
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/372902947

Determining the Most Significant Metadata Features to Indicate Defective

Software Commits

Conference Paper · May 2023

DOI: 10.1109/SERA57763.2023.10197721

CITATIONS

0
READS

27

3 authors, including:

Rupam Kumar Dey

University of Tennessee at Knoxville

5 PUBLICATIONS   18 CITATIONS   

SEE PROFILE

Anahita Khojandi

University of Tennessee at Knoxville

148 PUBLICATIONS   1,501 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Rupam Kumar Dey on 10 May 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/372902947_Determining_the_Most_Significant_Metadata_Features_to_Indicate_Defective_Software_Commits?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/372902947_Determining_the_Most_Significant_Metadata_Features_to_Indicate_Defective_Software_Commits?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rupam-Kumar-Dey?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rupam-Kumar-Dey?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Tennessee-at-Knoxville?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rupam-Kumar-Dey?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anahita-Khojandi-2?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anahita-Khojandi-2?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Tennessee-at-Knoxville?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anahita-Khojandi-2?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rupam-Kumar-Dey?enrichId=rgreq-fbe87f98c4d93929871c8df6b7660944-XXX&enrichSource=Y292ZXJQYWdlOzM3MjkwMjk0NztBUzoxMTQzMTI4MTI0MTk2NTU3MEAxNzE1MzAzMTc5MDk4&el=1_x_10&_esc=publicationCoverPdf


Determining the Most Significant Metadata Features
to Indicate Defective Software Commits

Rupam Kumar Dey
Industrial & Systems Engineering

The University of Tennessee
Knoxville, USA

rdey1@vols.utk.edu

Anahita Khojandi
Industrial & Systems Engineering

The University of Tennessee
Knoxville, USA
khojandi@utk.edu

Kalyan Perumalla
Industrial & Systems Engineering

The University of Tennessee
Knoxville, USA

kperuma3@utk.edu

Abstract—Defects are largely inevitable in the software de-
velopment life cycle. Since we cannot avoid them during the
development process, we can only desire to fight back with our
limited resources in terms of time and monetary investment.
Like in many other fields, machine learning models can be
of help to mitigate the problem of defects by predicting both
bug frequency and defective modules at different granularity
levels. However, machine learning models are as good as the
quality of the pre-selected set of features under consideration.
Therefore, importance must be given while selecting only the
necessary features from the original set of features. In this study,
we compared various machine learning models with varying
feature selection techniques and found the superiority of random
forest-based machine learning techniques with wrapper methods.
Random forest-based models with the wrapper method were able
to detect all the buggy classes successfully on the validation data
set.

Index Terms—Bugs, Software Development Life Cycle, Feature
Selection, Random Forest Model, Wrapper Method

I. INTRODUCTION

A. Overview
Bugs are an unavoidable part of the software development

process. However, dealing with them sooner than later stages
of the development cycle is preferred due to the huge cost
involved with bug fixing [1]. Also, it is important to prioritize
which section to be dealt with due to limited resources.
Therefore, the prediction of bugs helps directly identify and
prioritize the buggy modules according to relevant granularity.
However, the accuracy of various machine learning models
depends on the number of feature selections. Too many or too
few features can hurt the models equally. Hence, the number
of features should be optimum. To deal with this issue, we
examined the effect of selecting different feature subsets along
with different machine learning models considering broadly
three types of feature selection methods (filter, wrapper, and
embedded) on a change metrics data set from the Eclipse JDT
Core software system.

Feature selection methods play a vital role in selecting
important features and those features could be used later on to
combat bugs with limited resources. There are three types of
well-known feature selection methods, namely, filter, wrapper,
and embedded methods.

In the filter method [2], features are selected based on the
statistical score on correlation with the target variable. This

method is independent of any particular machine learning
algorithm. A correlation matrix with a heat map is one such
method that is used in our study here.

Starting with a subset of features and judging the outcome
of training with the subset, the addition or elimination of
features is decided in the wrapper method [3]. The optimal
set of features could be obtained by performing the wrapper
method on a specific machine-learning algorithm. Forward
feature selection and backward feature elimination are two of
the well-known wrapper methods. In forward feature selection,
the starting feature set is empty and one new feature (the
most significant feature) is added at each iteration from
the remaining features. In backward feature elimination, the
starting feature set consists of all the existing features and at
each iteration one of the existing feature (the least significant
feature) is eliminated. For both forward feature selection
and backward feature elimination, iterations could be stopped
when the addition or elimination of features does not improve
model performance at a significant level.

