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Abstract—In this paper, we introduce a new language model
based on transformers with the addition of syntactical infor-
mation into the embedding process. We show that our pro-
posed Structurally Enriched Transformer (SET) language model
outperforms baseline datasets on a number of downstream
tasks from the GLUE benchmark. Our model improved CoLA
classification by 17 points over the BERT-Base model. Machine
Learning (ML) and Natural Language Processing (NLP) are play-
ing an increasingly vital role in many different areas, including
cybersecurity in IT and OT networking, with many associated
research challenges. The performance of attention-based models
has been demonstrated to be significantly better than that of
traditional algorithms in several NLP tasks. Transformers are
comprised of multi attention heads stacked on top of each others.
A Transformer is capable of generating abstract representations
of tokens input to an encoder based on their relationship to all
tokens in a sequence. Despite the fact that such models can learn
syntactic features based on examples alone, researchers have
found that explicitly feeding this information to deep learning
models can significantly boost their performance. A complex
model like transformers may benefit from leveraging syntactic
information such as part of speech (POS).

Index Terms—Natural Language Processing, Transfer Learn-
ing, Transformers, BERT, Part of Speed, Grammar Enriched

I. INTRODUCTION

Cybersecurity threats to both IT and OT deployments have
rapidly risen in recent years. This threat to networked devices
and their communications can have far-reaching consequences,
including in critical infrastructure industries such as the energy
sector. To aid in these cybersecurity efforts, our team has
been developing a semi-supervised vetting system (CYVET)
[1]. CYVET is focused on cybersecurity for networking and
for networked devices. It leverages many different NLP tech-
niques, including document classification, sequence extraction,
claim identification and sentiment analysis [2]. NLP is an
increasingly important tool in today’s cybersecurity arsenal.

Within NLP, grammatical induction is a method of learn-
ing grammar for syntactic parsing [3]. In natural language
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processing, grammar induction has been used in many as-
pects, including semantic parsing [4] and natural language
understanding [5]. There are many challenges associated with
grammar induction, such as sparsity and ambiguity of the data
[6]. A neural network and transformer-based model with over-
parameterization and continuous representation learning has
been shown to be a powerful tools for solving unsupervised
problems such as syntactic analysis [7]–[9].

Several pre-trained language representation models, includ-
ing BERT [10] and GPT [11], have been developed in re-
cent years for various natural language processing (NLP)
applications. These language models are trained on unlabeled
text to learn general knowledge from large corpora such
as BookCorpus and the English Wikipedia. While existing
pre-trained language models can learn to recognize useful
linguistic information from unlabeled text [12], world facts
and factual knowledge are generally not captured very well
[5], [13]. More importantly, in a natural language, grammar
regulates sentence structures and can help to understand the
language. Recent studies showed that phrase structure gram-
mar could be understood by pretrained language models [14]–
[16]. It also showed that adding parse and latent trees on top
of a pretrained language model can be useful for understating
structure and grammar of a sentence. These models were
trained on a parser tree to be able to understand the latent
tree.

In this paper we focus on the impact of Part of Speech
(POS) tags into language understanding. We propose a model
that feeds the syntactic feature of a word, represented as a POS
tag, along with its token into the transformer architecture. For
each word, its token and assigned POS tags are embedded
together and passed to the transformers. Words and POS tags
are combined to form the token representation. We evaluate
our proposed model on a number of General Language Un-
derstanding Evaluation (GLUE) benchmarks. Most of cyberse-
curity networking problems are binary classification problems,
and therefore in this paper we similarly only focus on datasets
with binary class labels. We showed that adding POS features
into embedding improves the classifier performance in several
downstream tasks.
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II. RELATED WORKS

