime performance
is critically dependent on apriori determination of an application property called
lookahead (a time interval), which is roughly dependent on the degree to which
the computation can predict future interactions with other processes without
global information. On the other hand, the optimistic approach allows a process
to receive a message in its past, but uses a rollback mechanism to recover [7].
Further discussion can be found in [10,11,12].

Another important issue concerns load balancing. As with any parallel or dis-
tributed application, the computation must be evenly balanced across processors
and interprocessor communication should be minimized to achieve the best per-
formance. Often these are conflicting goals. This is particularly challenging in
PDES because of its irregular, unpredictable nature. Load balancing can greatly
affect the efficiency of synchronization mechanisms (e.g. poor load distribution
can lead to excessive rollbacks in optimistic systems). Automated schemes that
balance workload at runtime using process migration present new challenges in
this area [13,15].

Finally, it is desirable to decouple the parallel simulation engine that handles
synchronization and communication from the application/models. This reduces
the burden of the application developer, by not requiring an understanding of
underlying PDES synchronization mechanisms. We have used an extensible sim-
ulation engine that provides multiple synchronization and event delivery mech-
anisms through a single interface, named µsik [16].

3 DES Model

We have developed a general architecture for parallel discrete event modeling
of grid-based models. Details will be presented elsewhere. Here we present a
simplified version of our technique that illustrates the salient features of our
model without getting bogged down in all the details. In the following, we show
results from a 1D parallel hybrid code (light version) that we have developed
and tested using µsik as the simulation engine. This code is used to highlight
unique parallel issues that are encountered in the DES modeling of plasmas. The
light version does not strictly conserve flux. However, the lack of strict local flux
conservation does not change the result significantly in the problem of interest
here.

3.1 Hybrid Algorithm

Electromagnetic hybrid algorithms with fluid electrons and kinetic ions are ide-
ally suited for physical phenomena that occur on ion time and spatial scales.
Maxwell’s equations are solved by neglecting the displacement current in Am-
pere’s law (Darwin approximation), and by explicitly assuming charge neutrality.
There are several variations of electromagnetic hybrid algorithms with fluid elec-
trons and kinetic ions [18]. Here we use the one-dimensional resistive formulation
[19] which casts field equations in terms of vector potential. The model problem
uses the piston method where incoming plasma moving with flow speed larger
than its thermal speed is reflected off the piston located on the rightmost bound-
ary. This leads to the generation of a shockwave that propagates to the left. In
this example, we use a flow speed large enough to form a fast magnetosonic
shock. In all the runs shown here, the plasma is injected with a velocity of 1.0
(normalized to upstream Alfven speed), the background magnetic field is tilted
at an angle of 30o, and the ion and electron betas are set to 0.1.

The simulation domain is divided into cells [1], and the ions are uniformly
loaded into each cell. We conducted experiments ranging from 4,096 to 65,536
cells, and initialized each simulation to have 100 ions per cell. Each cell is modeled
as an SP in µsik and the state of each SP includes the cell’s field variables. The
main tasks in the simulation are to a) initialize fields, b) initialize particles, c)
calculate the exit time of each particle, d) sort IonQ (see below), e) push particle,
f) update fields, g) recalculate exit time, and h) reschedule. This is accomplished
through a combination of priority queues and three main classes of events. The
ions are stored in either one of two priority queues as illustrated in Fig. 1. Ions
are initialized within cells in an IonQ. As ions move out of the left most cell, new
ions are injected into that cell in order to keep the flux of incoming ions fixed at
the left boundary. MoveTime is the time at which an ion is to be moved next. The
placement and removal of ions in IonQ and PendQ is controlled by comparing
their MoveTimes to the current time and lookahead. Ions with MoveTimes more
than current time + 2*lookahead have not yet been scheduled and are kept in
the IonQ. A wakeup occurs when the fields in a given cell change by more than a
certain threshold and MoveTimes of particles in the cell need to be updated. On a
wakeup, only the ions in this queue recalculate their MoveTimes. Because ions in
the IonQ have not yet been scheduled, a wakeup requires no event retractions. If
an ion’s MoveTime becomes less than current time + 2*lookahead in the future,
the ion is scheduled to move, and is removed from the IonQ and placed in the
PendQ. Thus, the front of the IonQ is at least one lookahead period ahead of the
current time. This guarantees that each ion move will be scheduled at least one
lookahead period in advance. The PendQ is used to keep track of ions that have
already been scheduled to exit, but have not yet left the cell. These particles
have MoveTimes that are less than the current time. Ions in the PendQ with
MoveTimes earlier than the current time have already left the cell and must be
removed before cell values such as density and temperature are calculated.