Embedded methods [4] determine features based on the con-
tribution during the training phase at each iteration. Random
forest top ten feature selection is one such method.

B. Problem Statement

Every software needs to go through the whole development
life cycle before it can be delivered to the end customer.
Rigorous testing is needed to ensure defect-free software for
the consumer market. Due to the nature of the process and
the huge workforce involved at each stage of the software
development cycle, defects are almost always an undeniable
part of it. At the same time, it is not possible and practical
to check each and every module of a huge software. That’s
where the machine learning model comes into play. If we can
use machine learning techniques to detect buggy modules and
prioritize our limited resources accordingly, it will save both
time and monetary investment at the same time. However,
machine learning models are as good as the selected feature
subsets. Therefore, careful selection of features is paramount
for the success of the model. Some of the well-known feature
selection methods like filter, wrapper, and embedded could be
used to select important feature sets effectively and efficiently.



C. Organization

The rest of the paper is organized in the following man-
ner. Previous related works are described in Section II. The
methodology is listed in Section III. Section IV portrays the
analysis and key takeaways. While Section V summarizes all
the important findings, our future work is listed in Section VI.

II. BACKGROUND

In the past, software defect prediction was done considering
numerous approaches. Some of the well-known approaches
are based on the decision tree induction method, relational
association-based rule, neural networks, deep forest, bandit
algorithms, etc. Feature reduction techniques like the filter,
wrapper, and embedded were also explored in the process.

A. Rule and Association-based Models

In one of the studies [5], the researchers used a rule-based
decision tree induction method to select 15 features out of 94
and considered 18 classifiers on class-level data set KC1 from
the promise repository to determine if a particular class had
any defects or not. They found their feature selection method
was superior compared to the other two methods (RELIEF
features and Support Vector Machine features) in terms of
error metric and area under the receiver operating charac-
teristic curve (AUROC). They only explored filter methods
for feature selection and it would be interesting to see how
other multivariate feature selection methods would perform
with different classifiers.

Another study [6] used a relational association-based rule
to detect software defects. They used relations or correlations
among various attributes of a large data set to determine if
a module is defective or not. They achieved superior results
in favor of their algorithm while applying to 10 NASA data
sets (CM1, KC1, KC3, PC1, JM1, MC2, MW1, PC2, PC3,
and PC4) compared to other classifiers (CBA2, 1R classifier,
Bagging classifier, evolutionary decision rules for subgroup
discovery classifier) in terms of accuracy.

B. Optimization-based Models

Taking fewer features into consideration while predicting
software defects sometimes affect adversely in terms of model
performance. On the other hand, taking many features into
consideration hurt us in terms of computation resources.
Considering these two inversely related phenomena, this study
[7] proposed a multi-objective feature selection (MOFES)
method that will optimize not only the number of features but
also model performance. Considering four classifiers (J48- a
decision tree classifier algorithm, K-nearest neighbor, Logistic
Regression, and naive Bayes) with five Pareto-based multi-
objective optimization algorithms (PAES- Pareto archived
evolution strategy, NSGA II- non-dominated sorting genetic
algorithm II, SPEA2- strength Pareto evolutionary algorithm 2,
EMOA- evolutionary multi-objective optimization algorithm,
MOcell- A cellular genetic algorithm for multi-objective opti-
mization) on two data sets (RELINK and PROMISE), they
found NSGA II as the best Pareto based multi-objective

optimization algorithm and their method MOFES achieved
better performance on many occasions when compared with
22 states of the art feature selection methods.

C. Neural Network-based Models

The intervention of neural networks in other areas is re-
markable. Deep neural networks are also a popular choice
nowadays for various classification and regression tasks related
to software defect prediction. Researchers from this article [8]
used a deep neural network-based method to predict software
defects and found their method’s superiority when compared
with three state-of-the-art methods (support vector regression,
fuzzy support vector regression, and decision tree regression
model) on two data sets (medical imaging system data set and
NASA PROMISE (KC2)) in terms of lower mean squared
error (MSE) and higher coefficient of determination (R2).

Another study [9] combined layer-by-layer training methods
from deep learning and random forest classifier from ensemble
learning method to create a better model for defect prediction
than any one of them alone. Their approach exhibited superior
results (a 5% increase) in terms of AUC value when compared
with six other classifiers (deep forest model (gcForest), deep
belief network, random forest, naive Bayes, logistic regression,
and support vector machine) using four renowned data sets
(NASA, PROMISE, AEEEM, and Relink) from 25 open
source projects.

