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Abstract: The convergence of Information Technologies and Operational Technology systems in
industrial networks presents many challenges related to availability, integrity, and confidentiality. In
this paper, we evaluate the various cybersecurity risks in industrial control systems and how they
may affect these areas of concern, with a particular focus on energy-sector Operational Technology
systems. There are multiple threats and countermeasures that Operational Technology and Informa-
tion Technology systems share. Since Information Technology cybersecurity is a relatively mature
field, this paper emphasizes on threats with particular applicability to Operational Technology and
their respective countermeasures. We identify regulations, standards, frameworks and typical system
architectures associated with this domain. We review relevant challenges, threats, and countermea-
sures, as well as critical differences in priorities between Information and Operational Technology
cybersecurity efforts and implications. These results are then examined against the recommended
National Institute of Standards and Technology framework for gap analysis to provide a complete
approach to energy sector cybersecurity. We provide analysis of countermeasure implementation to
align with the continuous functions recommended for a sound cybersecurity framework.

Keywords: smart grid; industrial control systems; industrial internet of things; cybersecurity; security;
supervisory control and data acquisition; distributed control systems

1. Introduction

Industrial Control Systems (ICS) entities are increasingly facing greater business
demands to operate more efficiently, and in the United States,they are also under greater
regulatory pressures as well. The Energy Independence and Security Act of 2007 [1] gave
the Federal Energy Regulatory Commission (FERC) and the National Institute of Standards
and Technology (NIST) responsibilities to develop smart grid guidelines and standards.
Furthermore, FERC has certified that North American Electric Reliability Corporation
(NERC) is responsible for developing Critical Infrastructure Protection (CIP) cybersecurity
standards [2]. At the time of this writing, NERC has developed 12 CIP standards that are
subject to enforcement. Furthermore, nuclear power generation facilities are governed by
more laws, regulations, and standards as well. As a result, ICS operators have increasingly
integrated Information Technology (IT) solutions with Operations Technology (OT), in
order to meet demand. However, this so-called IT/OT convergence has exposed these once
air-gapped OT networks to the Internet, where they are vulnerable to cyber attacks. The
differences between IT and OT and their convergence are examined in depth by Kayan et al.
in [3].
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Since most OT assets were not designed with security in mind [4], ICS networks will
benefit most by following a Defense-in-Depth (DiD) strategy with a De-Militarized Zone
(DMZ) between the Enterprise Zone and the Manufacturing Zone, as shown in Figure 1.
This provides some isolation of the OT network while specifically only allowing the network
traffic that is needed to enable authorized parties to remotely monitor and control OT assets
into the OT network. However, for proper defense-in-depth the OT section of the network
architecture likely requires new or improved security controls for the devices, software,
and communication protocols that are commonly utilized in these networks [5]. However,
this is particularly challenging for OT networks, because new security measures will likely
introduce more latency, while this additional latency in IT networks is normally acceptable,
in OT networks it can easily become a productivity concern, as well as a safety concern in
terms of human lives and/or the environment [6]. Ideally there would be a one-size-fits-all
approach for ICS entities to establish a cybersecurity governance and management program.
However, each organization must approach a cybersecurity program incrementally and
strategically to account for various factors, including its work force, culture, finances, risk
tolerance, as well as its current cybersecurity posture and the assets it manages.
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Figure 1. Common Architectural Zones.

With regards to managed assets, organizations must approach IT and OT cyber-
security differently as well. In IT-only networks, data is the primary commodity, and
hence confidentiality is the highest priority, followed by integrity and availability. In OT
networks, however, the primary objective is to maintain physical operations at optimal
conditions, and to prevent physical harm to devices, but more importantly people and
property. OT solutions are the path to achieving those objectives, and hence availability
is typically of the highest priority [5], followed by integrity and confidentiality [7]. This
prioritization is driven by the need to protect equipment and people. In order to quickly
respond to abnormal behavior within the OT-monitored system, highly reliable low-latency
communication are needed. Therefore, even a short degradation of availability can have
disastrous consequences.

It sometimes, however, may be necessary for some organizations to adopt slightly
different priorities, based on their architecture, assets, and configurations. In order to
assist ICS entities to flexibly approach the establishment of a cybersecurity governance
and management program, and to strategically manage risks, NIST has developed the
Cybersecurity Framework (CSF). More specifically applicable to the energy sector, the
US Dept of Energy has released the Cybersecurity Capability Maturity Model (C2M2) [8],
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which aims to guide organizations through the process of assessing and furthering their
cybersecurity posture.

A survey of primary cybersecurity concepts and principal threat taxonomy in In-
dustrial Cyber-Physical Systems (ICPS) is provided in [3]. The paper broadly focuses on
an introduction to cybersecurity concepts as they relate to ICPS, highlights prominent
protocols, and presents categories of countermeasures as they relate broadly to ICPS. This
focus on ICPS, however, results in a broad, high-level analysis of mostly IT-driven cyberse-
curity aspects within the ICPS domain. This includes an outline of the convergence of IT
and OT systems and the effects on cybersecurity posture explored in academic research.
They also identified available research into general testbeds and datasets for evaluation of
cybersecurity proposals. However, the work presented in [3] is a broad high-level review
without a focus on application domains. Therefore, our focus is specifically on the energy
sector—a critical infrastructure sector and a cornerstone of our modern society. In this
paper, we identify potential threats, industry guidelines and cybersecurity frameworks
that are driven by the unique challenges and opportunities found in this key application
domain. These frameworks are not only applicable to the energy sector, but can equally be
of benefit in other ICS sectors.

