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ABSTRACT

Social conventions govern numerous behaviors of humans engaging in day to day activities from how they
greet to languages they speak. The Naming Game shows the evolution of consensus in social networks in
the absence of any outside coordinating authority. The classical Naming Game algorithm has been defined
with inherently sequential semantics where agents engage in pairwise interactions. In reality, people engage
in parallel interactions with multiple hearers. In this paper, we extend the classic Naming Game to multiple
hearers per speaker in each conversation even while allowing simultaneous “speaking” and “hearing”. We
simulate the impact on the rate of convergence by varying the number of hearers and investigate the impact
of different network types on the global convergence. Multiple network types and agent population sizes
are used in the simulation experiments. The results show that our extended model combining simultaneous
conversations and multiple hearers per speaker per conversation makes the words diffuse at a much faster
rate and leads to significantly faster consensus formation.

1 INTRODUCTION

1.1 Background

The Naming Game is a multi-agent model where individuals engage in pairwise interactions to reach a
global consensus on the name of a single object (Baronchelli et al. 2005). It also helps to investigate the
system dynamics in social networks of autonomous agents. The conventional Naming Game is played by
a set of N agents who interact pairwise to negotiate conventional forms associated with a set of meanings.
These agents, in the absence of any central control, mutually convey information to each other about objects
in the environment and evolve their language. An example of such a game is that a population must reach a
consensus on the name of an object by exploiting local interactions. For simplicity, the language evolution
is restricted in this article to: (1) naming only one object at a time, and (2) not considering homonyms.

The Naming Game model helps individuals self-organize to produce global coordination while interacting
locally (Baronchelli 2016). It is well understood that it is possible to bootstrap and successfully accomplish
a naming exercise in a completely autonomous fashion with no external coordinator. However, there are a
few questions that need to be addressed: How does this happen? Will a consensus ever be reached? How
long does it take to reach a consensus? These are some of the important questions in theory and practice
but answering them is not easy. It has been observed that new words spread and compete with each otherto



Soni, Perumalla and Li

eventually converge to a single accepted word (Lass 1997) (or to exactly as many words as there are islands
in the network graph formed by the communication links among the agents). It has been proposed by Steels
(2015) that the linguistic communication capability of humans is an emergent phenomenon (Steels 2015),
using a framework where mutually agreeable words are shared by speakers and listeners and evolve over
time (Steels 1995). Others such as Lu, Korniss, and Szymanski (2009) focus on the impact of communities
on the outcome of consensus formation in social networks, concluding that stronger community networks
hinder global agreement while the Naming Game evolves as clusters of coexisting opinions.

Investigating social dynamics using the Naming Game has been well explored in the literature. Many
variants of this game have been studied. In this paper, we use the Naming Game to study the convergence
behaviour of multiple agents while interacting locally and attaining consensus. The Naming Game is a
minimal model employing local communications. For example, one of the earliest applications of this
game has been in the context of robots where one robot acts as a speaker and the other as a hearer (Steels
and Loetzsch 2012). The speaker draws the attention of the hearer by naming a characteristic feature of
an object. More recently, in systems of human agents, the Naming Game has been used to describe the
phenomenon of collaborative tagging and bookmarking on social networks (Cattuto et al. 2007; Golder and
Huberman 2006). One of the most popular usages of the Naming Game has been in the context of language
formation and the spread of dialects. In a broader sense, the Naming Game can be employed to investigate
the large-scale patterns arising from local interactions at individual levels. An interesting example is the
pop vs. soda controversy (Thiel and Sleep 2007). The common feature that has been explored and well
studied in most of these studies is the inherent sequential on-to-one conversations present in the classical
algorithm to reach global consensus. Another study by Baronchelli (2011) investigates how the states of
the agents are updated after an interaction where the authors conclude that slightly modifying the rules can
dramatically alter the overall dynamics.

