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There is an urgent need in many critical infrastructure sectors, including the energy sector, for attaining detailed insights into
cybersecurity features and compliance with cybersecurity requirements related to their Operational Technology (OT) deployments.
Frequent feature changes of OT devices interfere with this need, posing a great risk to customers. One effective way to address this
challenge is via a semi-automated cyber-physical security assurance approach, which enables verification and validation of the OT
device cybersecurity claims against actual capabilities, both pre- and post-deployment. To realize this approach, this paper presents
new methodology and algorithms to automatically identify cybersecurity-related claims expressed in natural language form in ICS
device documents. We developed an identification process that employs natural language processing (NLP) techniques with the goal
of semi-automated vetting of detected claims against their device implementation. We also present our novel NLP components for
verifying feature claims against relevant cybersecurity requirements. The verification pipeline includes components such as automated
vendor identification, device document curation, feature claim identification utilizing sentiment analysis for conflict resolution, and
reporting of features that are claimed to be supported or indicated as unsupported. Our novel matching engine represents the first
automated information system available in the cybersecurity domain that directly aids the generation of ICS compliance reports.
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1 INTRODUCTION

Cybersecurity auditing plays an increasingly important role in Operational Technology (OT). Many critical infrastructure
industries, including the energy sector, rely on OT and Industrial Control Systems (ICS), and therefore a robust and
reliable cybersecurity solution is needed for OT deployments. However, ICS vendors always add new features to their
products to incentivize reasons for system upgrades. Often, these changes are driven by vendors, while customers
may not be aware of these feature changes’ full impact on their cybersecurity posture and regulatory compliance.
Furthermore, the difference between vendor-provided cybersecurity feature claims and the customer’s expectation for
OT cybersecurity can be significant in industries such as the energy sector [62]. Due to these changes, the workload
for dynamic verification shifts from the energy sector to the customer, and consequently is creating a significant
cybersecurity risk. As a final consideration, the number of research studies into cybersecurity audits for OT is very
limited. Therefore, there is an urgent need for a solution to audit whether vendor-supplied features (VSF) adhere to
cybersecurity requirements as well as standards.

Cybersecurity requirements (CR) are standardized and codified by industry organizations and standards bodies in
human-readable formats. A vendor-supplied feature (VSF) can either (1) align and match with requirements (CRs) or
satisfy those requirements, (2) go beyond the related requirements, or (3) contradict and violate related requirements
[62]. In order for operators to determine whether OT devices pose a threat to cybersecurity by weakening security
postures, they must interpret vendor claims regarding supported features, evaluate the features of interest manually to
see how well they match vendor features and reconcile those features with industry needs and requirements. Many
industry requirements and their complexity must be taken into account as well as the wide variety of devices and their
documentation, as well as the associated assessment of Installation Qualification (IQ), Operational Qualification (OQ),
and Performance Qualification (PQ). Traditionally, this work requires specialized expertise and poses a great risk to
cybersecurity assurance. Therefore, the result is subjective to human error and must be repeated periodically [62].

Achieving confidence that the cybersecurity posture of critical infrastructure industries such as the energy sector
meets or exceeds the requirements of that industry in order to stay ahead of cybersecurity risks is a vital, yet extremely
challenging objective. In order to aid this process we are developing a Cyber-Physical Security Assurance Framework
for a Semi-Automated Vetting system (CYVET) to address this challenge. CYVET addresses directly the need to improve
the current industry capabilities for operational technology cybersecurity and associated control system infrastructure
validation and verification [62]. Figure. 1 shows the overall information flow of the CYVET system.

Vendor Supplied Features 
(VSF)

 
 

Cybersecurity Requirements 
(CR)

Tallied 
Matched
Reconciled

Generation of test 
recipes reconciled VSF

Testing reconciled VSF 
for conformance with 
CR

Tally-Vet Test-Vet

Verification Validation

Report: 

✅
✅

⚠
❌

❌

VSF 

CR

Specifica<ons

Claims

Standards 

Natural 
Language 
Processor

Fig. 1. Overall workflow of the CYVET cybersecurity vetting approach.

The end-to-end framework of the vetting engine, which is the core component of CYVET, is presented in this
paper. The proposed framework starts with assembling and curating a large collection of ICS device documents, and
performing Natural Language Processing (NLP) sentiment analysis in claims sequences to determine features support
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indicators for each product. This vetting system provides a vital capability to critical infrastructure operators to ensure
that vendor-claimed device cybersecurity capabilities match industry requirements.

CYVET has broad applicability across all critical infrastructure sectors and beyond, since it is device- and architecture-
independent. OT equipment, software, and the underlying control system architecture will be tested and validated
using this cybersecurity verification and validation framework. In this paper we provide details on the framework’s
operations, present and discuss obtained results, and provide an outlook for our future efforts on CYVET.

CYVET and its Tally-Vet engine are a unique new approach. To the best of our knowledge there is no similar system
available or published. We therefore lack the ability to compare our system with other published efforts. Instead, this
paper aims to demonstrate the capabilities and results obtainable with our system using comprehensive results shown
and detailed throughout this paper.

The remainder of this paper is thus organized as follows. In section 2, we briefly introduce background information
related to CYVET vetting system and its components. In section 3, we briefly reviews the related work for different
components of our framework.

We present our proposed framework, describe the operation of each functional element, and present results for these
elements in sections 4 and 5, with each subsection also discussing relevant related results. In section 5, we also present
and discuss our final Tally-Vet engine for feature claims detection. In section 6, we present a discussion and analysis
our results and compare our methods with others and, in section 7, we present the conclusion and future work for this
project.

2 BACKGROUND

2.1 A High-Level View of CYVET

An effective vetting engine is required to ensure device cybersecurity features meet industry-standard requirements.
A key aspect of this vetting engine is to enhance the industry capabilities to verify and validate OT infrastructure
cybersecurity claims, both pre- and post-deployment. The primary objectives for this vetting engine are listed below:

• Verification: Analysis and reconciliation of vendor features and standards.
• Validation: Process of generating, executing, and presenting testing scripts of the identified security features.

In pursuit of these goals, our team is researching a semi-automated cyber-physical security assurance system we call
CYVET [62]. The CYVET vetting system has two primary components:

(1) Tally-Vet: aims to verify VSF claims against the relevant CRs. The verification process utilizes a variety of
different NLP techniques to analyze both vendor cybersecurity device claims and CRs.

(2) Test-Vet: aims to validate the specific set of features identified by Tally-Vet, utilizing an automated approach
involving actual hardware and software targets.

By integrating these two components, it is possible for CYVET to develop a sequence of cybersecurity tests to
comprehensively assess and vet the target system, and to ensure that it meets the customer’s requirements.

2.2 Tally-Vet Overview

Tally-Vet, as shown earlier, is one of the principal components of the CYVET vetting system, and is responsible for
comparing and reconciling the VSFs against the corresponding CRs in order to detect matches, extended features, and
possible requirement violations. To build this vetting system, a broad range of documents from ICS vendors is required.
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These documents are curated and pre-processed prior to extracting textual information via NLP and subsequent parsing
of human-readable text into machine-usable data.

Post-extraction from documents, all the content is stored as structured data in CYVET’s database. This information is
then processed by a machine learning classifier to determine and identify sequences related to the device feature claims.
These claims are then reconciled and matched against the relevant CRs within Tally-Vet. The matching process enables
us to identify and resolve conflicting feature claims and to collate a feature report (Figure. 1, the Tally-Vet component).
ICS compliance reporting is thus simplified using Tally-Vet [62].

3 LITERATURE REVIEW

To the best of our knowledge, there is currently no framework available or published with the capabilities developed
for our CYVET system. However, there are works published that share some similarities with individual components
of our framework. In this section we therefore review these published works and compare them against our targeted
functionality.

3.1 Document Library Curation

The number of scientific publications focused on scraping and classifying web content for domain-specific areas are
limited. Anglin [3], Modi and Jagtap [59], and Luscombe et al.[55] were proposing NLP and machine learning techniques
to scrape web content and a pipeline to classify their content and documents. The pipelines and methods these authors
implemented is highly reliant on their specific domains, however. For example, Anglin [3] proposed a semi-automated
framework to study local policy variation in school dress codes using web crawlers and NLP techniques. For web-
scraping, the framework used a pre-determined list of schools to scrape their websites and collect all links leading to
documents. The policy-relevant documents then were processed using a Convolutional Neural Network (CNN) and
NLP techniques to identify policy nuances. Varela et al.[79] summarized different methodologies and terminology used
for web scraping in the domain of political analysis. In this paper, the authors reviewed some methods and packages
used for extracting political data from text documents available from the internet. Chandrika et al. [13] used Python to
extract and parse unstructured information from the web. Then a relational database was used to store this extracted
data.

All these papers are focused on scraping and crawling websites for domain-specific content, which does align with
our goals. The methodologies and NLP techniques presented in this paper expand upon the approaches presented in
the reviewed papers. For our framework we adopted a similar approach. We then provided it with novel capabilities to
automate the process of identifying sources for domain-specific content and automated document library curation. Our
framework is furthermore able to utilize multiple search engines to expand and refine its content source list of ICS
vendor names and organizing downloaded documents into different categories.

3.2 Structured Content Extraction

There are many variations in document layout, their sections, elements or even encoding, making this a highly complex
and challenging problem on how to best present essential information to the reader in a well-structured manner. The
analysis of the layout of documents has been used by numerous researchers to develop techniques for detecting tables,
layouts, and sections [5, 6, 18, 22, 23, 25, 27, 30, 34, 77, 89].
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The two open-source Python packages, Camelot [57] and Tabula [6] are designed to find tabular content from PDF
documents. However, these two packages can not successfully find all types of table formats, especially if the PDF page
has a multi column format or tables span multiple pages.

For the past decade, table detection, extraction and annotation have been key research areas [17], leading to a variety
of extraction approaches [11, 22, 26, 27, 50, 61, 70, 71, 86]. For example, for table detection in PDF documents, Hao et al.

[30] and Khan et al. [41] and Gilani et al. used deep learning methods. These recent methods convert PDFs into images
and then detect table boundaries and cells in the PDF page with the help of deep learning models. Hao et al. [30] used
a set of pre-defined rules to compute region proposals. CNN is then used to identify whether these region proposals
belong to tables or not. However, if the table spans across multiple columns, it is unable to recognize table regions and
thus fails to properly localize the regions. Gilani et al. [25] presented a CNN model to detect table regions in document
images. The output of this model includes the coordinates of bounding boxes of predicted tables. Khan et al. [41] used
the CNN model introduced by Gilani et al. [25] to detect table boundaries. For each detected table, they then process
the table image with bi-directional Gated Recurrent Unit (GRU), a type of Recurrent Neural Network, to find columns
and rows. None of these papers discussed the text annotation from these detected tables.

From our review of published scientific efforts, we could not find any publications that address the specific needs
and challenges of Tally-Vet’s contextualized text extraction process, such as handling different list levels and tables. To
address this shortcoming, our work contributes new algorithms to intelligently and automatically identify document
elements such as lists and tables, as well as for contextually extracting and annotating sequences from DOCX and PDF
documents.

3.3 Claim Detection

By adapting a pre-trained language model for a targeted downstream task, performance can be significantly improved
[39, 42, 53, 75, 81]. These performance improvements can be divided into pre-training language models and fine-tuning
language models process. For pre-training language models in specific domain, researchers focused on domain-specific
corpus to build a specific language model such as BioBERT [48] and SciBERT [9], for biomedical language representation
and scientific text, respectively. A number of studies have demonstrated significant enhancements in downstream tasks,
including sentiment analysis [4] and classification [49] by fine-tuning an existing language model.

Some examples of using language models such as BERT specifically for applications in the cybersecurity domain are
fine-tuning sentences based BERT sentiment analysis for vulnerability exploitability prediction (ExBERT [88]). Another
example is fine-tuning BERT for Name Entity Recognition (NER) for the cybersecurity domain in English [14, 21, 90],
Russian [76] and Chinese [85].

From our review, we could not find any language model tuned for cybersecurity text classification tasks. In this paper,
we used our claim sequence database we developed specifically for the cybersecurity domain (details discussed in [1].
This database was used to generate CyBERT, a fine-tuned BERT classifier on cybersecurity sequences to identify feature
claims. These claim sequences and the fine-tuning process we introduced in CyBERT [1] are used in this paper for our
cybersecurity vetting engine to verify those features against the published industry requirements for cybersecurity.