In related works, some broad cybersecurity threads and solutions are given in [9–12].
In [13], several denial-of-service (DoS) attack taxonomies for the Smart Grid (SG) are
defined and some potential solutions are explored. In [14], applications of blockchain
for cybersecurity solutions in the smart grid are explored. The various communications
architectures, technologies, protocols, cyber threats, and countermeasures are explored
in [15–20]. In [21], a taxonomy of false data injection attack (FDIA) detection algorithms is
presented and evaluated. In [22,23], some cyber threats and countermeasures related to
time synchronization of measurement devices are presented.

In this paper, we focus on OT security issues, as the IT security issues are already well-
covered by the IT industry. In particular, we focus on OT security issues in the energy sector,
primarily in power generation and distribution systems, while significant research exists
on OT cybersecurity, this survey is the first to review existing OT cybersecurity threats,
countermeasures, and industry sector guidance to strengthen cybersecurity posture with
primary applicability to the North American energy sector. This paper illustrates differences
in priority assignment for confidentiality, integrity and availability between IT and OT
networks, as a motivator for different cybersecurity approaches between the two domains.
We provide an evaluation of known cybersecurity threats and their countermeasures, with a
focus on OT specific threats and examine the recommended gap analysis provided by NIST.

The remainder of this paper is organized as follows. In Section 2, a survey of energy
sector ICS security governance is provided. In Section 3 we provide some reference
network architectures for OT networks. Section 4 presents a survey of security threats
for OT networks. In Section 5, we provide a survey of countermeasures proposed in the
literature. In Section 6, we analyze the current state of OT network security mitigation
strategies (i.e., by assuming the countermeasures in the current literature may be applied),
by analyzing how well they will assist entities to further manage cybersecurity risk. Finally,
some concluding remarks are provided in Section 7.

2. Power Grid Cybersecurity Governance

Organizations responsible for the generation, transmission, and distribution of electri-
cal energy are subject to a variety of laws, regulations, policies, standards, and guidelines.
Ideally, there can be one universal governance framework for the Energy ICS sector. How-
ever, the reality is that each organization must determine its own governance structure
based on its culture and existing organizational model. Furthermore, there is no single
authority within an organization to determine the correct governance framework. However,
the NIST Cybersecurity Framework [24] and the DoE C2M2 [8] are both valuable tools for
each organization to strategically develop an appropriate cybersecurity governance and
management framework. A list of available governance is outlined in Table 1.
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Table 1. Summary of Regulations, Standards, and Guidance for the U.S. Energy Grid.

Regulation, Standard, or Guideline Summary Category

U.S. Regulation Energy Policy Act of 2005 Statutory

U.S. Regulation Energy Independence and Security Act of 2007 Statutory

NERC CIP Standards Enforceable set of standards for the Bulk Energy System Standard

DHS Nuclear Reactor Cybersecurity Cybersecurity Framework Implementation Guidance for U.S.
Nuclear Power Reactors Guidance

ES-C2M2 Electricity Subsector Capability Maturity Model Guidance

DoE Energy Sector Cybersecurity Framework Implementation Guidance Guidance

NIST CSWP 04162018 Framework for Improving Critical Infrastructure Cybersecurity Guidance

NIST TN 2051 Smart Grid Profile of the NIST Framework Guidance

NIST SP 1800-23 Energy Sector Asset Management Guidance

NIST IR 7628 Guidelines for Smart Grid Cybersecurity Guidance

NIST SP 1108r3 NIST Framework and Roadmap for Smart Grid Interoperability Stan-
dards, Release 3.0 Standard

IEEE C37.1 Standards for SCADA and Automation Systems Standard

IEEE 1379 Recommended Practice for Data Communications between RTUs
and IEDs Guidance

IEEE 1646 Standard Communication Delivery Time Performance Requirements
or Electric Power Substation Automation Standard

IEEE 1686 Standard for Intelligent Electronic Devices Cyber
Security Capabilities Standard

IEEE 692 Standard for Criteria for Security Systems for Nuclear Power Gener-
ating Stations Standard

IEEE 1547.3 Guide for Monitoring, Information Exchange, and Control of Dis-
tributed Resources Guidance

IEEE P1711 Trial-Use Standard for a Cryptographic Protocol for Cyber Security
of Substation Serial Links Standard

IEEE P2030
IEEE Guide for Smart Grid Interoperability of Energy Technology and
Information Technology Operation with the Electric Power System
(EPS), End-Use Applications, and Loads

Guidance

IEEE P1901 High Speed Power Line Communications Standard

IEC 61850 IED Communications (e.g., GOOSE) Standard

IEC 62351 Security of Communication Protocols Standard

IEC 62541 OPC Unified Architecture Security Model Standard

ANSI C12 Metering Protocol Standard

IEEE C37.118 Synchrophasor Measurements Standard

IEC 60870 Family of Protocols for SCADA Communications Standard

IEEE 1815 DNP3 Protocol Standard

Modbus Modbus Protocol Standard

NRC Regulatory Guide 5.83 Cybersecurity Event Notifications Guidance

NRC Regulatory Guide 5.71 Cybersecurity Programs for Nuclear Facilities Guidance

The NIST Cybersecurity Framework Core is comprised of four areas: Functions,
Categories, Subcategories, and References. The Functions represent a typical cybersecurity
lifecycle with the following stages: Identify, Protect, Detect, Respond, and Recover. Each of
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these Functions are divided into Categories that are the next layer of granularity of each
lifecycle stage. Each of the Categories are further divided into another level of granularity
called Subcategories. Subcategories provide context to each category with reference to
other frameworks such as ISO, ISA, etc.

