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BCYCLIC: A Parallel Block Tridiagonal Matrix Cyclic Solver† 

S. P. Hirshman‡, K. S. Perumalla, V. E. Lynch, and R. Sanchez 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee, USA 
 

Abstract 
A block tri-diagonal matrix is factored with minimal fill-in using a cyclic reduction algorithm that is easily 
parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which 
may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, 
while scalability with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix 
manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently 
handle arbitrary (non-powers-of-2) block row and processor numbers. Comparison with a state-of-the art parallel 
sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use 
the parallel resources on current supercomputers. Example usage of the solver in magneto-hydrodynamic (MHD), 
three dimensional equilibrium solvers for high-temperature fusion plasmas is cited. 

 

 

 

Keywords: cyclic reduction; block matrix; dense blocks; tridiagonal matrix; Thomas algorithm; parallel computing 

PACS: 02.60.Dc, 02.60.Cb, 52.30Cv, 52.55.-s,52.55.Fa, 52.55,Hc 

  

                                                      
† This submission was sponsored by a contractor of the United States Government under contract DE-AC05-
00OR22725 with the United States Department of Energy. The United States Government retains, and the publisher, 
by accepting this submission for publication, acknowledges that the United States Government retains, a 
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, 
or allow others to do so, for United States Government purposes. 
‡ Corresponding author. Oak Ridge National Laboratory, Oak Ridge, TN USA 37830; Email: hirshmansp@ornl.gov  

*02. Manuscript
Click here to view linked References

http://ees.elsevier.com/jcomp/viewRCResults.aspx?pdf=1&docID=8222&rev=1&fileID=186490&msid={B4C58677-8C61-4334-8D9F-6F6AC97645C2}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1. Introduction 

1.1. Motivation and Scope 
The solution of the matrix equation Ax = b, with possible multiple right hand sides b, arises routinely in the 

solution of linear and nonlinear partial differential equations (PDEs). In three-dimensional systems where two 
coordinates are angular and one is radial, the Fourier-transformed PDEs result in A being block tridiagonal when the 
underlying equations involve at most second order derivatives. The block size M is the additive Fourier extents in 
the 2 angular directions, and the number of block rows N is the number of discrete radial nodes. Such matrix 
structure emerges naturally in numerical simulations of hot thermonuclear plasmas confined by a magnetic toroidal 
field, such as those in a tokamak or stellarator. The nonlinear fluid equations that describe the equilibrium, stability 
and evolution of these plasmas are often discretized spectrally in the two periodic directions, while finite differences 
are used in the radial direction. In this case the highest derivative in the radial direction is second order, the resulting 
linear sub-problems that emerge when solving the nonlinear equations via iterative Newton-Krylov methods exhibit 
a block tridiagonal structure.  

Examples of physics codes which require efficient block solvers include the ideal magnetohydrodynamic (MHD) 
nonlinear solvers VMEC [1] and SIESTA [2], and the linear full-wave ion cyclotron radio frequency (ICRF) code 
TORIC [3]. All of these codes solve equations of the form Ax=b, with the block-tridiagonal matrix A consisting of 
large, dense blocks. Usually multiple right sides b occur. Such a block solver is essential for the numerical efficiency 
of the SIESTA [2] code which computes high-resolution MHD equilibria in the presence of magnetic islands. Most 
of the computational time in SIESTA is spent in the inversion of large block matrices (N>100, M>300) which are 
repeatedly applied as preconditioners to accelerate the convergence of the linearized MHD equations toward an 
equilibrium state. Eventual simulations for plasmas in the International Thermonuclear Experimental Reactor 
(ITER, with T~15 keV, a~2 m, B~5 T) will require even larger spatial resolution resulting in greater block row 
numbers and sizes. Therefore the efficient parallel inversion and storage of the factors of A is essential in SIESTA 
and was the primary motivation for the present code development. 

 

 
Figure 1 Example of a tokamak equilibrium plasma with a q=1 tearing mode creating an m=1 island. 

 

Figure 1 shows a SIESTA equilibrium calculation for pressure contours (magnetic surfaces) in a tokamak plasma 
with an internal q=1 surface near the center of the plasma. The block size for this problem was M=273 and there 
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were N=101 block rows. For this small sized problem, the serial calculation can be done in under 5 min on a desktop 
computer using Compaq Visual Fortran. Using ScaLAPACK (see below) to factor and invert the blocks improves 
the performance for this problem by about a factor of 5 before communication bottlenecks saturate the performance 
gain. As we discuss in Section 4, the new cyclic-reduction routine BCYCLIC significantly extends the scalability for 
this, and larger, problem sizes. 

 

1.2. Related Work in Parallel Block Tri-Diagonal Matrix Solvers 
There has been considerable work in developing solution algorithms for tri-diagonal matrices. Here, we briefly 

review work related to code development for block tri-diagonal solvers. For a block-tridiagonal matrix A, it is 
possible to obtain an exact inverse (direct solution) with no fill-in by using the well-known Thomas [4] serial 
algorithm, which is easily generalized for block sizes M >> 1. While this is the fastest algorithm on a serial 
computer [5], it is not parallelizable since each solution step in the algorithm depends on the preceding one.  