3.4 Sentiment Analysis

Sentiment analysis is the field of study that analyzes opinions, emotions, sentiments, attitudes, and evaluations from
written language [51]. Hutto and Gilbert [35] developed Valence Aware Dictionary for sEntiment Reasoning (VADER)
algorithm, a parsimonious lexicon and rule-based model for general sentiment analysis. The prior polarity of lexical
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entries is usually indicated by a sentiment lexicon [84]. A sentiment lexicon refers to a list of lexical features (e.g., words)
that are labeled positively or negatively based on their inherent semantic orientation [52]. A number of studies have
been proposed to apply sentiment analysis for text classification [28, 43, 45, 58, 60, 64, 72, 83]. Classification methods
for sentiment analysis can be divided into three types: lexicon-based approaches, machine learning approaches, and
hybrid approaches [56]. Lexicon-based approaches use a set of words that have been precoded for polarity to identify
sentiments [52]. To predict sentiment polarity, machine learning approaches use both supervised and unsupervised
learning methods [86]. In the hybrid approach, sentiment polarity is detected through both machine learning and
lexicon-based approaches [28]. For this project, we defined the feature attribution as a text classification problem based
on lexicon-based approaches for sentiment analysis.

Several studies have used sentiment classification in cybersecurity textual data over the past few years [24, 28, 45, 72,
73]. Examples of these models using sentiment analysis techniques to interpret cybersecurity-related texts are shown in
[28] for social media sentiment analysis, and in [24] for analyzing the sentiment expressed in newspapers. Gupta et al.
[28] analyzed the relationship between cybersecurity attitudes of users on Twitter and online financial behaviors. They
hypothesized that users with positive sentiment on cybersecurity will engage in more online financial transactions and
might disclose sensitive information. The researchers used a hybrid NLP technique to integrate linguistic and statistical
analysis techniques. Based on this hybrid model, the researchers were able to measure whether users are genuinely
concerned about cybersecurity issues and if that concern impacts their online behavior.

Shu, Kai et al. [73] proposed an unsupervised sentiment predictor model to detect cyber attack behavior in Twitter
users based on sentiment polarity score. In their proposed model, the sentiment analyzer was connected to a regression
model to find relation and correlation between sentiments of trends in tweets, and the probability of attacks in the real
world.

These studies show the benefits of using sentiment analysis in cybersecurity text classification. However, as we
could observe from these related publications on sentiment analysis, their focus is on evaluating positive/negative
emotional sentiment. In our work presented in this paper, we leverage the sentiment analysis paradigm to evaluate
supportive/unsupportive sentiment, which only partially aligns with emotional sentiment and thus required research to
be conducted that culminated in our specialized sentiment analysis approach. In other words, we use the sentiment
polarity score not as an emotional indicator, but rather as an indicator to understand whether the feature is supported
or not supported by the device.

4 PROPOSED TALLY-VET PREPROCESSING METHODOLOGY

The main focus of this paper is to present and discuss our framework for CYVET’s Tally-Vet engine. Figure. 2 shows each
component and their connections within the Tally-Vet framework. This framework shows that the process starts with
gathering ICS device documents from online resources, and parsing of human-readable documents (PDFs and DOCXs)
in order to extract information and represent them in a machine-usable format for CYVET’s remaining processing
workflow. A key aspect to the content extraction aspect is maintaining structural and contextual relationships between
elements extracted from these document resources when they are stored in CYVET’s database, for example contextually
linking information from different rows and columns of tables, across images, etc. Additionally, sequences extracted
from ICS documents were used to train a feature claim identifier (CyBERT) [1]. With CyBERT’s classifier and NLP
techniques we can identify sequences related to claims about device features. The NLP sentiment analysis technique is
then performed on selecting cybersecurity device claim sequences in order to gauge whether that sequence expresses
support or lack of support for that feature. By aggregating the reports for each feature across all documents related to a
Manuscript submitted to ACM
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given device, our framework is able to identify conflicting feature claims. The final step in the Tally-Vet framework
utilizes that information in order to compile a report of features that are being claimed for the device. Test-Vet, the
other core component of CYVET, then can utilize that information in order to execute a sequence of tests designed to
validate each claimed feature and to check for flaws within that implementation.

Document Cura-on Convert PDFs to DOCX

Scrape Product Name Match Products to 
Documents

Paragraphs 

Tables

Lists

Images

Extract Contextual  Sequences Detect Claims

A@ribute Features

CyBERT: 
Cyber-security Claim 

Iden-fier

Report for the Device *

VSF                        CR 

VSF                        CR 

VSF                        CR 

VSF                        CR 

✅

✅

⚠

❌

Fig. 2. Tally-Vet framework components.

As part of our research work, all steps of our framework were implemented in Python 3.8. in order to test and
verify this semi-automated framework for the Tally-Vet engine of our CYVET system. Thus far our CYVET work focuses
on English language-based vendor documents and specifications, but the same framework could be adapted to work
across a range of other languages as well.

4.1 Document Library Curation

As shown in Figure. 1, CYVET is built around the availability of relevant documents for its vetting process. Tally-
Vet includes functionality to identify vendors and their product names by scanning web sites, downloading product
documentation accessible on those websites, as well as processing these documents for classification based on type,
language, and device attribution. This curation of CYVET’s document repository is a vital first step towards its overall
functionality, and is the foundation upon which our NLP and cybersecurity vetting processes are being developed.

Identifying domain-specific information from online sources and document classification is itself a challenging
task. It requires a generalized and robust approach to identify ICS vendors, analyze websites to determine ICS product
offerings, and classify documents based on their content for relevant product claims. Furthermore, there was no publicly
available dataset for training cybersecurity-related NLP models available for CYVET’s development. Hence, CYVET’s
development also included the research into establishing a cybersecurity-specific NLP dataset from its document
repository.

In our previous paper [2], we discussed our semi-supervised framework to establish this ICS device information
repository. This framework consists of four main steps, including vendor identification, homepage classification, vendor
classification, and document classification. The process starts with scanning ICS-Cert’s website for ICS vendor name
extraction, and using Google search to identify each vendor’s homepage. Additionally, we incorporated multiple search
engines to find ICS vendor-related links for vendor and homepage identification using pre-defined keywords. This
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process is followed by NLP techniques including Latent Dirichlet Allocation (LDA) topic modeling [10] and context-
dependent scoring metrics applied to the text content of each identified web site. LDA is an unsupervised Bayesian
probabilistic model capable of determining the semantic relationships among words in a corpus. The demonstrated
context-dependent scoring metric algorithms are based on the appearance of defined keywords and phrases in the
textual content of these web pages. These methods require some human supervision for labeling the topics of a vendor’s
homepage via LDA and scoring metrics. Through this process we were able to train a neural network classifier that can
automatically label homepages to minimize such human interactions. This neural network model is used to identify
new ICS vendor websites through an automated search process.

4.1.1 Document Classification.

Tally-Vet then downloads all PDFs from identified vendor websites, extract the textual content from these documents,
and determines key phrases, key terms, and key segments. The NLTK Toolkit [54] Python package was used to
pre-process and tokenize text content, keywords and phrases. The final step in Tally-Vet’s document curation is to apply
a matching algorithm to compare these key elements with a pre-defined set of ICS device information. The matching
algorithm separates documents containing ICS device information from other PDF files, such as annual reports. Among
all downloaded PDFs, five percent were found to be scanned documents, three percent were corrupted files, and the
remaining 92 percent were regular documents for CYVET’s processing pipeline. Table. 1 presents the ICS document
repository statistics [2].

Table 1. ICS document repository entities statistics

Number of Entities Description

Vendor Identification 1930 possible 340 vendor names From ICS-Cert website
1590 links From web searches using

vendors pre-defined keywords

Homepage Classification 1457 unique 420 links From vendor name queries
websites 1084 links From keyword-driven queries

Vendor Classification 286 ICS Vendor 578 websites Topic Modelling with LDA on
website text content

850 websites Label websites with context-
dependent scoring metric

Document Classification 12581 ICS
2844 Manual NLP techniques to determining

key terms, key elements, key
product-related 7832 Brochure segments, and key phrases and

match these against a pre-defined
666 Catalog set of important phrases

In our proposed framework, we combined results from keyword searching in multiple search engines with results
from scanning the ICS-Cert’s website. This method ensures we cover a wide range of vendor names for our database.
The other contribution of our framework in comparison with the other methods mentioned in the literature is the
ability to identify ICS vendor websites with our NN model. The main advantage of our database curation framework is
the ability to classify downloaded documents into four different groups of manual, brochure, catalog, and not relevant.
Manuscript submitted to ACM
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4.2 Product Name Scraper

Once our system obtained and curated a comprehensive and relevant document library of vendor documents related to
products, TallyVet’s analysis framework needs the ability to attribute these documents to individual product names
associated with each vendor. Hence, we needed to curate a library of product names and attribute them to vendors first,
before being in a position to process each document associate it to zero, one, or multiple product names. In order to
curate that product name library we use a product name scraper.

Automated Web scraping uses computer code to download, extract and organize data from the web and then utilize
it for further analysis [78]. This has become a valuable tool for data collection in research areas such as information
technology [44], public health [67], the financial sector [46], and cybersecurity [82]. For Tally-Vet, in order to attribute
a vendor’s products to documents, Tally-Vet uses web scraping of ICS vendor websites in order to automate the process
of identifying product names. The challenge herein is that there are wide range of vendors, each with unique website
styles, formats, and methods of representing products and their names. To enable Tally-Vet to automatically detect
product names we developed a customized semi-supervised approach to web scraping, which focuses on the HTML
behind the web content of each ICS vendor.

This algorithm is driven by predefined rules specific to each website. The algorithm is composed of four major steps:

(1) Link Fetching: Compile a set of links to visit on the vendor website, which are extracted from the sitemap or a
specific product section on the website.

(2) Conditions-based HTML element identification: For each page identified via the fetched link, find all tags
that meet the requirements and conditions, utilizing nesting rules representing a hierarchy of tags and Boolean
logic.

(3) Rules-based text extraction: For each tag identified through the condition matching above, extract text from
element.

(4) Pattern testing: In all steps, the applied rules can leverage pattern definitions for processing extracted informa-
tion.

The product name scraper algorithm starts with a supervised instruction set, which helps the script to find the pages
to visit, what to look for on each page during these visits, and how to extract elements-of-interest (product names)
from each page. using these instruction sets, the script will be able to identify conditions-based HTML elements. For
each page, it will find all tags that meet the requirements and parse them to extract product names. An example of this
rules-based approach for product name extraction is presented in Fig 3, using the SEL website for illustration.

These rules are able to, for example, represent the following process in the form of individual rules that can be
applied to numerous web pages from a vendor’s website:

• Analyze a paginated Product Page, including dynamically determining the maximum page index
– Find a <small> tag within HTML

∗ Needs to have a “translate” property with value “currentPageNofM”
∗ Also needs to be nested INSIDE a <div> tag

· This <div> tag needs to have classes “tab-pane” and “active”
– Extracts the maximum page index from the element’s property “translate-values” to get field “totalPages”, and
converts it to integer

– Generates links to each paginated product page using a defined pattern, iterated over for each page number
from 1 to the maximum page index

Manuscript submitted to ACM
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#----------------------------------------------------------------------------------
#   SEL inc
website=self.CreateWebsite('https://www.selinc.com/', 'SEL',2,60,30,1,5,True,sslverify=True)
#PAGNINATED PRODUCT PAGE LINK EXTRACTOR===============
c_proptranslate=self.CreateCondition_ElemProp('translate','currentPageNofM',None,False,False)             
c_tabactiveclass=self.CreateCondition_ElemClass(['tab-pane','active'],True,False,False)
c_insidediv_with_tabactiveclass=self.CreateCondition_InsideTag('div',[c_tabactiveclass])   
c_small_with_proptranslate=self.CreateCondition_ElemTag('small',[c_proptranslate,c_insidediv_with_tabactiveclass])
a_propextract=self.CreateAction_Extract_ElemPropValueJSON('translate-values',False,'object','totalPages',False,'int')
x_maxpages=self.CreateExtractor(c_small_with_proptranslate,a_propextract,"extract")
prodpagepattern=self.CreatePattern(['https://selinc.com/search/?product.cpg=','<PAGE>','#tab-products'])            
prodpagefetcher=self.CreateProductPageLinkFetcher('https://selinc.com/search/#tab-

products',prodpagepattern,'links',x_maxpages,self.CreateConstantExtractor(1,'int'),self.CreateConstantExtractor(1,'int’)) 
#PRODUCT NAME EXTRACTOR==============================
c_tabactiveclass=self.CreateCondition_ElemClass(['tab-pane','active'],True,False,False)  
c_insidediv_with_tabactiveclass=self.CreateCondition_InsideTag('div',[c_tabactiveclass])   
c_propngbind=self.CreateCondition_ElemProp('ng-bind-html','::$ctrl.searchResult.title',None,False,False)  
c_span_with_propngbind=self.CreateCondition_ElemTag('span',[c_propngbind,c_insidediv_with_tabactiveclass])
a_prodnameextract=self.CreateAction_PatternMatchExtract_ElemText(['SEL-','<*>'],[' ',','],'any',False,None,'string') 
x_prodname1=self.CreateExtractor(c_span_with_propngbind,a_prodnameextract,'extract','any','always’) 
#FINALIZING WEBSITE SETUP============================
self.AddLinkFetcherToWebsite(website,prodpagefetcher)
self.AddProductExtractorToWebsite(website,x_prodname1)
self.AddWebsiteToLibrary(website)

Fig. 3. Product name scraper rule-base script example for one website.