1.2 Our Contributions

This classical version of the Naming Game has been studied on a variety of networks including general
graphs (Baronchelli et al. 2006), complete graphs (Baronchelli et al. 2006; Baronchelli et al. 2005), small
world networks (Dall’Asta et al. 2006; Lin et al. 2006) and scale-free networks (Dall’Asta et al. 2006;
Baronchelli et al. 2006). On all these complex networks, the authors assumed that the agents would engage
only in pairwise interactions. The major contribution of our simulation study presented here is to extend
the model of every conversation in the Naming Game to involve multiple hearers per speaker, and to use
simulation to evaluate its dynamics in complex networks, including complete (random), distance-based
and small-world. We study the global convergence on all these networks while steadily increasing the
population size and analyzing the convergence results at each population size.

2 CLASSICAL MODEL

2.1 Classical / Sequential Algorithm

The classical Naming Game operates on a set of N dictionaries, one dictionary per agent, in a sequential set of
conversations. These dictionaries evolve over time across the conversations to converge to a single, identical
word in every dictionary. The individuals may start with completely dissimilar dictionaries (potentially
empty, or with words that are unique per agent). Furthermore, during the game’s evolution, the dictionaries
may grow bigger or shrink in size as a result of the conversation rules. The game is carried out as a series
of steps of conversations executed as a fixed point computation until consensus is reached in the form of
the union of dictionaries becoming equal to a single word and every dictionary also containing that word.

The conversation begins when the speaker picks a random word from its dictionary or invents a new word if
its dictionary is empty. The speaker conveys this word to the hearer. The hearer consults its own dictionary
to see if the word in the conversation is present in its dictionary. If such a word exists in its dictionary, then
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both the speaker and hearer decide to abandon their original dictionaries and retain only the word conveyed
by the speaker in the conversation. This event is termed as a “success” in the Naming Game since the
hearer’s dictionary contains the speaker’s word in the conversation and this event helps in the pruning of
words in the system, moving it forward towards consensus. However, if the hearer’s dictionary does not
contain such a word, then the word gets added to the hearer’s dictionary. The speaker’s dictionary is not
changed in this scenario. This event is termed as a “failure”. Refer to Figure 1 for illustrative examples
of success and failure.

Note that, in the sequential conversation model, a hearer completes the updates to its dictionary before
another conversation starts, which implies that the aforementioned success and failure are the only two
possibilities. This corresponds to the classical model (Baronchelli 2016). However, an additional possibility
arises when two or more conversations may be active at the same time, which raises the possibility that
a hearer may be engaged in a conversation when a different speaker may initiate another conversation.
Additional variation of the model is therefore needed for asynchronous conversations in which the hearer
may have an ongoing conversation when a conversation is initiated (Perumalla 2017).

Figure 1: Examples of dynamics in a successful and a failed scenario in the basic Naming Game.

The following steps are executed sequentially in a loop until consensus is reached.

1. A random pair of speaker and hearer is selected from the population.

2. The speaker randomly selects one of the words from its dictionary (or invents a new word if the
dictionary is empty).

3. The speaker conveys the word to the hearer.

4. The hearer consults its own dictionary and one of two actions takes place:

(a) Success: If the hearer’s dictionary contains that word, both the hearer and speaker would
abandon their original dictionaries and would replace their dictionaries with only the word in
the conversation.

(b) Failure: If the hearer’s dictionary does not contain the word in the conversation, the hearer
adds the word to its dictionary. The speaker’s dictionary is not updated in this scenario.

Remember that one of the simplifying assumptions of our model is the absence of homonymy. This ensures
that no two agents would use a different word for the same object. However, since homonymy is an
important aspect of human interaction, we can think of “words in a context” to approximate the concept
of homonymy. An important point to note here is that this game operates from a global point of view; that
is, each conversation depends upon the previous conversations and each successful conversation may alter
the individuals’ dictionaries considerably. Another important remark relates to the random extraction of
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the word from the speaker’s dictionary. Many previous studies have attempted to assign weights to these
words in the dictionaries. For the sake of simplicity, the model we define here does not use weights.

2.2 Limitations of Classical Model

The inherently sequential classical model deviates from some realistic considerations, including:

• Asynchronous conversations: A key assumption of the classical model is that the conversations
happen sequentially. At each step, a random pair of speaker and hearer engage in conversation
and update their dictionaries. However, in reality, the conversations in the system may happen
simultaneously. In other words, multiple conversations may be updating dictionaries at the same
time across the system. In particular, it is possible for a speaker in one conversation to be a hearer
in another conversation.