Not only within project but also cross-project defect pre-
dictions are possible using neural networks. This study [10]
predicted software defects both within project and cross-
project boundary on ten open source projects using semantic
features. The semantic features were produced using deep
belief network. Their results showed promise that was based
on precision, recall and F-1 score.

D. Feature Reduction-based Models

Different feature reduction technique yields different level
of accuracy for different models. To select the best feature
reduction technique for a defect prediction model, one of the
studies [11] used the bandit algorithm. Applying the bandit
algorithm on 14 data sets (PROMISE and from D’Ambros
[12]) using a combination of three types of prediction models
(control(recommended by previous studies), Ad hoc (selected
arbitrarily), and experiment (showed the highest accuracy
among candidates)) and four feature reduction techniques
(correlation-based feature selection, consistency-based feature
selection, Akaike information criterion step-wise feature se-
lection, and Bayesian information criterion step-wise feature
selection) showed that their approach performed similar or
better than the state of the art techniques.

Considering different approaches into consideration while
selecting important features from available feature pool also
proved useful. One of the studies [13] showed this case where
the author considered the average of chi-squared, information
gain, and Pearson correlation coefficient to re-rank the avail-
able features. Random forest classifiers using those re-ranked
features brought superior results in terms of AUC value on six



projects (CM1, KC3, MC1, MC2, MW1, PC1) from NASA
data sets.

Sometimes combining two of the methods yield better
output. For example, one of the articles [14] found ensem-
ble learning with feature selection very useful in classify-
ing software defects. The authors examined 11 NASA data
sets considering 11 metrics with four ensemble algorithms
(sequential minimal optimization, multi-layer perceptron, k-
nearest neighbor, and J48). They did not consider all of the
multivariate feature selection methods.

E. Miscellaneous

The importance of regularization is shown in this study
[15]. This study performed linear and Poisson regression while
predicting the number of defects. While doing so, they used
regularization methods like ridge, lasso, and ElasticNet and
found up to 50% less mean squared error along with less
variance in the results from five open-source Java systems
(Eclipse JDT Core, Eclipse PDE UI, Equinox Framework,
Lucene, and Mylyn).

Feature-oriented defect prediction also showed promise.
One of the studies [16] created a novel defect data set at
the granularity level of features and found precision and
recall values as high as 0.85 while predicting faulty features
considering two feature-based metric sets (consisting of eight
and six features respectively). The study used seven commonly
used classifiers (J48 decision trees, k-nearest-neighbor, logistic
regression, naive Bayes, artificial neural network, random
forest, and support vector machine) and four evaluation metrics
(precision, recall, F-1 score, and AUROC) while doing so.
Random forest regression and neural network-based approach
showed superiority.

Although feature selection methods were applied for soft-
ware defect prediction previously, prior studies did not take
into account the effect of considering the full span of multi-
variate feature selection methods for change metric data sets
with respect to baseline. Also, the selected features were often
described as top-k features rather than considering minimum
and adequate number of features. In this study, we filled this
gap through our research.

F. Our Contribution

Our unique contributions in this study are as follows:

• We showed the impact of choosing the filter, wrapper, and
embedded feature selection methods on prediction models
on a change metrics data set from the Eclipse JDT Core
software system. Accordingly, we identified a minimum
and adequate set of features to facilitate defect prediction
with a low RMSE value;

• We showed the efficacy of the feature selection ap-
proaches in predicting the class-wise number of defects
(experiment one). At the same time, the model was
also able to detect if a module was defective or not
(experiment two).

III. METHODOLOGY

In this section, we describe the data set and its features, and
discuss data pre-processing, model selection, threshold criteria,
experiments, and reproducibility considerations.

A. Data Set

Bug Prediction Data set contains data on five different
systems (Eclipse JDT Core, Eclipse PDE UI, Equinox Frame-
work, Lucene, and Mylyn). We considered data from Eclipse
JDT Core, specifically the change metrics data set that could
be downloaded from here. The data set consists of 15 features
that are essentially 15 change metrics. Details about the data
set columns are provided in table I. It has 997 class-wise
entries of which 206 are faulty classes (or buggy classes).