Events can happen at any simulation time and are managed separately by
individual cells of the simulation. The flow of the program including functions of

MoveTimecurrent time

not yet scheduled

2 lookahead*

IonQ

scheduled to exit
 exited /

awaiting removal

PendQ

if MoveTime < current time +2 lookahead*

Fig. 1. At any moment, the ions in a cell are stored in one of two queues, the IonQ
and the PendQ. Both are priority queues, sorted so that the ion with the earliest exit
time is at the top.

events and their interaction with µsik is illustrated in Fig. 2. In this simulation,
each cell handles three different types of events.
SendIon Event: This event is first run on each cell when the simulation is ini-
tialized, and is responsible for sending ions from one cell to the next. This is
accomplished by scheduling the complementary “AddIon” events for neighbor-
ing cells. The SendIon event schedules an AddIon event corresponding to every
Ion which exits within two lookahead periods, and always schedules at least one
SendIon event. In addition, the SendIon Event checks to see if the fields have
changed by some tolerance, waking up particles in that cell if necessary. SendIon
events occur frequently and as a whole are computationally significant.
AddIon Event: This event is used to add a single ion to a cell. The ion’s new exit
time is calculated, and then it is added to the IonQ. The fields in the cell are
then updated and Notify Events are scheduled for the left and right neighbor
cells to inform them of the field change. The AddIon Event causes state changes
and occurs sporadically in large batches.
NotifyEvent: This event updates the vector potential and temperature for the
two neighbors.

Musik

AddIon Event

1. Remove ions which have exited
 from PendQ

2. Calculate exit time of the ion
 being added

3. Push the ion onto the IonQ

4. Update the field inside this cell
 only

5. Schedule NotifyEvent for left
 and right neighboring cells

SendIon Event
1. Remove ions which have exited
 from PendQ, replace any ions
 that have left cell 0

2. Check to see if the fields have
 changed more than the set
 tolerance, and if so, wakeup ions

3. Schedule one AddIon event for the
 ion with the earliest exit time, and
 one AddIon event for every ion
 within 2 lookahead

4. Reschedule SendIon event for self,
 one lookahead period before the
 next unscheduled ion will exit

*

Execute AddIon Event

Schedule NotifyEvents
for left & right neighbors

Execute SendIon Event

Schedule AddIon
Events for left or
right neighbors

Reschedule SendIon
 Event for this cell

Start - SendIon Event is called on each cell
 to prime the simulation loop

...

Fig. 2. Flow diagram of the parallel hybrid code.

Exit Time. We take the electric and magnetic fields to be constant within a
cell, with arbitrary orientation and magnitude. In this case, a charged particle
will have an equation of motion that can be calculated analytically and has the
general form R(t) = At2 + Bt + rc sin(ωct + φ) + C, where R(t)is the position
of the particle. Newton’s method is used to solve for the exact exit time.

Lookahead. If the typical velocity of a particle is v, and a typical cell width
is x, then the time it takes for a particle to cross a cell is x/v. Lookahead must
be a factor smaller than this time so that a particle covers a small fraction of
the cell width in one lookahead period. On the other hand, if the lookahead is
too small, the parallel performance will be poor. This happens when there are
few event computations during a lookahead period. Synchronization overhead
becomes larger than the computational load. We use the time it takes for the
first particle to exit a cell to set the lookahead.