Many authors have considered efficient parallel block solvers for scalar block (M=1) matrices based on cyclic 
reduction [6-8]. Cyclic reduction was first described by Heller [9] for block tridiagonal systems, although an 
efficient parallel code was not described. The new code BCYCLIC described here fills a software gap in the 
available codes for solving tri-diagonal systems with large (M>>1), dense blocks. For example, the well-known 
BLKTRI code [10] uses cyclic reduction for the efficient solution of block-tridiagonal matrices which arise from 
separable elliptic partial differential equations. It is however not well-suited for the present case of interest 
consisting of dense blocks. Other parallel block-tridiagonal solvers [11] are also not optimized for these parameters. 

ScaLAPACK [12,13] provides another method for efficiently solving dense block tri-diagonal systems. Block 
factorization and solution based on ScaLAPACK are currently implemented in the SIESTA [2] MHD equilibrium 
code. This technique scales well with processor count only for very large matrix block sizes. For matrix blocks of 
interest for small 3D MHD problems (M~300), scalability was found to be limited to about 5-10 processors. For 
larger block sizes, scalability is expected to improve. To improve scalability for the current (small) block sizes, we 
have developed the BCYCLIC code. It uses a combination cyclic reduction, for scalability in the block row 
dimension (N>>1), together with GotoBLAS for scalability in the block size, to achieve overall good scalability. 
Enhancements to use ScaLAPACK instead of LAPACK, while retaining the use of threaded BLAS (in the layer 
under LAPACK), are being developed. This will relieve single-node memory constraints, allowing the blocks to be 
larger than the memory of a single node, and also permit idle processors to participate in later recursion levels of the 
cyclic reduction. 

In addition to cyclic reduction, divide-and-conquer strategies have been used to parallelize the solution of 
tridiagonal equations [14]. As noted by Wang [15], this partition algorithm is unlikely to be more efficient than 
cyclic reduction unless P << N (here, P is the number of MPI ranks, which would be nodes in the case of using 
OpenMP or GotoBLAS threads, but cores in the case of only MPI tasks) . A parallel fast direct solver for block 
tridiagonal systems with separable matrices, based on divide-and-conquer, has been described in [16]. A parallel 
symmetric block-tridiagonal divide-and-conquer algorithm was described in [17]. Divide-and-conquer has been used 
in conjunction with cyclic reduction by J. P. Lee [18] for the TORIC code [3]. 

The state-of-the art sparse direct solver SuperLU [19] can be used to perform the necessary inversion for the 
block matrix A. In Sect. 8, the processor scaling of SuperLU is compared to BCYCLIC for typical block size 
(M~300) and block rows (N~1000) encountered in present day 3D MHD simulations. The PETSc [20] library 
provides a suite of parallel routines for solving partial differential equations. However, our present focus is on 
developing a highly-optimized parallel implementation for dense block-triadiagonal systems. Vendor-supplied 
libraries, such as CRAY Scientific Libraries [21] (CSL) and IBM Engineering and Scientific Subroutine Library 
[22] (ESSL), are commonly used for matrix inversion operations but are also not specifically tuned for the present 
problem. 

 

1.3. New Contributions 
BCYCLIC uses cyclic-reduction to obtain good processor scalability with respect to the number of block rows N. 

It is also optimized for speed in a parallel environment by using efficient non-blocking receives and sends to 
minimize inter-processor communication time. In this way, the overall computation time is not dominated by 
communication. In contrast to previous codes (and algorithms), BCYCLIC stores the necessary factored blocks of A 
with minimal fill-in so that solutions with multiple right sides can be efficiently computed, even when they are not 
known at factorization time. This is important, for example, when the matrix A is used repeatedly as a preconditioner 
as part of a nonlinear iterative scheme, as in the SIESTA [2] code. By using multithreading techniques to accelerate 
the computation of matrix-matrix products, parallelism is introduced to give additional scalability with respect to the 
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block size M. This dual scalability – in both N and M - is unique to the present implementation. BCYCLIC can be 
used with arbitrary block rows N and MPI ranks P that are not restricted to powers of 2 as in the classical cyclic 
reduction algorithm. 

 

1.4. Organization of Paper 
The rest of the paper is organized as follows.  Our solution approach based on cyclic reduction is described in 

Section 2 with emphasis on efficient block storage and inter-processor communication optimization.  Section 3 
documents some additional implementation details, followed by Section 4 in which a performance study is presented 
for the solver executed on a parallel machine with multi-core nodes.  The results are summarized in Section 5. 