• Visits each page link generated from the pagination
• On each page it locates <span> tags
– Each span needs to have style classes "tab-pane" and "active"

– It also needs to have an element property with a given value
• From the matched element it extracts the text and matches it against a specific list of product name patterns
• Only pattern-matching product names are accepted and added to the list of extracted product names

These rules shown above are an example taken from our rule set, and are specific to a given vendor website. Using
rules such as these, Tally-Vet’s product name extractor was able to identify a total of 264 product names from that
vendor’s website. By customizing these rules we can adapt the extraction process to any vendor website.

4.3 Sequence Extraction

An important aspect of NLP applies to document content is the ability to extract textual content in the form of sequences.
Additionally, although understanding the structure of a document is important for many NLP tasks and overall document
content analytics, there are also use cases where the structure does not play an important role, and only the sequences
themselves - the raw text - is needed. The Document Classification, as shown in the earlier subsection 4.1.1, is one of
the examples where only the textual information without associated context is relevant and extracted by the system.
For document classification, the focus is on finding key elements and key phrases in the document. Thus, in these
cases we only focus on raw text directly extracted from PDF documents, which is a faster process than conducting the
full contextual text extraction pathway detailed in the next subsection (subsection 4.4), while providing all relevant
information for a full-text keyword search.

As mentioned above, Tally-Vet provides two pathways for accessing content from documents:

• A direct access to the PDF for simple raw text extraction, and contextual sequence extraction.
Manuscript submitted to ACM
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• By first converting the PDF to DOCX in order to make the structure and context accessible, and then extracting
structural sequences from the DOCX representation.

In the following section, we detail our proposed algorithm for contextual sequence extraction from PDF documents,
i.e., the algorithms we use to extract sequences in such a way that it maintains the context in which they were present
in the document.

4.4 Contextual Sequence Extraction from PDF

Due to the PDF document’s challenges in maintaining the context of the presented information when shown within
tables, lists, etc., the procedure that Tally-Vet employs for content extraction with context representation is complex.

To handle working directly with PDFs, Tally-Vet uses the PyMuPDF [38] Python package to extract metadata for each
PDF document. This metadata is then used in our 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm to extract contextualized sequences
from PDF elements, such as paragraphs and table content. In this section we describe the details of each stage of Tally-
Vet’s 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm. Figure. 4 illustrates a hierarchical structure in a PDF document. This hierarchical
structure is the basis for 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 elements. Algorithm 2 presents a high level pseudo-code for Tally-Vet’s
𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm.

PDF Page

Text

Image

Top Level

Heading

Regular

Caption

Level 1 Level 2

...

Text 

Blob file Caption2

Caption1

Table

List

Paragraph

Heading2

Heading1

...

Fig. 4. Hierarchical structure in PDF documents.

For each page in the PDF, the algorithm groups and orders each text block based on page orientation, using the
𝑃𝑎𝑔𝑒𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑃𝑎𝑔𝑒) function. This function will use the 𝐵𝐵𝑂𝑋 tag values extracted using PyMuPDF to decide if the
paper is in portrait or landscape orientation. Page orientation is important factor which help us order each element
of the page, and also to to find the spatial location which will be used for lists, captions, and headings identification.
For image blocks, it reads the text embedded within the image using Optical Character Recognition (OCR), provided
by the open-source Python-Tesseract (PyTesseract) library [32]. Then, for each text block the structural type
is determined, considering the font size, style and spatial location. Next, for each text block content is grouped into
headings, regular and captions. Each paragraph and caption group is then sequentially ordered based on the calculated
bounding box of the group and other information obtained from PyMuPDF’s dictionary.

For regular type elements, the 𝐷𝑖𝑠𝑠𝑒𝑐𝑡𝑇𝑒𝑥𝑡𝑅𝑒𝑔𝑢𝑙𝑎𝑟 function is called to further differentiate the type of content,
detecting for example tables and lists within paragraphs. The contextual sequence extraction algorithm allows us to use
PyMuPDF to obtain the text spans and identify paragraphs, tables and list. For each text block in each document page,
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based on spans for each line a list of bullet point identifiers is determined using regular expressions (𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐿𝑎𝑦𝑜𝑢𝑡𝑠
function). This list information, combined with the start position for each line, is then used to identify the list level. The
indent and line start positions are also used as an identifier for tables and boxes. Figure. 5 shows an example of a PDF
used in our contextual sequence extraction algorithm. This algorithm allows us to group the text content of each PDF
into different levels of headings, paragraphs and captions, and sequential reading order of these groups. Also it can
differentiate between lists and tables and regular text paragraphs.

The 𝐷𝑖𝑠𝑠𝑒𝑐𝑡𝑇𝑒𝑥𝑡𝐻𝑒𝑎𝑑𝑖𝑛𝑔 algorithm uses the 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐿𝑎𝑦𝑜𝑢𝑡𝑠 function outputs to sort each element of the page based
on their font size. Captions are the lines of page which their font size is smaller than the document paragraph font size,
whereas headings have font size equal to or larger than the document paragraph font size. If for any line, the font size
is equal to the paragraph font size, the indent and line start positions can separate paragraphs form headings.

Fig. 5. Content extraction from PDFs.

4.5 Document-to-Product Attribution

In the Document Library Curation part (subsection 4.1), we showed how we are able to classify downloaded documents
into manuals, brochures and catalogs. We have also shown in subsection 4.2 how our system is able to automate the
collection of product names associated with the various vendors. The combination of having curated a document library
and a product name list allows us then to process each document and attribute it to zero, one, or multiple product names,
i.e. describing which products this document refers to and for which it presents relevant information. In this section we
thus describe our algorithm that conducts attribution of these documents to specific products offered by a vendor. A
manual, for example, may be focused on a specific product, whereas a catalog will be attributed to multiple products
offered by the vendor. Product attribution sets the stage for processing only the relevant documents when Tally-Vet
extracts feature claims for a specific product. Product names are collected as described in the Product Name Scraper
section (subsection 4.2). The matching algorithm described herein will result in a product name that we identified from
the content or metadata of a given document. Similarly, we can later produce a list of documents relevant to a given
product.

To match a given product name to a specific document in Tally-Vet’s document library, the algorithm first converts
the product name to all lower-case, and then extracts all individual components of the product name. For example,
"MyWISE-PaaS" will be represented by the two components ’mywise’ and ’paas’. Then any variation of these components,
including subsets of components, will be used to curate all combinations of a product name’s sub-words.
Manuscript submitted to ACM
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Searching in Advantech advisory
=====================================================
Processing PDF : advantech/02131141.pdf 
Extracting 139 Sequences 
Searching ATCA-9223 product in advantech/02131141.pdf 
Searching AMC-4201 product in advantech/02131141.pdf 
Searching MIC-5603 product in advantech/02131141.pdf 
Searching ATCA-9112 product in advantech/02131141.pdf 
Searching FMM-5001F product in advantech/02131141.pdf 
Searching FMM-5001Q product in advantech/02131141.pdf 
Searching FMM-5006 product in advantech/02131141.pdf 
Searching DLT-M8110 product in advantech/02131141.pdf 
Searching TREK-570 product in advantech/02131141.pdf
...

Fig. 6. An example of the Product Name Search algorithm in a PDF document.

This new list of all patterns is subsequently sorted in descending order based on length. For example, for the above
name, the final pattern represented as a regular expression will be [’mywise[â-z0-9]+paas’,’paas[â-z0-9]+mywise’,
’mywise’, ’paas’]. The first item in the list will match any combination of two parts (mywise and paas) connected
with any character such as underline and hyphen. For example, mywise_paas, mywise-paas will be matched with the
’mywise[â-z0-9]+paas’ pattern. Algorithm 1 shows the required steps to find all patterns for a given product name. The
objective of this algorithm is to eliminate any possible discrepancies between the product name as found on a vendor’s
website and the product name’s usage in the vendor’s documents. This will increase the chance of correctly identifying
and attributing all documents to all applicable product names.

Once this process completes and Tally-Vet obtained the permutations of all product names, Tally-Vet then conducts a
search across all sequences extracted from a given document in order to determine if any product name permutation
appears in the document. Product name permutations are considered in order as they appear in the list. The algorithm
will therefore first search for all exact matches and compile a list from the matches in the list and the document. Only if
no exact match of a given product name is found will the algorithm consider the remaining permutation patterns. Thus,
the algorithm stops when a product name’s permutation is detected and will no longer consider other permutations of
the same product name. Thus, by sorting patterns from longer to shorter length, we ensure that the algorithm is able to
consider the best possible matches first before relaxing the match requirements. This ensures accuracy and efficiency.
An example of the product search algorithm is shown in Figure. 6.

Algorithm 1 Find all patterns for a given product name

Input :Product Name 𝑁
Output :List of Patterns 𝐴𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠
keywords = Split product name (𝑁 ) into its components (letters, underscore, digits)
𝑉𝑎𝑟𝑖𝑎𝑛𝑡𝑠 = Find combinations of each keyword length:
itertools.combinations (keywords, L)
𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 = All permutations of a given 𝑉𝑎𝑟𝑖𝑎𝑛𝑡 ’s elements (itertools.permutations)
⊲ Sort patterns based on 𝑉𝑎𝑟𝑖𝑎𝑛𝑡 ’s length:
𝐴𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 = sorted(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 , key=len, reverse=True) return 𝐴𝑙𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠
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The output of this algorithm is then stored by Tally-Vet in its database for later retrieval. This effectively establishes
the attribution from product names to documents. It can then be queried in either direction: for finding all product
names attributed to a given document, or for finding all documents that are related to a given product name. An example
output of such a data retrieval is presented in Figure. 7.

All product names attributed to a given document

All documents mentioning a given product

{'Vendor': 'advantech', 'Product': 'AIMB-586', 'PDFs': {'01171001.pdf’}},

{'Vendor': 'advantech', 'Product': 'ROM-7510', 'PDFs': {'01171001.pdf', '03131018.pdf’}}, 

{'Vendor': 'advantech', 'Product': 'IDK-2108 ', 'PDFs': {'01171001.pdf', '2014_ATCA_Brochure_0818.pdf', 

'03131018.pdf', 'MyWISE-PaaS-iCS- 2020.pdf', '02091518.pdf', '01151748.pdf', '01091800.pdf’}} 

{'Vendor': 'advantech', 'Product': 'IDK-1107', 'PDFs': {'01171001.pdf', '02091518.pdf', '03131018.pdf'}} 

{'Vendor': 'advantech', 'Products': {'SRP-FPV240', 'WISE-PaaS'}, 'PDF': '02021103.pdf’},

{'Vendor': 'advantech', 'Products': {'AIM-68', 'DLT-V72', 'DS-570', 'DS-570 ', 'UTC-520', 'WISE-PaaS'}, 

'PDF': 'MyWISE-PaaS-iCS-2020.pdf’},

{'Vendor': 'advantech', 'Products': {'EIS-D210', 'WISE-PaaS'}, 'PDF': 'MyWISE-PaaS-Embedded-2020.pdf’},

{'Vendor': 'advantech', 'Products': {'POC-W102', 'POC-W152', 'POC-W213', 'POC-W243'}, 'PDF': 

'01151748.pdf’} 

Fig. 7. An example for the product name attribution.