The NIST CSF also provides a scaled ranking system for organizations to evaluate
the degree to which its cybersecurity risk management practices exhibit the characteristics
defined in the framework in the following categories: Risk Management Process, Integrated
Risk Management Program, and External Participation. The values in the scale are called
Tiers and the values range from 1 to 4, 1 being the lowest level of implementation.

Lastly, the NIST CSF Profiles are a method by which organizations evaluate their
current cybersecurity posture. These profiles furthermore allow organizations to determine
recommended next steps for implementation that would help them to achieve their desired
cybersecurity posture. It represents an alignment of the CSF Core with the organization’s
business requirements, capabilities, and risk appetite. For example, NIST provides a Profile
for the Smart Grid in [25].

The C2M2 is a maturity model comprised of a set of common cybersecurity practices
that may be used to evaluate, prioritize, and improve an organization’s cybersecurity
capabilities. It was derived from the Electricity Subsector Cybersecurity Capability Maturity
Model (ES-C2M2) [8], which was developed in response to the U.S. government’s initiative
to improve the cybersecurity posture of its critical infrastructure.

In 2005, the United States Energy Policy Act was signed by the Bush administration. It
mandates the FERC to certify an Electricity Reliability Organization (ERO) to develop bulk
power grid reliability standards to be enforced by FERC. Shortly after, FERC certified the
NERC as the ERO. NERC’s set of standards for the bulk power system are called the NERC
Critical Infrastructure Protection (CIP) standards. At the time of this writing, there are
12 enforceable NERC CIP standards, 11 relating to cybersecurity and 1 relating to physical
security [2]. Other than standards relating to nuclear facilities, these are the only set of
enforceable standards for the power grid in the United States.

The NERC CIP standards define which entities will materially impact the reliability
of the bulk power system if they are compromised. Any entities that meet the inclusion
criteria and none of the exclusion criteria defined in CIP-002 are referred to as a Bulk Electric
System (BES). The CIP standards require that BES entities identify their critical assets, and to
regularly perform risk analysis on them. BES entities are required to establish an Electronic
Security Perimeter (ESP) by creating appropriate firewall rules and policies, enforcing IT
controls to protect critical assets, and implementing cyber attack monitoring tools. They
are also required to regularly patch software and firmware vulnerabilities, use IDS/IPS
tools, use antivirus and anti-malware tools, generate alarms on detected cyber events, and
use secure account and password management. The standards also define requirements for
establishing a cybersecurity policy and program, training personnel, establishing access
controls for personnel, establishing an incident reporting and response planning program,
and establishing recovery plans for critical assets and data.

The NERC CIP standards are the primary external influence of cybersecurity gover-
nance for Bulk Electric Systems. However, nuclear power generation systems are further
governed by additional laws, regulations, and standards. These are primarily the Nu-
clear Regulatory Commission (NRC) regulation 10 CFR, Nuclear Energy Institute (NEI)
standards 08-09, 10-04, 10-08, 10-09, and 13-10, and NRC Regulatory Guide 5.71. The US
Department of Homeland Security (DHS) guideline titled “Nuclear Sector Cybersecurity
Framework Implementation Guidance for U.S. Nuclear Power Reactors” is a useful tool to
assist organizations with strategically implementing a cybersecurity program with respect
to the applicable laws, regulations, standards and the NIST CSF.

Besides these, the following International Society of Automation (ISA) and Interna-
tional Electrotechnical Commission (IEC) standards are also important for cybersecurity
management of the Smart Grid: ISA/IEC 62443, IEC 62351, IEC 62541, IEC 614500-25, IEC
62056-5-3 and ISO/IEC 14543. The IEC standards are available at a cost to organizations
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and individuals but unlike the NERC CIP standards they are not enforceable. The ISA/IEC
62443 is a framework of standards whose goals are to improve the Confidentiality, Integrity,
and Availability of general Industrial Automation and Control systems. The ISA/IEC
62351 are a framework of standards for improving the cybersecurity of communication
system protocols used in power systems. IEC 62541, aka the OPC Unified Architecture,
is a client-server based Machine-to-Machine (M2M) communication protocol for general
Industrial Automation and Control systems.

Furthermore, the following Institute of Electrical and Electronics Engineers (IEEE)
standards are also important for cybersecurity management of Smart Grid systems: IEEE
1646, IEEE 1686, IEEE 2030, and IEEE 1402.

3. Power Grid ICS Network Architectures

ICS Networks should be logically separated into the following zones [26]:

• Level 5 , Enterprise Network—Used for managing business-related activities.
• Level 4, Site Planning and Logistics Network—Used for managing production work flows.
• Level 3, Site Manufacturing Operations and Control—Used to manage control plant

operations that produce the desired end product.
• Level 2, Area Control—Used for supervising, monitoring, and controlling the physical

processes.
• Level 1, Basic Control—Sensing and manipulating the physical processes.
• Level 0, Physical Process—The physical process happens here.

As depicted in Figure 1, the OT network resides in Levels 0–2 while the IT network
resides in Levels 3–5.