 

2.  Our Approach 
In this section, we present our solution approach based on block cyclic reduction.  First, we review the well-

known Thomas sequential method, to place the current approach in context.  This is followed by our parallelization 
scheme for the block cyclic reduction algorithm.  This scheme when executed sequentially is nearly as efficient as 
the Thomas algorithm in both computational FLOPS (floating point operations) and memory usage, but requires 
(approximately) three times as many matrix-matrix products.  The computational cost makes it slower than Thomas 
by about a factor of 2-3 on a serial machine. However, we later show that the real gain is that it gives a significant 
reduction in run time on a parallel machine (approximately N/log2N), where it is assumed P < N/2, where, N is the 
number of block rows, and P is the number of processors over which the matrix block rows are distributed. This 
estimate assumes the code is structured so that communication times between processors do not dominate the run 
time. We show that this indeed can be achieved, and, in support of this observation, we present a detailed analysis of 
CPU time in a parallel execution environment. 

 

2.1. Background: Thomas Sequential Recursion 
The Thomas [4] algorithm is briefly reviewed for later comparison with the cyclic reduction method. The ith 

block row of the matrix A consists of the three M M blocks denoted Li, Di, Ui, where Li is the lower block, Di is 

the diagonal block, and Ui is the upper block. At the boundaries, L1 = 0 and UN = 0. The block structure of A for the 
ith row is: 

 1 1i i i i i i iL x D x U x b     (1) 

The Thomas algorithm uses the boundary conditions at i=1 and i=N to obtain a two-point recursion relation 
which can be iterated from one boundary to the other, followed by a “reverse sweep” to obtain the solution vector x. 
Generally, no block pivoting is done. First,  x1 is solved in terms of the unknown x2, assuming D1 is non-singular: 

 1
1 1 1 2 1( )x D U x b    (2) 

Inserting this into the next block row equation, x2 can be eliminated in terms of x3. In general, the recurrence 
formula is: 

 )( 1 iiiii xUx      (3a) 

Here, Δi is a matrix and βi is a vector. Inserting this into block row i yields the recurrence relations: 

 
1

1 1

1

( )i i i i i

i i i i

D L U

b L 


 



   
 

 (3b) 

Starting values for the recurrence relations in Eq. (3b) are Δ0=0 and β0 = 0. Note this equation is intrinsically 
serial, since the computation at level i requires the previous level values. 

The recurrence continues until the other boundary at i=N is reached. There, UN=0 is used to initiate the back-
solving process, via Eq. (3a): 

 NNNx   (4) 

Eq. (3a) is iterated backwards from i=N-1 to i=1 to complete the solution process. 

Once Δi has been determined (and stored) for a particular matrix A, Eq. (3b) for βi can be iterated forward for 
multiple right-sides and the back-substitution in Eq. (3a) performed to obtain the unknowns, without any further 
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matrix inversions or matrix-matrix products. Also, there is no fill-in, since Di (and Ui) can be used to sequentially 
store Δi, (and Δi Ui). Note the Thomas algorithm requires one matrix inversion and two matrix-matrix 
multiplications per block row. 

 

2.2. Cyclic Reduction of Block Rows 
Cyclic reduction [6,9] is a “period-doubling” algorithm that can be applied recursively to reduce the number of 

coupled block rows in Eq. (1) to one or a very small number compared with N. This reduced block system can then 
be either solved trivially – with a single block-matrix inversion - or efficiently using the Thomas algorithm. Each 
step of the method can be performed in a parallel fashion. At each period doubling “bifurcation”, the number of 
coupled equations to be solved is reduced by a factor of 2 and the spacing (in the original block row index space) of 
remaining block rows is doubled: hence the terminology “period doubling”. Assuming that there are P=N processors 
available, and inter-processor communication time is not a dominant factor, then the theoretical maximum speed-up 
factor due to cyclic reduction alone would be R=N/log2N on a parallel machine, compared to a single-processor 
serial computation. The speed-up compared with the Thomas algorithm is not quite as large as this, since there are 
more matrix-matrix calculations per cyclic reduction step compared with Thomas (so R in practice might be only be 
in the range R/3 to R/2 compared to Thomas). 

Following Ref. [9], note that cyclic reduction eliminates all the even-numbered block rows in Eq. (1) in terms of 

the odd-numbered rows. In Eq. (1), let i=2k, for k=1,N/2. For now, assume that 2 pN   is even. (This limitation 
will be relaxed later.) There are p+1 levels that correspond to effective decreasing system sizes (the number of 
remaining block rows to be processed) of N,N/2,N/4,..N/2p=1. At the µth level (µ=0,…,p-1), there are Nµ=2p-µ rows 
of which half (the even ones) can be eliminated using Eq. (1), which is rewritten below for the kth even row: 

 2 2 2 2 1 2 2 1
ˆ ˆ ˆ

k k k k k kx b L x U x     (5a) 
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ˆ













 (5b) 

In Eq. (5a), k = (1,…, Nµ/2). The boundary condition 0ˆ
2 NU  is implied by 02 NU . 

Several features of Eq. (5) are noteworthy:  

 only the inverses 1
2

kD  for the even block row diagonal elements are required 

 the 1
2

kD  can be computed in parallel since at any level µ of the cyclic reduction, all the D2k are known. 