TABLE I
FEATURE DETAILS

Feature Name Description
numberOfVersionsUntil number of versions
numberOfFixesUntil number of bug fixes
numberOfRefactoringsUntil number of times a file refac-

tored
numberOfAuthorsUntil number of distinct authors
linesAddedUntil summation of lines of code

added to a class across all
versions

maxLinesAddedUntil maximum number of lines
added to a class

avgLinesAddedUntil average number of lines
added to a class

linesRemovedUntil number of lines removed
from a class

maxLinesRemovedUntil maximum number of lines re-
moved from a class

avgLinesRemovedUntil average number of lines re-
moved from a class

codeChurnUntil difference between added
lines of code and deleted
lines of code

maxCodeChurnUntil maximum difference between
added lines of code and
deleted lines of code

avgCodeChurnUntil average difference between
added lines of code and
deleted lines of code

ageWithRespectTo age in weeks (backward)
from a particular release

weightedAgeWithRespectTo age in weeks (backward)
from a particular release with
respect to lines of codes
added

bugs number of bugs

The type of all the columns in the data set is numeric.
Table II gives us a rough idea about the range of each

column’s value. It is to be noted that the ‘-’ sign at the start
of a numeric value denoted a negative value whereas the same
‘-’ sign appearing in between two numbers denoted the range.

B. Data Processing

The initial .csv file contains 21 columns. We got rid of five
columns, namely, ‘classname’, ‘nonTrivialBugs’, ‘majorBugs’,
‘criticalBugs’, and ‘highPriorityBugs’ as those columns were

https://bug.inf.usi.ch/data/eclipse/change-metrics.csv


TABLE II
RANGE OF COLUMNS

Feature Name Value Range
numberOfVersionsUntil 1-709

numberOfFixesUntil 0-166
numberOfRefactoringsUntil 0-2

numberOfAuthorsUntil 1-15
linesAddedUntil 0-65571

maxLinesAddedUntil 0-7452
avgLinesAddedUntil 0-222.22
linesRemovedUntil 0-59724

maxLinesRemovedUntil 0-7452
avgLinesRemovedUntil 0-206.19

codeChurnUntil -1745 - (+ 10624)
maxCodeChurnUntil 0-2768
avgCodeChurnUntil -39.86 - (+121.4)
ageWithRespectTo 7.86-367

weightedAgeWithRespectTo 0-227.63
bugs 0-9

irrelevant to our study. And the ‘bugs’ column was the target.
The overall data set was divided into three subdivisions,
namely, training, validation, and test set. The split ratio
was 60:20:20 for the training-validation-test set. The shape
of the training, validation and test set are (598, 15), (199,
15), and (200, 15) respectively. Out of 199 entries in the
validation set, 41 of them are buggy classes. We removed
the ‘class name’ column from the data set and the target
feature is ‘bugs’. Therefore, we were considering 15 features
as predictor variables. We built eight models for prediction
purposes and followed three types of feature selection methods
(filter, wrapper, and embedded) including baseline models
with all features. The models include A. linear regression
with all features (LRAF), B. linear regression with features
based on Pearson correlation coefficient (LRCC), C. linear
regression with the forward feature selection (LRFFS), D.
linear regression with backward feature elimination (LRBFE),
E. Random Forest regression with all features (RFAF), F.
Random Forest regression with top few features (RFTF),
G. Random Forest regression with forward feature selection
(RFFFS), and H. Random Forest regression with backward
feature elimination (RFBFE).

The threshold value considered for the Pearson correlation
coefficient was 0.49 in model B. The initially selected features
were further examined for the multicollinearity case. Consid-
ering all these, the final feature set was obtained.

On top of that, we conducted two experiments. Experiment
one can be stated this way ‘for a particular class, if the actual
number of bugs is one or more and the predicted number
of bugs is more than zero, then those entries will not have
any contribution in the calculation of the root mean squared
error (RMSE) value. If the actual number of bugs is zero and
the model predicted some number other than zero, then those
entries were considered while calculating the RMSE value’.
We tagged the obtained RMSE value from experiment one as
the revised RMSE. On the other hand, experiment two is about
finding the optimal feature subsets to detect the total number
of buggy classes on the validation data set based on the result

from the corresponding bug prediction models.