• Pairwise conversations: The classical algorithm assumes that at each step only one pair of speaker
and hearer will engage in a conversation. However, with the larger population sizes in social
networks, group conversations are much more common. Some agents may act as “influencers”
and impact the dictionaries of more than one hearer after each conversation. The dictionary of the
speaker may or may not change.

• Instantaneous Conversations: The classical model assumes that the interactions take place instan-
taneously. However, typically a non-zero amount of time elapses during a conversation. Moreover,
during this time gap, agents may engage in other conversations.

3 MODEL ENHANCEMENTS

Our present work addresses the first two limitations of the classical model as discussed in Section 2.2. We
relax the assumptions of one-to-one hearer-speaker mapping as well as the sequentiality of conversations.
Parallel asynchronous conversations have already been introduced previously by Perumalla (2017). We
extend his model and further relax the assumption of pairwise conversations. Our work introduces the
parameter that there can be more than one hearer in each conversation; in other words, a conversation
contains one speaker and k ≥ 1 hearers of the same word chosen by the speaker. Although many peer-to-peer
simulation systems have been developed in the past (Andelfinger et al. 2014; Cecin et al. 2006), a parallel
multiple hearers conversation model has not been previously studied.

3.1 Multiple Hearers Per Speaker

Considering the increasingly sophisticated interfaces of social networks, pairwise-only interactions is a
significant limitation on the Naming Game model. Our work extends the Naming Game in social networks
to multiple hearers per conversation. We assume that in any conversation, there will be one speaker and
multiple hearers. In this extended model, the following steps are repeated in a loop, until consensus is
reached.

1. Multiple simultaneous groups are identified, with each group containing one speaker and multiple
hearers. The agents in each of these groups may be connected using the definitions of social
networks that we will described shortly in Section 3.4.

2. The speaker in each group would randomly pick a word from its dictionary and convey the word
to all the hearers of the group.

3. All the hearers who have such a word in their dictionaries would abandon their original dictionaries
and would only retain the word in the conversation.
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4. All those hearers who do not have such a word in their dictionaries would add the word to their
existing dictionaries.

5. The speaker (in any group) would update its dictionary only if each of the hearers in its group has
such a word in their dictionaries. In this case, all the hearers and the speaker would abandon their
original dictionaries and would only retain the word in the conversation.

All the steps are repeated until convergence is reached. An important point to note here is that, in multiple
hearers’ conversations, after each conversation, more than one hearer in each group may update their
dictionaries. This speeds up the process of global consensus and word diffusion even more. That is, parallel
asynchronous conversations will take place, where a speaker in one conversation can be a hearer in another
conversation and multiple dictionaries get updated at the same time.

In Figure 2, we compare the working of the extended model to the classical Naming Game model. On the
left, we see the classical model when agents (speakers) engage in pairwise conversations with other agents.
An important component of the classical model is that a speaker cannot be a hearer at the same time. In
the extended model, we extend the conversations to more than one hearer. On the right, we see two cases:
(a) Every speaker interacting with two hearers, and (b) Every speaker interacting with three hearers. A
snapshot of the system at any given time appears in the form of a 2-partite graph with each node on the
left having exactly k edges to the nodes on the right. Each agent on the left will randomly interact with
agents on the right, excluding itself. An important thing to note is that a speaker in one conversation can
be a hearer in some other conversation at the same time. This is the concurrency that was introduced by
Perumalla (2017).

Figure 2: On the left, we see the classical model where agents engage in pairwise interactions. Each agent
interacts with one other agent. Note that an agent cannot be a hearer and speaker at the same time. We
extend this model to a multiple hearers model where one agent is interacting with two or three (or in
general k ≥ 2 other agents. In the extended model, a speaker in one conversation can be a hearer in another
conversation.

3.2 Model Parameters

For a base case, we have taken several simplifying assumptions. Here, we list the parameters used in the
model configuration along with their semantics.
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• Population size (N): This denotes the number of agents N in this model. As a base case, we
consider the system to consist of 1000 agents.