Furthermore, there is no inter-processor communication required at this computation stage. 

 the 2 matrix-matrix products needed to compute kL2
ˆ and kU 2

ˆ can also be done in parallel, once the inverse 

blocks are computed.  

 values of
 

1
2

kD  (actually, its LU decomposition factors),

 kL2
ˆ , and

 kU 2
ˆ  can overwrite the values of 

2 2 2, ,k k kD U L , respectively (since they are no longer needed for the back-substitution step) so that no fill-

in occurs at this step. 
 once the odd values of x are known (by a backwards recursion, which will be described below), then the 

even values are computed by efficient matrix-vector multiplications (no further expensive matrix inversions 
or matrix-matrix multiplications are required) 
 

The number of computed inverses at the first reduction level (µ=0) is only half of the total Thomas inverses. 
When summed over all levels the number is the same as for the Thomas scheme. Likewise, total the number of 
matrix-matrix products for this step equals the number of Thomas products. Thus, in both time and memory 
utilization, the even part of the cyclic reduction equals the Thomas algorithm. 

The next step in the cyclic reduction of Eq. (1) is to obtain an equation for the odd-indexed components of x, by 
letting i=2k-1, for k=1,Nµ/2, in Eq. (1) and using Eq. (5a) to eliminate the even components. The result is: 

 12121212123212
ˆˆˆˆ

  kkkkkkk bxUxDxL  (6) 
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Here, the reduced matrix blocks (for odd indices now) are 
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 (7a) 

and the reduced sources (for odd indices) are 

 kkkkkk bUbLbb 21222121212
ˆˆˆ

   (7b) 

The boundary condition is 0ˆ
1 L  (with 0ˆ

12 NU  a consequence 0ˆ
2 NU  as stated above). Note that no 

matrix inverses are required. Rather, four matrix-matrix products are needed to compute the odd-indexed reduced 
(hatted) matrix blocks. Inter-processor communication will now be required, since the calculation of the (2k-1) 
reduced matrices requires the U and L blocks from both the adjacent 2k-2 and 2k even rows. Communication can be 
minimized, if there are less than N processors, by storing even and odd block rows contiguously in memory on a 
given processor. Then only the “boundary” matrices from block rows on adjacent processors need to be 
communicated. While the effective odd diagonal elements can write over the original ones, we see from Eqs. (5a) 
and (7b) that both the original and reduced (hatted) U and L blocks must be retained for back-solving with multiple 
right sides. (The exception to this is when all the right sides are known at factorization time, which may not be the 
case when iterative matrix inversion is used as a preconditioner). So this reduction produces fill-in of one extra 
block per level (since only the odd values of the original blocks U and L must be stored), and an overall (summing 
over all levels) increase in storage of 2 blocks per row. Thus, the cyclic reduction increases the memory 
requirements compared to the Thomas algorithm by 66%, so the fill-in is still deemed to be manageable. 

There are now four additional matrix-matrix products to evaluate in Eq. (7a). Added to the two required for the 
even reduction equations, this is a total of six compared with the Thomas algorithm’s two. However, as noted 
previously, the number of matrix inversions is the same as for Thomas, so the overall numerical efficiency for each 
step of the cyclic reduction is greater than 1/3 that of Thomas. The parallelism of the cyclic algorithm compensates 
for this performance reduction. 

Equation (6) is self-similar to the original Eq. (1) but in the “period-doubled” index space k of odd indices. 

Setting 2 1k kx y  , for k=1,Nµ/2, with 2 1
ˆ

k kD D   , etc., Eq. (6) becomes: 

 1 1k k k k k k kL y D y U y b        (8) 

This self-similarity, in the period-doubled (odd) index space, allows one to apply recursively the same reduction 
technique to each successive level (cycle) of Nµ+1 =Nµ/2 equations. In this way, one iterates through a period 
doubling sequence in which the number of equations is halved at each level: N, N/2, N/4,…,1. If at each level the 
communication time is dominated by the inversion and matrix-matrix multiplication times (implying an efficient use 
of parallel resources), then the time for the cyclic reduction will be p (in units of the time to compute a single inverse 
and matrix-matrix multiply step). This is compared with a time of N for only one processor. Thus, the theoretical 
parallel performance gain (ignoring communication time) is R=N/p=N/ln2N, which is the scalability enhancement 
factor with respect to the number of block rows that can be expected from this algorithm. If the number of 
processors P is less than, or equal to, N, the performance gain will be reduced by approximately P/N, so R=P/ln2N. 
More complete analysis of the parallel performance time is presented in Section 6.  

The final level of the reduction process (µ=p) results in a single diagonal block equation (L = U = 0) which can 

be trivially solved for the only remaining odd-indexed vector x1. The solution 1

1 1 1
ˆˆx D b is used to initiate back-

substitution step. 