C. Metric Selection

To facilitate comparison among various model results and
to maintain consistency, the metrics used here are mean
squared error (MSE) and root mean squared error (RMSE) for
the optimum number of features selection and evaluation of
different model performances. Since the sci-kit learn package
provided the negative of the MSE value, we had to get rid
of the negative sign to obtain the actual MSE value. We also
captured the % negative mean squared error reduction value
with the addition/ elimination of one feature at each iteration.
The related equations and mathematical notations are listed
below for convenience.

If we get n predictions based on the n actual values, and if
ŷi is the predicted value for the actual value yi for each i, the
equation for MSE and RMSE are as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

RMSE = [
1
n

n

∑
i=1

(yi − ŷi)
2]

1
2

We settled for a combination of the lower RMSE values and
the number of defective module predictions to select better
models.

D. Reproducibility

All the analyses done are provided in the form of jupyter
notebook-based script. After downloading the change metrics
data set from the Eclipse JDT core software system of the
bug prediction dataset, the script can be used to reproduce
the results found in this study. The script can be provided on
request. Libraries used in this script like sci-kit learn, mlxtend,
pandas, NumPy, etc. could be installed following commands
provided in the script.

IV. ANALYSIS

In this section, we showed the performance of eight different
models (some with various feature selection methods) in
terms of the usual RMSE value, revised RMSE value, and
the number of buggy class detection. We also captured the
minimum and sufficient set of features for each model for the
purpose of bug predictions.

A. LRAF

This model considered all the available features while
predicting the number of bugs and detecting buggy modules.
This model returned an RMSE value of 0.72 for the validation
set and 0.78 for the test set with all features. Performing
experiment one, the RMSE value for the validation set went
down to 0.5. The model successfully captured 40 buggy classes
out of 41 in the validation set.



B. LRCC

We used the Pearson correlation coefficient to select impor-
tant features for the number of bugs prediction. Initially, we
got four such features (number of versions until, lines added
until, lines removed until, code churn Until). Some of the
features are highly inter-correlated with each other (known as
‘multicollinearity’). Considering multicollinearity, finally, we
selected two features, namely, the number of versions until
and code churn until for prediction purposes. The RMSE value
applying this model for validation and test set were 0.71 and
0.82. Upon performing experiment one, we got the revised
RMSE value of 0.47 and it captured 37 out of 41 buggy classes
within the validation set. Fig. 1 shows the Pearson correlation
coefficient values among different predictor variables.

Fig. 1. Heat-map with Pearson correlation coefficient with all features.

C. LRFFS

In this model at each iteration the feature that gives the
best performance score for the model is added. To select an
optimum number of features for experiment two, we added
one feature at each iteration and captured % negative mean
squared error reduction with the addition of each new feature.
From Fig. 2 it is evident that with only four features (minimum
feature set) we covered most of the higher positive % error
reduction values (leaving 0.13 since it is negligible compared
to other positive values). We chose an adequate number of
features around seven, and after that % error reduction got
higher negative values. The four-feature set consists of features
like the number of versions until, code churn until, average
code churn until, and age with respect to. On the other hand,
the seven-feature set consists of the number of versions until,
number of fixes until, average lines removed until, code churn
until, average code churn until, age with respect to, and
weighted age with respect to. The four feature set returns
RMSE value of 0.73 and 0.81 for validation and test set

Fig. 2. Mean squared error reduction in percentage with respect to the addition
of new features.

respectively. We got the revised RMSE value of 0.43 and all
the buggy classes were captured with experiment one on the
validation set. With the seven-feature set, RMSE values were
0.73 and 0.78 for the validation and test sets respectively. The
revised RMSE value was 0.48 and 40 out of 41 buggy classes
were captured on the validation set.

D. LRBFE

In this model at each iteration the feature that is least
significant is eliminated. Starting with all the features, we
eliminated one feature at each iteration for experiment two.
From Fig. 3 it can be inferred that with only four features
(minimum feature set) we did not lose much in terms of %
error reduction. The adequate number of features is around

Fig. 3. Mean squared error reduction in percentage with respect to the
elimination of existing feature.

seven after which % error reduction is not significant. The
four-feature set consists of the number of authors until, code
churn until, average code churn, and age with respect to. On



the other hand, the seven-feature set consists of the number
of authors until, lines added until, lines removed until, code
churn until, average code churn until, age with respect to,
and weighted age with respect to. The four feature set returns
RMSE value of 0.77 and 0.93 for validation and test set
respectively. We got the revised RMSE value of 0.53 and 38
out of 41 buggy classes were captured with experiment one
on the validation set. With the seven-feature set, RMSE values
were 0.81 and 0.87 for the validation and test sets respectively.
The revised RMSE value was 0.51 and 39 out of 41 buggy
classes were captured on the validation set.