4 Results

Figure 3(a) compares results of traditional time-stepped hybrid simulation and
our event-stepped simulation for a single processor. We have plotted the y and z
(transverse) components of the magnetic field, the total magnetic field, and the
plasma density versus x, after the shock wave has separated from the piston on
the right hand side. The match between the two simulations is remarkable as
DES captures the (i) correct shock wave speed, and (ii) details of the wavetrain
associated with the shock wave. This match is impressive considering the fact
that the differences seen in Fig. 3(a) are within statistical fluctuations associated
with changes in the noise level in hybrid codes.

4.1 Effect of Lookahead

Next, we consider the effects of changing the lookahead on both the accuracy
of the results as well as the execution time. The hardware for the runs shown
here was a high-performance cluster at the Georgia Tech High Performance
Computing laboratory. The cluster has 8 nodes, each with 4 2.8 GHz Xeon
processors and 4 GB of RAM. The simulation uses 4 µsik Federates (one per
processor), each with 2 Regions and 512 cells per Region. A Region is a grouping
of cells for efficient load-distribution, described in Sect. 4.3.

Figure 3(b) shows variations in the spatial profile of Btot, with lookahead. The
zero lookahead run yields the most accurate result and is treated as a baseline.
In the hybrid algorithm, the maximum lookahead must be less than the exit time
of the earliest scheduled particle, which is approximately 0.15 for our choice of
parameters. Deviations of the profile from the baseline are less than 10%, even
when the maximum lookahead value is used.

Figure 4(a) shows the speedup in execution time relative to the zero looka-
head run. The important point from this figure is that even small departures
from zero lookahead lead to substantial improvements in speed. In fact, the most

B
y

-1

1

B
tot

0

2

700 1000X

N

0

5

Bz

2

-1

event-driven

time-stepped

3200 4200
0.6

1.2

cell number

B

/
B

to
t

to
t 0

-l
o

o
k
-a

h
e

a
d

lookahead=0.07

lookahead=0.15

(a)

(b)

Fig. 3. (a) Comparison of time-stepped and event-driven simulations of a fast magne-
tosonic shock. (b) The ratio of the total magnetic field from lookahead runs of 0.07
and 0.15 relative to the field from zero lookahead run.

dramatic speedup (a factor of 3) is achieved when lookahead is changed from 0
to 0.005. Further changes in lookahead do improve performance, but at a much
slower rate. For example, increasing the lookahead by an order of magnitude
from 0.005 to 0.05 leads to only an additional 15% speedup.

4.2 Scaling with the Number of Processors

The 1D modeling of the shock problem in Fig. 3(a) can be easily performed
with a serial version of our code. However, our ultimate goal is to develop a 3D
version of the code. As a simple means to evaluating the parallel execution in a
3D model, we have considered cell numbers as large as 65,536. This is sufficient
to identify the key issues of parallel execution. Figure 4(b) shows the speedup as
a function of the number of processors up to 128. The speedup is measured with
respect to a sequential run. These runs were made on a 17 node cluster, with
each node having 8 550 MHz CPUs and 4 GB of RAM. The simulation domain
consisted of 8,192 cells in one case and 65,536 cells in the other.

As is evident from Fig. 4(b), the parallel speedup is good till eight proces-
sors, but declines as more processors are added. This is due to the architecture
of the cluster, which uses a collection of 8 processor computers communicating
through TCP/IP. With up to 8 processors, the entire simulation runs through
shared memory, and the communication overheads are low. However, with more
than 8 processors, the overheads associated with TCP/IP begin to offset the
speed gained by using more processors. This reduces the slope of the curve.
For 8,192 cells, the speedup does not increase significantly after 32 processors.
This is because of increased synchronization costs, which negate the gains from
parallel processing. Processors do not have a sufficient computational load be-
tween global synchronizations and spend a greater fraction of time waiting on