Back-substitution at any level p   proceeds as follows. The even-indexed values are determined by 

substituting the known odd values into Eq. (5a), which requires 2 additional matrix-vector multiplications per even 
index. Note from Eq. (6) and (8) that all indices at a higher level of the cyclic reduction originate from only odd 
indices at the (previous) level, since even-indexed rows do not propagate to the next level. Conversely, the even and 
odd indices at level µ uniquely populate all of the odd indices at the previous level µ-1. Therefore, once the solution 
at level µ is known, Eq. (5a) can be used to fill in all the remaining even indices of level µ-1. 
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2.3    Parallel Complexity of Block Cyclic Reduction 
In this performance analysis, both N (number of block rows) and P (number of processors) are assumed to be 

powers of two. Specifically, N=2p and P=2r, for integers p and r. Execution time for non-powers of two for N can be 
bounded on the low- (and high-) side by using the nearest power of two that is less than (and greater than) N. A 
similar approach can be used for P that is not a power of 2. 

Recall that the algorithm first performs a series of forward “reduction” steps for each recursive bisection (“period 
doubling”) until the sub-problem size has only one row block, and then unrolls the recursion via a corresponding 
series of backward “solve” steps.  There are two zones within each of the reduction and solve phases as shown 
schematically in Fig 2. 

 
Figure 2a: A Schematic of the parallel work done over time.  Schematic is not-to-scale, to show detail. 
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Figure 2b: Actual (to-scale) parallel work done over time, for N=1024, P-256, M=1024 

 

These zones correspond to N'>P and N'≤P, where N' is the number of remaining block rows at a particular level 
µ of the cyclic reduction. It is assumed that N>P initially (p>r) so the algorithm begins in the first execution zone, 
where every processor contains two or more block rows to be processed. In general, in the first execution zone, each 
processor starts with N/P=2p-r block rows and performs recursive bisections until each processor has exactly two 
row blocks. 

The algorithmic complexity of the total elapsed time TF in the forward reduction sweep, including both 
computation and communication is (definition of terms and derivation of which is provided in Appendix 8.2): 
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For comparison, the serial Thomas algorithm computation time is 

 
3

2
Thomas Thomas

Thomas inv mul

T NM

C C





 

 (10) 

For a single processor (P=1), the ratio of the cyclic reduction to Thomas algorithm times is 

(1 6 / ) (1 2 / )Thomas mul inv mul invC C C C     . Since / ~ 2.28mul invC C on the SMOKY [23] computer (see Sec 

5.1), this computed ratio is 2.64 and is in close agreement with the observed value of 2.69. A minimum of 3 
processors is required for the cyclic reduction algorithm to break-even with Thomas (see Fig. 3). For more 
processors, the parallel cyclic reduction algorithm is clearly preferable. There is no performance gain for P>N/2. 
Any additional processors should be used to improve the factorization and matrix-matrix product calculations. 
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Figure 3: Theoretical ratio of cyclic-reduction time to serial Thomas time vs. number of processors, for small 
and moderate numbers of block rows, and ignoring inter-block communication ( M  ), based on Eqs. (9-

10). 

 

3. Additional Implementation Details 
In this section we generalize the previous discussion to show how the cyclic reduction algorithm can be extended 

to the case when the number of processors P and/or the number of blocks rows N are not powers of 2 (it is still 
assumed P≤N). 

 

3.1 Distribution of Block Rows to Processors 
The distribution of block rows to processors is similar to the distribution for exact powers of 2, with the simple 

modification that the first few processors each gets an extra row block mapped to it.   Thus, the block rows are 
distributed to the processors according to the following rule (here, p refers to a specific processor): 

for p=1 to p=mod(N,P)         : distribute [N/P]+1 block rows numbered consecutively 

for p=1+mod(N,P) to p=P   : distribute [N/P] block rows numbered consecutively 

Here, [x]= floor(x) denotes the largest integer less than, or equal to, x.  

 

3.2 Propagation of Odd Row Indices between Levels 
According to the cyclic reduction at any level µ, the current even-numbered block rows are stored and no longer 

propagate to the next level µ+1. The odd rows propagate to the next level and map into the new consecutive block 
row numbering by the rule: 

at level µ, odd row n => row (n+1)/2 at level µ+1 

If Nµ is the number of block rows at level µ, then Nµ+1 = [(Nµ+1)/2]. The inverse of this mapping is given by: 

at level µ+1, row n’ => row 2*n’-1 at level µ 

Note that all indices at level µ+1 map to only the odd indices at the previous level µ. That is, in performing the 
back-substitution step at level µ to compute the even-index solutions according to Eq. (5a), one first maps the 
solution from level µ+1 to obtain all the odd values of x at the previous level µ. Then Eq. (5a) can be solved for the 
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even-indexed x’s to complete the back-solve at that level. This back-solution is iterated until the complete solution at 
level µ=0 is obtained. 

 

4. Performance Study 
 

4.1. Software and Hardware Platforms 
To prepare for future multi-core computers with many cores per node, we have chosen a machine that contains a 

large number of cores per node (16 cores per node, 80 nodes).  We implemented BCYCLIC using Fortran 90 and 
optimized it on the SMOKY [23] computer, which is a machine hosted by the National Center for Computational 
Sciences (NCCS) as a developmental computational resource at Oak Ridge National Laboratory (ORNL). 
SMOKY’s current configuration is an 80 node Linux cluster consisting of four quad-core 2.0GHz AMD Opteron 
processors per node, 32 GB of memory (2GB per core), a gigabit Ethernet network with Infiniband interconnect, and 
access to Spider, the center wide LUSTRE-based file system. 