Since IT-OT convergence is a relatively new phenomenon, many Operational Tech-
nologies are still insecure by design [4]. IT technologies have evolved alongside the various
threats to networking and computing technologies while OT networks were isolated until
relatively recently. In [26], CISA recommends various traditional methods to implement
a defense-in-depth strategy at the enterprise zone. This differs compared to traditional
IT security services, shown in CISA’s recommended firewall rule set layer, depicted in
Figure 2. In particular, they recommend the use of a DMZ to provide logical separation
of the enterprise zone from the Internet; virtual private networks to secure remote access
connections; firewalls to restrict connections to trusted entities and content between zones;
and various host security controls such as antivirus software, patch management, intrusion
detection systems, etc.

Figure 2. CISA Recommended Firewall Rule Set Layers.

While the above defense-in-depth strategy is a great start to securing ICS networks,
the OT portion of the network may still require additional security controls to improve an
organization’s overall risk posture. Organizations responsible for power transmission and
distribution are responsible for assets distributed over vast geographical areas. Therefore,
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these systems typically use SCADA technologies to monitor and control these distributed
systems. A typical SCADA system is shown in Figure 3.

Figure 3. Typical Power SCADA Architecture.

Beyond the transmission and distribution domains in the smart grid, there are also
the generation, customer, markets, operations, and service provider domains as defined in
the NIST Smart Grid Framework 3.0 [27]. The domains that are of primary concern in this
paper are the transmission, distribution, operations and customer domains of the smart
grid. The next two sections of this paper will focus on the potential cyber threats to the
Smart Grid and potential countermeasures.

4. Cybersecurity Threats in Energy System OT Networks

Cybersecurity threats in Energy System OT Networks may be categorized by the
security services targeted by the attack. From a risk perspective, it is also particularly
useful to order these services by priority. In OT networks, systems not only govern
critical operational processes, such as manufacturing machinery, power generators and
distributions systems, but may also be responsible for the safety of workers or, in the case
of smart grids, perform time critical tasks to prevent cascading failures and facilitate a
key service on which national security is built. A failure in the power grid not only puts
people’s lives at risk, but can have disastrous impact on everything from transportation
to financial services, defense, and more. Such critical OT operations require quick system
responses to perform as intended. The low latency requirements of these systems would
therefore rely on constant availability. Even a momentary outage could cause a safety
critical system to fail to respond within a defined time - with potentially fatal consequences.
For this reason, OT Networks rank availability typically as their highest priority, followed
by integrity and confidentiality. Therefore, we categorize attack impacts in terms of security
services in the following order of priority: Availability, Integrity, and Confidentiality.

This is in contrast to IT networks, where confidentiality and data integrity would
be of higher priority than a momentary lapse of availability. In IT networks, data is the
important commodity. Hence, protecting that data is more important than a temporary
lapse in availability. The focus of IT networks are aimed at an organization’s day to day
operation, such as the the storage of information or completion of automated processes.
Provided that the integrity and confidentiality of the systems are maintained, short outages
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will have little impact on an organization. Most tasks that would fail due to outages can be
completed once systems become available again.

In some cases, an attack may impact more than one security service. In such cases, the
attack will only be described in the higher priority service category but the other services
that are potentially impacted will be mentioned as well. For instance, although a FDIA is
primarily an attack against data integrity, it may potentially impact availability [13]. Since
availability is the higher priority category, it will be described in the Availability Threats
subsection and not in the Integrity Threats subsection.

4.1. Availability Threats

In DoS attacks, the perpetrator seeks to make information or operational technology
systems unavailable, either temporarily or indefinitely, to authorized users or other systems
in the network. For instance, this may be accomplished in traditional IT by overloading a
web service with superfluous requests. In OT systems, there may be unique attack vectors
for carrying out DoS attacks compared to IT systems. For instance, perpetrators of DoS
attacks may target systems or data that are critical for correct operation of automated control
systems. DoS attacks represent significant threats to power systems because the control
systems in such systems are sensitive to timing and any disruption to critical information
can compromise the entire system’s availability.

As explained in [13], there are several different taxonomies of DoS attacks in the Smart
Grid. They can be classified by vulnerabilities in common SG communications protocols, by
major SG applications, or by attacker exploitation techniques. With regards to exploitation
techniques, the major categories are jamming [18,28–31], resource exhaustion [32–38],
cryptography algorithm exploits [39], data attacks, de-synchronization attacks [40,41],
routing-based attacks, and reflector attack.

Jamming attacks are a form of DoS attack, and present a significant threat to the
availability of smart grid systems. In jamming attacks, the shared nature of wireless
channels is exploited by sending a continuous flow of data to prevent legitimate users
from utilizing the channel. The authors in [42] propose a jamming channel attack called
Maximum Attacking Strategy using Spoofing and Jamming (MAS-SJ). This attack targets
PMUs of the cognitive radio network (CRN) used for providing time-synchronized data of
power operating states in a wireless smart grid network (WSGN).

In [32,37], the authors introduce the puppet attack, where a vulnerability in the
Advanced Metering Infrastructure (AMI) dynamic source routing protocol is exploited,
causing the network bandwidth to become exhausted. In [43], the Time-Delay-Switch (TDS)
attack is proposed, where attackers introduce time delays into control loops to cause general
instability of the smart grid system. The Time Synchronization Attack (TSA) [40] targets the
integrity of the GPS information of Phasor Measurement Units (PMUs) of various smart grid
applications, including transmission line fault detection, voltage stability monitoring, and
event locationing. In [44], the effects of flooding attacks on time-critical communications of
the Smart Grid are explored. Another potential threat against availability and integrity are
wormhole attacks, as shown in [45].