5 PROPOSED TALLY-VET NATURAL LANGUAGE PROCESSING METHODOLOGY

5.1 Rationale

TallyVet is a highly complex system, comprised of numerous processing steps. Whereas the algorithms and tasks
presented in the previous section form a vital preprocessing aspect for TallyVet, the algorithms described within this
section, with their emphasis on NLP, form the core of the tallying process employed by CYVET.

5.2 Structured Content Extraction from DOCX

The PDF document format has become the industry standard for web-accessible documents due to its independence
from software, hardware, or operating systems. Extracting and analyzing information from PDF documents, however,
is a complex procedure. PDFs represent rendered content. Thus, all structural context, such as information being
represented in a tabular or list format, are lost through this process. PDFs do not exhibit the concept of tables, footnotes,
or lists. Rather, information is represented as character sequences positioned on a page, and drawing objects similarly
applied to a page. Thus, it is exceedingly complicated to detect and process structured information directly from PDFs
[7]. To increase the reliability of structured text extraction, we decided to convert PDF documents to DOCX format.

5.2.1 PDF-to-DOCX Conversion.

All documents downloaded from ICS vendor websites are in PDF format. Thus, intelligently converting documents
from PDF to DOCX, the Microsoft Word document format, enables far easier extraction of structured data. Adobe®

Acrobat Export PDF [8] is an Acrobat online service to convert PDF files into editable Word, Excel, or RTF (Rich Text
Format) documents. The Adobe PDF Services Application Programming Interface (API) is a cloud-based tool for PDF
manipulation. This API service implementation directly uses a Representational State Transfer (REST) interface [20]
for both the access control and storage server APIs. The REST API framework, designed to be stateless and based on
Manuscript submitted to ACM
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HTTP protocols, is context independent [40]. The REST interface accepts and responds using JSON messages over the
HTTPS protocol. The API starts with authentication provided by Adobe. For authentication, JSON Web Tokens (JWT)

[36] were adopted to exchange authentication information into an access token. Using a JWT token for authentication
in a stateless REST API architecture is a well-established technique that is used in many scientific research efforts
[12, 16, 20, 29, 40, 69]. Tally-Vet successfully employs this approach for utilizing Adobe’s API system. More specifically,
it uses the PyJWT python package [37] for JWT support, in order to retrieve a request token. This token is then attached
to subsequent requests using a custom HTTP header field. Adobe Acrobat API’s JWT tokens are only valid for a fixed
amount of time. For this reason, Tally-Vet will automatically check the validity of this token and refresh it after
expiration.

The Tally-Vet document conversion system will retrieve a PDF from its library and automatically submit it to Adobe
I/O’s Export API, await its conversion, retrieve the result, and store the resulting DOCX file back into Tally-Vet’s
document library database. This system handles all authentication, conversion, and document management aspects. It
automates the process to convert all PDFs (readable and scanned) in our database into DOCX files and automatically
rejects any corrupted or otherwise unreadable documents obtained from vendor websites.

5.2.2 DOCX Structure.

Tally-Vet employs the python-docx library [31] to enable it to work with DOCX files. This library provides a convenient
object representation of the document including document paragraphs, table objects, headings and captions objects.
We define the algorithm 3 to parse each DOCX document, creating a tree structure of its elements and parsing them
logically.

Text = ‘ A. Introduction’ 
Text._element.pPr.numPr.numId.val
Out: 1
Text.text 
Out: 'Introduction' 

Fig. 8. An example list output from python-docx library.

In the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm (Algorithm 3), a high level pseudo-code for sequence extraction from
documents is presented. This algorithm parses DOCX documents to extract content from paragraphs, lists, and tables.
There are twomain challenges for these DOCX document elements: first is finding the style of lists (decimal, letter, roman
numeral, and type of bullet points), and second is finding the table structure. Table templates define a guideline to extract
the sequences and content of tables logically. We predefined a group of table templates that provide structural maps on
how to parse tables in a document. These structural maps then will be used in our𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm to
concatenate sequences from different cells and columns of the table and make a logical sequence. The python-docx
library is able to identify each element in the paragraph with an specific tag. For example, for a list entry in the document,
the numerical value for the list identifier can be retrieved from the Paragraph._element.pPr.numPr.numId.val tag.
However, this value is not always the exact printable character as it appears in the document. An example of the text
content (text) and ._element.pPr.numPr.numId.val tag value from python-docx library is shown in Figure. 8.

To resolve this problem for lists, our 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm first iterates over the list elements of the
document. The 𝐿𝑖𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡 function will find the list’s format, the level for each entry in a multi-level list and their
hierarchical structure within the document. List elements can appear in any paragraph, whether they are regular
paragraphs or paragraphs as part of table cells and other structural elements. Through its hierarchical parsing, the
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Algorithm 2 Structured Sequences from PDF document

Input :PDF 𝑃𝑎𝑔𝑒
⊲ This function will find regular paragraphs, captions and headings, lists and tables in each PDF page.

⊲ For each caption and heading, it will use PyMuPDF metadata for the font size, indent and line start positions.
⊲ For each regular paragraph, it will search for text spans from PyMuPDF to identify tables and lists.
⊲ For images it will use PyTesseract to extract text from each image.
Function Contextual Sequence Extraction(𝑃𝐷𝐹𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡):

if 𝑃𝑎𝑔𝑒 is readable then
⊲ For each page, we need to first detect if this is a readable PDF, otherwise return

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑎𝑔𝑒𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑃𝑎𝑔𝑒)
⊲ For each page, find page orientation using 𝐵𝐵𝑂𝑋 tag in PyMuPDF. This is used to order different blocks
(images, texts)
𝐿𝑎𝑦𝑜𝑢𝑡𝑠 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐿𝑎𝑦𝑜𝑢𝑡𝑠(𝑃𝑎𝑔𝑒)
⊲ Find layout information for the PDF page including font size, text span, and flag identifier with PyMuPDF.
𝑇𝑎𝑔𝑠 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐻𝑒𝑎𝑑𝑖𝑛𝑔𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑎𝑔𝑠(𝑃𝑎𝑔𝑒)
⊲ Use 𝐿𝑎𝑦𝑜𝑢𝑡𝑠 from 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐿𝑎𝑦𝑜𝑢𝑡𝑠 to identify heading, caption and regular text elements.
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐿𝑖𝑛𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠(𝑃𝑎𝑔𝑒)
⊲ Find positions for Paragraphs, Lists, an Tables with PyMuPDF identifiers and regular expression.
for 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 in 𝑃𝑎𝑔𝑒 .Elements do

if 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 .Type == Image then
yield 𝑃𝑦𝑇𝑒𝑠𝑠𝑒𝑟𝑎𝑐𝑡 (𝐸𝑙𝑒𝑚𝑒𝑛𝑡 ) ⊲ This function extracts raw text from images with PyTesseract
return

if 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 .Type == Text then
for 𝑆𝑢𝑏𝐸𝑙𝑒𝑚 in 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 do

if 𝑆𝑢𝑏𝐸𝑙𝑒𝑚.Type == Text then
if Level== 0 then

yield 𝐷𝑖𝑠𝑠𝑒𝑐𝑡𝑇𝑜𝑝𝐿𝑒𝑣𝑒𝑙 (𝑃𝑎𝑔𝑒, 𝐸𝑙𝑒𝑚𝑒𝑛𝑡,𝑇𝑎𝑔𝑠, 𝐿𝑎𝑦𝑜𝑢𝑡𝑠, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)
⊲ Takes top level text elements (text blocks), and breaks elements down into headings
(independent of level) and regular text.

for Level >=1 do
if 𝑆𝑢𝑏𝐸𝑙𝑒𝑚.Type == Heading Or Caption then

yield 𝐷𝑖𝑠𝑠𝑒𝑐𝑡𝑇𝑒𝑥𝑡𝐻𝑒𝑎𝑑𝑖𝑛𝑔(𝑃𝑎𝑔𝑒, 𝐸𝑙𝑒𝑚𝑒𝑛𝑡, 𝑆𝑢𝑏𝐸𝑙𝑒𝑚,𝑇𝑎𝑔𝑠, 𝐿𝑎𝑦𝑜𝑢𝑡𝑠, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠)
⊲ This will go through 𝑆𝑢𝑏𝐸𝑙𝑒𝑚s of each Heading 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 type.
⊲ This sorts headings and captions based on their font size.

if 𝑆𝑢𝑏𝐸𝑙𝑒𝑚.Type == Regular then
yield 𝐷𝑖𝑠𝑠𝑒𝑐𝑡𝑇𝑒𝑥𝑡𝑅𝑒𝑔𝑢𝑙𝑎𝑟 (𝑃𝑎𝑔𝑒, 𝐸𝑙𝑒𝑚𝑒𝑛𝑡, 𝑆𝑢𝑏𝐸𝑙𝑒𝑚,𝑇𝑎𝑔𝑠, 𝐿𝑎𝑦𝑜𝑢𝑡𝑠, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
⊲ This will go through 𝑆𝑢𝑏𝐸𝑙𝑒𝑚s of each Text𝐸𝑙𝑒𝑚𝑒𝑛𝑡 type.
⊲ This groups text into regular paragraphs, tables, and lists.

else
return

𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm can detect all of them. An example of a page including lists with different formats and
the output of our algorithm is available in Figure. 9. The tree structure clearly shows the identifier tags our algorithm
added to each line of the list.

Detecting tables is a crucial step in document analysis, since tables are often used to present essential information in
a structured way to the reader. The main objective in parsing tables is to render a set of flattened sequences that are
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=TREE VIZ====================================
   LPAR: [num]      A.    Introduc8on
   LPAR: [num]      1.    Title: Cyber Security — Physical Security of BE...
   LPAR: [num]      2.    Purpose: To manage physical access to Bulk Elec...
   LPAR: [num]      3.    Applicability:
   LPAR: [num]      3.1.    Func8onal En88es: For the purpose of the req...
   LPAR: [num]      3.1.1    Balancing Authority
   LPAR: [num]      3.1.2    Distribu8on Provider that owns one or more of ...
   LPAR: [num]      3.1.2.1     Each underfrequency Load shedding (UFLS):
   LPAR: [num]      3.1.2.1.1    is part of a Load shedding program that is subj...
   LPAR: [num]      4.    Background:
   PARA: Standard CIP-006 exists as part of a suite of C...
=TREE SEQUENCE LIST====================================
A. Introduc8on
1. Title: Cyber Security — Physical Security of BES Cyber Systems
2. Purpose: To manage physical access to Bulk Electric System (BES) Cyber Systems.
3. Applicability:
3.1. Func8onal En88es: For the purpose of the requirements contained list of func8onal en88es .
3.1.1 Balancing Authority
3.1.2 Distribu8on Provider that owns one or more of the following Facili8es, systems, and equipment for 
restora8on of the BES:
3.1.2.1  Each underfrequency Load shedding (UFLS):
3.1.2.1.1 is part of a Load shedding program that is subject 
4. Background:
Standard CIP-006 exists as part of a suite of CIP Standards related to cyber security.

An example document with different list levels Tree structure and sequences output from the algorithm

A. Introduction 
1. Title: Cyber Security — Physical Security of BES Cyber 

Systems 

2. Purpose: To manage physical access to Bulk Electric System 
(BES) Cyber Systems. 

3. Applicability: 
3.1. Functional Entities: For the purpose of the requirements 

contained list of functional entities. 
3.1.1 Balancing Authority 
3.1.2 Distribution Provider that owns one or more of the 

following Facilities, systems, and equipment for 
restoration of the BES: 

3.1.2.1  Each underfrequency Load shedding (UFLS): 

3.1.2.1.1 is part of a Load shedding program that is 
subject  

4. Background: 
Standard CIP-006 exists as part of a suite of CIP Standards 
related to cyber security. 

Fig. 9. An example output from a list structure extracted from DOCX documents.

comprised of the content spanning one or more table cells, by logically concatenating table cells and column information
together. Figure. 10 shows an example specification table from a document. This table contains important information
which needed to be parsed logically to maintain the meaning of sentences.

The python-docx library allows us to access tables and their cells and columns directly. Our algorithm for table cell
content concatenation begins with defining a list of templates for different types of tables contained in a document.
This takes advantage of the fact that vendors typically represent tabulated data in a similar format across their various
documents. These templates define a way to describe how to parse the content of the table and extract sequences
from them. Templates are defined in two main steps; the first step is filtering/matching, and the other is the data
extraction/labeling step. The algorithm identifies a match between the template and the table only if the labelling passes
the filter stage (𝑀𝑎𝑡𝑐ℎ𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 function). Figure. 11 shows an example script we defined for a table template. This
script starts with defining labels for cells based on their rows and columns positions, number of spans, and background
color. The filter section then will be used to set up a filter for each label. Filters are used to decide if a template applies
to a table or not. The last section in table template script is responsible for setting up a format section. Formats are used
to produce a sequence as output by pulling content from multiple cells together, based on their labels; the first Format
that works (we find all required sections by labels and search limiters) wins and the process stops for this cell.