Two levels of parallelism are used for the solver: (1) cyclic reduction is computed in parallel over the N block 
rows using separate MPI tasks; (2) GotoBLAS [24] (or OpenMP [25]) threads are used inside nodes (16 cores) to 
achieve parallelism in the factorization of the large (M×M) dense blocks. The first level of parallelism has been 
described in the previous sections. The second level of parallelism involves the efficient calculation of matrix-matrix 
products and inverses. Note the 4 matrix-matrix products in Eq. (7a) are performed by the LAPACK routine 
DGEMM. This is the single most CPU-intensive routine, consuming over 50% of the time at each cyclic reduction 
level. Optimization can be achieved by doing this part of the calculation in parallel when separate threads are 
available. (The remaining time is spent in the matrix inversion and the 2 matrix-matrix multiplies in Eq. (5b).) 

 

4.2. Threaded Goto BLAS 
On SMOKY, batch jobs can be submitted to use multiple threads. Thread usage is controlled by modifying the 

processors-per-node (ppn) count. For example, 1024 MPI tasks on 16 cores per node would be set by the command 
“nodes=64:ppn=16 “. Alternatively, for 64 MPI tasks, with 1 MPI task per node, the required command would be 
“nodes=64:ppn=1”. In this latter case, sixteen threads can be assigned on each node. For OpenMP parallelism, 
“export OMP_NUM_THREADS=16” would set 16 OpenMP threads per core. For GotoBLAS threads, “export 
GOTO_NUM_THREADS=16” would set 16 GotoBLAS threads per core. 

OpenMPI is the library used for MPI tasks on SMOKY. The MPI communication in BCYCLIC is done by non-
blocking sends and receives of even-numbered row data overlapped with computation. The non-blocking receives 
are called at the beginning of the factorization routine and the non-blocking sends are called as soon as the required 
even-numbered block row is calculated instead of waiting for all the calculations to complete. For the cases studied, 
choosing the number of MPI tasks so there are initially four or more block rows per MPI task was optimal.  

OpenMP directives were placed around the loops in BCYCLIC that call the time-intensive BLAS routines. 
However, for the same total number of processors, this results in essentially the same parallelism over the block-
rows that is done by MPI tasks alone. For example, calculating the factorization with 1024 MPI tasks takes 
approximately the same time as calculating with 64 MPI tasks using sixteen OpenMP threads each, since both 
methods parallelize the factorization over the number of block-rows. Figure 4 shows comparisons for different 
distributions of processors between MPI tasks and hybrid MPI tasks with OpenMP directives for several block sizes 
and numbers of block-rows. The speed-up factors are very similar, but there are advantages to using the hybrid 
method whenever possible. For instance, the hybrid jobs can use sixteen times more memory since the sixteen cores 
have shared memory. This implies that the linear block size M could be four times larger for the hybrid job. Another 
advantage appears whenever the communication time dominates the calculation. Then, the hybrid method would be 
faster since it requires less communication. In the future, as the number of cores per node is expected to increase, 
and threads will be able to spawn additional threads, we expect a combination of OpenMP threads spawning 
GotoBLAS threads will further increase the scalability of BCYCLIC calculations. 

For parallelism within the blocks (factorization and matrix-matrix multiplication), the threaded GotoBLAS 
library was used. It contains both threaded Basic Linear Algebra Subprograms (BLAS) and threaded Linear Algebra 
Package (LAPACK) routines needed for cyclic reduction and has been built for SMOKY. The number of threads 
used by these routines is controlled with the GOTO_NUM_THREADS environmental variable. For the cyclic 
reduction factorization, the LAPACK routines, DGETRF and DGETRS, are used along with DGEMM. The cyclic 
reduction solver requires DGEMV from level two BLAS and DGETRS.  

For large blocks (M=1000) shown in Fig. 4, the optimal number of GotoBLAS threads is sixteen. Based on these 
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observations, the optimal number of GotoBLAS threads is approximately the block size divided by 64. In all four 
cases, improved performance can be achieved using a combination of MPI tasks and GotoBLAS threads, compared 
with using only MPI tasks. Note that for 256 MPI tasks and four GotoBLAS threads (the green points in Fig. 4), the 
speed-up has not saturated but appears as though it would continue to increase if more threads would be available. 
Unfortunately, the processor limit of SMOKY is 80 × 16 = 1280, so it was not possible to verify this conjecture. 