Attacks that primarily target data integrity may impact their availability as well. In
power grid applications, the false data injection attack [40] is a well-known example of this.
In FDIA, the power grid state-estimation systems are targeted in order to distort real energy
supply and demand figures, which may cause blackouts, physical damage, or even the loss
of human lives [18]. FDIA attacks may also effectively become a denial-of-service attack as
they may cause critical services to become unavailable. The research of detection strategies
for FDIA is a highly active area, because it carries the potential for large impact and benefits
to a very challenging problem. Due to the time-sensitive nature of the communications
involved in these state-estimation systems, detection schemes must be very efficient. Some
additional attacks that target data integrity that may lead to DoS are presented in [46–48].

Some basic attacks may have a large impact on availability as well. Viruses, worms,
and trojan horses pose a significant threat to IT and OT systems, not only in terms of
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availability, but in terms integrity and confidentiality as well. The Stuxnet worm and Duqu
malware [37] are two examples of such attacks. These attacks may be able to bypass any
existing defense-in-depth strategies, which makes them particularly dangerous. Further-
more, masquerade attacks may be carried out [35] to penetrate a system and/or elevate
permissions in order to carry out a larger attack that may compromise the availability of
the system.

4.2. Integrity Threats

Cyber attacks that affect the integrity of systems within energy OT networks are
primarily focused on the transmission and distribution domains of the conceptual model.
As mentioned in the previous section, the primary focus of research in this area is on
FDIA in state-estimation systems, as these types of attacks not only impact availability and
integrity of energy systems, but can cause blackouts, damage to systems, harm and even
the loss of lives. However, other types of data tampering attacks may also have serious
consequences for the smart grid. In this section, we present a survey of threats to data
integrity in energy OT networks.

Since most attacks that impact data integrity in smart grids may also impact availability,
most of the survey in this section has already been compiled in the previous section.
However, many of those same attacks may have less severe consequences. For instance, a
malicious attacker may target the smart metering infrastructure to create financial losses for
the utility company. Or, an opportunistic attacker may alter the measurement data to get
free power [49]. Attackers may also initiate man-in-the middle or spoofing attacks against
AMI via unauthorized data manipulation. These are just a few examples of data integrity
threats that may not necessarily impact availability.

4.3. Confidentiality Threats

Cyber attacks that affect the confidentiality of users in the power grid are mainly
focused on the customer, distribution, and service provider domains of the NIST Smart Grid
Conceptual Model [27]. AMIs enable more precise, real-time monitoring of customer energy
consumption for more precise billing and to provide feedback to customers about their
energy consumption habits. This level of customer feedback necessitates communications of
potentially sensitive customer information in the AMI communication networks, presenting
a potential threat to customer confidentiality. In addition to customers, intrusions within
almost all domains in the conceptual model may reveal sensitive user information (e.g.,
employees). In this section, we present a survey of threats to confidentiality in energy grid
OT networks.

As explained in [49], the primary challenges concerning confidentiality in AMI are cus-
tomer privacy and operations integrity and availability. Since the latter concerns have been
discussed in previous sections, the primary focus in this section concerning confidentiality
in AMI is regarding customer privacy. As shown in [50], smart devices may be identified
by an attacker by analyzing their energy consumption, and sensitive customer information
may be revealed by analyzing meter readings. The main attacks targeting confidentiality
are packet capturing for traffic scanning, port scanning directed at specific protocols such
as DNP3, and social engineering or password phishing attacks.

5. Potential Countermeasures to Cybersecurity Threats

Countermeasures to cybersecurity threats in OT networks are also categorized by
the security model category, as shown in Section 4. However, the category of attack may
affect multiple security model categories. In particular, attacks that affect integrity and
confidentiality require network access to be deployed. For this reason, countermeasures for
integrity and confidentiality threats have been combined in this section, while countermea-
sures to availability threats are individually addressed. A summary of the countermeasures
outlined in this section can be found in Table 2.
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Table 2. Cyber Attacks in the Smart Grid and Their Countermeasures.

Impacted
Security Model

Category
Attack Category Possible Countermeasures Compromised Application,

Protocol, or Device Attack Example

Availability

Denial of Service
SIEM, IDS, flow entropy, signal strength, sensing
time measurement, transmission failure count,
pushback, reconfiguration methods

AMI puppet attack [32]

smart grid TDS [43]

PMU, GPS TSA [40]

False Data Injection Attack
FDIA Detection [51–125] applied in DLP, IDS, SIEM,

etc.; Secure DNP3; TLS; SSL; encryption,
authentication; PKI

AMI, RTU, EMS, SCADA [21]

Jamming JADE, anti-jamming, (FHSS, DSSS)
PMU [126]

CRN in WSGN MAS-SJ [42]

Malware Injection DLP, IDS, SIEM, Anti-virus, Diversity technique
SCADA, PMU,
Control device Stuxnet [37]

SCADA Duqu [37]

Masquerade attack DLP, IDS, Secure DNP3, SIEM, TLS, SSL, encryption,
authentication, PKI PLC [35]

Integrity
Man-in-the-middle Secure DNP3, PKI, TLS, SSL, encryption,

authentication

HMI, PLC eavesdropping

SCADA

DNP3, SCADA

AMI intercept/alter

Replay attack Secure DNP3, TLS, SSL, encryption,
authentication, PKI

IED, SCADA, PLC

AMI authentication

Confidentiality

Privacy violation Secure DNP3, PKI, TLS, SSL, encryption,
authentication

Demand response program,
smart meters

Scanning (IP, Port, Service,
Vulnerabilities) IDS, SIEM, automated security compliance checks