CIP-006-6 Table R1 Physical Security Plan
Part Applicable Systems Requirements Measures

1.4 High Impact BES Cyber
Systems and their associated:

1. EACMS; and

2. PCA

Medium Impact BES Cyber
Systems with External
Routable Connectivity and
their associated:

1. EACMS; and

2. PCA

Monitor for unauthorized 
access through a physical 
access point into a Physical 
Security Perimeter.

An example of evidence may include, 
but is not limited to, documentation of 
controls that monitor for unauthorized 
access through a physical access point 
into a Physical Security Perimeter.

Fig. 10. An example of a specification table.
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Algorithm 3 Contextualized Sequences from DOCX document.

Input :DOCX 𝐸𝑙𝑒𝑚𝑒𝑛𝑡

⊲ This function will find regular and heading paragraphs, list elements, and table elements in each document.
⊲ For each table element, it will search for cell templates based on their properties (font size, color, cell spans). Table
elements might include list elements and regular paragraphs.
⊲ For each list element, it will search for list style and levels.
Function Flattened Sequences(𝐷𝑂𝐶𝑋𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡):

if 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 has a child then
for Child in 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 .children do

if 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 .Type == Table then
𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒=𝑀𝑎𝑡𝑐ℎ𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 (𝐸𝑙𝑒𝑚𝑒𝑛𝑡)⊲ This function will search a predefined set of table templates for
the best match.
⊲ If it finds any matches for the current element, it will return a label that specifies the structure
behind the element (tables can match different templates for each cell, and this function can return all
the matching labels), otherwise it will return None
if 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 is None then

yield 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 .TEXT
else

for 𝑆𝑢𝑏𝐸𝑙𝑒𝑚 in 𝑇𝑎𝑏𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝐸𝑙𝑒𝑚𝑒𝑛𝑡,𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒) do
yield 𝑆𝑢𝑏𝐸𝑙𝑒𝑚 ⊲ Each element might be a list or a regular paragraph.
⊲ Here based on the element type and the returned label for the table template, it will
determine the structure for the contextualized sequence.
return

else
if 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 .Type == List then

for 𝑆𝑢𝑏𝐸𝑙𝑒𝑚 in 𝐿𝑖𝑠𝑡𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝐸𝑙𝑒𝑚𝑒𝑛𝑡) do
yield 𝑆𝑢𝑏𝐸𝑙𝑒𝑚 ⊲ For each document, the ListExtract function will search in all list styles that it
can find.
⊲ List style definition includes number formatting (decimal, letter, roman numeral, and type of
bullet points)
⊲ List level is defined based on tag identifiers in python-docx library.
return

else
yield (𝐸𝑙𝑒𝑚𝑒𝑛𝑡 .TEXT)

else
yield (𝐸𝑙𝑒𝑚𝑒𝑛𝑡 .TEXT)
return

For each table in the document, the𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm conducts a search for a suitable table matching
template with𝑀𝑎𝑡𝑐ℎ𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 function. Each template indicates the table heading location, sub-heading (if it has any),
etc. (for an example see the labeling section in Figure. 11) and enables the algorithm to find the cells and column
headings that should be concatenated to generate a sequence from that content and to identify the table logic direction
(for an example see the filtering section in Figure. 11). Table direction here refers to the position of each heading or
sub-heading, whether the headings are located in the first cell of each row (row-wise) or the top columns (column-wise).
The 𝑇𝑎𝑏𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡 function (see the algorithm 3) then uses this element and the template to go over the table, label
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set=self.CreateAndAddTemplateSet("temp_example")
template=self.CreateAndAddTemplate(set,"type1_planning")
#the labels for the template
#row and column indexes are 0-based
lbl_title=self.CreateLabel(template,"title")             
self.CreateLabelPositionRule(lbl_title,0,0,0,0,3,100,1,1) 
self.CreateLabelBkgColorIncludeRule(lbl_title,['1F4B81'])
lbl_colheading1=self.CreateLabel(template,"colheading1")
self.CreateLabelPositionRule(lbl_colheading1,0,0,1,1,1,2,1,1
self.CreateLabelBkgColorIncludeRule(lbl_colheading1,['5D85A9'])            
lbl_colheading=self.CreateLabel(template,"colheading")
self.CreateLabelPositionRule(lbl_colheading,1,100,1,1,1,2,1,1)
self.CreateLabelBkgColorIncludeRule(lbl_colheading,['5D85A9'])
lbl_rowheading=self.CreateLabel(template,"rowheading")
self.CreateLabelPositionRule(lbl_rowheading,0,0,2,100,1,1,1,3)
self.CreateLabelBkgColorIncludeRule(lbl_rowheading,['FFFFFF','auto',None])
lbl_content=self.CreateLabel(template,"content")
self.CreateLabelPositionRule(lbl_content,1,100,2,100,1,100,1,100)
self.CreateLabelBkgColorIncludeRule(lbl_content,['FFFFFF','auto',None])
#the filter for the set 
filter=self.CreateFilter(template)
self.CreateFilterConditionMayNotHaveEmpty(filter)
self.CreateFilterConditionMayHave(filter,lbl_title['name'],1,1)
self.CreateFilterConditionMayHave(filter,lbl_colheading1['name'],1,1)
self.CreateFilterConditionMayHave(filter,lbl_colheading['name'],1,100)
self.CreateFilterConditionMayHave(filter,lbl_rowheading['name'],1,100)
self.CreateFilterConditionMayHave(filter,lbl_content['name'],1,100)
#the formatters for the set
formatter=self.CreateFormat(template,"content1",lbl_content['name'])
self.CreateFormatFinderAny(formatter,lbl_colheading1['name'],"%s ")    
self.CreateFormatFinderHorizontal(formatter,lbl_rowheading['name'],-1,-100,0,"%s; ")
self.CreateFormatFinderVertical(formatter,lbl_colheading['name'],-1,-100,0,"%s: ")
self.CreateFormatAnchorElem(formatter,"%s",False)

Fig. 11. A table template example script.

elements, extract cell content, and then concatenate elements together as described by the template (for an example
see the formatter section in Figure. 11). The resulting content is a flattened sequence that, for example, takes the
form 𝐻𝐸𝐴𝐷𝐼𝑁𝐺 [>> 𝑆𝑈𝐵𝐻𝐸𝐴𝐷𝐼𝑁𝐺] : 𝐶𝑂𝑁𝑇𝐸𝑁𝑇 for iterable content elements. Figure. 12 shows an example table,
the table structure from the table template (TREE VIZ section), and the parsed flattened sequences produced by our
algorithm.

The 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑢𝑎𝑙𝑖𝑧𝑒𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm we proposed in this paper is based on python-docx Python package, and is
able to identify levels in lists (Figure. 9) and tables (Figure. 12), and can extract and annotate contextualized sequences
from DOCX documents. Also, our 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 algorithm is based on the PyMuPDF Python package and can
identify hierarchical levels of different elements in PDF documents. An output example is shown in Figure. 5.

5.3 Claim Detection

One of the primary purposes for Tally-Vet is to identify VSF claims from all ICS device documentation of a given vendor
or for a given product. In our previous paper [1], we introduced CyBERT, a classification model for labeling claims by
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=TREE VIZ====================================
TABL:

CELL: R= 0 C= 0 RS= 1 CS= 4 COLOR= 1F4B81
PARA: CIP-006-6 Table R1 Physical Security Plan

CELL: R= 1 C= 0 RS= 1 CS= 1 COLOR= 5D85A9
PARA: Part

CELL: R= 1 C= 1 RS= 1 CS= 1 COLOR= 5D85A9
PARA: Applicable Systems

CELL: R= 1 C= 2 RS= 1 CS= 1 COLOR= 5D85A9
PARA: Requirements

CELL: R= 1 C= 3 RS= 1 CS= 1 COLOR= 5D85A9
PARA: Measures

CELL: R= 2 C= 0 RS= 1 CS= 1 COLOR= FFFFFF
PARA: 1.4

CELL: R= 2 C= 1 RS= 1 CS= 1 COLOR= FFFFFF
PARA: High Impact BES Cyber Systems and their associa...
LPAR: [num]      1.    EACMS; and
LPAR: [num]      2.    PCA
PARA: Medium Impact BES Cyber Systems with External R...
LPAR: [num]      1.    EACMS; and
LPAR: [num]      2.    PCA

CELL: R= 2 C= 2 RS= 1 CS= 1 COLOR= FFFFFF
PARA: Monitor for unauthorized access through a physi...

CELL: R= 2 C= 3 RS= 1 CS= 1 COLOR= FFFFFF
PARA: An example of evidence may include, but is not ...

=Flattened SEQUENCE LIST====================================
Part 1.4; Applicable Systems: High Impact BES Cyber Systems and their associated:
Part 1.4; Applicable Systems: 1. EACMS; and
Part 1.4; Applicable Systems: 2. PCA
Part 1.4; Applicable Systems: 
Part 1.4; Applicable Systems: Medium Impact BES Cyber Systems with External Routable 
Connectivity and their associated:
Part 1.4; Applicable Systems: 1. EACMS; and
Part 1.4; Applicable Systems: 2. PCA
Part 1.4; Requirements: Monitor for unauthorized access through a physical access point into a 
Physical Security Perimeter.
Part 1.4; Measures: An example of evidence may include, but is not limited to, documentation 
of controls that monitor for unauthorized access through a physical access point into a Physical 
Security Perimeter.

A table example from a sample 
document

Tree structure and flattened sequences output from the algorithm

CIP-006-6 Table R1 Physical Security Plan
Part Applicable Systems Requirements Measures

1.4 High Impact BES Cyber
Systems and their associated:

1. EACMS; and

2. PCA

Medium Impact BES Cyber
Systems with External
Routable Connectivity and
their associated:

1. EACMS; and

2. PCA

Monitor for unauthorized 
access through a physical 
access point into a Physical 
Security Perimeter.

An example of evidence may include, 
but is not limited to, documentation of 
controls that monitor for unauthorized 
access through a physical access point 
into a Physical Security Perimeter.

Fig. 12. An example output of table structure from DOCX documents.

fine-tuning the BERT-base (Bidirectional Encoder Representations from Transformers [19]) language model on our
cybersecurity domain dataset. From the ICS device document dataset, as we explained in the subsection on Document
Library Curation (subsection 4.1), all sequences were extracted with the methods and libraries defined in both the
contextual sequence extraction and structured content extraction sections. These sequences are obtained from a wide
range of vendors and device documents, and we manually labeled a subset of these as “Claim” and “NotClaim”. Any
sequence that represents cybersecurity-related claims about features of the product being evaluated was referred to as
"Claim". The resulting dataset was used to train a classifier that detects any type of claims about device features from
Manuscript submitted to ACM
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these documents. Figure. 13 illustrated the labeled dataset we used for Tally-Vet. Tally-Vet uses two classifier, the first
classifier we call CyBERT, which focuses only on identifying “Claim” sequences from others (Figure. 13 top row). The
claim sequences itself can further be divided into three types; cybersecurity claims, device claims, and generic claims.
Hence, our second classifier is a claims type classifier (Figure. 13 bottom row), and it allows us to differentiate and detect
the cybersecurity claims from all other claims. That classifier is applied once a sequence is determined to be a claim.

Not a Claim

Generic 
Claim

Device 
Claim

Cybersecurity 
Claim

Claim

Not a Claim

68% of Sequences 12 % of 
Sequences

14 % of 
Sequences

6 % of
Sequences

Fig. 13. An illustration of Tally-Vet labeled dataset and classes used to train CyBERT and Claim classifier.

For the fine-tuning process of our claim classifier we conducted extensive experimentation to optimize hyperparame-
ters, including the learning rate, the number of dense layers and their corresponding configuration such as drop-out
rate and number of neurons. Fine-tuning all hyperparameters of the resulting BERT classifier model led to building our
CyBERT classifier, which can detect sequences related to feature claims with a 94.4% accuracy. CyBERT is intended to
be used as a cybersecurity-specific classification model for detecting claim sequences from a large pool of sequences
extracted from ICS device documents.