Pre-trained language models (PLMs) refer to Natural Lan-
guage Processing (NLP) models trained on a large generic
domain corpus of text. Embeddings from Language Models
(ELMo) [17], Universal Language Model with Fine-Tuning
(ULMFiT) [18], the Generative Pre-Training (GPT) model
[11], and Bidirectional Encoder Representations from Trans-
formers (BERT) [10] are well-established PLMs. In general,
PLMs can be divided into two main categories based on their
main application [19]:

1) Word-embedding language models such as ELMo [17].
2) Multi-purpose language models such as ULMFiT [18],

Google BERT [10] and OpenAI GPT [11]

The introduction of Transformer-based PLMs, especially
BERT, resulted in significant improvements for many NLP
downstream tasks [11], [20]. However, recent studies showed
that these models acquire only a weak understanding of
syntactic structure through their training [5], [13], [21], [22].
Researchers found that adding syntax information can improve
performance measures of NLP models [12], [23], [24].

One type of syntax information used to improve the per-
formance of PLMs is POS tags. Certain POS types tend to
become the keyword more frequently in certain domains or
implementations [25], [26]. Huang et. al. [27] showed that
using POS tags can help to facilitate the development of
sentiment-favorable representations.

In this paper, we investigate the effect of adding POS tags
into the embedding layer to train a new language model we call
SET, the Structurally Enriched Transformers language model.

The remainder of this paper is organized as follows. In sec-
tion 2, we briefly review related works, including background
information related to Transformers and BERT. In section 3,
we describe the overall system framework and our proposed
architecture, including our training dataset, feature engineering
tokenizer and our Structurally Enriched Transformers (SET)
language model details. We present and discuss our findings
and results by comparing SET’s results with other language
models in section 4, and our analysis and discussions in section
5. Finally, in section 6 we present our conclusions and future
work.

A. Transformers

Transformer-based models were originally developed for
machine translation [28] and have since then found their way
into numerous other NLP applications. The GPT and BERT
language model architectures contain multiple transformer
blocks. These transformers are stacked on top of each other,
which helps the model to extract more informative features
from inputs using an attention mechanism. In transformer-
based models, all input words first need to be converted to
a token t. Each token is then converted to an embedding
vector Ext, where E is a trainable matrix with M rows,
where M is the total number of tokens, containing both words
and sub-words. These embedding vectors are fed into encoder

blocks with self attention mechanism. Mathematically, the
self-attention matrix formula is (1):

Self-Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q is the Query matrix, K is the Key matrix, and V is
the Value matrix. The Key matrix’s dimension is provided by
parameter dk. As a result of the self-attention mechanism, each
matrix expresses a different representation of the same initial
embedding [28]. The softmax score in the attention equation
determines how much each word will be expressed at this
position. Multiplying the softmax score with the Value matrix
(V) produces the attention value [28].

B. BERT

The Bidirectional Encoder Representations from Transform-
ers (BERT) language model is a well-known PLM that was
trained on a large general corpus. BERT has two main steps:
Pre-training and Fine-tuning. For pre-training, BERT uses two
main techniques: Masked Language Modeling (MLM) and
Next-Sentence Prediction (NSP) [10]. BERT is available in
two versions:

1) BERT-Base: 12 encoder layers, 768 dimensions, 12
multi-head attentions, 110M parameters;

2) BERT-Large: 24 encoder layers, 1024 dimensions, 16
multi-head attentions, 340M parameters.

Both models were trained on a corpus comprised of the
BookCorpus and the English Wikipedia, which together con-
tain more than 3.5 billion words [10].

For MLM, BERT trained a deep bidirectional representation
of a sentence by randomly masking an input token and then
predicting it. NSP is utilized to characterize and learn sentence
relationships, on the other hand. These two unsupervised
tasks helped BERT in producing context-sensitive embeddings.
These embeddings and the self attention mechanism used in
transformers help BERT to better understand the language.
The transformers output from the MLM and NSP pre-training
of BERT can be modified to be adapted to all downstream
tasks [29]. For fine-tuning, a softmax layer is added on top of
the stacked encoders as a classifier, which allows the model to
perform various downstream tasks such as classification and
sentiment analysis [10]. Equation (2) denotes the classifying
loss calculated in fine-tuning:

log(softmax(CWT )) (2)

where C denotes the encoders aggregation of the first token
and W is the final weight.