Modbus protocol Modbus network
scanning

DNP3 protocol DNP3 network
scanning

Social engineering Secure DNP3, PKI, SSL, encryption,
authentication

Modbus protocol,
DNP3 protocol phishing

Modbus protocol,
DNP3 protocol

password
pilfering

Traffic analysis Secure DNP3, PKI, SSL, encryption, authentication Modbus protocol,
DNP3 protocol

5.1. Potential Countermeasures for Availability Threats

Cybersecurity threats that impact availability in the smart grid present major chal-
lenges to researchers. As demonstrated in previous sections, many of these threats are
related to threats that impact data integrity, including some DoS and FDIA attack vectors.
In general, there is no single solution to prevent DoS and DDoS attacks. Consequently,
a multitude of different solutions may have to be implemented to successfully limit the
effectiveness of such attacks [13]. Furthermore, state-estimation systems in the SG are
highly sensitive to time synchronization and latency degradation. Due to the real-time
nature of state-estimation systems, research in this area is heavily focused on efficient and
effective detection algorithms. As explained in [13], DoS countermeasure strategies may be
categorized by non-technical security controls, filtering, Intrusion Detection/Prevention
Systems (IDS/IPS), rate limiting, cryptographic authentication, protocol solutions, architec-
tural solutions, honeypots, device solutions, wireless communications-specific solutions,
and system-theoretic solutions. Some examples of non-technical security controls are
to limit access to critical assets to authorized personnel and implementing an effective
and strategic cybersecurity governance and management framework. A brief survey of
technical solutions for DoS attacks, organized by category, follows below.

Filtering is the implementation of effective firewall rules to limit incoming traffic
to expected network addresses, ports, etc. In [127], the authors present a firewall called
smart tracking firewall that is specialized for a wireless mesh network (WMN)-based smart
distribution grid (SDG). In their scheme, any nodes that detect a potential intruder are able
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to notify their neighbors who may then be able to filter the source’s traffic from advancing
any further in the multihop network. The authors in [128] propose an openflow SDN-
based firewall for preventing DDoS attacks in AMI. By connecting the firewall to the SDN
controller and the cloud firewall agent, the firewall policies are able to ensure that incoming
data is safe and filtering of the traffic occurs at the cloud edge.

Intrusion detection systems (IDS) are devices or software applications that typi-
cally exhibit more sophisticated capabilities compared to firewalls, which are primarily
configuration-driven to filter harmful traffic. IDS may be developed with specific use
cases in mind, such as detection for a specific ICS protocol. They are usually designed to
detect more sophisticated intrusion scenarios than firewalls. Intrusion prevention systems
add some automated prevention capabilities to an IDS, e.g., automatically block a source
address when a certain attack scenario is detected. One key difference between firewalls
and IDS is that an IDS can likely decrypt incoming traffic while firewalls likely cannot.
Therefore, they may be more useful for detecting sophisticated attack scenarios, while still
allowing for the data to be encrypted. IDS systems may be classified as signature-based,
anomaly-based, or specification-based.

Signature-based IDSs rely on a rules-based engine of known attack signatures. In [129],
a set of signature rules for detecting intrusions in Modbus communications for SCADA
applications are presented. The authors in [130] present a set of signature rules for the
DNP3 protocol for SCADA. Each of the signature-based IDSs provide rules for preventing
DoS attacks.

Anomaly-based IDSs typically rely on machine learning algorithms or other statistical
methods. In [131], the authors use a time-series model of process measurements to detect
anomalies related to DoS attacks. The authors in [132] develop a deep learning model to
detect anomalies in PMU data. In [133], a machine-learning based anomaly detector to
detect attacks on load forecasting data. Each of these anomaly-based IDS algorithms are
useful for preventing DoS attacks.

Specification-based IDSs rely on manually developed specifications of legitimate
behavior. In [134], a specification-based IDS algorithm to monitor AMI C12.22 transmis-
sions for anomalies using device-based, network-based, and application-based constraints.
In [135], the authors propose a specification-based network-based cyber intrusion detection
system (NIDS) for detection of anomalies in GOOSE and SV multicast messages in substa-
tion automation systems. Each of the presented specification-based anomaly detectors are
useful for preventing DoS attacks.

Cryptographic authentication refers to the use of cryptographic solutions to prevent
the types of data integrity attacks that may lead to a DoS. Some key challenges for the
smart grid, however, are the combined use of resource-constrained computing devices and
long-lived devices that are typical of power systems. Due to the use of low-power devices,
the cryptographic algorithms must be lightweight and due to the use of the long-lived
devices, they must also be stable over long periods of time. Furthermore, the scalability of
key management approaches is a major concern [136]. In short, the use of cryptography in
the SG carries the potential for itself to become a target of DoS attacks [39]. In [137], the
authors propose a hybrid solution of combined public and symmetric key techniques.

Protocol-based solutions refer to research related to improving communication proto-
cols used in the SG. The protocols used in the SG carry some unique challenges compared
to those used in the Internet. For instance, since many of the devices have a long lifetime,
the protocols need to be able to evolve over time. In addition to current standardization
efforts to deal with various security requirements, including DoS attacks [138], there is
active research to improve SG protocols further. For instance, in [139], a lightweight and
efficient authentication scheme using one-time signatures for multicast data is presented.