The trained model has 12 encoders (from BERT-Base model) and 3 dense layers stacked on top of the encoders. The
best learning rate for training our claim classifier model based on this architecture and dataset was determined to be
4e-06. The Claim classifier’s overall accuracy is 94% with 93% F1 weighted core. This model is able to detect claim
sequences with 92% accuracy (Figure. 14). Table. 2 shows the detailed classification metric reports for each sequence
label. In Figure. 14, we plot the normalized confusion matrix for our claim classifier. A confusion matrix shows the
actual and predicted results (or results for correct and incorrect predictions) of a classifier [80].

Identifying “Claim” sequences subsequently enables us to not only extract a list of claimed features for a device,
but also to compare feature claims to cybersecurity requirements, which is the key to our Tally-Vet operation for OT
infrastructure vetting. CYVET’s semi-automated vetting system for ICS cybersecurity auditing relies on this Claim
classifier.

Table 2. Classification Report for the Claim Classifier with Fine-Tuning BERT

Class Label Precision Recall F1-score Accuracy

Claim 0.92 0.89 0.91
Not a Claim 0.95 0.75 0.96
Weighted Average 0.94 0.94 0.94 0.94

When researching our claims classifier for TallyVet we conducted extensive experiments in order to maximize the
accuracy of our claims classifier, including the architecture selection, hyperparameter selection, and studying the effects
of randomness. We are presenting the details of our findings in the Analysis and Discussion section (section 6) further
below.
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Fig. 14. Normalized confusion matrix for the Claim classifier.

5.4 Feature Attribution using Sentiment Analysis

In this section, we explain the process Tally-Vet uses for attributing features to products. This process broadly involves
three steps: We first detect cybersecurity feature claim sequences from each document attributed to a given product.
In the previous section we described how claim sequences are detected using our CyBERT claim classifier. We next
perform an NLP sentiment analysis for these claim sequences in order to determine Feature Support Indication: an
expression of whether the claim indicates that the device does or does not support this feature. Finally we tabulate and
reconcile feature claims across all documents related to a given product, including conflict resolution, which involves
features that in some document are claimed as supported and in others claimed as not supported.

In the Definition below we present and define our concept for Feature Support Indication:

Definition 5.1 (Feature Support Indication). A value assigned to an extracted feature in a specific document sequence
that expresses whether the feature is supported or not supported by the device.

Feature Support Indication can be any value between 0 and 1. Values greater than 0.5 indicate that the sentence
evaluation for the specified feature is indicating support, with values approaching 1 indicating higher confidence in this
sentiment, whereas values below 0.5 indicate lack of support for this feature, with values approaching 0 indicating
higher confidence in this sentiment. This value was defined as the sentiment of the feature claim sequence. The NLTK
Toolkit python library does support the VADER sentiment analysis algorithm. The VADER sentiment analysis allows
us to update its lexicon dictionary weights based on our project’s definition. The impression behind each sequence will
be expressed as the polarity score of the sequence. For this purpose, we update the polarity scores for some specified
words. With this approach, VADER can contextualize the use of those terms within the scope and definition of our
project [35].

Tally-Vet manages and defines features as a tree structure, with each branch indicating a more specific interpretation
or incarnation of a given feature. This tree structure is a way to group features logically. For example, a "server-based
authentication" could have "RADIUS" and "LDAP" as sub-branches. Based on our definition of this feature tree, each sub-
feature can also have properties. For example, a sub-feature "General SSH" can have a property "Generic SSH Support"
and a property "SSH v2 Support". Here, the "generic" could be used to detect any support of SSH, irrespective of its
Manuscript submitted to ACM
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version, whereas the "v2" property could be used to specifically indicating support for SSH v2. Each feature, sub-feature
and property is associated with keywords with NLP techniques. Tally-Vet attributes features using these keywords
combined with NLP techniques to detect them. Additionally, a particular feature uses a name space nomenclature to
represent itself. Tally-Vet compiles them into a feature expression: < 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 >::< 𝑠𝑢𝑏 − 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 >::< 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 >::
(e.g. "serverauth::LDAP::gen::").

NLP feature search within extracted sequences targets the identified set of keywords. This NLP keyword search can
be case-insensitive or case-sensitive. The algorithm starts with splitting designated keywords and search for any exact
matches between each partition and sentences. The final report will be the sequences that match these keyword sets
(matches in features, sub-features, and properties).

For each sequence containing a defined feature, the algorithm then conducts a sentiment analysis. This assigns
this instance of the feature occurrence a Feature Support Indication score. Next, the algorithm compiles a list of all
features that were detected in this document and performs a deconflicting step: If the same feature appears multiple
times, with conflicting support indications, Tally-Vet decides that a negative feature support indication wins over
a positive indication. Hence, conflicting feature claims resolve as unsupported feature claims. Figure. 15 shows an
output example of feature attribution algorithm for a sample PDF. The results show that the sample PDF does support
password authentication feature (pwdauth), with generic sub-feature (gen) and the strong property, in combination
indicating a feature claim of "strong password authentication". The other feature support extracted from this PDF
is server authentication, with the "LDAP" sub-feature and the generic property. The last supported feature for the
device represented by this PDF is SSH, with generic sub-feature and property. This sample PDF does not have any
claim/sequence with nonsupporting label.

Feature Support Verdict Processing on Feature Sequences
Processing PDF :   PF00253.pdf

Sequence-Level Verdict Processing:
Completed verdict processing

Document-Level Verdict Processing:
these features are supported:
pwdauth::gen::strong::
serverauth::LDAP::gen::
ssh::gen::gen::

these features are claimed to lack support:
<none>

Fig. 15. An output example of feature attribution algorithm.

After processing each document for a given product with our feature attribution algorithm, Tally-Vet compiles a
list of feature claims across these documents, once again applying a deconflicting step that resolves Feature Support
Indication conflicts across the documents.

In a final processing step to feature attribution, Tally-Vet will use the resulting list of feature claims and compare
them against a list of Customer Requirements (CR). These are requirements indicated by industry specifications that
are imposed on devices and customers in order to obtain necessary cybersecurity compliance certification. This is
especially important for compliance reporting by critical infrastructure sectors such as the energy sector, and the key
application of CYVET.
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5.5 CYVET’s use of Feature Claims

The Tally-Vet component of the CYVET system identifies, verifies, and tabulates vendor-claimed features against
requirements provided by relevant industry standards in eight steps, and then provides the compiled information to
the Test-Vet component. Test-Vet focuses on the validation of specific features identified by the Tally-Vet. Validation
encompasses two aspects: a) validation of feature availability and b) validation of correct implementation without the
presence of known flaws. To accomplish either of these aspects, Test-Vet needs to execute actual hardware test scripts.
Hence, Tally-Vet is a vital component in CYVET in general, and in particular in preparation of performing the Test-Vet
functionality. Tally-Vet’s overall processing pipeline steps can be summarized as shown below:

(1) Product Document Retrieval and Sequence Extraction: In this step, all documents relevant to the vetting of
a given product from a given vendor will be retrieved from the data repository. All sequences for each document
then need to be extracted in order to prepare the data for the next step.

(2) NLP Feature Search within Extracted Sequences: Tally-Vet then uses NLP techniques to identify sequences
that contain feature expressions to find matches between features and sequences. The output from this step will
be any sequences from the document that match feature expressions.

(3) NLPClaims Detection on Feature Sequences:Next, we classify any sequences containing feature expressions
to detect if they appear to be claims about this feature. This utilizes our CyBERT claim classifier. The result from
this step is a set of sequences that indicate cybersecurity feature claims.

(4) NLP Sentiment Analysis on Feature Claims: The sequences resulting from the previous step then undergo
a sentiment analysis, in order to obtain the Feature Support Indication, a value that indicates if the feature is
claimed to be supported, or claimed to lack support by the device. This polarity score assigned to each sequence
ranges from 0 (indicating a high confidence in a lack of the feature) to 1 (indicating a high confidence that the
feature is claimed to be present).

(5) Feature Support Verdict Processing on Feature Sequences: This step is comprised of two aspects: It first
compiles a list of claimed features identified within each document, including the resolution of conflicting claims
related to the same feature. It then further compiles a list across all relevant documents that were processed for
the given device, again resolving any conflicts arising from this step. The end result is a list of claimed features
and their support indication for the given device, across all relevant documents available for the device.

(6) Feature Reporting: This step combines the list from the previous step with the customer requirement level
(CR-Level) provided by the end user for each feature. It reports the features that were detected and their required
level. These CR-Levels are either "optional" or "required".

(7) Feature Support Check: Tally-Vet then compiles a list based on feature support indication and customer
requirements. The resulting report is the primary output of Tally-Vet and a key component in CYVET’s vetting
process. The report output is classifying features into three lists:

(a) All required and supported features,
(b) All required but not supported features,
(c) All required but not mentioned features.
Devices will pass the feature support check step only if all customer-required features are in the "required and
supported" category.

(8) Compiling required Test-Vet List: For all features that are claimed as supported, we then compile a list of
tests to be executed by Test-Vet. The compiled list of tests includes validation tests designed to verify that the
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claimed feature is indeed implemented and also tests that check for potential flaws in their implementation.
Similar to Tally-Vet’s vendor identification process, a similar process is executed periodically by CYVET to
identify known vulnerabilities published to websites such as ICS-Cert. Our system then uses NLP techniques to
identify the defined features within Tally-Vet that these published vulnerabilities are related to. We thus compile
a list of known flaws for each feature. Test-Vet curates a test script library that is not only used to verify that a
claimed feature is available on a given device, but also includes tests written to evaluate whether a feature’s
implementation on a given device exhibits one of these known flaws. The implementation of this feature is part
of Test-Vet and our future work.

In Figure. 16 we demonstrate an example of the Tally-Vet processing pipeline. Here, an example of a report shows the
results of each step in the Tally-Vet pipeline for the product RTAC3530 from vendor SEL. There were five documents
related to this product in our data repository. Final results show that the device passes the required features check, with
all required features claimed as supported by the device, and it also provides a list of tests for each feature to verify
feature presence and detect potential flaws. This list would subsequently be passed to Test-Vet for further vetting of the
device itself.

6 ANALYSIS AND DISCUSSION

As indicated earlier, to the best of our knowledge there is currently no framework available or published with capabilities
similar to those developed for our CYVET system, its unique target dataset or algorithm collection.

Consequently, we could not find any comparison basis with other approaches and we thus focused our analysis
efforts on demonstrating and presenting the particular data obtained and processed by our approach, and the novel
insights gained from our approach.

Therefore, within the sections detailing each of our contributed methods and algorithms we are presenting the
relevant results from our testing to demonstrate their merit and effectiveness.

In the following subsections, we compare the performance of our novel algorithm for sequence extraction from
documents and our sentiment analysis for feature attribution to other related methods. We also discuss the performance
improvements of our approaches compared to similar methods discussed in related works.

6.1 Structured Content Extraction

Data extraction and processing from PDF files has always been challenging. One of the main challenges here is detecting
and extracting tables. Among the required associated techniques we focus on table border detection and cell structure
recognition [17]. The term ‘table border detection’ refers to identifying the position of a table via recognition of its
borders. The ‘cell structure recognition’ refers to determining logical relationships between cells and their contents
inside a table. Several characteristics of tables make these processes challenging, including the potential absence of
border lines for table and cell borders, merged rows and columns, and the spreading of tables across multiple pages.