E. RFAF

RFAF considers all 15 features with 1000 trees while
predicting the number of defects. The RMSE values incurred
for this model were 0.71 and 0.85 on validation and test set
respectively. Performing experiment one, this model returned
a revised RMSE value of 0.46 and captured all buggy classes
on the validation data set.

F. RFTF

RFTF was built with the top ten features from all feature
sets (15 features) based on feature importance value. Table III
shows the feature importance value in descending order for
the top ten features.

TABLE III
TOP TEN FEATURES WITH DESCENDING FEATURE IMPORTANCE VALUE

Feature Name Importance Value
numberOfVersionsUntil 0.35

codeChurnUntil 0.16
linesAddedUntil 0.08

ageWithRespectTo 0.06
avgLinesRemovedUntil 0.05

weightedAgeWithRespectTo 0.05
maxLinesAddedUntil 0.04
avgLinesAddedUntil 0.04
linesRemovedUntil 0.04

numberOfFixesUntil 0.03

From the top-ten feature model, we got RMSE values of
0.72 and 0.84 for validation and test set respectively. Upon
performing experiment one, the model returned 0.48 as the
revised RMSE value and captured 40 out of 41 buggy classes
on the validation set.

G. RFFFS

In this model at each iteration the feature that gives the
best performance score for the model is added. We selected
all 15 features as the number of features to be added one
by one at each iteration for experiment two. From Fig. 4 it
is evident that with only four features (minimum feature set)
we covered most of the higher values of % error reduction.
The adequate number of features is around seven after which
the % error reduction value went negative by a significant
amount. The four-feature set consists of the following features:
number of versions until, max lines added until, average code
churn until, and age with respect to. On the other hand, the

Fig. 4. Mean squared error reduction in percentage with respect to the addition
of new features.

features included in the seven-feature set are the number of
versions until, number of fixes until, number of refactorings
until, max lines added until, max lines removed until, average
code churn until, and age with respect to. The four feature
set returns RMSE value of 0.82 and 0.83 for validation and
test set respectively. We got the revised RMSE value of 0.46
and all the buggy classes were captured with experiment one
on the validation set. With the seven-feature set, RMSE values
were 0.81 and 0.88 for the validation and test sets respectively.
The revised RMSE value was 0.47 and the number of buggy
classes captured was the same as the four-feature set with
experiment one on the validation set.

H. RFBFE

In this model at each iteration the feature that is least sig-
nificant is eliminated. We selected one feature as the number
of features to be kept after eliminating one feature at each
iteration for experiment two. From Fig. 5 it is clear that with
only four features (minimum feature set) we did not lose much
in terms of % error reduction. The adequate number of features
is around seven after which % error reduction is not significant.
The four-feature set consists of the following features: number
of versions until, max lines added until, average code churn
until, and age with respect to. On the other hand, the features
in the seven-feature set include the number of versions until,
number of fixes until, number of refactorings until, max lines
added until, max lines removed until, average code churn
until, and age with respect to. The four feature set returns
RMSE values of 0.82 and 0.83 for the validation and test sets
respectively. We got the revised RMSE value of 0.46 and all
the buggy classes were captured with experiment one on the
validation set. With the seven-feature set, RMSE values were
0.81 and 0.88 for the validation and test sets respectively. The
revised RMSE value was 0.47 and all the buggy classes were
captured on the validation set. The LRFFS model with seven
feature set along with the LRAF model provided us with the



Fig. 5. Mean squared error reduction in percentage with respect to the
elimination of existing feature.

lowest RMSE value (0.78) on the test data set. Although both
RFAF and LRCC models provided us with the lowest RMSE
value (0.71) for the test data set, LRFFS with the feature set
was not far too in terms of RMSE value (0.73). On the other
hand, LRFFS with four feature sets yielded the lowest RMSE
value (0.43). Considering the nature of experiment one, it can
be inferred that the model predicted some number when the
actual class was buggy (one or more bugs) and a small number
compared to other models when the class was not buggy (zero
bugs).