S
p
e
e
d
u
p
 R

e
la

tiv
e
 t
o
 t
h
e
 S

e
ri

a
l R

u
n

Number of Processors
1 10 100

1

10

100

300

lin
ear

look ahead values

S
p
e
e
d
 u

p
 r

e
la

tiv
e
 t
o
 z

e
ro

 lo
o
k

a
h
e
a
d

0

3

6

0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

(a) (b)

Fig. 4. (a) Speedup with increased lookahead. (b) Scaling with the number of proces-
sors. The dashed line is a linear scaling curve. Speedup for 8,192 cells is in black and
65,536 cells is in gray. For each domain size, there are two curves - speedup considering
the overall execution time and speedup without considering communication time. The
scaling is superlinear if communication time is removed.

other processors. For 65,536 cells, there is enough computation between global
synchronizations to obtain good speedup up to 128 processors.

Since the overheads associated with inter-processor communication become
relatively smaller as the simulation size increases, we do not anticipate this
effect being as pronounced with larger, 3D simulations. In 3D simulations, each
processor would have several orders of magnitude more cells, making the relative
overheads associated with TCP/IP much less. To test the idea that poor scaling
is the result of the communication overheads, we have also plotted speedup with
the communication time subtracted out in Fig. 4(b). The speedup in this case
is better than expected, and is in fact super-linear. In other words, doubling
the number of processors more than doubles the execution speed. This is the
result of a peculiar feature of DES. Execution time does not necessarily scale
linearly with the simulation size, even on one processor. This is in part due to
the fact that as the event queue becomes larger (contains more pending events),
the time associated with scheduling and retrieving each event increases. So, as
the simulation gets distributed over more and more processors, each processor
is effectively dealing with a smaller piece of the simulation, making the scaling
non-linear. Memory performance (specifically, cache performance) can also lead
to super-linear speedup. By keeping the same size problem but distributing it
over more processors, the memory footprint in each processor shrinks. The total
amount of cache memory increases in proportion with the number of processors
used - with enough processors, one can, for example, fit the entire computation
into the processors’ caches. An extreme case of this is when the problem is so
large that it does not fit into the memory of a single machine, causing excessive
paging. Although both effects could be causing the super-linear scaling seen in
Fig. 4(b), the data structure performance appears to be dominant. In a no-load
test of µsik, we changed the number of cells from ten to a million. The time to
process a single event increased from 6.50 to 22.15 microseconds, indicating a
scaling behavior of NlogN.

Figure 5(a) shows the percentage of time spent in communication and block-
ing in each case. There is a significant increase in the fraction of time spent in
communication and blocking for more than 8 processors. For 65,536 cells, the
percentage settles to around 60% for higher number of processors. However, for
8,192 cells, the percentage keeps on increasing until 90% for 128 processors.

4.3 Load Balancing

Figure 5(b) shows the variation in execution time as a function of the number
of Regions per processor, as distributed by the Region Deal algorithm. In this
scheme, the simulation is broken into small Regions which are then “dealt” out
much like a card game among processors. These simulation runs were performed
on the first cluster mentioned earlier.

C
o
m

m
u
n
ic

a
tio

n
 P

e
rc

e
n
ta

g
e

1

Number of Processors

8192 cells 65536 cells

ex
e
u
ct

io
n
 t
im

e
 /
 t

o

Regions per Processor (log scale)

40101

0.0

0.2

1.4

0.4

0.6

0.8

1.0

1.2 2 processors

4 processors

8 processors

16 processors

2 4 8 16 32 64 128
0

100% (a)

(b)

Fig. 5. (a) Percentage of time spent in communication. (b) Performance of load bal-
ancing algorithm.

The curves show a different trend for higher number of processors (4,8,16)
than for 2 processors. For higher number of processors, the variation in execution
time because of the Region Deal load balancing scheme is less pronounced. The
best execution times are close to the execution time for 1 Region per processor,
with variations of less than 1,000 seconds. Also, increasing the number of Re-
gions per processor increases the execution time in most cases. This is because of
the increased synchronization overhead that negates the benefits of the load dis-
tribution scheme. For 2 processors, having more Regions per processor leads to
better load distribution and hence reduced execution time. The execution time
settles around 14,000 seconds for 16 Regions or more. In this case too, contigu-
ous cells are assigned to different processors and incur greater synchronization
overhead for higher number of Regions per processor.