 

 

 

 

Figure 4: Speed-up factor on SMOKY [23] vs. total number of processors for block size M=1000 and block 
rows N=1000 

 

4.3. Performance Comparison with SuperLU 
SuperLU [19] is a state of the art library for solving sparse systems on high performance computers.  The 

Distributed SuperLU version is designed to efficiently use MPI for communicating between processors. Here, the 
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Distributed SuperLU version was compared to BCYCLIC using the function, pdgssvx_ABglobal, which replicates 
the matrices on all processors and should be faster than the distributed data version.  First the matrix rows and 
columns are scaled to have unit norm.  Then a row permutation is done to make the diagonal large relative to the off-
diagonal elements and a column permutation to preserve the scarcity of the upper and lower factors.  The system is 
solved directly by factoring the matrix and doing forward and back substitutions and the solution is refined. 

The block tridiagonal matrices were initialized with random values for blocks of size 273 × 273 in a tridiagonal 
system with 256 blocks for both the SuperLU and BCYCLIC for comparison.  Figure 5 shows the factorization time 
(the most time-consuming part of the calculation) comparison for this case.  For a small number of cores the CPU 
time is very similar for SuperLU and BCYCLIC, but the scaling to large cores is much better for BCYCLIC. For 
this comparison, no GoTo BLAS threads were used (which would enhance the scalability of BCYCLIC even more). 

 

 
Figure 5: Wall clock time for factoring a block tridiagonal matrix of size M=273 and N=256 for BCYCLIC 

and SuperLU 

 

4.4. Verification of Parallel Complexity 
The time estimate in Eq. (13) is verified by first determining the values for α and β, and then executing the 

BCYCLIC code to compare the observed total communication and computation. 

The following parameters were chosen for the numerical experiment: N=1024 (=2p=10),  P=256 (=2r=8), and 
M=1024. These represent a medium-range of the size of the problems of interest in 3D MHD equilibrium 
calculations [2]. 

The total computational time observed on the SMOKY cluster [23] for this problem size was 20.81 seconds, and 
the total time spent in communication was 15.03 seconds, giving a total runtime of 35.83. 

The value for α can be empirically found by clocking the time it takes to compute one matrix multiplication and 
one matrix factorization of a 1024×1024 matrix. On SMOKY, for M=1024, Cmul and Cinv were determined to equal 
3.15×10-10 sec/element and 1.38×10-10 sec/element, respectively, giving α=20.28×10-10. This predicts the total 

computation time as 10 8 10 32 20.28 10( 8 1) 1024 23.95seccompute

FT       , which is in good agreement with 

the observed time (20.81 sec). The value for β can be estimated by dividing the byte size of one floating point value 
by the average bandwidth available per processor core. On SMOKY, each processor contains eight cores. Since each 
processor is connected to a 1 Gbps Ethernet link, each “endpoint” core obtains a proportional share of the total off-
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processor bandwidth. On average, the bandwidth may thus be estimated to be around 128 Mbps. Each floating point 
value takes 8 bytes, which is 64 bits, giving β=64/(128×106)=0.5×10-6 sec/value. This predicts the total 

communication as 6 210 0.5 12( 8) 1024 18 8 e0 . 7 s ccomm

FT       

The predicted total runtime is TF=42.82 sec, which matches the actual observed runtime of 35.83 sec within the 
margin of error due to system artifacts such as variable messaging delays, operating system jitter, and cache-
sensitive linear algebra routine run times. 

 

5. Summary 
 

A new implementation of a parallel algorithm for solving linear, block tridiagonal problems with multiple right-
hand sides has been described. The algorithm is based on block cyclic reduction, which delivers a theoretical speed-

up of 2/ (3log )N N with respect to the serial Thomas algorithm and a fill-in factor of 5/3. The implementation 

presented in this paper has been extended to deal with arbitrary numbers of blocks and processors (powers of two 
are required by the usual cyclic reduction technique). It recovers this theoretical enhancement – within a factor of 2 
due to communication overhead - by using MPI-based parallelism over the block rows. Further parallelism is 
achieved by using OpenMP or GotoBLAS threads to perform the computationally-intensive matrix inversion and 
multiplication operations that must be done on individual blocks. This mixed programming model has been found to 
deliver better performance compared with MPI alone and is suitable for modern multi-core supercomputers.  It is 
expected that this new algorithm will provide substantial advantages for the many codes which need to solve linear 
problems with dense, tridiagonal blocks either directly or as an intermediate step to provide a suitable preconditioner 
for nonlinear problems. Physical problems in which block-tridiagonal matrices with many (N>>1) and large 
(M>>1) blocks appear are found in the simulation of toroidal plasmas confined by a magnetic field, such as in 
tokamak or stellarator, due to the double periodicity of the toroidal configuration. Our scheme will permit block 
sizes up to about M ~ 40,000 at double-precision on machines with up to 32 GB per node (like SMOKY). This can 
be considered to represent a large-sized for MHD equilibrium simulations. 
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8. Appendix 

8.1. Schematic illustration of the cyclic-reduction algorithm in a parallel environment 
We will now illustrate how the algorithm proceeds in multiple, alternating rounds of computation and 

communication. Figure 6 is a schematic execution trace of the cyclic-reduction algorithm with N=32=25 block rows 
executing on P=4 (22) processors. The blocks are distributed contiguously in memory and evenly to all processors. 
The processor number is shown in the first column. Computation and communication corresponding to row blocks 
are represented by rows in the table. Iterations of the algorithm progress left to right in columns. Each cell in the 
table, hence, represents one level (step) of the algorithm on that element. Green cells represent computation of terms 
in Eq. (5b) by even-numbered row blocks, and yellow cells denote communication of the results to the adjacent odd-
numbered row blocks at that level. Blue cells represent the computation of modified (hatted) constants of Eq. (7b). 
Red cells represent the solve operation of Eq. (5a), and pink cells show the communication of solution vectors to 
adjacent even-numbered rows of the previous level. 