Architectural solutions refer to the design of network topology to mitigate the effective-
ness of certain DoS scenarios. Since the SG is relatively new, there is opportunity to design
the architecture from the ground up to address such needs [140]. For instance, a subnetwork
may be able to isolate itself in the event of a DoS attack to continue operations until the
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parent network recovers. This type of architectural design is known as islanding [141].
Islanding can be an effective architectural solution in smart grids [141–143].

Honeypots are devices and systems that mimic legitimate network components that
are likely targets of attack in a network. They are typically monitored and isolated from
the production network so that security operations may detect potential attacks early and
potentially block malicious sources before they have a chance to attack the production
systems. A recent survey paper explores the use of honeypots and honeynet [144] in the
smart grid. They find that Conpot [145,146] is a promising open-source project able to
support many smart grid use cases out of the box and may be extensible to support other
use cases as well. There is large potential for future research work in this area, particularly
with a focus on expanding support for more protocols and devices.

The SG presents many challenges for device-level cybersecurity, including (1) physical
security concerns, (2) patching may be difficult or impossible, (3) limited computation
abilities, and (4) cost efficiency of solutions. Plus, many of the legacy devices in the power
grid were designed without security in mind. Some promising solutions for the smart
grid include, (1) trusted computing [147], (2) attestation [148], (3) diversity, (4) secure
bootstrapping [141], and (5) secure patching [141].

Since Smart Grid applications can have strict delay requirements (on the order of a
few milliseconds), DoS attacks against their wireless channels are particularly effective.
Countermeasures in this category are primarily concerned with anti-jamming solutions
and they may be categorized by (1) efficient and robust detection and (2) DoS-resilience
schemes. [36]. In [126], the authors propose a method to detect the jamming channel attacks.
In [30], the authors introduce a new metric called message invalidation ratio to analyze the
effectiveness of a designed jamming detection system in different attack scenarios.

System-theoretic solutions relate to solutions for False Data Injection Attacks. As
described in [21], FDIA detection algorithms may be categorized as follows: model-based
and data-driven detection algorithms. Model-based attacks are further categorized by
static state-estimation techniques, dynamic state-estimation techniques, and other model-
based techniques. In [149], the authors model the False Data Injection Attack, enabling
the design of model-based detection schemes. The authors in [51–61] present static state-
estimation techniques. In [62–77], some dynamic state-estimation techniques are presented.
Some other model-based detection schemes are presented in [78,80–91,150]. Similarly,
data-driven detection algorithms may be further subdivided into machine-learning based
algorithms, data-mining based algorithms, and other data-driven algorithms. Some su-
pervised machine-learning based algorithms are presented in [92–108,151,152]; some un-
supervised machine-learning based algorithms are presented in [106,109–117,153]; and
reinforcement-learning based algorithms are presented in [116]. Data-mining based detec-
tion algorithms are presented in [117–120], and other data-driven detection algorithms are
described in [121–124].

Perhaps one of the more challenging aspects of securing ICS networks in general is to
implement effective countermeasures against malware threats. Some recent high-profile
attacks, including Stuxnet and Havex, utilized zero-day exploits and concealment [154].
In [154], the authors propose the use of multi-layered strategies (i.e., defense-in-depth) to
mitigate some of these threats, among others. An effective defense perimeter for the OT
and IT portions of the network, as shown in Figure 4 may prevent some of these attacks
from starting. However, due to misconfigurations, backdoors, etc. this is not a guarantee.
The IT side of the network should also use endpoint protection, a SIEM, etc., in order to
detect known threats. However, there are also zero-day threats, supply-chain threats, social
engineering threats, USB devices with malware, etc. The NERC CIP standards [2] include
standards for supply chain management and device patching. All of these are a good
place to start to defend against malware threats. However, development of more effective
countermeasures for these threats offers a good opportunity for future research into SG
and ICS networks in general.
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5.2. Potential Countermeasures for Integrity and Confidentiality Threats

Cybersecurity threats affecting integrity of ICS communication are often targeted at
specific protocols. The Modbus and DNP3 protocols that are compatible with legacy serial
devices are especially vulnerable to eavesdropping and alteration. The major cybersecurity
threats that impact confidentiality in the smart grid are primarily focused on the Advanced
Metering Infrastructure (AMI). The AMI is a system of smart meters, communication
networks, and data management systems that enables two-way communication between
customers and utilities. This two-way communication enables better monitoring and
more accurate billing for utilities and more accurate consumption behavior for customers.
However, since more customers use this model, there are increased access points for
security attacks.

In both of these cases, encryption is an effective countermeasure for data integrity
and confidentiality. The IEEE Secure SCADA Communications Protocol (SSCP) [155] is
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targeted at employing encryption on serial implementation of protocols. In [156], Ferst et al.
employed TLS to the Modbus protocol to produce a significant improvement in secrecy
of data. The combination of these countermeasures removes the gap between security of
legacy devices to their modern IED counterparts.

6. Recommended Gap Analysis Strategies for Cybersecurity Assurance in the
Energy Sector

While previous sections have identified individual cybersecurity threats and counter-
measures for them, a combination of these security services will be required to prevent
gaps in protection. NIST recommends that gap analysis be performed on individual com-
pany networks and provides a Cybersecurity framework specific for smart grids with five
continuous functions [25].

• Identify—Determine assets within the organization and their risk factors for potential
Cybersecurity risks.

• Protect—Create safeguards to ensure delivery of infrastructure services through access
control, awareness and training, data security, and information protection procedures.