• Size of initial dictionary: At the beginning of each game, each agent will be initialized with a
globally unique word in its dictionary.

• Number of unique words in the system (Nd): This is the number of unique words Nd in the entire
system at a given time in the simulation. The dictionaries of each agent form subsets of these Nd
unique words at any time during the game. In the initial configurations for all experiments, we
set each agent’s dictionary to contain exactly one unique word, giving Nd = 1000 at t = 0 for the
system of 1000 agents.

• Number of words in the system (Nw): This is the sum of dictionary sizes of all agents, which gives
the total number of words Nw in the system at time t.

• Number of contacts: Each agent (speaker) may reach out to any other agent from the entire
population. That is, we assume a complete graph network of potential conversation links.

3.3 Basic Phenomenon

The dynamics of the game are characterized by three temporal regimes: (1) initially, the words are
picked from the dictionaries; (2) the words are spread throughout the system; (3) the words undergo final
convergence towards global consensus, where all agents eventually possess the same unique word. The
main quantities that describe this evolution include Nd and Nw (Baronchelli et al. 2006).

We observe these two quantities Nd and NW after each conversation while multiple pairs of speakers and
hearers engage in conversations and update their dictionaries. This process takes place repeatedly until
convergence is reached, as defined in Section 3.1. We investigate the convergence behaviour using the
base assumptions described in Section 3.2. To identify the number of unique words, we compute the union
of the dictionaries of all agents at each step, thereby collapsing duplicate words into one. Consensus is
declared to be reached when Nd = 1 and Nw = N (Number of agents).

3.4 Network Types

Before we look at the results of the model, we define the network types by which agents may be connected.
The relation between the agents may not always be random. The individuals who are connected by some
relation may be more prone to connect or interact with each other. We explored this aspect by defining
our agent-based model on standard network types as follows.

• Random: In a random network type, the agents are randomly connected with a given average number
of connections per agent (see Wilensky and Rand (2015) for the theory of random networks).

• Distance-based: Any two agents are connected only if the distance between them is less than a
given maximum distance (Honarkhah and Caers 2010).

• Small world: In a small world network, any two agents can reach each other through a short
sequence of acquaintances. The agents are connected to a given number of closest agents with
some agents’ connections “rewired” to long-distance agents.

4 SIMULATION RESULTS

The aim of the Naming Game is that the game would terminate when all the agents possess the same
unique word in their dictionaries. This is what we called as “convergence”. In this section, we develop
the baseline convergence behavior first of the classical model involving only one hearer per speaker. Next,
we extend this model to multiple hearers, increasing the number of hearers and comparing the results.
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We further investigate the impact of network types on the rate of convergence and, finally, the impact of
population size on a multiple hearer model.

4.1 Classical Model

Here we look at the change in the number of unique words in the system the, Nd , and the total number
of words in the system, Nw, over the total number of conversations using base assumptions (as defined in
Section 3.2). Figure 3 shows the results in the case of a random network with only one hearer. Note that
the base case (with only one hearer) would be similar to the classical Naming Game. We see an initial
rise followed by a decrease in the number of words only during successful conversations. We expect to
see fewer successful conversations at first. However, once the words start to diffuse and the dictionaries
start to reduce in size, the convergence happens at a much faster rate. Once the consensus is reached, Nw
would equal N since no new words are introduced into the system. The results are consistent with those
in previous studies (Baronchelli 2016; Perumalla 2017).

Classical Model: Base Case
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Figure 3: Here we present the plots using the base assumptions, with a population size of 1000 where
each agent has a unique word in its dictionary in the beginning. This is the same as the classical Naming
Game. The plot on the left displays Nd on the vertical axis over the number of conversations, and the plot
on the right is Nw on the vertical axis over the number of conversations in a random network using the
base assumptions.