References

1. Karimabadi, H, Driscoll, J, Omelchenko, Y.A. and N. Omidi, A New Asynchro-
nous Methodology for Modeling of Physical Systems: Breaking the Curse of Courant
Condition, J. Computational Physics, (2005), in press.

2. Karimabadi, H. and N. Omidi. Latest Advances in Hybrid Codes and their
Application to Global Magnetospheric Simulations. in GEM, http://www-
ssc.igpp.ucla.edu/gem/tutorial/index.html) (2002).

3. Ilachinski, A., Cellular Automata, A Discrete Universe, World Scientific, 2002.
4. Smith, L., R. Beckman, et al. (1995). TRANSIMS: Transportation Analysis and

Simulation System. Proceedings of the Fifth National Conference on Transportation
Planning Methods. Seattle, Washington, Transportation Research Board.

5. Lubachevsky, B. D. (1989). Efficient Distributed Event-Driven Simulations of
Multiple-Loop Networks. Communications of the ACM 32(1): 111-123.

6. Fujimoto, R.M., Parallel and Distributed Simulation Systems. (2000): Wiley Inter-
science.

7. Jefferson, D., Virtual Time, ACM Transactions on Programming Languages and
Systems, (1985), 7(3):pp. 404-425.

8. Chandy, K. and J. Misra (1979). Distributed Simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineering.

9. Chandy, K. and J. Misra (1981). Asynchronous distributed simulation via a sequence
of parallel computations. Communications of the ACM. 24.

10. Fujimoto, R. M. (1999), Exploiting Temporal Uncertainty in Parallel and Distrib-
uted Simulations, Proceedings of the 13th Workshop on Parallel and Distributed
Simulation: 46-53.

11. Rao, D. M., N. V. Thondugulam, et al. (1998). Unsynchronized Parallel Discrete
Event Simulation. Proceedings of the Winter Simulation Conference: 1563-1570.

12. Rajaei, H., R. Ayani, et al. (1993). The Local Time Warp Approach to Parallel
Simulation. Proceedings of the 7th Workshop on Parallel and Distributed Simula-
tion: 119-126.

13. Boukerche, A., and S. K. Das, Dynamic Load Balancing Strategies for Conservative
Parallel Simulations, Workshop on Parallel and Distributed Simulation, 1997.

14. Carothers, C. D., and R. M. Fujimoto, “Efficient Execution of Time Warp Pro-
grams on Heterogeneous, NOW Platforms,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 11, No. 3, pp. 299-317, March 2000.

15. Gan,B. P., et al., Load balancing for conservative simulation on shared memory
multiprocessor systems, Workshop on Parallel and Distributed Simulation, 2000

16. Perumalla, K.S., µsik – A Micro-Kernel for Parallel and Distributed Simulation
Systems, to appear in the Workshop on Principles of Advanced and Distributed
Simulation, May, 2005.

17. Bagrodia, R., R. Meyer, et al. (1998). Parsec: A Parallel Simulation Environment
for Complex Systems. IEEE Computer 31(10): 77-85.

18. Karimabadi, H., D. Krauss-Varban, J. Huba, and H. X. Vu, On magnetic recon-
nection regimes and associated three-dimensional asymmetries: Hybrid, Hall-less
hybrid, and Hall-MHD simulations, J. Geophys. Res., Vol. 109, A09205,(2004).

19. Winske, D. and N. Omidi, Hybrid codes: Methods and Applications, in Computer
Space Plasma Physics: Simulation Techniques and Software, H. Matsumoto and Y.
Omura, Editors. (1993), Terra Scientific Publishing Company. p. 103-160.