For this research, we follow the pre-training and fine-tuning
strategies defined by BERT to build our language model.

III. PROPOSED ARCHITECTURE

In this section, we introduce our SET language model and
its implementation details. In this research, we add the POS
structural feature to the BERT model, and pre-trained the
model for masked language and next sentence prediction. The
proposed model architecture consists of six encoder layers,



with six heads for multi-headed attention. We used the same
parameters as described in BERT, the dropout rate of 0.1 and
a batch size of 2048. We utilize the AdamW optimizer to train
the model with β1 = 0.9 and β2 = 0.998, and employed a label-
smoothing factor of 0.1. Our model has 6M total trainable
parameters and was trained for 113,300 steps.

The model proposed in this study was trained on a machine
with four NVIDIA RTX A6000 GPUs, with 48 GB of RAM
per GPU. The whole training process took 16h:28m. We
used Pytorch [30] and Tensorflow [31] packages to implement
this model. Figure 1 shows an overview of our proposed
model architecture. In the following subsections we explain
its components in detail.
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Gn+m[CLS] G1 Gn [SEP] Gn+1
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Fig. 1: Model architecture for the proposed SET Model

A. Training Dataset

The proposed model was trained on a subset of the Book-
Corpus and Wikipedia datasets. As part of our cleaning
process, we removed duplicates and very long sentences that
were more than 128 words in length. As the result, we trained
our model on a corpus of 21,895 documents with 67,360,191
sentences and 1.1 billion words. Figure 2 demonstrates a
histogram of the word count for each sentence in our selected
corpus (on the left). We also demonstrate the frequency of
each POS tag in our corpus in Figure 2 on the right. The mean
sentence length in our corpus is 17.3 words, which shows that
most of our training database’s sentences are shorter than 128
words.

B. Feature Engineering Tokenizer

In this paper, we focused on evaluating the impact of gram-
mar tags on language model understanding and performance.
For this purpose, we added the POS tags from the NLTK
python library [32] into the BERT tokenizer. A pre-trained
NLTK 3.7 model was used to tag words in the source sequence
with their POS tags, in order to aid the transformer in acquiring
and utilizing syntactic information.

BERT has a vocabulary file for all its tokens, comprised
of 30,522 tokens. At the beginning of its vocabulary file are
1,000 rows marked as [unused]. This allows researchers to
introduce new tokens into those spaces. New POS tokens were
assigned to rows 50-86 in the vocabulary file, each mapped to
a specific POS tag. This will let the embedding matrix have
the same size as the BERT model. Therefore, we can use the
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Fig. 2: Histogram of sentence word count for our selected
corpus from BookCorpus and Wikipedia sentences (top) and

the POS tag histogram for all sentences (bottom).

pre-trained embedding weights from BERT and benefit from
transfer learning. Using these POS tags, along with the BERT
tokenizer, helps us to build a feature engineered embedding
encoder to train our new language model SET.

The first step in adding structural features, such as POS
tags, to a BERT-Base model is mapping each token from the
WordPiece tokenizer to the appropriate POS tag (Figure 4).
The input sequence is first preprocessed by assigning POS tags
to each source sequence. Following that, each sentence will be
tokenized using the WordPiece model [33]. The next step will
be to assign the proper POS to each token (sub-word) from
WordPiece. For example, if the word embedding were used
as a noun in a sentence, the tokenizer would break it into sub-
words em, bed, and ing, and each sub-word would be assigned
the POS NN . If, on the other hand, the word embedding were
used as a verb in a different sentence, the tokenizer would
arrange it into the same sub-words em, bed, and ing, but each
sub-word would be assigned the POS V BG. Thus, it shows
that the POS tag can convey additional, clarifying, information
about these tokens. In order to avoid any confusion between
POS tags such as TO and token to, we created a unique tokens
for each POS tag. (see Figure 3). The embedding’s grammar
and sentence are then extracted from a trainable embedding
matrix using a look-up table (Figure 1). As a result, syntactic
and semantic elements are combined to form a compound
representation.