• Detect—Identify any Cybersecurity events with continuous monitoring.
• Respond—Implement predefined procedures for response planning and communications.
• Recover—Develop plans to maintain resilience and restore capabilities of services.

The framework provides an in-depth procedure, recommended considerations, and
information references to successfully implement each of these five functions to align with
DoE’s C2M2. All five functions are reliant on each other for proper implementation. For
example, a failure in identification can lead to shortcomings in the implementation of pro-
tection services. For “identification”, categories that are defined include asset management,
business environment, governance, risk assessment, risk management strategy, and supply
chain risk management. This set of categories is where most variability will appear within
different organizations, as assets and protocols used by different devices will have different
associated risks. The organization will need to identify critical functions and assets to tailor
their profile for effective risk management.

The goal of the “protect” function is to ensure security and resilience of systems, while
ensuring all personnel are aware of their roles of cybersecurity within an organization. The
protection service is where most of the countermeasures mentioned in the previous sections
are implemented, with categories for access control, training, data security, information
protection processes and procedures, maintenance, and protective technologies. These
categories map directly to the countermeasures for integrity and confidentiality attacks
shown in Table 2. Access control can effectively counter man-in-the-middle, replay, and
privacy violation attacks. FDIA detection is also the primary detection countermeasure
focused on in this paper, with the NIST “detect” function comprised of categories for
anomalies and events, continuous monitoring, and detection processes. Implementation of
these services should also identify the scope and impact of any events that take place.

The final two categories in the NIST profile are aimed at the occurrence of a cybersecu-
rity event, with “respond” and “recover”. Respond is divided into categories of response
planning, communications, analysis, mitigation, and improvements, whereas Recovery
is divided into planning, improvements and communication. The procedures for these
categories should be in place before an attack occurs, as proper response planning and com-
munications will allow for improved response and recovery timelines. With every event,
analysis and mitigation is expected to be performed, with any lessons incorporated into fu-
ture improvements of response planning. After a successful response, recovery procedures
will be enacted with future improvements added to procedures for future events.

The goal of the framework is to aid stakeholders of any organization to identify, assess,
and manage any risks that may be in their organizational network. Compliance with this
framework can look vastly different between different organizations, so NIST also provides
steps to implement or improve a Cybersecurity program.

1. Prioritize and Scope
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2. Orient
3. Create a Current Profile
4. Conduct a Risk Assessment
5. Create a Target Profile
6. Determine, Analyze, and Prioritize Gaps
7. Implement Action Plan

To aid in determination of a target profile, NIST also provides a set of four tiers that
an organization can reference for their management goals. There are 4 tiers referenced:
partial, risk informed, repeatable, and adaptive. The higher the tier, the more rigorous the
protections that are in place within an organization. For example, at tier 1 (partial) there
are no formalized policies in place, with the organization addressing each risk individ-
ually without an evolving procedure. These tiers expand cybersecurity awareness and
risk mitigation up to adaptive, where advanced technologies are implemented and risk
management practices evolve to combat current and past cybersecurity threats.

7. Conclusions

In this paper, we have identified the challenges facing the cybersecurity of ICSs with
the convergence of OT and IT systems. By examining the current standards and organiza-
tions for power grid cybersecurity governance, we showed recommended architectures
and security services specific to the energy sector. We also examined the areas of ICS
cybersecurity model of availability, integrity, and confidentiality.

We specifically illustrated the differences in priority assignment for confidentiality,
integrity and availability between IT and OT networks, as this difference is a key motivator
for different approaches to cybersecurity between these two domains. An evaluation of
known cybersecurity threats and their countermeasures was provided in each of these
three areas, with a focus on OT specific threats. We provided an examination of NIST’s
recommended gap analysis strategy for smart grid profiles with recommended continuous
functions of identify, protect, detect, respond, and recover. Each of these functions was
examined and examples of applicable implementations of presented countermeasures
were provided.

From this survey it is apparent that great strides have been made in the OT realm’s
cybersecurity approaches, while significant work remains, the growing number of tools,
specifications, and capabilities show the amount of effort being vested in securing OT
operations, many of which are at the core of critical infrastructure sectors, such as the
energy grid.
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ICS Industrial Control System
FERC Federal Energy Regulatory Commission
NIST National Institute of Standards and Technology
NERC North American Electric Reliability Corporation
CIP Critical Infrastructure Protection
IT Information Technology
OT Operations Technology
DiD Defense-in-Depth
DMZ Demilitarized Zone
CSF Cybersecurity Framework
C2M2 Cybersecurity Capability Maturity Model
ICPS Industrial Cyber-Physical Systems
DoS Denial of Service
SG Smart Grid
FDIA False Data Injection Attack
ES-C2M2 Electricity Subsector Cybersecurity Capability Maturity Model
CIP Critical Infrastructure Protection
ERO Electricity Reliability Organization
BES Bulk Electric System
ESP Electronic Security Perimeter
NRC Nuclear Regulatory Commission
NEI Nuclear Energy Institute
DHS US Department of Homeland Security
ISA International Society of Automation
IEC International Electrotechnical Commission
M2M Machine-to-Machine
MAS-SJ Maximum Attacking Strategy using Spoofing and Jamming
PMU Phasor Measurement Unit
AMI Advanced Metering Infrastructure
TDS Time-Delay-Switch
PMU Phasor Measurement Units
TSA Time Synchronization Attack
IDS/IPS Intrusion Detection/Prevention Systems
CRN Cognitive Radio Network
WSGN Wireless Smart Grid Network
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