4.1.1 Extending the Classical Model to Multiple Hearers

Using our new model, we steadily increase the number of hearers per speaker in a conversation and observe
the convergence results under each case with a random network. With a population size of N = 1000,
each agent starts with a unique word in their dictionaries, but in each conversation, there are more hearers
than one. Figure 4 shows how varying the number of hearers impacts the convergence rate. As expected,
with an increase in the number of hearers, a greater number of agents update their dictionaries after each
successful conversation. This accelerates the convergence with each increase in the number of hearers. The
convergence rate changes from about 100,000 conversations in the classical set up (one hearer) to about
11,000 conversations in our extended model (10 hearers).

4.2 Varying the Network Types

Next, we investigate the impact of network types on convergence. Our base case assumes that the agents are
connected via a complete graph setup. That is, an agent can reach out to and engage in a conversation with
any other agent, irrespective of the distances between them, number of connections, etc. However, since
the agents may not always be connected randomly, the type of network may also have an impact on the
rate of convergence. That is, when individuals are closely connected, we would expect to see convergence
at a faster rate. However, if the individuals are connected only to a small number of other individuals, it
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Random Network: Varying the Number of Hearers

0 20000 40000 60000 80000 100000
Number of Conversations

0

200

400

600

800

1000
Nu

m
be

r o
f U

ni
qu

e 
W

or
ds

Hearers = 1
Hearers = 2
Hearers = 3
Hearers = 4
Hearers = 5
Hearers = 6
Hearers = 7
Hearers = 8
Hearers =  9
Hearers = 10

0 20000 40000 60000 80000 100000
Number of Conversations

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f T
ot

al
 W

or
ds

Hearers = 1
Hearers = 2
Hearers = 3
Hearers = 4
Hearers = 5
Hearers = 6
Hearers = 7
Hearers = 8
Hearers =  9
Hearers = 10

Figure 4: These plots present the convergence when we vary the number of hearers from the classical
setting in a game with 1000 agents. We see the impact on the rate of convergence of unique words on
the left and total words on the right. As expected, with the increase in the number of hearers, the words
diffuse at a faster rate.

may take a long time to converge. In order to explore this further, we study the impact of network types
on the rate of convergence in this section.

4.2.1 Distance-Based Interaction Network

Recall that, in a distance-based network, any two agents are connected only if the distance between them is
smaller than a defined value. Here we consider a case where the agents would only be connected when the
distance between them is at most 80 units in the simulation. Consider the results in Figure 5 for the base
case (only one hearer) in the case of a distance-based network. Converagence is observed to take a relatively
long time. The words diffuse rather rapidly for the first 100,000 conversations. But, after that phase, it
takes a long time for the model to fully converge. As the game starts, the distance does not constitute a
major constraint because there are many connected agents available to engage in successful conversations
that would speed up the diffusion of words. As the simulation progresses and the dictionaries of agents
start to converge, the maximum distance-based connectivity starts to become a constraint, preventing rapid
progress. The dictionaries of the connected agents may already have been converged, and it may take a
lot of conversations before the full diffusion of the words takes place across the width of the network.

Distance-Based Network: Base Results
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Figure 5: Using the base assumptions of 1000 agents and one hearer per conversation, here we investigate
the convergence in a distance-based network where agents are connected only if the distance between them
is smaller than 80 units. As we see here, the diffusion of words happens rapidly in the beginning, but, after
a point, it takes a very long time to converge. The distance constraint between the agents is causing the
delay in model convergence.
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Next, we further explore the impact of varying the number of hearers in a distance-based network. In
Figure 6, we steadily increase the number of hearers from one to ten. We observe the faster convergence
as we increase the number of hearers. The results here are different than for the random network case.
The total number of conversations required to reach global convergence is much higher. The number of
conversations required for consensus reduced from over 400,000 when there was only one hearer to only
about 13,000 in the case of ten hearers per speaker.

Distance-Based Network: Varying the Number of Hearers
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Figure 6: We vary the number of hearers in case of a distance-based network and observe that as we
gradually increase the number of hearers from from 1 to 10, the rate of convergence also increases.

4.2.2 Small World Interaction Network

In this set of experiments, we model small world network as follows. An agent interacts with only 100 other
agents, and 5% of the agents will have long-distance connections. These agents may be linked through
an acquaintance, that is, a common agent. Refer to Figure 7 for the results in the case of a single hearer.
Similar to the distance-based case, the diffusion of words happens drastically in the beginning, but it takes
a really long time to converge fully. That is, after a point the limited number of connections becomes a
constraint, and it takes a while before any diffusion of words takes place. Because most of the agents
interact only with the nearest neighbors, the model takes a long time to converge.