POS Tag Description Token POS Tag Description Token
CC Coordinating conjunction FENCC RB Adverb FENRB
CD Cardinal number FENCD RBR Adverb, comparative FENRBR
DT Determiner FENDT RBS Adverb, superlative FENRBS
EX Existential there FENEX SYM Symbol FENSYM

FW Foreign word FENFW TO to FENTO
IN Preposition or subordinating conjunction FENIN UH Interjection FENUH
JJ Adjective FENJJ VB Verb, base form FENVB

JJR Adjective, comparative FENJJR VBD Verb, past tense FENVBD
JJS Adjective, superlative FENJJS VBG Verb, gerund or present participle FENVBG
NN Noun, singular or mass FENNN VBN Verb, past participle FENVBN

NNS Noun, plural FENNNS VBP Verb, non-3rd person singular present FENVBP
NNP Proper noun, singular FENNNP VBZ Verb, 3rd person singular present FENVBZ

NNPS Proper noun, plural FENNNPS WDT Wh-determiner FENWDT
PDT Predeterminer FENPDT WP Wh-pronoun FENWP
POS Possessive ending FENPOS WP$ Possessive wh-pronoun FENWPS
PRP Personal pronoun FENPRP WRB Wh-adverb FENWRB

PRP$ Possessive pronoun FENPRPS WRB$ Possessive Wh-adverb FENWRBS
LS List item marker FENLS MD Model FENMD

Fig. 3: POS tag definitions from NLTK and our specific assigned tokens
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Fig. 4: Prepossessing steps to map NLTK tags to WordPiece
tokens

C. The Structurally Enriched Transformers Language Model

In our proposed Structurally Enriched Transformers lan-
guage model (SET), each token’s input representation is cal-
culated by summation of its token, grammar, segment, and
position embeddings.

We use the same format as BERT’s input, with a [CLS]
token added in the beginning of each sequence and [SEP]
token added to separate two sentences. These [CLS] tokens
are fed into an output layer for classification and [SEP] is a
separator token useful for downstream tasks such as question
answering. These input vectors for each sentence are then
fed into the encoders. Our model consists of six encoders
stacked on top of each other. Similar to BERT, each encoder
consists of multi-head, self-attention, and feed-forward neural
network (FFN) sub-layers 1. The self-attention layer of the
first encoder is initialized with the embedding matrix from
the combined vectors of each word token and its POS tag
in that sentence. Next, the Query, Key, and Value matrices
are calculated for this embedding by the attention mechanism
(Formula 1). Downstream tasks use the aggregate sequence
representation corresponding to the [CLS] token from the final
encoder, similar to BERT.

IV. RESULTS

In this section, we present our language model fine-tuning
results on benchmark datasets. The fine-tuning process uses the

final weights from the pre-training stage and connects classifier
layers with a dropout on top of the final encoder. We follow
BERT’s hyperparameter settings, including a dropout rate of
0.1, 768 neurons for the final classifier layers, a batch size
of 32, and 3 training epochs. For each dataset, we choose
the learning rate among the values of 4e-5, 3e-5 and 2e-
5, which is within the hyperparameters defined by BERT
[10]. The benchmark datasets utilized in this paper are part
of the General Language Understanding Evaluation (GLUE)
benchmark [34]. GLUE contains a variety of text classification
tasks designed to assess general language comprehension
abilities. In general, GLUE has nine different datasets, which
are categorized into single sentence tasks, tasks related to
similarity and paraphrases, as well as tasks related to natural
language inference [34]. In this paper we only evaluate our
proposed PLM on binary classification, and similarity and
paraphrases datasets. Specifically, the list of datasets we used
for this paper are:

• QQP: Question Pairs is a binary classification task with
the goal of determining whether two questions on Quora
are semantically equivalent [35]

• SST-2: Stanford Sentiment Treebank uses human annota-
tions of movie reviews to classify binary single-sentence
pairs [36].