The inter-processor communication of matrix blocks is shown by yellow-colored cells. Note that only the row 
blocks at the boundaries of each processor send and receive the data; the row blocks “inside” a single processor do 
not need to explicitly exchange data via inter-processor communication, since the data is available locally. Near the 
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bottom of the chart, the row marked “Busy” indicates the number of processors that are actively engaged in 
computation at any given level. It is clear that all processors are active until after the level at which only one row 
block remains to be processed per processor. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
p i                             

                              

4 32                             

 31                             

 30                             

 29                             

 28                             

 27                             

 26                             

 25                             

3 24                             

 23                             

 22                             

 21                             

 20                             

 19                             

 18                             

 17                             

2 16                             

 15                             

 14                             

 13                             

 12                             

 11                             

 10                             

 9                             

1 8                             

 7                             

 6                             

 5                             

 4                             

 3                             

 2                             

 1                             

                              

Busy= 4  4 4  4 4  4 2  2 1  1 1 1  1  2  4  4  4  

 ≡ Locally compute D-1b, D-1L & D-1U at odd row-blocks 

 ≡ Send D-1L & D-1U to adjacent even row-blocks 

 ≡ Compute “modified” D, L and U 

 ≡ Compute x 

 ≡ Send x to adjacent odd row-blocks 

                              

Figure 6: Execution trace of a 32 row block problem with 4 processors 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8.2. Parallel Complexity Analysis 
Here, additional detail is provided on the analysis of the parallel computation time, continuing from the 

discussion in Section 2.3. 

Due to recursive bisection, even when starting with p>r, the algorithm will eventually reach a level for which p 
≤r, which is the “second zone” of execution.  Here, we focus on the reduction portion of the algorithm, since that is 
the most time-consuming portion. Each reduction step involves matrix-matrix multiplication and matrix inversion 
operations, which are computed in O(M3) time. Each solve step involves matrix-vector multiplication operations, 
which are computed in O(M2) time. To analyze CPU usage, we introduce the following definitions : 
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The N>P zone proceeds in p-r steps. At level µ, 0≤ µ<p-r, every processor processes 2p-r-µ > 1 block rows. For 
each even block (Eq.5b), one matrix inversion, two matrix-matrix products, and one matrix-vector product are 
performed. For each odd block (Eq. 7a), four matrix-matrix products and two matrix-vector products are performed. 
At the end of even row processing at each step, the modified L, U and b terms of the even rows are communicated to 
the neighboring processor, which involves sending two M×M matrices, and a M vector. 

Let us assume perfectly concurrent execution by all processors. Let us also assume a matrix multiplication 
algorithm that multiplies two M×M matrices using CmulM

3 floating point operations, and Gaussian elimination for 
matrix inversion which takes CinvM

3 floating point operations for an M×M matrix. The matrix-vector product 
operation takes CvmulM

2 operations. The constants Cmul, Cinv and Cvmul depend on the algorithm used as well as the 
central processing unit(s) available on the computing platform, and can be easily determined by calculations for 
different sizes of M. 

For step µ, the time consumed for even rows is given by: 

 1 3 3 22 2µ p r µ
even inv mul vmulT C M C M C M         (11a) 

The time for odd rows is given by: 

 1 3 22 4 2µ p r µ
odd mul vmulT C M C M        (11b) 

The total computation time for all rows at step µ is: 
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where, α= Cinv+6Cmul. 

At the end of even-row computation of step µ, the time to communicate the two M×M matrices in parallel is 
given by: 

 2·2µ
commT M  (11e) 

for some constant “communication factor” β that measures the average time to transmit one floating point number. 

The total computation and communication times for the first zone (N>P) of the forward reduction are given by 
summing the times at all levels 0 through p-r-1: 
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 (12) 

In the second zone (N≤P), each step involves processing of at most one row block per processor, each involving 
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matrix operations similar to the one for the first zone. In communication, however, four matrices are sent to 
neighbors (two each to top and bottom), unlike the two matrices sent to the top neighbor alone in the first zone. 
Thus, the total times for the second zone of the forward solve (ignoring M2 terms in the computation time) are: 
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The total execution time for the entire forward solve is given by adding Eqs. (12-13) for the two zones: 
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Thus, the algorithmic complexity of the total elapsed time including computation and communication is: 
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For comparison, the serial Thomas algorithm computation time is 
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