V. SUMMARY OF FINDINGS

We applied three types of feature selection methods (filter,
wrapper, and embedded) to select the best set of features for
bug prediction models. In the process, we also included the
baseline performance by selecting all the features for both
linear and random forest regression. Table IV shows the
performance of different models in terms of RMSE value
and captured buggy classes. Although baseline models are
performing great in terms of RMSE value and capturing buggy
classes, the LRCC model under the filter method with only
two features also achieved very similar results except for the
fact that it could not capture all the buggy classes like one
of the baseline models (RFAF). With wrapper methods, as
low as four features were sufficient to detect all of the buggy
classes in random forest-based feature selection models, and
the increase in the number of features up to seven captured
more buggy classes compared to four feature sets for linear
regression-based models. Considering more than seven fea-
tures did not significantly increase model performance for both
linear and random forest-based models. Applying the embed-
ded method for the RFTF model gave better performance than
the filter method but it was not as good as some of the wrapper
methods (random forest-based feature selection methods) in
terms of buggy class detection. Model-wise feature selection
can be found in table V. As we can see from table V, the
top three most chosen features by various models were age

with respect to, number of versions until, and avg code churn
until.

VI. CONCLUSION AND FUTURE WORKS

In this study, we developed machine-learning techniques to
prioritize time and monetary resource allocation in ensuring
secure and bug-free software development. In the process, we
identified public software repository data set and utilized it
with various feature selection methods to identify top features
to be considered while predicting bug frequency and bug
localization within the space of class-level granularity. Our
study showed promise in both tasks.

One of the interesting facts about machine learning models
is that they often act quite differently with a larger data set or
with different techniques used for a particular task. Therefore,
one of our immediate future works would be to find out
how the findings from different machine learning models used
in this study evolve for a bigger data set with many more
available features. At the same time, we need to obtain results
from other types of feature selection techniques, compare those
results with ours and document key findings.

Another point is that the data set on which we worked was
imbalanced and skewed towards non-buggy classes. About
20% of the class-wise entries were faulty or buggy classes
for the entire data set. Almost the same ratio exists for the
validation data set too. Due to this imbalance in the data
set, machine learning models may provide biased results. To
overcome this, we need to come up with some techniques
that deal with class imbalance i.e., the Synthetic Minority
Oversampling Technique (SMOTE). It would be interesting
to observe how the outcome changes with a more balanced
data set.

VII. ACKNOWLEDGMENT

This research work was funded by Cisco University Re-
search Program Fund (Grant #2022-244141).

REFERENCES

[1] H. Krasner, “The cost of poor quality software
in the us: A 2018 report,” https://www.it-cisq.org/
the-cost-of-poor-quality-software-in-the-us-a-2018-report/, accessed:
03-11-2023.

[2] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1, pp. 273–324, 1997, relevance.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S000437029700043X

[3] ——, The Wrapper Approach. Boston, MA: Springer US, 1998, pp. 33–
50. [Online]. Available: https://doi.org/10.1007/978-1-4615-5725-8 3

[4] I. R. Subramanian and A. Elisseeff, “An introduction to variable and
feature selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[5] N. Gayatri, S. Nickolas, and A. V. Reddy, “Feature selection using
decision tree induction in class level metrics dataset for software defect
predictions,” in Proceedings of the World Congress on Engineering and
Computer Science, San Francisco, USA, 2010, pp. 124–129.

[6] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction
using relational association rule mining,” Information Sciences,
vol. 264, pp. 260–278, 2014, serious Games. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025513008876

[7] C. Ni, X. Chen, F. Wu, Y. Shen, and Q. Gu, “An empirical
study on pareto based multi-objective feature selection for software
defect prediction,” Journal of Systems and Software, vol. 152, pp.
215–238, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121219300573

https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2018-report/
https://www.sciencedirect.com/science/article/pii/S000437029700043X
https://www.sciencedirect.com/science/article/pii/S000437029700043X
https://doi.org/10.1007/978-1-4615-5725-8_3
https://www.sciencedirect.com/science/article/pii/S0020025513008876
https://www.sciencedirect.com/science/article/pii/S0164121219300573
https://www.sciencedirect.com/science/article/pii/S0164121219300573


TABLE IV
PERFORMANCE OF DIFFERENT MODELS IN TERMS OF RMSE VALUE AND CAPTURED BUGGY CLASSES

Baseline Filter Wrapper Embedded

LRAF RFAF LRCC LRFFS LRBFE RFFFS RFBFE RFTF
4-F 7-F 4-F 7-F 4-F 7-F 4-F 7-F

RMSEb 0.72 0.71 0.71 0.73 0.73 0.77 0.81 0.82 0.81 0.86 0.81 0.72
RMSEa 0.78 0.85 0.82 0.81 0.78 0.93 0.87 0.83 0.88 0.83 0.88 0.84

Revised RMSEb (exp-1) 0.5 0.46 0.47 0.43 0.48 0.53 0.51 0.46 0.47 0.46 0.47 0.48
Bug Classb (exp-2) 40 41 37 41 40 38 39 41 41 41 41 40

avalue obtained on test data set.
bvalue obtained on validation data set.