There are three approaches in the literature to handle table detection in documents: conventional rule-based [30, 87],
metadata extraction [6, 31, 57] and machine learning and deep learning approaches [5, 25, 41, 47, 89]. Machine learning
approaches and conventional rule-based models are mainly focuses on table and cell detection. Whereas, the main focus
of metadata extraction Python libraries [6, 31, 57] are on extracting plain text from different elements in a PDF, such as
tables.
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================================================================================ 

   TALLYVET PROCESSING PIPELINE 

================================================================================ 

 

    

============================================================================== 

    STEP 1) Product Document Retrieval and Sequence Extraction 

       For product RTAC3530 from vendor SEL we will process these  

       documents: 

           3530-4_PF00253.pdf 

           RTAC Product Family.pdf 

           3530_RTAC_PF00174.pdf 

           3530-4_DS_20200224-2.pdf 

           3530_DS_20200224.pdf 

       Processing PDF :   3530-4_PF00253.pdf 

          We extracted 162 sequences 

       Processing PDF :   RTAC Product Family.pdf 

          We extracted 89 sequences 

       Processing PDF :   3530_RTAC_PF00174.pdf 

          We extracted 119 sequences 

       Processing PDF :   3530-4_DS_20200224-2.pdf 

          We extracted 136 sequences 

       Processing PDF :   3530_DS_20200224.pdf 

          We extracted 132 sequences 

    

============================================================================== 

    STEP 2) NLP Feature Search within Extracted Sequences 

       Processing PDF :   3530-4_PF00253.pdf 

          We found 8 sequences indicating relevant features 

       Processing PDF :   RTAC Product Family.pdf 

          We did not find any sequences indicating relevant features 

       Processing PDF :   3530_RTAC_PF00174.pdf 

          We found 4 sequences indicating relevant features 

       Processing PDF :   3530-4_DS_20200224-2.pdf 

          We found 7 sequences indicating relevant features 

       Processing PDF :   3530_DS_20200224.pdf 

          We found 7 sequences indicating relevant features 

    

============================================================================== 

    STEP 3) NLP Claims Detection on Feature Sequences 

       Processing PDF :   3530-4_PF00253.pdf 

          We found 5 Claims 

          We found 5 Cybersecurity and Device Claims 

       Processing PDF :   RTAC Product Family.pdf 

          There are no feature sequences to process for this document 

       Processing PDF :   3530_RTAC_PF00174.pdf 

          We found 2 Claims 

          We found 2 Cybersecurity and Device Claims 

       Processing PDF :   3530-4_DS_20200224-2.pdf 

          We found 6 Claims 

          We found 6 Cybersecurity and Device Claims 

       Processing PDF :   3530_DS_20200224.pdf 

          We found 6 Claims 

          We found 6 Cybersecurity and Device Claims 

    

============================================================================== 

    STEP 4) NLP Sentiment Analysis on Feature Sequences 

       Processing PDF :   3530-4_PF00253.pdf 

          Completed sentiment analysis 

       Processing PDF :   RTAC Product Family.pdf 

          There are no feature sequences to process for this document 

       Processing PDF :   3530_RTAC_PF00174.pdf 

          Completed sentiment analysis 

       Processing PDF :   3530-4_DS_20200224-2.pdf 

          Completed sentiment analysis 

       Processing PDF :   3530_DS_20200224.pdf 

          Completed sentiment analysis 

    

============================================================================== 

    STEP 5) Feature Support Verdict Processing on Feature Sequences 

       Processing PDF :   3530-4_PF00253.pdf 

          Sequence-Level Verdict Processing: 

             Completed verdict processing 

          Document-Level Verdict Processing: 

             these features are supported: 

               pwdauth::gen::gen:: 

               pwdauth::gen::strong:: 

               serverauth::LDAP::gen:: 

               ssh::gen::gen:: 

             these features are claimed to lack support: 

               <none> 

       Processing PDF :   RTAC Product Family.pdf 

          There are no feature sequences to process for this document 

        

       Processing PDF :   3530_RTAC_PF00174.pdf 

          Sequence-Level Verdict Processing: 

             Completed verdict processing 

          Document-Level Verdict Processing: 

             these features are supported: 

               pwdauth::gen::gen:: 

               pwdauth::gen::strong:: 

               serverauth::LDAP::gen:: 

               ssh::gen::gen:: 

             these features are claimed to lack support: 

               <none> 

       Processing PDF :   3530-4_DS_20200224-2.pdf 

          Sequence-Level Verdict Processing: 

             Completed verdict processing 

          Document-Level Verdict Processing: 

             these features are supported: 

               pwdauth::gen::gen:: 

               pwdauth::gen::strong:: 

               serverauth::LDAP::gen:: 

               serverauth::RADIUS::gen:: 

               ssh::gen::gen:: 

             these features are claimed to lack support: 

               <none> 

       Processing PDF :   3530_DS_20200224.pdf 

          Sequence-Level Verdict Processing: 

             Completed verdict processing 

          Document-Level Verdict Processing: 

             these features are supported: 

               pwdauth::gen::gen:: 

               pwdauth::gen::strong:: 

               serverauth::LDAP::gen:: 

               serverauth::RADIUS::gen:: 

               ssh::gen::gen:: 

             these features are claimed to lack support: 

               <none> 

       Merging Feature Support at Product Level... 

           Completed Feature Support Processing 

    =============================================================================== 

    STEP 6) Feature Reporting 

      SUPPORTED: 

        pwdauth::gen::gen:: (from 3530-4_PF00253.pdf) CR-Level: optional 

        pwdauth::gen::strong:: (from 3530-4_PF00253.pdf) CR-Level: required 

        serverauth::LDAP::gen:: (from 3530-4_PF00253.pdf) CR-Level: optional 

        ssh::gen::gen:: (from 3530-4_PF00253.pdf) CR-Level: required 

        serverauth::RADIUS::gen:: (from 3530-4_DS_20200224-2.pdf) CR-Level: required 

      UNSUPPORTED: 

        <none> 

    =============================================================================== 

    STEP 7) Feature Support Check 

      REQUIRED AND SUPPORTED: 

        pwdauth::gen::strong::  (from 3530-4_PF00253.pdf ) 

        ssh::gen::gen::  (from 3530-4_PF00253.pdf ) 

        serverauth::RADIUS::gen::  (from 3530-4_DS_20200224-2.pdf ) 

      REQUIRED BUT NOT SUPPORTED: 

        <none> 

      REQUIRED BUT NOT MENTIONED IN DOCUMENTS: 

        <none> 

      >>> DEVICE PASSES INITIAL TEST:    all required features claimed 

    ================================================================================ 

    STEP 8) Compiling Required TestVet List 

      List of Tests: 

        test_feature_pwdauth (for feature pwdauth::gen::gen::) 

        test_potentialflaw_ICSMA-21-215-01 (for feature pwdauth::gen::gen::) 

        test_potentialflaw_ICSA-21-208-03 (for feature pwdauth::gen::gen::) 

        test_potentialflaw_ICSMA-21-012-01 (for feature pwdauth::gen::gen::) 

        test_potentialflaw_ICSA-18-240-04 (for feature pwdauth::gen::gen::) 

        test_feature_serverauth (for feature serverauth::LDAP::gen::) 

        test_feature_ldap (for feature serverauth::LDAP::gen::) 

        test_potentialflaw_ldap_ICSA-17-353-01 (for feature serverauth::LDAP::gen::) 

        test_potentialflaw_ldap_ICSA-21-061-03 (for feature serverauth::LDAP::gen::) 

        test_potentialflaw_ldap_ICSMA-21-175-01 (for feature serverauth::LDAP::gen::) 

        test_feature_ssh (for feature ssh::gen::gen::) 

        test_potentialflaw_ICSA-21-068-02 (for feature ssh::gen::gen::) 

        test_potentialflaw_ICSA-21-082-02 (for feature ssh::gen::gen::) 

        test_potentialflaw_ICSA-13-091-01 (for feature ssh::gen::gen::) 

Fig. 16. Tally-Vet Processing Pipeline Example

In 2016, Hao et al. [30] combined CNN with a set of pre-defined rules to compute region proposals. This model
fails to detect table regions for merged cells and columns [5, 25]. Gilani et al. [25] proposed a model based on Faster
R-CNN to improve Hao et al. [30] model. Despite outperforming previous table detection techniques, this technique
ignores visible features of the table and fails to detect cell structures and spanned cells [5]. Arif et al. [5] improved
the Faster R-CNN model introduced by Gilani et al. [25] by considering foreground and background features of PDFs.
Using a color-coded and transformed document image, Arif et al. [5] used Region Proposal Networks (RPNs) followed
by fully connected neural networks to detect tabular regions. Khan et al. [41] used the CNN model introduced by Gilani
Manuscript submitted to ACM
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et al. [25] to detect table boundaries. Zheng et al. [89] introduced a Global table extractor (GTE) model based on object
detector techniques, which themselves are based on neural networks that analyze document images to find tables
and their structure. Lee et al. [47] formulate tables as planar graphs based on cell regions. By solving a constrained
optimization problem they calculate vertex confidence maps and line fields based on the heatmap regression networks.

Although the mentioned methods made progress towards understanding complex structured tables, several assump-
tions were made, such as that accurate word bounding boxes were available and that accurate document text could be
used as additional inputs [66].

Table 3. Comparison of our method with other available approaches

Model Input Type Output Weakness

Hao et al. (2016) [30] Rule Sets +CNN PDF Table Boundary Detection Fails to detect cell structures
Relies on Templates
Fails to return text

Gilani et al. (2017) [25] Faster R-CNN PDF Table Boundary Detection Fails to detect cell structures
Fails to return text

Arif et al. (2018) [5] Faster R-CNN + PDF Table Boundary Detection Fails to return text
Region Proposal Columns and Rows Detection Fails to detect cell structures
Network (RPN)

Khan et al. (2019) [41] Faster R-CNN + PDF Table Boundary Detection Relies on heuristics
Gated Recurrent Columns and Rows Detection Fails to return text
Unit (GRU) Fails to detect cell structures

Zheng et al. (2021) [89] Object Detector PDF Table Boundary Detection Fails to detect cell structures
+NN Fails to return text

Lee et al. (2021) [47] R-CNN + PDF Table Boundary Detection Relies on heuristics
Graph-Based Network Fails to return text

Tabula (2013) [6] Python + Java PDF CSV/JSON File Only readable-PDFs
Fails to detect cell structures

python-docx (2013) [31] Python Word Plain Sentence Only works on DocX
Fails to detect cell structures

PyMuPDF (2015) [38] Python PDF Plain Sentence Fails to detect table boundaries
Fails to detect cell structures

Camelot (2018) [57] Python PDF Plain Sentence/csv Only works for
Readable PDFs
Fails to detect cell structures

Our Algorithm Rule Sets Word/PDF Text Annotation Relies on Templates
+ Python

The Python package Tabula [6] does not identify cell structure correctly when there are no lines separating cells in
the table. It also fails in reading any Scanned PDF. The result of the Tabula is a data form that can be converted to a CSV
or JSON file. It also fails in reading scanned PDFs. The Python package PyMuPDF [38] also fails to read scanned PDFs.
The PyMuPDF package will read the whole page as an image and utilizes OCR (Optical Character Recognition). This is
a very strong package with access to meta information and links for each page into the PDF, which is very helpful
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when locating the formatting and other details for each element within the PDF, such as text and images. The meta
information, such as full position and font information for each text character, is very helpful in terms of finding lists
and tables. However, the PyMuPDF is not able to detect these elements by itself. Camelot [57] is an open-source Python
library focused on extracting tables from PDF files [57]. This tool converts tabular data into a pandas DataFrame, and
can export in multiple formats, such as JSON, Excel, and HTML. Only tables with distinct cell borders can be parsed by
Camelot, however. This tool fails when extracting content from scanned documents [57]. The python-docx library [31]
creates comprehensive document object representations of elements such as paragraphs, tables, headings, and caption
objects. This python library only works on DOCX documents, however, and therefore cannot be used directly with
PDF content. In our Tally-Vet engine we therefore need to consider readable PDFs and scanned PDFs, as well as DOCX
documents. The python-docx library also fails to understand the structure of cells and columns in the table. Hence, it
is not able to extract flattened sequences from tables that represent logical content from the spanned cells of the table.

For comparison of our proposed algorithm with other methods, we conducted a comprehensive search for the
availability and a way to evaluate the functionality of those methods. To compare the performance and functionality of
these methods against our algorithm and our system’s specific requirements, we therefore studied the documents and
papers associated with each method. In Table 3 and Table 4 we listed the characteristics and features of our proposed
method with the reviewed characteristics, respectively.

We unfortunately could not directly evaluate the approaches presented in [5, 25, 30, 41, 47, 89] using our cybersecurity
corpus documents because their respective implementations were not available online. Therefore, we focus on the
available libraries in python that are specialized on extracting tables from PDFs and DOCX documents, in order to
compare their results with our proposed algorithm. Figure 17 shows the results from our proposed novel algorithms and
the Python libraries available for the corresponding task. The green box indicates an example of a flattened sequence
from our algorithm, which connects different parts of the table (orange boxes) to make an informative sentence as an
output. As illustrated in Figure. 17 Camelot, PyMuPDF, and python-docx python libraries produce similar results. All
these libraries return the text inside each cell of the table as a new line. However, Tabula library failed to detect the cell
structure of the example table. The cell structure, the logical relationships between cells and their contents was not
taken into consideration in any of these libraries.