Small World Network: Base Results
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Figure 7: Here we present the results in a small work network, with a population size of 1000 and parallel
interactions with one hearer. An agent interacts only with the nearest 100 agents and 5% of the agents will
have long-distance connections. Since most of the agents will interact with the nearest agents, initially the
diffusion of words happens drastically, but after a point it takes a long time to fully converge.

We further explore the impact of varying the number of hearers on the rate of convergence (Figure 8). The
results again look similar to the distance-based network case; however, the total number of conversations
required to reach global convergence is lower than distance-based. The number of conversations required
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for consensus is reduced about one-tenth from over 300,000 in the case of one hearer to only about 30,000
in the case of ten hearers per agent.

Small World Network: Varying the Number of Hearers
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Figure 8: Here we see the impact of varying the number of hearers on the number of unique words (left)
and on the number of total words (right). As we would expect, the model would converge faster as we
increase the number of hearers.

4.3 Varying the Population Size

Next, we examine the convergence rate while varying the size of population (number of agents) from 1,000
to 5,000, 10,000 and finally 20,000 under different number of hearers. Note that for simplicity, in this
section, we assume that each agent can only reach out to (or connected to) only 1000 other agents.

First, we check the results while steadily increasing the number of agents. We consider two cases here:
number of hearers = 1 (classical model) and number of hearers = 2. Please refer to Figure 9 for the plots.
As we observe here, we see a linear increase in the convergence time when the population size is increased
from 1,000 to 20,000 in both cases. However, with two hearers, the convergence is considerably faster.

Random Network: Population Size Variation
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Figure 9: Variation of convergence time with the agent population size. Each term labeled Pop,H in the
plots represents the population size and the number of hearers. We see here that there is a nearly linear
increase as the size of the population is increased.

4.4 Varying the Number of Hearers and Population Sizes

Finally, we investigate the impact on the convergence rate when varying the number of hearers under
different population sizes. We consider the population sizes of 1,000, 5,000, 10,000 and 20,000 agents
and examine the results while steadily increasing the number of hearers from 1 to 10. In Figure 10, the
logarithm of the number of conversations is plotted on the vertical axis, and the number of hearers on
the horizontal axis for different population sizes. We use the logarithm of the number of conversations
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since the data is skewed and plots are easier to interpret in log-scale. A clear downward trend is generally
observed in the rate of convergence with the increase in the number of hearers across all population sizes;
however, slight deviations are observed in some configurations, which may be caused by variations among
simulation runs.

Varying the Number of Hearers
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Figure 10: We plot the number of conversations (left) and log of the number of conversations (right) against
the number of hearers across different population sizes. We observe that as the number of hearers increases,
there is a clear downward trend in the convergence time across all the population sizes.

5 SUMMARY AND FUTURE WORK

The Naming Game is a fundamental model in social networks, explaining several basic phenomena such as
consensus dynamics and language formation. In this study, we revisited the classical sequential algorithm
for the Naming Game to address some of its limitations. In contrast to the minimal Naming Game, we
extended the model to include multiple hearers per conversation. We further extended the notion of multiple
hearers to parallel conversations where each speaker can be a hearer in another conversation at the same
time. This more closely models reality in which agents do not behave sequentially, nor do they always
restrict interactions to pairs. We capture the concurrency in multiple-hearer conversations as an essential
element of social behaviour models. This extended model enables more realistic networks to be built.

Compared to the traditional pairwise model, multiple hearers models accelerate towards convergence at a
much faster rate. When agents engage in group conversations, multiple agents update their dictionaries in
each conversation step, making the speed of convergence increase rapidly. We also explored the case of
different network types to model inter-agent connectivity beyond random or clique-based interactions. We
further extended our analysis to multiple population sizes. Our multiple hearer model on different data
sizes serves to guide the introduction or enhancement of multiple hearers in a concurrent environment in
social behavioral models.
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