TABLE V
SELECTED FEATURES IN DIFFERENT MODELS

Filter Wrapper Embedded

LRCC LRFFS LRBFE RFFFS RFBFE RFTF
4-F 7-F 4-F 7-F 4-F 7-F 4-F 7-F

age with respect to ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
number of versions until ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

avg code churn until ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
code churn until ✓ ✓ ✓ ✓ ✓ ✓

max lines added until ✓ ✓ ✓ ✓ ✓
number of fixes until ✓ ✓ ✓ ✓

weighted age with respect to ✓ ✓ ✓
number of refactoring until ✓ ✓

number of authors until ✓ ✓
lines added until ✓ ✓

lines removed until ✓ ✓
max lines removed until ✓ ✓
avg lines removed until ✓ ✓

avg lines added until ✓
max code churn until

[8] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based software
defect prediction,” Neurocomputing, vol. 385, pp. 100–110, 2020.

[9] T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving
defect prediction with deep forest,” Information and Software
Technology, vol. 114, pp. 204–216, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584919301466

[10] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 297–308.
[Online]. Available: https://doi.org/10.1145/2884781.2884804

[11] M. Tsunoda, A. Monden, K. Toda, A. Tahir, K. E. Bennin, K. Nakasai,
M. Nagura, and K. Matsumoto, “Using bandit algorithms for selecting
feature reduction techniques in software defect prediction,” in 2022
IEEE/ACM 19th International Conference on Mining Software Reposi-
tories (MSR), 2022, pp. 670–681.

[12] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect prediction
approaches: A benchmark and an extensive comparison,” Empirical
Softw. Engg., vol. 17, no. 4–5, p. 531–577, aug 2012. [Online].
Available: https://doi.org/10.1007/s10664-011-9173-9

[13] L. Jia, “A hybrid feature selection method for software defect
prediction,” IOP Conference Series: Materials Science and Engineering,
vol. 394, no. 3, p. 032035, jul 2018. [Online]. Available: https:
//dx.doi.org/10.1088/1757-899X/394/3/032035

[14] M. A. Mabayoje, A. O. Balogun, A. O. Bajeh, and B. A. Musa,
“Software defect prediction: Effect of feature selection and ensemble
methods,” FUW Trends in Science & Technology Journal, vol. 3, no. 2A,
pp. 518–522, 2018.

[15] H. Osman, M. Ghafari, and O. Nierstrasz, “Automatic feature selection
by regularization to improve bug prediction accuracy,” in 2017 IEEE
Workshop on Machine Learning Techniques for Software Quality Eval-
uation (MaLTeSQuE), 2017, pp. 27–32.

[16] S. Strüder, M. Mukelabai, D. Strüber, and T. Berger, “Feature-oriented
defect prediction,” in Proceedings of the 24th ACM Conference on

Systems and Software Product Line: Volume A - Volume A, ser. SPLC
’20. New York, NY, USA: Association for Computing Machinery,
2020. [Online]. Available: https://doi.org/10.1145/3382025.3414960

View publication stats

https://www.sciencedirect.com/science/article/pii/S0950584919301466
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1007/s10664-011-9173-9
https://dx.doi.org/10.1088/1757-899X/394/3/032035
https://dx.doi.org/10.1088/1757-899X/394/3/032035
https://doi.org/10.1145/3382025.3414960
https://www.researchgate.net/publication/372902947

	Introduction
	Overview
	Problem Statement
	Organization

	Background
	Rule and Association-based Models
	Optimization-based Models
	Neural Network-based Models
	Feature Reduction-based Models
	Miscellaneous
	Our Contribution

	Methodology
	Data Set
	Data Processing
	Metric Selection
	Reproducibility

	Analysis
	LRAF
	LRCC
	LRFFS
	LRBFE
	RFAF
	RFTF
	RFFFS
	RFBFE

	Summary of Findings
	Conclusion and Future Works
	Acknowledgment
	References