Research models trained on reference datasets such as [5, 25, 30, 41, 47, 89] often have difficulties coping with the
complexity of real world document layouts [15]. Hence, we focused on defining rule sets to contribute novel algorithms
for detecting tables and identifying cell structures in the cybersecurity corpus. We did this by examining cybersecurity
standards and ICS vendor documents. The defined rule sets facilitate the development of templates that extract flattened
sequences from ICS vendor documents.

6.2 Claim Detection

Claim detection is a crucial step for our Tally-Vet engine. This step led to a set of sequences that indicate cybersecurity
feature claims. These claim sequences are very important for the rest of our vetting engine. If the classifier fails to
detect a claim, it will negatively impact all other steps in our framework. Therefore, we focus on building a classifier
with highest accuracy.

Adapting a pretrained language model can significantly improves downstream task performance. A pre-trained
language model refers to NLP model that was trained unsupervised using a large corpus of text representing a general
domain of language. There are several well-established pre-trained language models, including Embeddings from
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Table 4. Comparison of our method’s features against other available approaches

Ta
bl
e
D
et
ec
ti
on

C
el
lS

tr
uc

tu
re

R
ec
og

ni
ti
on

M
er
ge

d
C
el
ls
/C

ol
um

ns

Sc
an

ne
d
PD

Fs

Id
en

ti
fy

Li
st
s

Id
en

ti
fy

C
ap

ti
on

s

R
ea
di
ng

Pa
ra
gr
ap

hs

Pl
ai
n
Se
nt
en

ce

Fl
at
te
ne

d
Se

qu
en

ce
s

Hao et al. (2016) [30] × ⃝ × × × × ×
Gilani et al. (2017) [25] ⃝ × × × × ×
Arif et al. (2018) [5] ⃝ × × × × ×
Khan et al. (2019) [41] ⃝ ⃝ × × × × ×
Zheng et al. (2021) [89] ⃝ × × × × ×
Lee et al. (2021) [47] ⃝ × × × × ×
Tabula (2013) [6] ⃝ × × ⃝ × × ×
Python-docx (2013) [31] ⃝ × ×
PyMuPDF (2015) [38] × × × × × × ×
Camelot (2018) [57] ⃝ ⃝ ⃝ × × × × ×
Our Algorithm ⃝

means this feature is supported.
⃝ means this feature is partially supported.

× means this feature is not supported.

Language Models (ELMo)[63], Universal Language Model with Fine-Tuning (ULMFiT) [33], Bidirectional Encoder
Representations from Transformers (BERT) [19], and the Generative Pre-Training (GPT) model [65].

The Table 5 compares the accuracy for all language models obtained using the test set from our cybersecurity NLP
dataset. For each model, the highest accuracy is reported based on extensive experimentation we have conducted to
determine optimal hyperparameters and the overall architecture [1]. As we show in Table 5, our model CyBERT has
highest accuracy, F1 score and Under the ROC curve (AUC) value, which means CyBERT has the best performance
when it comes to identifying cybersecurity claim sequences as compared with all other language models we evaluated.

6.3 Feature Attribution

The main focus for feature attribution is to perform an NLP sentiment analysis to determine whether the claim sequence
does or does not express support of the feature indicated for the device - i.e. shows a positive or negative sentiment. For
the purpose of this project we defined a specialized sentiment analysis based on VADER from the NLTK Toolkit python
library. We optimized the VADER lexicon dictionary weights based on our project’s definition. Using our claim sequence
database, we evaluated our new model by comparing sentiment and polarity scores obtained from our specialized
VADER implementation to those obtained from standard VADER and a transformer-based sentiment analysis model
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A table example from a sample document

=TREE VIZ====================================
TABL:

CELL: R= 0 C= 0 RS= 1 CS= 4 COLOR= 1F4B81
PARA: CIP-006-6 Table R1 Physical Security Plan

CELL: R= 1 C= 0 RS= 1 CS= 1 COLOR= 5D85A9
PARA: Part

CELL: R= 1 C= 1 RS= 1 CS= 1 COLOR= 5D85A9
PARA: Applicable Systems

CELL: R= 1 C= 2 RS= 1 CS= 1 COLOR= 5D85A9
PARA: Requirements

CELL: R= 1 C= 3 RS= 1 CS= 1 COLOR= 5D85A9
PARA: Measures

CELL: R= 2 C= 0 RS= 1 CS= 1 COLOR= FFFFFF
PARA: 1.4

CELL: R= 2 C= 1 RS= 1 CS= 1 COLOR= FFFFFF
PARA: High Impact BES Cyber Systems and their associa...
LPAR: [num]      1.    EACMS; and
LPAR: [num]      2.    PCA
PARA: Medium Impact BES Cyber Systems with External R...
LPAR: [num]      1.    EACMS; and
LPAR: [num]      2.    PCA

CELL: R= 2 C= 2 RS= 1 CS= 1 COLOR= FFFFFF
PARA: Monitor for unauthorized access through a physi...

CELL: R= 2 C= 3 RS= 1 CS= 1 COLOR= FFFFFF
PARA: An example of evidence may include, but is not ...

=Flattened SEQUENCE LIST====================================
Part 1.4; Applicable Systems: High Impact BES Cyber Systems and their associated:
Part 1.4; Applicable Systems: 1. EACMS; and
Part 1.4; Applicable Systems: 2. PCA
Part 1.4; Applicable Systems: 
Part 1.4; Applicable Systems: Medium Impact BES Cyber Systems with External Routable 
Connectivity and their associated:
Part 1.4; Applicable Systems: 1. EACMS; and
Part 1.4; Applicable Systems: 2. PCA
Part 1.4; Requirements: Monitor for unauthorized access through a physical access point into a 
Physical Security Perimeter.
Part 1.4; Measures: An example of evidence may include, but is not limited to, documentation 
of controls that monitor for unauthorized access through a physical access point into a Physical 
Security Perimeter.

A table example from a sample 
document

Tree structure and flattened sequences output from the algorithm

CIP-006-6 Table R1 Physical Security Plan
Part Applicable Systems Requirements Measures

1.4 High Impact BES Cyber
Systems and their associated:

1. EACMS; and

2. PCA

Medium Impact BES Cyber
Systems with External
Routable Connectivity and
their associated:

1. EACMS; and

2. PCA

Monitor for unauthorized 
access through a physical 
access point into a Physical 
Security Perimeter.

An example of evidence may include, 
but is not limited to, documentation of 
controls that monitor for unauthorized 
access through a physical access point 
into a Physical Security Perimeter.

The flattened sequences output from our algorithm

PyMuPDF

Tabula

Output text from PDF document with Python libraries 

Camelot

python-docx

Output text from DOCX document with Python library

Fig. 17. An output from available libraries in python specialized on extracting tables from PDFs and DOCX document and our
proposed novel algorithm

derived from DistilBERT [68]. This variant of DistilBERT intended for sentiment analysis was specifically fine-tuned on
the Stanford Sentiment Treebank v2 (SST2) [74].

Sentiment analysis models assign a label to the input sentence based on the detected sentiment, and the polarity
scores here show the confidence score for the detected sentiment. Comparing our CYVET sentiment analysis model
with standard VADER (Table 6), we observe an improvement on the sentiment assignment for sentences and sequences
extracted from our dataset of ICS vendor documents. For a simple sentence such as ”Assign individual user and role-
based account authentication and strong passwords”, the DistilBERT Sentiment Analysis and our optimized VADER
approach detect the correct intention of the sentence. However, our model’s confidence score is higher than that of
the DistilBERT model. For the complex sequence example of ”User Security: Assign individual user and role-based
account authentication and strong passwords; use Lightweight Directory Access Protocol (LDAP) for central user
authentication.”, DistilBERT fails to assign a correct sentiment to the sentence. The Standard VADER confidence score
for both sequence complexity types are in the middle of the range of [0,1], which indicates that it does not have enough
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Table 5. Comparison across all tested language models.

Model Architecture Accuracy Macro AUC Trainable
Weighted F1 Parameters

Our approach 12 Encoder 0.954 0.93 0.948 108,647,026(CyBERT)[1] 3 Dense

BERT 12 Encoder 0.76 0.72 0.773 109,482,240Classifier 1 Dense

GPT2-Small 12 Decoder 0.9 0.87 0.908 125,444,1341 Dense

ELMo+NN 2 Dense 0.91 0.9 0.910 295,554

ELMo+CNN 1 Convolution 0.92 0.9 0.912 16,778,2422 Dense

ELMo+LSTM 1 LSTM 0.90 0.88 0.916 19,785,4102 Dense

ELMo+BiLSTM 1 BiLSTM 0.91 0.89 0.897 15,854,2742 Dense

ULMFiT 3 AWD-LSTM 0.91 0.91 0.902 62,652

confidence in the assigned sentiment label. Furthermore, the standard VADER assigned sentiment for both examples
are incorrect.

7 DATASET AVAILABILITY

At the conclusion of our research project the authors are planning to make a curated dataset publicly available from
our repository containing over 12000 product documents from ICS websites, including 2844 manuals, 7832 brochures
and 666 catalogs for ICS products. Curated from these documents, our ICS sequence database currently contains over
two million sequences.

8 CONCLUSIONS AND FUTUREWORK

In this paper we proposed a novel framework for a semi-automated vetting system (CYVET) for ICS devices. CYVET’s
goal is to provide its users with detailed insights into the cybersecurity features claimed by device vendors, and the
impact those features may have on their cybersecurity posture. For that purpose, CYVET audits the devices of interest
using two primary components: Tally-Vet and Test-Vet. In this paper we are detailing the framework and toolset
underpinning Tally-Vet, which is CYVET’s component that processes vendor documents about the devices of interest to
extract feature claims and vet those against customer requirements.

Tally-Vet is comprised of several complex processing steps, all shown in this paper including sample results. It first
extracts sequences from ICS documents located in CYVET’s document repository. Then, NLP techniques are used
to search for features of interest within all extracted sequences. Those sequences were then processed by our claim
classifier to detect sequences that represent claims. Those claims are analyzed with our sentiment analysis algorithm
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Table 6. Comparison of sentiment analysis using example sequences

Example Sentence (1):
”Assign individual user and role-based account authentication and strong passwords”

Model Sentiment Confidence Score

Our Specialized VADER Positive 0.8834

Standard VADER Neutral 0.5106

DistilBERT Sentiment Analysis Positive 0.802

Example Sentence (2):
”Assign individual user and role-based account authentication and strong passwords”

Model Sentiment Confidence Score

Our Specialized VADER Positive 0.8834

Standard VADER Neutral 0.5106

DistilBERT Sentiment Analysis Positive 0.802

Example Sentence (3):
”The RTAC also supports central authentication through your existing LDAP server.”

Model Sentiment Confidence Score

Our Specialized VADER Positive 0.586

Standard VADER Neutral 0.737

DistilBERT Sentiment Analysis Negative 0.939

Example Sentence (4):
”User Security: Assign individual user and role-based account authentication and strong passwords;
use Lightweight Directory Access Protocol (LDAP) for central user authentication.”

Model Sentiment Confidence Score

Our Specialized VADER Positive 0.979

Standard VADER Neutral 0.690

DistilBERT Sentiment Analysis Negative 0.99

to identify supported or unsupported features within documents. The feature support processing finds any possible
conflicts for feature claims in all documents for each device. The final check in the Tally-Vet pipeline is the customer
requirements level check for each feature. Devices only pass the feature support check if all of their required features
are claimed as supported by the vendor. The Tally-Vet pipeline is able to verify compatibility between device feature
claims and customer requirements.

In this paper, we demonstrated that this framework is novel and able to gather and parse all components required
for the Tally-Vet pipeline in the CYVET system. Our proposed algorithms can successfully extract structured sequences
Manuscript submitted to ACM
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from ICS device documents, identify claim sequences and their features, evaluate the intention behind our claim
sequence detection approach to identify sequences indicating support of a feature or lack thereof, as well as resolve any
conflicting feature claims among the set of documents for each device.

Tally-Vet is able to provide a list of hardware tests based on known reported flaws for each feature. This list will
be passed to Test-Vet, the other key component of CYVET, to verify these feature claims through conducting actual
hardware tests. Our future work focuses on the Test-Vet functionality of CYVET, specifically:

• Discovering known vulnerability reports and automatic attribution to features.
• Automating Test-Vet script generation and selection for hardware tests.
• End-to-End Integration of CYVET’s automated vetting system and its report generation functionality.
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