• CoLA: is a binary single-sentence classification task de-
signed to predict linguistically acceptable or unacceptable
English sentences [37]

• MRPC: The Microsoft Research Paraphrase Corpus is a
collection of sentence pairs automatically extracted from
online news sources and human annotations on whether
they are semantically equivalent [38].

The results obtained for our SET Model on the GLUE
benchmark tests are shown in Table II. As can be seen from
Table I, our proposed model outperforms all other models in
CoLA and QQP.

Table II compares the detailed parameters for each model
of the test set. We evaluated and reported the best value for
each dataset among the 4e-5, 3e-5 and 2e-5 learning rates.



TABLE I: GLUE test results scored. The number below each task denotes the number of training examples.

QQP SST-2 CoLAa MRPC
(363k) (67k) (8.5k) (5.7k)

OpenAI GPT [39] 70.3 91.3 45.4 80
BiLSTM+ELMo+Attn [34] 64.8 90.4 36 73.3
BERT Base [10] 71.2 90.5 52.1 85.8
BERT Large [10] 72.1 94.9 60.5 89.3
Syntax-infused BERT [23] 71.4 93.9 52.9 88.8
Proposed Model 79.8 81 69.1 71.1
aThe evaluation metric for CoLA is Matthews Correlation

TABLE II: Hyper Parameters and GLUE Classification Results on Validation Set

Learning
Rate

Training
Loss

Traininga
Accuracy

Validation
Loss

Validationa
Accuracy

Number of
Epochs

Training
Time

QQP 4e-5 0.38 0.82 0.42 0.798 3 0:28:03
SST-2 2e-5 0.198 0.936 0.558 0.813 3 0:21:26
CoLA 2e-5 0.609 0.704 0.616 0.691 3 0:02:13
MRPC 3e-5 0.528 0.743 0.594 0.711 3 0:01:13
aThe evaluation metric for CoLA is Matthews Correlation

V. ANALYSIS AND DISCUSSION

This paper presents our SET language model, which aims
to capture the impact of grammar roles on language model
understanding and performance. Our SET model outperforms
all other models on two out of the four tasks we tested
from the GLUE benchmark dataset. Our model achieved a
17 points improvement over BERT on the CoLA dataset.
As we defined before, the CoLA task assesses a sentence’s
linguistic structure, which is clearly benefiting from the POS
embeddings included in our model. The examples in Table III
are from the CoLA database, showing how BERT mislabeled
the data and how our model was able to correctly classify.

Furthermore, our SET model outperforms BERT on the
QQP task, which is concerned with evaluating semantic re-
latedness. In Table IV, some examples of predictions made on
the QQP dataset are presented.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced SET - a Structurally Enriched
Transformers language model. This model is the result of
added POS tags to the embedding matrix. We trained our
language model on a dataset of 67.3 million sentences, uti-
lizing a smaller architecture of only six encoders with 6M
parameters, compared to other language models such as BERT
and GPT. We find that our SET model can nevertheless
outperform BERT Baseline and GPT on a number of GLUE
downstream tasks. For example, we could note a significant
improvement of 17 points compared to the BERT-Base model
on the CoLA dataset, which evaluates the linguistic structure
of a sentence. This work marks only a first step in our
systematic evaluation of our hypothesis that a variety of
NLP tasks could be improved by leveraging explicit prior
syntactic information such as the POS. For our future work we
will continue our evaluation of different grammar embedding
techniques, different layer types for SET’s encoders, as well
as optimum training parameter set selection. We also plan

on evaluating SET on other benchmark datasets related to
semantic comprehension in NLP.
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